]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
56 * framebuffer contents in-memory, aiming at reducing the required bandwidth
57 * during in-memory transfers and, therefore, reduce the power packet.
58 *
59 * The benefits of FBC are mostly visible with solid backgrounds and
60 * variation-less patterns.
61 *
62 * FBC-related functionality can be enabled by the means of the
63 * i915.i915_enable_fbc parameter
64 */
65
66 static void gen9_init_clock_gating(struct drm_device *dev)
67 {
68 struct drm_i915_private *dev_priv = dev->dev_private;
69
70 /*
71 * WaDisableSDEUnitClockGating:skl
72 * This seems to be a pre-production w/a.
73 */
74 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
75 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
76
77 /*
78 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
79 * This is a pre-production w/a.
80 */
81 I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
82 I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
83 ~GEN9_DG_MIRROR_FIX_ENABLE);
84
85 /* Wa4x4STCOptimizationDisable:skl */
86 I915_WRITE(CACHE_MODE_1,
87 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
88 }
89
90 static void i8xx_disable_fbc(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 u32 fbc_ctl;
94
95 dev_priv->fbc.enabled = false;
96
97 /* Disable compression */
98 fbc_ctl = I915_READ(FBC_CONTROL);
99 if ((fbc_ctl & FBC_CTL_EN) == 0)
100 return;
101
102 fbc_ctl &= ~FBC_CTL_EN;
103 I915_WRITE(FBC_CONTROL, fbc_ctl);
104
105 /* Wait for compressing bit to clear */
106 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
107 DRM_DEBUG_KMS("FBC idle timed out\n");
108 return;
109 }
110
111 DRM_DEBUG_KMS("disabled FBC\n");
112 }
113
114 static void i8xx_enable_fbc(struct drm_crtc *crtc)
115 {
116 struct drm_device *dev = crtc->dev;
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct drm_framebuffer *fb = crtc->primary->fb;
119 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
121 int cfb_pitch;
122 int i;
123 u32 fbc_ctl;
124
125 dev_priv->fbc.enabled = true;
126
127 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
128 if (fb->pitches[0] < cfb_pitch)
129 cfb_pitch = fb->pitches[0];
130
131 /* FBC_CTL wants 32B or 64B units */
132 if (IS_GEN2(dev))
133 cfb_pitch = (cfb_pitch / 32) - 1;
134 else
135 cfb_pitch = (cfb_pitch / 64) - 1;
136
137 /* Clear old tags */
138 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
139 I915_WRITE(FBC_TAG + (i * 4), 0);
140
141 if (IS_GEN4(dev)) {
142 u32 fbc_ctl2;
143
144 /* Set it up... */
145 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
146 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
147 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
148 I915_WRITE(FBC_FENCE_OFF, crtc->y);
149 }
150
151 /* enable it... */
152 fbc_ctl = I915_READ(FBC_CONTROL);
153 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
154 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
155 if (IS_I945GM(dev))
156 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
157 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
158 fbc_ctl |= obj->fence_reg;
159 I915_WRITE(FBC_CONTROL, fbc_ctl);
160
161 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
162 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
163 }
164
165 static bool i8xx_fbc_enabled(struct drm_device *dev)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168
169 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
170 }
171
172 static void g4x_enable_fbc(struct drm_crtc *crtc)
173 {
174 struct drm_device *dev = crtc->dev;
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_framebuffer *fb = crtc->primary->fb;
177 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
179 u32 dpfc_ctl;
180
181 dev_priv->fbc.enabled = true;
182
183 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
184 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
185 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
186 else
187 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
188 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
189
190 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
191
192 /* enable it... */
193 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
194
195 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
196 }
197
198 static void g4x_disable_fbc(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 u32 dpfc_ctl;
202
203 dev_priv->fbc.enabled = false;
204
205 /* Disable compression */
206 dpfc_ctl = I915_READ(DPFC_CONTROL);
207 if (dpfc_ctl & DPFC_CTL_EN) {
208 dpfc_ctl &= ~DPFC_CTL_EN;
209 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
210
211 DRM_DEBUG_KMS("disabled FBC\n");
212 }
213 }
214
215 static bool g4x_fbc_enabled(struct drm_device *dev)
216 {
217 struct drm_i915_private *dev_priv = dev->dev_private;
218
219 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
220 }
221
222 static void sandybridge_blit_fbc_update(struct drm_device *dev)
223 {
224 struct drm_i915_private *dev_priv = dev->dev_private;
225 u32 blt_ecoskpd;
226
227 /* Make sure blitter notifies FBC of writes */
228
229 /* Blitter is part of Media powerwell on VLV. No impact of
230 * his param in other platforms for now */
231 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
232
233 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
234 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
235 GEN6_BLITTER_LOCK_SHIFT;
236 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
237 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
238 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
239 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
240 GEN6_BLITTER_LOCK_SHIFT);
241 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
242 POSTING_READ(GEN6_BLITTER_ECOSKPD);
243
244 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
245 }
246
247 static void ironlake_enable_fbc(struct drm_crtc *crtc)
248 {
249 struct drm_device *dev = crtc->dev;
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 struct drm_framebuffer *fb = crtc->primary->fb;
252 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
254 u32 dpfc_ctl;
255
256 dev_priv->fbc.enabled = true;
257
258 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
259 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
260 dev_priv->fbc.threshold++;
261
262 switch (dev_priv->fbc.threshold) {
263 case 4:
264 case 3:
265 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
266 break;
267 case 2:
268 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
269 break;
270 case 1:
271 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
272 break;
273 }
274 dpfc_ctl |= DPFC_CTL_FENCE_EN;
275 if (IS_GEN5(dev))
276 dpfc_ctl |= obj->fence_reg;
277
278 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
279 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
280 /* enable it... */
281 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
282
283 if (IS_GEN6(dev)) {
284 I915_WRITE(SNB_DPFC_CTL_SA,
285 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
286 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
287 sandybridge_blit_fbc_update(dev);
288 }
289
290 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
291 }
292
293 static void ironlake_disable_fbc(struct drm_device *dev)
294 {
295 struct drm_i915_private *dev_priv = dev->dev_private;
296 u32 dpfc_ctl;
297
298 dev_priv->fbc.enabled = false;
299
300 /* Disable compression */
301 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
302 if (dpfc_ctl & DPFC_CTL_EN) {
303 dpfc_ctl &= ~DPFC_CTL_EN;
304 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
305
306 DRM_DEBUG_KMS("disabled FBC\n");
307 }
308 }
309
310 static bool ironlake_fbc_enabled(struct drm_device *dev)
311 {
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
315 }
316
317 static void gen7_enable_fbc(struct drm_crtc *crtc)
318 {
319 struct drm_device *dev = crtc->dev;
320 struct drm_i915_private *dev_priv = dev->dev_private;
321 struct drm_framebuffer *fb = crtc->primary->fb;
322 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
324 u32 dpfc_ctl;
325
326 dev_priv->fbc.enabled = true;
327
328 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
329 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
330 dev_priv->fbc.threshold++;
331
332 switch (dev_priv->fbc.threshold) {
333 case 4:
334 case 3:
335 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
336 break;
337 case 2:
338 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
339 break;
340 case 1:
341 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
342 break;
343 }
344
345 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
346
347 if (dev_priv->fbc.false_color)
348 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
349
350 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
351
352 if (IS_IVYBRIDGE(dev)) {
353 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
354 I915_WRITE(ILK_DISPLAY_CHICKEN1,
355 I915_READ(ILK_DISPLAY_CHICKEN1) |
356 ILK_FBCQ_DIS);
357 } else {
358 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
359 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
360 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
361 HSW_FBCQ_DIS);
362 }
363
364 I915_WRITE(SNB_DPFC_CTL_SA,
365 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
366 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
367
368 sandybridge_blit_fbc_update(dev);
369
370 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
371 }
372
373 bool intel_fbc_enabled(struct drm_device *dev)
374 {
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 return dev_priv->fbc.enabled;
378 }
379
380 void bdw_fbc_sw_flush(struct drm_device *dev, u32 value)
381 {
382 struct drm_i915_private *dev_priv = dev->dev_private;
383
384 if (!IS_GEN8(dev))
385 return;
386
387 if (!intel_fbc_enabled(dev))
388 return;
389
390 I915_WRITE(MSG_FBC_REND_STATE, value);
391 }
392
393 static void intel_fbc_work_fn(struct work_struct *__work)
394 {
395 struct intel_fbc_work *work =
396 container_of(to_delayed_work(__work),
397 struct intel_fbc_work, work);
398 struct drm_device *dev = work->crtc->dev;
399 struct drm_i915_private *dev_priv = dev->dev_private;
400
401 mutex_lock(&dev->struct_mutex);
402 if (work == dev_priv->fbc.fbc_work) {
403 /* Double check that we haven't switched fb without cancelling
404 * the prior work.
405 */
406 if (work->crtc->primary->fb == work->fb) {
407 dev_priv->display.enable_fbc(work->crtc);
408
409 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
410 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
411 dev_priv->fbc.y = work->crtc->y;
412 }
413
414 dev_priv->fbc.fbc_work = NULL;
415 }
416 mutex_unlock(&dev->struct_mutex);
417
418 kfree(work);
419 }
420
421 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
422 {
423 if (dev_priv->fbc.fbc_work == NULL)
424 return;
425
426 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
427
428 /* Synchronisation is provided by struct_mutex and checking of
429 * dev_priv->fbc.fbc_work, so we can perform the cancellation
430 * entirely asynchronously.
431 */
432 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
433 /* tasklet was killed before being run, clean up */
434 kfree(dev_priv->fbc.fbc_work);
435
436 /* Mark the work as no longer wanted so that if it does
437 * wake-up (because the work was already running and waiting
438 * for our mutex), it will discover that is no longer
439 * necessary to run.
440 */
441 dev_priv->fbc.fbc_work = NULL;
442 }
443
444 static void intel_enable_fbc(struct drm_crtc *crtc)
445 {
446 struct intel_fbc_work *work;
447 struct drm_device *dev = crtc->dev;
448 struct drm_i915_private *dev_priv = dev->dev_private;
449
450 if (!dev_priv->display.enable_fbc)
451 return;
452
453 intel_cancel_fbc_work(dev_priv);
454
455 work = kzalloc(sizeof(*work), GFP_KERNEL);
456 if (work == NULL) {
457 DRM_ERROR("Failed to allocate FBC work structure\n");
458 dev_priv->display.enable_fbc(crtc);
459 return;
460 }
461
462 work->crtc = crtc;
463 work->fb = crtc->primary->fb;
464 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
465
466 dev_priv->fbc.fbc_work = work;
467
468 /* Delay the actual enabling to let pageflipping cease and the
469 * display to settle before starting the compression. Note that
470 * this delay also serves a second purpose: it allows for a
471 * vblank to pass after disabling the FBC before we attempt
472 * to modify the control registers.
473 *
474 * A more complicated solution would involve tracking vblanks
475 * following the termination of the page-flipping sequence
476 * and indeed performing the enable as a co-routine and not
477 * waiting synchronously upon the vblank.
478 *
479 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
480 */
481 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
482 }
483
484 void intel_disable_fbc(struct drm_device *dev)
485 {
486 struct drm_i915_private *dev_priv = dev->dev_private;
487
488 intel_cancel_fbc_work(dev_priv);
489
490 if (!dev_priv->display.disable_fbc)
491 return;
492
493 dev_priv->display.disable_fbc(dev);
494 dev_priv->fbc.plane = -1;
495 }
496
497 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
498 enum no_fbc_reason reason)
499 {
500 if (dev_priv->fbc.no_fbc_reason == reason)
501 return false;
502
503 dev_priv->fbc.no_fbc_reason = reason;
504 return true;
505 }
506
507 /**
508 * intel_update_fbc - enable/disable FBC as needed
509 * @dev: the drm_device
510 *
511 * Set up the framebuffer compression hardware at mode set time. We
512 * enable it if possible:
513 * - plane A only (on pre-965)
514 * - no pixel mulitply/line duplication
515 * - no alpha buffer discard
516 * - no dual wide
517 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
518 *
519 * We can't assume that any compression will take place (worst case),
520 * so the compressed buffer has to be the same size as the uncompressed
521 * one. It also must reside (along with the line length buffer) in
522 * stolen memory.
523 *
524 * We need to enable/disable FBC on a global basis.
525 */
526 void intel_update_fbc(struct drm_device *dev)
527 {
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 struct drm_crtc *crtc = NULL, *tmp_crtc;
530 struct intel_crtc *intel_crtc;
531 struct drm_framebuffer *fb;
532 struct drm_i915_gem_object *obj;
533 const struct drm_display_mode *adjusted_mode;
534 unsigned int max_width, max_height;
535
536 if (!HAS_FBC(dev)) {
537 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
538 return;
539 }
540
541 if (!i915.powersave) {
542 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
543 DRM_DEBUG_KMS("fbc disabled per module param\n");
544 return;
545 }
546
547 /*
548 * If FBC is already on, we just have to verify that we can
549 * keep it that way...
550 * Need to disable if:
551 * - more than one pipe is active
552 * - changing FBC params (stride, fence, mode)
553 * - new fb is too large to fit in compressed buffer
554 * - going to an unsupported config (interlace, pixel multiply, etc.)
555 */
556 for_each_crtc(dev, tmp_crtc) {
557 if (intel_crtc_active(tmp_crtc) &&
558 to_intel_crtc(tmp_crtc)->primary_enabled) {
559 if (crtc) {
560 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
561 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
562 goto out_disable;
563 }
564 crtc = tmp_crtc;
565 }
566 }
567
568 if (!crtc || crtc->primary->fb == NULL) {
569 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
570 DRM_DEBUG_KMS("no output, disabling\n");
571 goto out_disable;
572 }
573
574 intel_crtc = to_intel_crtc(crtc);
575 fb = crtc->primary->fb;
576 obj = intel_fb_obj(fb);
577 adjusted_mode = &intel_crtc->config.adjusted_mode;
578
579 if (i915.enable_fbc < 0) {
580 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
581 DRM_DEBUG_KMS("disabled per chip default\n");
582 goto out_disable;
583 }
584 if (!i915.enable_fbc) {
585 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
586 DRM_DEBUG_KMS("fbc disabled per module param\n");
587 goto out_disable;
588 }
589 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
590 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
591 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
592 DRM_DEBUG_KMS("mode incompatible with compression, "
593 "disabling\n");
594 goto out_disable;
595 }
596
597 if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
598 max_width = 4096;
599 max_height = 4096;
600 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
601 max_width = 4096;
602 max_height = 2048;
603 } else {
604 max_width = 2048;
605 max_height = 1536;
606 }
607 if (intel_crtc->config.pipe_src_w > max_width ||
608 intel_crtc->config.pipe_src_h > max_height) {
609 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
610 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
611 goto out_disable;
612 }
613 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
614 intel_crtc->plane != PLANE_A) {
615 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
616 DRM_DEBUG_KMS("plane not A, disabling compression\n");
617 goto out_disable;
618 }
619
620 /* The use of a CPU fence is mandatory in order to detect writes
621 * by the CPU to the scanout and trigger updates to the FBC.
622 */
623 if (obj->tiling_mode != I915_TILING_X ||
624 obj->fence_reg == I915_FENCE_REG_NONE) {
625 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
626 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
627 goto out_disable;
628 }
629 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
630 to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
631 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
632 DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
633 goto out_disable;
634 }
635
636 /* If the kernel debugger is active, always disable compression */
637 if (in_dbg_master())
638 goto out_disable;
639
640 if (i915_gem_stolen_setup_compression(dev, obj->base.size,
641 drm_format_plane_cpp(fb->pixel_format, 0))) {
642 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
643 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
644 goto out_disable;
645 }
646
647 /* If the scanout has not changed, don't modify the FBC settings.
648 * Note that we make the fundamental assumption that the fb->obj
649 * cannot be unpinned (and have its GTT offset and fence revoked)
650 * without first being decoupled from the scanout and FBC disabled.
651 */
652 if (dev_priv->fbc.plane == intel_crtc->plane &&
653 dev_priv->fbc.fb_id == fb->base.id &&
654 dev_priv->fbc.y == crtc->y)
655 return;
656
657 if (intel_fbc_enabled(dev)) {
658 /* We update FBC along two paths, after changing fb/crtc
659 * configuration (modeswitching) and after page-flipping
660 * finishes. For the latter, we know that not only did
661 * we disable the FBC at the start of the page-flip
662 * sequence, but also more than one vblank has passed.
663 *
664 * For the former case of modeswitching, it is possible
665 * to switch between two FBC valid configurations
666 * instantaneously so we do need to disable the FBC
667 * before we can modify its control registers. We also
668 * have to wait for the next vblank for that to take
669 * effect. However, since we delay enabling FBC we can
670 * assume that a vblank has passed since disabling and
671 * that we can safely alter the registers in the deferred
672 * callback.
673 *
674 * In the scenario that we go from a valid to invalid
675 * and then back to valid FBC configuration we have
676 * no strict enforcement that a vblank occurred since
677 * disabling the FBC. However, along all current pipe
678 * disabling paths we do need to wait for a vblank at
679 * some point. And we wait before enabling FBC anyway.
680 */
681 DRM_DEBUG_KMS("disabling active FBC for update\n");
682 intel_disable_fbc(dev);
683 }
684
685 intel_enable_fbc(crtc);
686 dev_priv->fbc.no_fbc_reason = FBC_OK;
687 return;
688
689 out_disable:
690 /* Multiple disables should be harmless */
691 if (intel_fbc_enabled(dev)) {
692 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
693 intel_disable_fbc(dev);
694 }
695 i915_gem_stolen_cleanup_compression(dev);
696 }
697
698 static void i915_pineview_get_mem_freq(struct drm_device *dev)
699 {
700 struct drm_i915_private *dev_priv = dev->dev_private;
701 u32 tmp;
702
703 tmp = I915_READ(CLKCFG);
704
705 switch (tmp & CLKCFG_FSB_MASK) {
706 case CLKCFG_FSB_533:
707 dev_priv->fsb_freq = 533; /* 133*4 */
708 break;
709 case CLKCFG_FSB_800:
710 dev_priv->fsb_freq = 800; /* 200*4 */
711 break;
712 case CLKCFG_FSB_667:
713 dev_priv->fsb_freq = 667; /* 167*4 */
714 break;
715 case CLKCFG_FSB_400:
716 dev_priv->fsb_freq = 400; /* 100*4 */
717 break;
718 }
719
720 switch (tmp & CLKCFG_MEM_MASK) {
721 case CLKCFG_MEM_533:
722 dev_priv->mem_freq = 533;
723 break;
724 case CLKCFG_MEM_667:
725 dev_priv->mem_freq = 667;
726 break;
727 case CLKCFG_MEM_800:
728 dev_priv->mem_freq = 800;
729 break;
730 }
731
732 /* detect pineview DDR3 setting */
733 tmp = I915_READ(CSHRDDR3CTL);
734 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
735 }
736
737 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
738 {
739 struct drm_i915_private *dev_priv = dev->dev_private;
740 u16 ddrpll, csipll;
741
742 ddrpll = I915_READ16(DDRMPLL1);
743 csipll = I915_READ16(CSIPLL0);
744
745 switch (ddrpll & 0xff) {
746 case 0xc:
747 dev_priv->mem_freq = 800;
748 break;
749 case 0x10:
750 dev_priv->mem_freq = 1066;
751 break;
752 case 0x14:
753 dev_priv->mem_freq = 1333;
754 break;
755 case 0x18:
756 dev_priv->mem_freq = 1600;
757 break;
758 default:
759 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
760 ddrpll & 0xff);
761 dev_priv->mem_freq = 0;
762 break;
763 }
764
765 dev_priv->ips.r_t = dev_priv->mem_freq;
766
767 switch (csipll & 0x3ff) {
768 case 0x00c:
769 dev_priv->fsb_freq = 3200;
770 break;
771 case 0x00e:
772 dev_priv->fsb_freq = 3733;
773 break;
774 case 0x010:
775 dev_priv->fsb_freq = 4266;
776 break;
777 case 0x012:
778 dev_priv->fsb_freq = 4800;
779 break;
780 case 0x014:
781 dev_priv->fsb_freq = 5333;
782 break;
783 case 0x016:
784 dev_priv->fsb_freq = 5866;
785 break;
786 case 0x018:
787 dev_priv->fsb_freq = 6400;
788 break;
789 default:
790 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
791 csipll & 0x3ff);
792 dev_priv->fsb_freq = 0;
793 break;
794 }
795
796 if (dev_priv->fsb_freq == 3200) {
797 dev_priv->ips.c_m = 0;
798 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
799 dev_priv->ips.c_m = 1;
800 } else {
801 dev_priv->ips.c_m = 2;
802 }
803 }
804
805 static const struct cxsr_latency cxsr_latency_table[] = {
806 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
807 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
808 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
809 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
810 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
811
812 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
813 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
814 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
815 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
816 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
817
818 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
819 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
820 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
821 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
822 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
823
824 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
825 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
826 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
827 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
828 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
829
830 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
831 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
832 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
833 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
834 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
835
836 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
837 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
838 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
839 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
840 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
841 };
842
843 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
844 int is_ddr3,
845 int fsb,
846 int mem)
847 {
848 const struct cxsr_latency *latency;
849 int i;
850
851 if (fsb == 0 || mem == 0)
852 return NULL;
853
854 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
855 latency = &cxsr_latency_table[i];
856 if (is_desktop == latency->is_desktop &&
857 is_ddr3 == latency->is_ddr3 &&
858 fsb == latency->fsb_freq && mem == latency->mem_freq)
859 return latency;
860 }
861
862 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
863
864 return NULL;
865 }
866
867 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
868 {
869 struct drm_device *dev = dev_priv->dev;
870 u32 val;
871
872 if (IS_VALLEYVIEW(dev)) {
873 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
874 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
875 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
876 } else if (IS_PINEVIEW(dev)) {
877 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
878 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
879 I915_WRITE(DSPFW3, val);
880 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
881 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
882 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
883 I915_WRITE(FW_BLC_SELF, val);
884 } else if (IS_I915GM(dev)) {
885 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
886 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
887 I915_WRITE(INSTPM, val);
888 } else {
889 return;
890 }
891
892 DRM_DEBUG_KMS("memory self-refresh is %s\n",
893 enable ? "enabled" : "disabled");
894 }
895
896 /*
897 * Latency for FIFO fetches is dependent on several factors:
898 * - memory configuration (speed, channels)
899 * - chipset
900 * - current MCH state
901 * It can be fairly high in some situations, so here we assume a fairly
902 * pessimal value. It's a tradeoff between extra memory fetches (if we
903 * set this value too high, the FIFO will fetch frequently to stay full)
904 * and power consumption (set it too low to save power and we might see
905 * FIFO underruns and display "flicker").
906 *
907 * A value of 5us seems to be a good balance; safe for very low end
908 * platforms but not overly aggressive on lower latency configs.
909 */
910 static const int pessimal_latency_ns = 5000;
911
912 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
913 {
914 struct drm_i915_private *dev_priv = dev->dev_private;
915 uint32_t dsparb = I915_READ(DSPARB);
916 int size;
917
918 size = dsparb & 0x7f;
919 if (plane)
920 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
921
922 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
923 plane ? "B" : "A", size);
924
925 return size;
926 }
927
928 static int i830_get_fifo_size(struct drm_device *dev, int plane)
929 {
930 struct drm_i915_private *dev_priv = dev->dev_private;
931 uint32_t dsparb = I915_READ(DSPARB);
932 int size;
933
934 size = dsparb & 0x1ff;
935 if (plane)
936 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
937 size >>= 1; /* Convert to cachelines */
938
939 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
940 plane ? "B" : "A", size);
941
942 return size;
943 }
944
945 static int i845_get_fifo_size(struct drm_device *dev, int plane)
946 {
947 struct drm_i915_private *dev_priv = dev->dev_private;
948 uint32_t dsparb = I915_READ(DSPARB);
949 int size;
950
951 size = dsparb & 0x7f;
952 size >>= 2; /* Convert to cachelines */
953
954 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
955 plane ? "B" : "A",
956 size);
957
958 return size;
959 }
960
961 /* Pineview has different values for various configs */
962 static const struct intel_watermark_params pineview_display_wm = {
963 .fifo_size = PINEVIEW_DISPLAY_FIFO,
964 .max_wm = PINEVIEW_MAX_WM,
965 .default_wm = PINEVIEW_DFT_WM,
966 .guard_size = PINEVIEW_GUARD_WM,
967 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params pineview_display_hplloff_wm = {
970 .fifo_size = PINEVIEW_DISPLAY_FIFO,
971 .max_wm = PINEVIEW_MAX_WM,
972 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
973 .guard_size = PINEVIEW_GUARD_WM,
974 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params pineview_cursor_wm = {
977 .fifo_size = PINEVIEW_CURSOR_FIFO,
978 .max_wm = PINEVIEW_CURSOR_MAX_WM,
979 .default_wm = PINEVIEW_CURSOR_DFT_WM,
980 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
981 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
984 .fifo_size = PINEVIEW_CURSOR_FIFO,
985 .max_wm = PINEVIEW_CURSOR_MAX_WM,
986 .default_wm = PINEVIEW_CURSOR_DFT_WM,
987 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
988 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params g4x_wm_info = {
991 .fifo_size = G4X_FIFO_SIZE,
992 .max_wm = G4X_MAX_WM,
993 .default_wm = G4X_MAX_WM,
994 .guard_size = 2,
995 .cacheline_size = G4X_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params g4x_cursor_wm_info = {
998 .fifo_size = I965_CURSOR_FIFO,
999 .max_wm = I965_CURSOR_MAX_WM,
1000 .default_wm = I965_CURSOR_DFT_WM,
1001 .guard_size = 2,
1002 .cacheline_size = G4X_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params valleyview_wm_info = {
1005 .fifo_size = VALLEYVIEW_FIFO_SIZE,
1006 .max_wm = VALLEYVIEW_MAX_WM,
1007 .default_wm = VALLEYVIEW_MAX_WM,
1008 .guard_size = 2,
1009 .cacheline_size = G4X_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params valleyview_cursor_wm_info = {
1012 .fifo_size = I965_CURSOR_FIFO,
1013 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
1014 .default_wm = I965_CURSOR_DFT_WM,
1015 .guard_size = 2,
1016 .cacheline_size = G4X_FIFO_LINE_SIZE,
1017 };
1018 static const struct intel_watermark_params i965_cursor_wm_info = {
1019 .fifo_size = I965_CURSOR_FIFO,
1020 .max_wm = I965_CURSOR_MAX_WM,
1021 .default_wm = I965_CURSOR_DFT_WM,
1022 .guard_size = 2,
1023 .cacheline_size = I915_FIFO_LINE_SIZE,
1024 };
1025 static const struct intel_watermark_params i945_wm_info = {
1026 .fifo_size = I945_FIFO_SIZE,
1027 .max_wm = I915_MAX_WM,
1028 .default_wm = 1,
1029 .guard_size = 2,
1030 .cacheline_size = I915_FIFO_LINE_SIZE,
1031 };
1032 static const struct intel_watermark_params i915_wm_info = {
1033 .fifo_size = I915_FIFO_SIZE,
1034 .max_wm = I915_MAX_WM,
1035 .default_wm = 1,
1036 .guard_size = 2,
1037 .cacheline_size = I915_FIFO_LINE_SIZE,
1038 };
1039 static const struct intel_watermark_params i830_a_wm_info = {
1040 .fifo_size = I855GM_FIFO_SIZE,
1041 .max_wm = I915_MAX_WM,
1042 .default_wm = 1,
1043 .guard_size = 2,
1044 .cacheline_size = I830_FIFO_LINE_SIZE,
1045 };
1046 static const struct intel_watermark_params i830_bc_wm_info = {
1047 .fifo_size = I855GM_FIFO_SIZE,
1048 .max_wm = I915_MAX_WM/2,
1049 .default_wm = 1,
1050 .guard_size = 2,
1051 .cacheline_size = I830_FIFO_LINE_SIZE,
1052 };
1053 static const struct intel_watermark_params i845_wm_info = {
1054 .fifo_size = I830_FIFO_SIZE,
1055 .max_wm = I915_MAX_WM,
1056 .default_wm = 1,
1057 .guard_size = 2,
1058 .cacheline_size = I830_FIFO_LINE_SIZE,
1059 };
1060
1061 /**
1062 * intel_calculate_wm - calculate watermark level
1063 * @clock_in_khz: pixel clock
1064 * @wm: chip FIFO params
1065 * @pixel_size: display pixel size
1066 * @latency_ns: memory latency for the platform
1067 *
1068 * Calculate the watermark level (the level at which the display plane will
1069 * start fetching from memory again). Each chip has a different display
1070 * FIFO size and allocation, so the caller needs to figure that out and pass
1071 * in the correct intel_watermark_params structure.
1072 *
1073 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1074 * on the pixel size. When it reaches the watermark level, it'll start
1075 * fetching FIFO line sized based chunks from memory until the FIFO fills
1076 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1077 * will occur, and a display engine hang could result.
1078 */
1079 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1080 const struct intel_watermark_params *wm,
1081 int fifo_size,
1082 int pixel_size,
1083 unsigned long latency_ns)
1084 {
1085 long entries_required, wm_size;
1086
1087 /*
1088 * Note: we need to make sure we don't overflow for various clock &
1089 * latency values.
1090 * clocks go from a few thousand to several hundred thousand.
1091 * latency is usually a few thousand
1092 */
1093 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1094 1000;
1095 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1096
1097 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1098
1099 wm_size = fifo_size - (entries_required + wm->guard_size);
1100
1101 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1102
1103 /* Don't promote wm_size to unsigned... */
1104 if (wm_size > (long)wm->max_wm)
1105 wm_size = wm->max_wm;
1106 if (wm_size <= 0)
1107 wm_size = wm->default_wm;
1108
1109 /*
1110 * Bspec seems to indicate that the value shouldn't be lower than
1111 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
1112 * Lets go for 8 which is the burst size since certain platforms
1113 * already use a hardcoded 8 (which is what the spec says should be
1114 * done).
1115 */
1116 if (wm_size <= 8)
1117 wm_size = 8;
1118
1119 return wm_size;
1120 }
1121
1122 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1123 {
1124 struct drm_crtc *crtc, *enabled = NULL;
1125
1126 for_each_crtc(dev, crtc) {
1127 if (intel_crtc_active(crtc)) {
1128 if (enabled)
1129 return NULL;
1130 enabled = crtc;
1131 }
1132 }
1133
1134 return enabled;
1135 }
1136
1137 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1138 {
1139 struct drm_device *dev = unused_crtc->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct drm_crtc *crtc;
1142 const struct cxsr_latency *latency;
1143 u32 reg;
1144 unsigned long wm;
1145
1146 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1147 dev_priv->fsb_freq, dev_priv->mem_freq);
1148 if (!latency) {
1149 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1150 intel_set_memory_cxsr(dev_priv, false);
1151 return;
1152 }
1153
1154 crtc = single_enabled_crtc(dev);
1155 if (crtc) {
1156 const struct drm_display_mode *adjusted_mode;
1157 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1158 int clock;
1159
1160 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1161 clock = adjusted_mode->crtc_clock;
1162
1163 /* Display SR */
1164 wm = intel_calculate_wm(clock, &pineview_display_wm,
1165 pineview_display_wm.fifo_size,
1166 pixel_size, latency->display_sr);
1167 reg = I915_READ(DSPFW1);
1168 reg &= ~DSPFW_SR_MASK;
1169 reg |= wm << DSPFW_SR_SHIFT;
1170 I915_WRITE(DSPFW1, reg);
1171 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1172
1173 /* cursor SR */
1174 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1175 pineview_display_wm.fifo_size,
1176 pixel_size, latency->cursor_sr);
1177 reg = I915_READ(DSPFW3);
1178 reg &= ~DSPFW_CURSOR_SR_MASK;
1179 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1180 I915_WRITE(DSPFW3, reg);
1181
1182 /* Display HPLL off SR */
1183 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1184 pineview_display_hplloff_wm.fifo_size,
1185 pixel_size, latency->display_hpll_disable);
1186 reg = I915_READ(DSPFW3);
1187 reg &= ~DSPFW_HPLL_SR_MASK;
1188 reg |= wm & DSPFW_HPLL_SR_MASK;
1189 I915_WRITE(DSPFW3, reg);
1190
1191 /* cursor HPLL off SR */
1192 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1193 pineview_display_hplloff_wm.fifo_size,
1194 pixel_size, latency->cursor_hpll_disable);
1195 reg = I915_READ(DSPFW3);
1196 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1197 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1198 I915_WRITE(DSPFW3, reg);
1199 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1200
1201 intel_set_memory_cxsr(dev_priv, true);
1202 } else {
1203 intel_set_memory_cxsr(dev_priv, false);
1204 }
1205 }
1206
1207 static bool g4x_compute_wm0(struct drm_device *dev,
1208 int plane,
1209 const struct intel_watermark_params *display,
1210 int display_latency_ns,
1211 const struct intel_watermark_params *cursor,
1212 int cursor_latency_ns,
1213 int *plane_wm,
1214 int *cursor_wm)
1215 {
1216 struct drm_crtc *crtc;
1217 const struct drm_display_mode *adjusted_mode;
1218 int htotal, hdisplay, clock, pixel_size;
1219 int line_time_us, line_count;
1220 int entries, tlb_miss;
1221
1222 crtc = intel_get_crtc_for_plane(dev, plane);
1223 if (!intel_crtc_active(crtc)) {
1224 *cursor_wm = cursor->guard_size;
1225 *plane_wm = display->guard_size;
1226 return false;
1227 }
1228
1229 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1230 clock = adjusted_mode->crtc_clock;
1231 htotal = adjusted_mode->crtc_htotal;
1232 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1233 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1234
1235 /* Use the small buffer method to calculate plane watermark */
1236 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1237 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1238 if (tlb_miss > 0)
1239 entries += tlb_miss;
1240 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1241 *plane_wm = entries + display->guard_size;
1242 if (*plane_wm > (int)display->max_wm)
1243 *plane_wm = display->max_wm;
1244
1245 /* Use the large buffer method to calculate cursor watermark */
1246 line_time_us = max(htotal * 1000 / clock, 1);
1247 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1248 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1249 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1250 if (tlb_miss > 0)
1251 entries += tlb_miss;
1252 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1253 *cursor_wm = entries + cursor->guard_size;
1254 if (*cursor_wm > (int)cursor->max_wm)
1255 *cursor_wm = (int)cursor->max_wm;
1256
1257 return true;
1258 }
1259
1260 /*
1261 * Check the wm result.
1262 *
1263 * If any calculated watermark values is larger than the maximum value that
1264 * can be programmed into the associated watermark register, that watermark
1265 * must be disabled.
1266 */
1267 static bool g4x_check_srwm(struct drm_device *dev,
1268 int display_wm, int cursor_wm,
1269 const struct intel_watermark_params *display,
1270 const struct intel_watermark_params *cursor)
1271 {
1272 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1273 display_wm, cursor_wm);
1274
1275 if (display_wm > display->max_wm) {
1276 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1277 display_wm, display->max_wm);
1278 return false;
1279 }
1280
1281 if (cursor_wm > cursor->max_wm) {
1282 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1283 cursor_wm, cursor->max_wm);
1284 return false;
1285 }
1286
1287 if (!(display_wm || cursor_wm)) {
1288 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1289 return false;
1290 }
1291
1292 return true;
1293 }
1294
1295 static bool g4x_compute_srwm(struct drm_device *dev,
1296 int plane,
1297 int latency_ns,
1298 const struct intel_watermark_params *display,
1299 const struct intel_watermark_params *cursor,
1300 int *display_wm, int *cursor_wm)
1301 {
1302 struct drm_crtc *crtc;
1303 const struct drm_display_mode *adjusted_mode;
1304 int hdisplay, htotal, pixel_size, clock;
1305 unsigned long line_time_us;
1306 int line_count, line_size;
1307 int small, large;
1308 int entries;
1309
1310 if (!latency_ns) {
1311 *display_wm = *cursor_wm = 0;
1312 return false;
1313 }
1314
1315 crtc = intel_get_crtc_for_plane(dev, plane);
1316 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1317 clock = adjusted_mode->crtc_clock;
1318 htotal = adjusted_mode->crtc_htotal;
1319 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1320 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1321
1322 line_time_us = max(htotal * 1000 / clock, 1);
1323 line_count = (latency_ns / line_time_us + 1000) / 1000;
1324 line_size = hdisplay * pixel_size;
1325
1326 /* Use the minimum of the small and large buffer method for primary */
1327 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1328 large = line_count * line_size;
1329
1330 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1331 *display_wm = entries + display->guard_size;
1332
1333 /* calculate the self-refresh watermark for display cursor */
1334 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1335 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1336 *cursor_wm = entries + cursor->guard_size;
1337
1338 return g4x_check_srwm(dev,
1339 *display_wm, *cursor_wm,
1340 display, cursor);
1341 }
1342
1343 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1344 int pixel_size,
1345 int *prec_mult,
1346 int *drain_latency)
1347 {
1348 struct drm_device *dev = crtc->dev;
1349 int entries;
1350 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1351
1352 if (WARN(clock == 0, "Pixel clock is zero!\n"))
1353 return false;
1354
1355 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1356 return false;
1357
1358 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1359 if (IS_CHERRYVIEW(dev))
1360 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
1361 DRAIN_LATENCY_PRECISION_16;
1362 else
1363 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1364 DRAIN_LATENCY_PRECISION_32;
1365 *drain_latency = (64 * (*prec_mult) * 4) / entries;
1366
1367 if (*drain_latency > DRAIN_LATENCY_MASK)
1368 *drain_latency = DRAIN_LATENCY_MASK;
1369
1370 return true;
1371 }
1372
1373 /*
1374 * Update drain latency registers of memory arbiter
1375 *
1376 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1377 * to be programmed. Each plane has a drain latency multiplier and a drain
1378 * latency value.
1379 */
1380
1381 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1382 {
1383 struct drm_device *dev = crtc->dev;
1384 struct drm_i915_private *dev_priv = dev->dev_private;
1385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1386 int pixel_size;
1387 int drain_latency;
1388 enum pipe pipe = intel_crtc->pipe;
1389 int plane_prec, prec_mult, plane_dl;
1390 const int high_precision = IS_CHERRYVIEW(dev) ?
1391 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1392
1393 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
1394 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
1395 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1396
1397 if (!intel_crtc_active(crtc)) {
1398 I915_WRITE(VLV_DDL(pipe), plane_dl);
1399 return;
1400 }
1401
1402 /* Primary plane Drain Latency */
1403 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1404 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1405 plane_prec = (prec_mult == high_precision) ?
1406 DDL_PLANE_PRECISION_HIGH :
1407 DDL_PLANE_PRECISION_LOW;
1408 plane_dl |= plane_prec | drain_latency;
1409 }
1410
1411 /* Cursor Drain Latency
1412 * BPP is always 4 for cursor
1413 */
1414 pixel_size = 4;
1415
1416 /* Program cursor DL only if it is enabled */
1417 if (intel_crtc->cursor_base &&
1418 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1419 plane_prec = (prec_mult == high_precision) ?
1420 DDL_CURSOR_PRECISION_HIGH :
1421 DDL_CURSOR_PRECISION_LOW;
1422 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1423 }
1424
1425 I915_WRITE(VLV_DDL(pipe), plane_dl);
1426 }
1427
1428 #define single_plane_enabled(mask) is_power_of_2(mask)
1429
1430 static void valleyview_update_wm(struct drm_crtc *crtc)
1431 {
1432 struct drm_device *dev = crtc->dev;
1433 static const int sr_latency_ns = 12000;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1436 int plane_sr, cursor_sr;
1437 int ignore_plane_sr, ignore_cursor_sr;
1438 unsigned int enabled = 0;
1439 bool cxsr_enabled;
1440
1441 vlv_update_drain_latency(crtc);
1442
1443 if (g4x_compute_wm0(dev, PIPE_A,
1444 &valleyview_wm_info, pessimal_latency_ns,
1445 &valleyview_cursor_wm_info, pessimal_latency_ns,
1446 &planea_wm, &cursora_wm))
1447 enabled |= 1 << PIPE_A;
1448
1449 if (g4x_compute_wm0(dev, PIPE_B,
1450 &valleyview_wm_info, pessimal_latency_ns,
1451 &valleyview_cursor_wm_info, pessimal_latency_ns,
1452 &planeb_wm, &cursorb_wm))
1453 enabled |= 1 << PIPE_B;
1454
1455 if (single_plane_enabled(enabled) &&
1456 g4x_compute_srwm(dev, ffs(enabled) - 1,
1457 sr_latency_ns,
1458 &valleyview_wm_info,
1459 &valleyview_cursor_wm_info,
1460 &plane_sr, &ignore_cursor_sr) &&
1461 g4x_compute_srwm(dev, ffs(enabled) - 1,
1462 2*sr_latency_ns,
1463 &valleyview_wm_info,
1464 &valleyview_cursor_wm_info,
1465 &ignore_plane_sr, &cursor_sr)) {
1466 cxsr_enabled = true;
1467 } else {
1468 cxsr_enabled = false;
1469 intel_set_memory_cxsr(dev_priv, false);
1470 plane_sr = cursor_sr = 0;
1471 }
1472
1473 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1474 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1475 planea_wm, cursora_wm,
1476 planeb_wm, cursorb_wm,
1477 plane_sr, cursor_sr);
1478
1479 I915_WRITE(DSPFW1,
1480 (plane_sr << DSPFW_SR_SHIFT) |
1481 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1482 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1483 (planea_wm << DSPFW_PLANEA_SHIFT));
1484 I915_WRITE(DSPFW2,
1485 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1486 (cursora_wm << DSPFW_CURSORA_SHIFT));
1487 I915_WRITE(DSPFW3,
1488 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1489 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490
1491 if (cxsr_enabled)
1492 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 static void cherryview_update_wm(struct drm_crtc *crtc)
1496 {
1497 struct drm_device *dev = crtc->dev;
1498 static const int sr_latency_ns = 12000;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 int planea_wm, planeb_wm, planec_wm;
1501 int cursora_wm, cursorb_wm, cursorc_wm;
1502 int plane_sr, cursor_sr;
1503 int ignore_plane_sr, ignore_cursor_sr;
1504 unsigned int enabled = 0;
1505 bool cxsr_enabled;
1506
1507 vlv_update_drain_latency(crtc);
1508
1509 if (g4x_compute_wm0(dev, PIPE_A,
1510 &valleyview_wm_info, pessimal_latency_ns,
1511 &valleyview_cursor_wm_info, pessimal_latency_ns,
1512 &planea_wm, &cursora_wm))
1513 enabled |= 1 << PIPE_A;
1514
1515 if (g4x_compute_wm0(dev, PIPE_B,
1516 &valleyview_wm_info, pessimal_latency_ns,
1517 &valleyview_cursor_wm_info, pessimal_latency_ns,
1518 &planeb_wm, &cursorb_wm))
1519 enabled |= 1 << PIPE_B;
1520
1521 if (g4x_compute_wm0(dev, PIPE_C,
1522 &valleyview_wm_info, pessimal_latency_ns,
1523 &valleyview_cursor_wm_info, pessimal_latency_ns,
1524 &planec_wm, &cursorc_wm))
1525 enabled |= 1 << PIPE_C;
1526
1527 if (single_plane_enabled(enabled) &&
1528 g4x_compute_srwm(dev, ffs(enabled) - 1,
1529 sr_latency_ns,
1530 &valleyview_wm_info,
1531 &valleyview_cursor_wm_info,
1532 &plane_sr, &ignore_cursor_sr) &&
1533 g4x_compute_srwm(dev, ffs(enabled) - 1,
1534 2*sr_latency_ns,
1535 &valleyview_wm_info,
1536 &valleyview_cursor_wm_info,
1537 &ignore_plane_sr, &cursor_sr)) {
1538 cxsr_enabled = true;
1539 } else {
1540 cxsr_enabled = false;
1541 intel_set_memory_cxsr(dev_priv, false);
1542 plane_sr = cursor_sr = 0;
1543 }
1544
1545 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1546 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1547 "SR: plane=%d, cursor=%d\n",
1548 planea_wm, cursora_wm,
1549 planeb_wm, cursorb_wm,
1550 planec_wm, cursorc_wm,
1551 plane_sr, cursor_sr);
1552
1553 I915_WRITE(DSPFW1,
1554 (plane_sr << DSPFW_SR_SHIFT) |
1555 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1556 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1557 (planea_wm << DSPFW_PLANEA_SHIFT));
1558 I915_WRITE(DSPFW2,
1559 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1560 (cursora_wm << DSPFW_CURSORA_SHIFT));
1561 I915_WRITE(DSPFW3,
1562 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1563 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1564 I915_WRITE(DSPFW9_CHV,
1565 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1566 DSPFW_CURSORC_MASK)) |
1567 (planec_wm << DSPFW_PLANEC_SHIFT) |
1568 (cursorc_wm << DSPFW_CURSORC_SHIFT));
1569
1570 if (cxsr_enabled)
1571 intel_set_memory_cxsr(dev_priv, true);
1572 }
1573
1574 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1575 struct drm_crtc *crtc,
1576 uint32_t sprite_width,
1577 uint32_t sprite_height,
1578 int pixel_size,
1579 bool enabled, bool scaled)
1580 {
1581 struct drm_device *dev = crtc->dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = to_intel_plane(plane)->pipe;
1584 int sprite = to_intel_plane(plane)->plane;
1585 int drain_latency;
1586 int plane_prec;
1587 int sprite_dl;
1588 int prec_mult;
1589 const int high_precision = IS_CHERRYVIEW(dev) ?
1590 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1591
1592 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
1593 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1594
1595 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1596 &drain_latency)) {
1597 plane_prec = (prec_mult == high_precision) ?
1598 DDL_SPRITE_PRECISION_HIGH(sprite) :
1599 DDL_SPRITE_PRECISION_LOW(sprite);
1600 sprite_dl |= plane_prec |
1601 (drain_latency << DDL_SPRITE_SHIFT(sprite));
1602 }
1603
1604 I915_WRITE(VLV_DDL(pipe), sprite_dl);
1605 }
1606
1607 static void g4x_update_wm(struct drm_crtc *crtc)
1608 {
1609 struct drm_device *dev = crtc->dev;
1610 static const int sr_latency_ns = 12000;
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1613 int plane_sr, cursor_sr;
1614 unsigned int enabled = 0;
1615 bool cxsr_enabled;
1616
1617 if (g4x_compute_wm0(dev, PIPE_A,
1618 &g4x_wm_info, pessimal_latency_ns,
1619 &g4x_cursor_wm_info, pessimal_latency_ns,
1620 &planea_wm, &cursora_wm))
1621 enabled |= 1 << PIPE_A;
1622
1623 if (g4x_compute_wm0(dev, PIPE_B,
1624 &g4x_wm_info, pessimal_latency_ns,
1625 &g4x_cursor_wm_info, pessimal_latency_ns,
1626 &planeb_wm, &cursorb_wm))
1627 enabled |= 1 << PIPE_B;
1628
1629 if (single_plane_enabled(enabled) &&
1630 g4x_compute_srwm(dev, ffs(enabled) - 1,
1631 sr_latency_ns,
1632 &g4x_wm_info,
1633 &g4x_cursor_wm_info,
1634 &plane_sr, &cursor_sr)) {
1635 cxsr_enabled = true;
1636 } else {
1637 cxsr_enabled = false;
1638 intel_set_memory_cxsr(dev_priv, false);
1639 plane_sr = cursor_sr = 0;
1640 }
1641
1642 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1643 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1644 planea_wm, cursora_wm,
1645 planeb_wm, cursorb_wm,
1646 plane_sr, cursor_sr);
1647
1648 I915_WRITE(DSPFW1,
1649 (plane_sr << DSPFW_SR_SHIFT) |
1650 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1651 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1652 (planea_wm << DSPFW_PLANEA_SHIFT));
1653 I915_WRITE(DSPFW2,
1654 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1655 (cursora_wm << DSPFW_CURSORA_SHIFT));
1656 /* HPLL off in SR has some issues on G4x... disable it */
1657 I915_WRITE(DSPFW3,
1658 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1659 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1660
1661 if (cxsr_enabled)
1662 intel_set_memory_cxsr(dev_priv, true);
1663 }
1664
1665 static void i965_update_wm(struct drm_crtc *unused_crtc)
1666 {
1667 struct drm_device *dev = unused_crtc->dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 struct drm_crtc *crtc;
1670 int srwm = 1;
1671 int cursor_sr = 16;
1672 bool cxsr_enabled;
1673
1674 /* Calc sr entries for one plane configs */
1675 crtc = single_enabled_crtc(dev);
1676 if (crtc) {
1677 /* self-refresh has much higher latency */
1678 static const int sr_latency_ns = 12000;
1679 const struct drm_display_mode *adjusted_mode =
1680 &to_intel_crtc(crtc)->config.adjusted_mode;
1681 int clock = adjusted_mode->crtc_clock;
1682 int htotal = adjusted_mode->crtc_htotal;
1683 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1684 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1685 unsigned long line_time_us;
1686 int entries;
1687
1688 line_time_us = max(htotal * 1000 / clock, 1);
1689
1690 /* Use ns/us then divide to preserve precision */
1691 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1692 pixel_size * hdisplay;
1693 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1694 srwm = I965_FIFO_SIZE - entries;
1695 if (srwm < 0)
1696 srwm = 1;
1697 srwm &= 0x1ff;
1698 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1699 entries, srwm);
1700
1701 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1702 pixel_size * to_intel_crtc(crtc)->cursor_width;
1703 entries = DIV_ROUND_UP(entries,
1704 i965_cursor_wm_info.cacheline_size);
1705 cursor_sr = i965_cursor_wm_info.fifo_size -
1706 (entries + i965_cursor_wm_info.guard_size);
1707
1708 if (cursor_sr > i965_cursor_wm_info.max_wm)
1709 cursor_sr = i965_cursor_wm_info.max_wm;
1710
1711 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1712 "cursor %d\n", srwm, cursor_sr);
1713
1714 cxsr_enabled = true;
1715 } else {
1716 cxsr_enabled = false;
1717 /* Turn off self refresh if both pipes are enabled */
1718 intel_set_memory_cxsr(dev_priv, false);
1719 }
1720
1721 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1722 srwm);
1723
1724 /* 965 has limitations... */
1725 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1726 (8 << DSPFW_CURSORB_SHIFT) |
1727 (8 << DSPFW_PLANEB_SHIFT) |
1728 (8 << DSPFW_PLANEA_SHIFT));
1729 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1730 (8 << DSPFW_PLANEC_SHIFT_OLD));
1731 /* update cursor SR watermark */
1732 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1733
1734 if (cxsr_enabled)
1735 intel_set_memory_cxsr(dev_priv, true);
1736 }
1737
1738 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1739 {
1740 struct drm_device *dev = unused_crtc->dev;
1741 struct drm_i915_private *dev_priv = dev->dev_private;
1742 const struct intel_watermark_params *wm_info;
1743 uint32_t fwater_lo;
1744 uint32_t fwater_hi;
1745 int cwm, srwm = 1;
1746 int fifo_size;
1747 int planea_wm, planeb_wm;
1748 struct drm_crtc *crtc, *enabled = NULL;
1749
1750 if (IS_I945GM(dev))
1751 wm_info = &i945_wm_info;
1752 else if (!IS_GEN2(dev))
1753 wm_info = &i915_wm_info;
1754 else
1755 wm_info = &i830_a_wm_info;
1756
1757 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1758 crtc = intel_get_crtc_for_plane(dev, 0);
1759 if (intel_crtc_active(crtc)) {
1760 const struct drm_display_mode *adjusted_mode;
1761 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1762 if (IS_GEN2(dev))
1763 cpp = 4;
1764
1765 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1766 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1767 wm_info, fifo_size, cpp,
1768 pessimal_latency_ns);
1769 enabled = crtc;
1770 } else {
1771 planea_wm = fifo_size - wm_info->guard_size;
1772 if (planea_wm > (long)wm_info->max_wm)
1773 planea_wm = wm_info->max_wm;
1774 }
1775
1776 if (IS_GEN2(dev))
1777 wm_info = &i830_bc_wm_info;
1778
1779 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1780 crtc = intel_get_crtc_for_plane(dev, 1);
1781 if (intel_crtc_active(crtc)) {
1782 const struct drm_display_mode *adjusted_mode;
1783 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1784 if (IS_GEN2(dev))
1785 cpp = 4;
1786
1787 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1788 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1789 wm_info, fifo_size, cpp,
1790 pessimal_latency_ns);
1791 if (enabled == NULL)
1792 enabled = crtc;
1793 else
1794 enabled = NULL;
1795 } else {
1796 planeb_wm = fifo_size - wm_info->guard_size;
1797 if (planeb_wm > (long)wm_info->max_wm)
1798 planeb_wm = wm_info->max_wm;
1799 }
1800
1801 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1802
1803 if (IS_I915GM(dev) && enabled) {
1804 struct drm_i915_gem_object *obj;
1805
1806 obj = intel_fb_obj(enabled->primary->fb);
1807
1808 /* self-refresh seems busted with untiled */
1809 if (obj->tiling_mode == I915_TILING_NONE)
1810 enabled = NULL;
1811 }
1812
1813 /*
1814 * Overlay gets an aggressive default since video jitter is bad.
1815 */
1816 cwm = 2;
1817
1818 /* Play safe and disable self-refresh before adjusting watermarks. */
1819 intel_set_memory_cxsr(dev_priv, false);
1820
1821 /* Calc sr entries for one plane configs */
1822 if (HAS_FW_BLC(dev) && enabled) {
1823 /* self-refresh has much higher latency */
1824 static const int sr_latency_ns = 6000;
1825 const struct drm_display_mode *adjusted_mode =
1826 &to_intel_crtc(enabled)->config.adjusted_mode;
1827 int clock = adjusted_mode->crtc_clock;
1828 int htotal = adjusted_mode->crtc_htotal;
1829 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1830 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1831 unsigned long line_time_us;
1832 int entries;
1833
1834 line_time_us = max(htotal * 1000 / clock, 1);
1835
1836 /* Use ns/us then divide to preserve precision */
1837 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1838 pixel_size * hdisplay;
1839 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1840 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1841 srwm = wm_info->fifo_size - entries;
1842 if (srwm < 0)
1843 srwm = 1;
1844
1845 if (IS_I945G(dev) || IS_I945GM(dev))
1846 I915_WRITE(FW_BLC_SELF,
1847 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1848 else if (IS_I915GM(dev))
1849 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1850 }
1851
1852 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1853 planea_wm, planeb_wm, cwm, srwm);
1854
1855 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1856 fwater_hi = (cwm & 0x1f);
1857
1858 /* Set request length to 8 cachelines per fetch */
1859 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1860 fwater_hi = fwater_hi | (1 << 8);
1861
1862 I915_WRITE(FW_BLC, fwater_lo);
1863 I915_WRITE(FW_BLC2, fwater_hi);
1864
1865 if (enabled)
1866 intel_set_memory_cxsr(dev_priv, true);
1867 }
1868
1869 static void i845_update_wm(struct drm_crtc *unused_crtc)
1870 {
1871 struct drm_device *dev = unused_crtc->dev;
1872 struct drm_i915_private *dev_priv = dev->dev_private;
1873 struct drm_crtc *crtc;
1874 const struct drm_display_mode *adjusted_mode;
1875 uint32_t fwater_lo;
1876 int planea_wm;
1877
1878 crtc = single_enabled_crtc(dev);
1879 if (crtc == NULL)
1880 return;
1881
1882 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1883 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1884 &i845_wm_info,
1885 dev_priv->display.get_fifo_size(dev, 0),
1886 4, pessimal_latency_ns);
1887 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1888 fwater_lo |= (3<<8) | planea_wm;
1889
1890 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1891
1892 I915_WRITE(FW_BLC, fwater_lo);
1893 }
1894
1895 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1896 struct drm_crtc *crtc)
1897 {
1898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1899 uint32_t pixel_rate;
1900
1901 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1902
1903 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1904 * adjust the pixel_rate here. */
1905
1906 if (intel_crtc->config.pch_pfit.enabled) {
1907 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1908 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1909
1910 pipe_w = intel_crtc->config.pipe_src_w;
1911 pipe_h = intel_crtc->config.pipe_src_h;
1912 pfit_w = (pfit_size >> 16) & 0xFFFF;
1913 pfit_h = pfit_size & 0xFFFF;
1914 if (pipe_w < pfit_w)
1915 pipe_w = pfit_w;
1916 if (pipe_h < pfit_h)
1917 pipe_h = pfit_h;
1918
1919 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1920 pfit_w * pfit_h);
1921 }
1922
1923 return pixel_rate;
1924 }
1925
1926 /* latency must be in 0.1us units. */
1927 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1928 uint32_t latency)
1929 {
1930 uint64_t ret;
1931
1932 if (WARN(latency == 0, "Latency value missing\n"))
1933 return UINT_MAX;
1934
1935 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1936 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1937
1938 return ret;
1939 }
1940
1941 /* latency must be in 0.1us units. */
1942 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1943 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1944 uint32_t latency)
1945 {
1946 uint32_t ret;
1947
1948 if (WARN(latency == 0, "Latency value missing\n"))
1949 return UINT_MAX;
1950
1951 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1952 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1953 ret = DIV_ROUND_UP(ret, 64) + 2;
1954 return ret;
1955 }
1956
1957 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1958 uint8_t bytes_per_pixel)
1959 {
1960 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1961 }
1962
1963 struct skl_pipe_wm_parameters {
1964 bool active;
1965 uint32_t pipe_htotal;
1966 uint32_t pixel_rate; /* in KHz */
1967 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1968 struct intel_plane_wm_parameters cursor;
1969 };
1970
1971 struct ilk_pipe_wm_parameters {
1972 bool active;
1973 uint32_t pipe_htotal;
1974 uint32_t pixel_rate;
1975 struct intel_plane_wm_parameters pri;
1976 struct intel_plane_wm_parameters spr;
1977 struct intel_plane_wm_parameters cur;
1978 };
1979
1980 struct ilk_wm_maximums {
1981 uint16_t pri;
1982 uint16_t spr;
1983 uint16_t cur;
1984 uint16_t fbc;
1985 };
1986
1987 /* used in computing the new watermarks state */
1988 struct intel_wm_config {
1989 unsigned int num_pipes_active;
1990 bool sprites_enabled;
1991 bool sprites_scaled;
1992 };
1993
1994 /*
1995 * For both WM_PIPE and WM_LP.
1996 * mem_value must be in 0.1us units.
1997 */
1998 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1999 uint32_t mem_value,
2000 bool is_lp)
2001 {
2002 uint32_t method1, method2;
2003
2004 if (!params->active || !params->pri.enabled)
2005 return 0;
2006
2007 method1 = ilk_wm_method1(params->pixel_rate,
2008 params->pri.bytes_per_pixel,
2009 mem_value);
2010
2011 if (!is_lp)
2012 return method1;
2013
2014 method2 = ilk_wm_method2(params->pixel_rate,
2015 params->pipe_htotal,
2016 params->pri.horiz_pixels,
2017 params->pri.bytes_per_pixel,
2018 mem_value);
2019
2020 return min(method1, method2);
2021 }
2022
2023 /*
2024 * For both WM_PIPE and WM_LP.
2025 * mem_value must be in 0.1us units.
2026 */
2027 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
2028 uint32_t mem_value)
2029 {
2030 uint32_t method1, method2;
2031
2032 if (!params->active || !params->spr.enabled)
2033 return 0;
2034
2035 method1 = ilk_wm_method1(params->pixel_rate,
2036 params->spr.bytes_per_pixel,
2037 mem_value);
2038 method2 = ilk_wm_method2(params->pixel_rate,
2039 params->pipe_htotal,
2040 params->spr.horiz_pixels,
2041 params->spr.bytes_per_pixel,
2042 mem_value);
2043 return min(method1, method2);
2044 }
2045
2046 /*
2047 * For both WM_PIPE and WM_LP.
2048 * mem_value must be in 0.1us units.
2049 */
2050 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2051 uint32_t mem_value)
2052 {
2053 if (!params->active || !params->cur.enabled)
2054 return 0;
2055
2056 return ilk_wm_method2(params->pixel_rate,
2057 params->pipe_htotal,
2058 params->cur.horiz_pixels,
2059 params->cur.bytes_per_pixel,
2060 mem_value);
2061 }
2062
2063 /* Only for WM_LP. */
2064 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2065 uint32_t pri_val)
2066 {
2067 if (!params->active || !params->pri.enabled)
2068 return 0;
2069
2070 return ilk_wm_fbc(pri_val,
2071 params->pri.horiz_pixels,
2072 params->pri.bytes_per_pixel);
2073 }
2074
2075 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2076 {
2077 if (INTEL_INFO(dev)->gen >= 8)
2078 return 3072;
2079 else if (INTEL_INFO(dev)->gen >= 7)
2080 return 768;
2081 else
2082 return 512;
2083 }
2084
2085 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2086 int level, bool is_sprite)
2087 {
2088 if (INTEL_INFO(dev)->gen >= 8)
2089 /* BDW primary/sprite plane watermarks */
2090 return level == 0 ? 255 : 2047;
2091 else if (INTEL_INFO(dev)->gen >= 7)
2092 /* IVB/HSW primary/sprite plane watermarks */
2093 return level == 0 ? 127 : 1023;
2094 else if (!is_sprite)
2095 /* ILK/SNB primary plane watermarks */
2096 return level == 0 ? 127 : 511;
2097 else
2098 /* ILK/SNB sprite plane watermarks */
2099 return level == 0 ? 63 : 255;
2100 }
2101
2102 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2103 int level)
2104 {
2105 if (INTEL_INFO(dev)->gen >= 7)
2106 return level == 0 ? 63 : 255;
2107 else
2108 return level == 0 ? 31 : 63;
2109 }
2110
2111 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2112 {
2113 if (INTEL_INFO(dev)->gen >= 8)
2114 return 31;
2115 else
2116 return 15;
2117 }
2118
2119 /* Calculate the maximum primary/sprite plane watermark */
2120 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2121 int level,
2122 const struct intel_wm_config *config,
2123 enum intel_ddb_partitioning ddb_partitioning,
2124 bool is_sprite)
2125 {
2126 unsigned int fifo_size = ilk_display_fifo_size(dev);
2127
2128 /* if sprites aren't enabled, sprites get nothing */
2129 if (is_sprite && !config->sprites_enabled)
2130 return 0;
2131
2132 /* HSW allows LP1+ watermarks even with multiple pipes */
2133 if (level == 0 || config->num_pipes_active > 1) {
2134 fifo_size /= INTEL_INFO(dev)->num_pipes;
2135
2136 /*
2137 * For some reason the non self refresh
2138 * FIFO size is only half of the self
2139 * refresh FIFO size on ILK/SNB.
2140 */
2141 if (INTEL_INFO(dev)->gen <= 6)
2142 fifo_size /= 2;
2143 }
2144
2145 if (config->sprites_enabled) {
2146 /* level 0 is always calculated with 1:1 split */
2147 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2148 if (is_sprite)
2149 fifo_size *= 5;
2150 fifo_size /= 6;
2151 } else {
2152 fifo_size /= 2;
2153 }
2154 }
2155
2156 /* clamp to max that the registers can hold */
2157 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2158 }
2159
2160 /* Calculate the maximum cursor plane watermark */
2161 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2162 int level,
2163 const struct intel_wm_config *config)
2164 {
2165 /* HSW LP1+ watermarks w/ multiple pipes */
2166 if (level > 0 && config->num_pipes_active > 1)
2167 return 64;
2168
2169 /* otherwise just report max that registers can hold */
2170 return ilk_cursor_wm_reg_max(dev, level);
2171 }
2172
2173 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2174 int level,
2175 const struct intel_wm_config *config,
2176 enum intel_ddb_partitioning ddb_partitioning,
2177 struct ilk_wm_maximums *max)
2178 {
2179 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2180 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2181 max->cur = ilk_cursor_wm_max(dev, level, config);
2182 max->fbc = ilk_fbc_wm_reg_max(dev);
2183 }
2184
2185 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2186 int level,
2187 struct ilk_wm_maximums *max)
2188 {
2189 max->pri = ilk_plane_wm_reg_max(dev, level, false);
2190 max->spr = ilk_plane_wm_reg_max(dev, level, true);
2191 max->cur = ilk_cursor_wm_reg_max(dev, level);
2192 max->fbc = ilk_fbc_wm_reg_max(dev);
2193 }
2194
2195 static bool ilk_validate_wm_level(int level,
2196 const struct ilk_wm_maximums *max,
2197 struct intel_wm_level *result)
2198 {
2199 bool ret;
2200
2201 /* already determined to be invalid? */
2202 if (!result->enable)
2203 return false;
2204
2205 result->enable = result->pri_val <= max->pri &&
2206 result->spr_val <= max->spr &&
2207 result->cur_val <= max->cur;
2208
2209 ret = result->enable;
2210
2211 /*
2212 * HACK until we can pre-compute everything,
2213 * and thus fail gracefully if LP0 watermarks
2214 * are exceeded...
2215 */
2216 if (level == 0 && !result->enable) {
2217 if (result->pri_val > max->pri)
2218 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2219 level, result->pri_val, max->pri);
2220 if (result->spr_val > max->spr)
2221 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2222 level, result->spr_val, max->spr);
2223 if (result->cur_val > max->cur)
2224 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2225 level, result->cur_val, max->cur);
2226
2227 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2228 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2229 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2230 result->enable = true;
2231 }
2232
2233 return ret;
2234 }
2235
2236 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2237 int level,
2238 const struct ilk_pipe_wm_parameters *p,
2239 struct intel_wm_level *result)
2240 {
2241 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2242 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2243 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2244
2245 /* WM1+ latency values stored in 0.5us units */
2246 if (level > 0) {
2247 pri_latency *= 5;
2248 spr_latency *= 5;
2249 cur_latency *= 5;
2250 }
2251
2252 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2253 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2254 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2255 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2256 result->enable = true;
2257 }
2258
2259 static uint32_t
2260 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2264 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2265 u32 linetime, ips_linetime;
2266
2267 if (!intel_crtc_active(crtc))
2268 return 0;
2269
2270 /* The WM are computed with base on how long it takes to fill a single
2271 * row at the given clock rate, multiplied by 8.
2272 * */
2273 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2274 mode->crtc_clock);
2275 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2276 intel_ddi_get_cdclk_freq(dev_priv));
2277
2278 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2279 PIPE_WM_LINETIME_TIME(linetime);
2280 }
2281
2282 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285
2286 if (IS_GEN9(dev)) {
2287 uint32_t val;
2288 int ret, i;
2289 int level, max_level = ilk_wm_max_level(dev);
2290
2291 /* read the first set of memory latencies[0:3] */
2292 val = 0; /* data0 to be programmed to 0 for first set */
2293 mutex_lock(&dev_priv->rps.hw_lock);
2294 ret = sandybridge_pcode_read(dev_priv,
2295 GEN9_PCODE_READ_MEM_LATENCY,
2296 &val);
2297 mutex_unlock(&dev_priv->rps.hw_lock);
2298
2299 if (ret) {
2300 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2301 return;
2302 }
2303
2304 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2305 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2306 GEN9_MEM_LATENCY_LEVEL_MASK;
2307 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2308 GEN9_MEM_LATENCY_LEVEL_MASK;
2309 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2310 GEN9_MEM_LATENCY_LEVEL_MASK;
2311
2312 /* read the second set of memory latencies[4:7] */
2313 val = 1; /* data0 to be programmed to 1 for second set */
2314 mutex_lock(&dev_priv->rps.hw_lock);
2315 ret = sandybridge_pcode_read(dev_priv,
2316 GEN9_PCODE_READ_MEM_LATENCY,
2317 &val);
2318 mutex_unlock(&dev_priv->rps.hw_lock);
2319 if (ret) {
2320 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2321 return;
2322 }
2323
2324 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2325 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2326 GEN9_MEM_LATENCY_LEVEL_MASK;
2327 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2328 GEN9_MEM_LATENCY_LEVEL_MASK;
2329 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2330 GEN9_MEM_LATENCY_LEVEL_MASK;
2331
2332 /*
2333 * punit doesn't take into account the read latency so we need
2334 * to add 2us to the various latency levels we retrieve from
2335 * the punit.
2336 * - W0 is a bit special in that it's the only level that
2337 * can't be disabled if we want to have display working, so
2338 * we always add 2us there.
2339 * - For levels >=1, punit returns 0us latency when they are
2340 * disabled, so we respect that and don't add 2us then
2341 *
2342 * Additionally, if a level n (n > 1) has a 0us latency, all
2343 * levels m (m >= n) need to be disabled. We make sure to
2344 * sanitize the values out of the punit to satisfy this
2345 * requirement.
2346 */
2347 wm[0] += 2;
2348 for (level = 1; level <= max_level; level++)
2349 if (wm[level] != 0)
2350 wm[level] += 2;
2351 else {
2352 for (i = level + 1; i <= max_level; i++)
2353 wm[i] = 0;
2354
2355 break;
2356 }
2357 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2358 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2359
2360 wm[0] = (sskpd >> 56) & 0xFF;
2361 if (wm[0] == 0)
2362 wm[0] = sskpd & 0xF;
2363 wm[1] = (sskpd >> 4) & 0xFF;
2364 wm[2] = (sskpd >> 12) & 0xFF;
2365 wm[3] = (sskpd >> 20) & 0x1FF;
2366 wm[4] = (sskpd >> 32) & 0x1FF;
2367 } else if (INTEL_INFO(dev)->gen >= 6) {
2368 uint32_t sskpd = I915_READ(MCH_SSKPD);
2369
2370 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2371 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2372 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2373 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2374 } else if (INTEL_INFO(dev)->gen >= 5) {
2375 uint32_t mltr = I915_READ(MLTR_ILK);
2376
2377 /* ILK primary LP0 latency is 700 ns */
2378 wm[0] = 7;
2379 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2380 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2381 }
2382 }
2383
2384 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2385 {
2386 /* ILK sprite LP0 latency is 1300 ns */
2387 if (INTEL_INFO(dev)->gen == 5)
2388 wm[0] = 13;
2389 }
2390
2391 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2392 {
2393 /* ILK cursor LP0 latency is 1300 ns */
2394 if (INTEL_INFO(dev)->gen == 5)
2395 wm[0] = 13;
2396
2397 /* WaDoubleCursorLP3Latency:ivb */
2398 if (IS_IVYBRIDGE(dev))
2399 wm[3] *= 2;
2400 }
2401
2402 int ilk_wm_max_level(const struct drm_device *dev)
2403 {
2404 /* how many WM levels are we expecting */
2405 if (IS_GEN9(dev))
2406 return 7;
2407 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2408 return 4;
2409 else if (INTEL_INFO(dev)->gen >= 6)
2410 return 3;
2411 else
2412 return 2;
2413 }
2414
2415 static void intel_print_wm_latency(struct drm_device *dev,
2416 const char *name,
2417 const uint16_t wm[8])
2418 {
2419 int level, max_level = ilk_wm_max_level(dev);
2420
2421 for (level = 0; level <= max_level; level++) {
2422 unsigned int latency = wm[level];
2423
2424 if (latency == 0) {
2425 DRM_ERROR("%s WM%d latency not provided\n",
2426 name, level);
2427 continue;
2428 }
2429
2430 /*
2431 * - latencies are in us on gen9.
2432 * - before then, WM1+ latency values are in 0.5us units
2433 */
2434 if (IS_GEN9(dev))
2435 latency *= 10;
2436 else if (level > 0)
2437 latency *= 5;
2438
2439 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2440 name, level, wm[level],
2441 latency / 10, latency % 10);
2442 }
2443 }
2444
2445 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2446 uint16_t wm[5], uint16_t min)
2447 {
2448 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2449
2450 if (wm[0] >= min)
2451 return false;
2452
2453 wm[0] = max(wm[0], min);
2454 for (level = 1; level <= max_level; level++)
2455 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2456
2457 return true;
2458 }
2459
2460 static void snb_wm_latency_quirk(struct drm_device *dev)
2461 {
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 bool changed;
2464
2465 /*
2466 * The BIOS provided WM memory latency values are often
2467 * inadequate for high resolution displays. Adjust them.
2468 */
2469 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2470 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2471 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2472
2473 if (!changed)
2474 return;
2475
2476 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2477 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2478 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2479 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2480 }
2481
2482 static void ilk_setup_wm_latency(struct drm_device *dev)
2483 {
2484 struct drm_i915_private *dev_priv = dev->dev_private;
2485
2486 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2487
2488 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2489 sizeof(dev_priv->wm.pri_latency));
2490 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2491 sizeof(dev_priv->wm.pri_latency));
2492
2493 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2494 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2495
2496 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2497 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2498 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2499
2500 if (IS_GEN6(dev))
2501 snb_wm_latency_quirk(dev);
2502 }
2503
2504 static void skl_setup_wm_latency(struct drm_device *dev)
2505 {
2506 struct drm_i915_private *dev_priv = dev->dev_private;
2507
2508 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2509 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2510 }
2511
2512 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2513 struct ilk_pipe_wm_parameters *p)
2514 {
2515 struct drm_device *dev = crtc->dev;
2516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517 enum pipe pipe = intel_crtc->pipe;
2518 struct drm_plane *plane;
2519
2520 if (!intel_crtc_active(crtc))
2521 return;
2522
2523 p->active = true;
2524 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2525 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2526 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2527 p->cur.bytes_per_pixel = 4;
2528 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2529 p->cur.horiz_pixels = intel_crtc->cursor_width;
2530 /* TODO: for now, assume primary and cursor planes are always enabled. */
2531 p->pri.enabled = true;
2532 p->cur.enabled = true;
2533
2534 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2535 struct intel_plane *intel_plane = to_intel_plane(plane);
2536
2537 if (intel_plane->pipe == pipe) {
2538 p->spr = intel_plane->wm;
2539 break;
2540 }
2541 }
2542 }
2543
2544 static void ilk_compute_wm_config(struct drm_device *dev,
2545 struct intel_wm_config *config)
2546 {
2547 struct intel_crtc *intel_crtc;
2548
2549 /* Compute the currently _active_ config */
2550 for_each_intel_crtc(dev, intel_crtc) {
2551 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2552
2553 if (!wm->pipe_enabled)
2554 continue;
2555
2556 config->sprites_enabled |= wm->sprites_enabled;
2557 config->sprites_scaled |= wm->sprites_scaled;
2558 config->num_pipes_active++;
2559 }
2560 }
2561
2562 /* Compute new watermarks for the pipe */
2563 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2564 const struct ilk_pipe_wm_parameters *params,
2565 struct intel_pipe_wm *pipe_wm)
2566 {
2567 struct drm_device *dev = crtc->dev;
2568 const struct drm_i915_private *dev_priv = dev->dev_private;
2569 int level, max_level = ilk_wm_max_level(dev);
2570 /* LP0 watermark maximums depend on this pipe alone */
2571 struct intel_wm_config config = {
2572 .num_pipes_active = 1,
2573 .sprites_enabled = params->spr.enabled,
2574 .sprites_scaled = params->spr.scaled,
2575 };
2576 struct ilk_wm_maximums max;
2577
2578 pipe_wm->pipe_enabled = params->active;
2579 pipe_wm->sprites_enabled = params->spr.enabled;
2580 pipe_wm->sprites_scaled = params->spr.scaled;
2581
2582 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2583 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2584 max_level = 1;
2585
2586 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2587 if (params->spr.scaled)
2588 max_level = 0;
2589
2590 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2594
2595 /* LP0 watermarks always use 1/2 DDB partitioning */
2596 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2597
2598 /* At least LP0 must be valid */
2599 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2600 return false;
2601
2602 ilk_compute_wm_reg_maximums(dev, 1, &max);
2603
2604 for (level = 1; level <= max_level; level++) {
2605 struct intel_wm_level wm = {};
2606
2607 ilk_compute_wm_level(dev_priv, level, params, &wm);
2608
2609 /*
2610 * Disable any watermark level that exceeds the
2611 * register maximums since such watermarks are
2612 * always invalid.
2613 */
2614 if (!ilk_validate_wm_level(level, &max, &wm))
2615 break;
2616
2617 pipe_wm->wm[level] = wm;
2618 }
2619
2620 return true;
2621 }
2622
2623 /*
2624 * Merge the watermarks from all active pipes for a specific level.
2625 */
2626 static void ilk_merge_wm_level(struct drm_device *dev,
2627 int level,
2628 struct intel_wm_level *ret_wm)
2629 {
2630 const struct intel_crtc *intel_crtc;
2631
2632 ret_wm->enable = true;
2633
2634 for_each_intel_crtc(dev, intel_crtc) {
2635 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2636 const struct intel_wm_level *wm = &active->wm[level];
2637
2638 if (!active->pipe_enabled)
2639 continue;
2640
2641 /*
2642 * The watermark values may have been used in the past,
2643 * so we must maintain them in the registers for some
2644 * time even if the level is now disabled.
2645 */
2646 if (!wm->enable)
2647 ret_wm->enable = false;
2648
2649 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2650 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2651 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2652 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2653 }
2654 }
2655
2656 /*
2657 * Merge all low power watermarks for all active pipes.
2658 */
2659 static void ilk_wm_merge(struct drm_device *dev,
2660 const struct intel_wm_config *config,
2661 const struct ilk_wm_maximums *max,
2662 struct intel_pipe_wm *merged)
2663 {
2664 int level, max_level = ilk_wm_max_level(dev);
2665 int last_enabled_level = max_level;
2666
2667 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2668 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2669 config->num_pipes_active > 1)
2670 return;
2671
2672 /* ILK: FBC WM must be disabled always */
2673 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2674
2675 /* merge each WM1+ level */
2676 for (level = 1; level <= max_level; level++) {
2677 struct intel_wm_level *wm = &merged->wm[level];
2678
2679 ilk_merge_wm_level(dev, level, wm);
2680
2681 if (level > last_enabled_level)
2682 wm->enable = false;
2683 else if (!ilk_validate_wm_level(level, max, wm))
2684 /* make sure all following levels get disabled */
2685 last_enabled_level = level - 1;
2686
2687 /*
2688 * The spec says it is preferred to disable
2689 * FBC WMs instead of disabling a WM level.
2690 */
2691 if (wm->fbc_val > max->fbc) {
2692 if (wm->enable)
2693 merged->fbc_wm_enabled = false;
2694 wm->fbc_val = 0;
2695 }
2696 }
2697
2698 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2699 /*
2700 * FIXME this is racy. FBC might get enabled later.
2701 * What we should check here is whether FBC can be
2702 * enabled sometime later.
2703 */
2704 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2705 for (level = 2; level <= max_level; level++) {
2706 struct intel_wm_level *wm = &merged->wm[level];
2707
2708 wm->enable = false;
2709 }
2710 }
2711 }
2712
2713 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2714 {
2715 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2716 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2717 }
2718
2719 /* The value we need to program into the WM_LPx latency field */
2720 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2721 {
2722 struct drm_i915_private *dev_priv = dev->dev_private;
2723
2724 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2725 return 2 * level;
2726 else
2727 return dev_priv->wm.pri_latency[level];
2728 }
2729
2730 static void ilk_compute_wm_results(struct drm_device *dev,
2731 const struct intel_pipe_wm *merged,
2732 enum intel_ddb_partitioning partitioning,
2733 struct ilk_wm_values *results)
2734 {
2735 struct intel_crtc *intel_crtc;
2736 int level, wm_lp;
2737
2738 results->enable_fbc_wm = merged->fbc_wm_enabled;
2739 results->partitioning = partitioning;
2740
2741 /* LP1+ register values */
2742 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2743 const struct intel_wm_level *r;
2744
2745 level = ilk_wm_lp_to_level(wm_lp, merged);
2746
2747 r = &merged->wm[level];
2748
2749 /*
2750 * Maintain the watermark values even if the level is
2751 * disabled. Doing otherwise could cause underruns.
2752 */
2753 results->wm_lp[wm_lp - 1] =
2754 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2755 (r->pri_val << WM1_LP_SR_SHIFT) |
2756 r->cur_val;
2757
2758 if (r->enable)
2759 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2760
2761 if (INTEL_INFO(dev)->gen >= 8)
2762 results->wm_lp[wm_lp - 1] |=
2763 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2764 else
2765 results->wm_lp[wm_lp - 1] |=
2766 r->fbc_val << WM1_LP_FBC_SHIFT;
2767
2768 /*
2769 * Always set WM1S_LP_EN when spr_val != 0, even if the
2770 * level is disabled. Doing otherwise could cause underruns.
2771 */
2772 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2773 WARN_ON(wm_lp != 1);
2774 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2775 } else
2776 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2777 }
2778
2779 /* LP0 register values */
2780 for_each_intel_crtc(dev, intel_crtc) {
2781 enum pipe pipe = intel_crtc->pipe;
2782 const struct intel_wm_level *r =
2783 &intel_crtc->wm.active.wm[0];
2784
2785 if (WARN_ON(!r->enable))
2786 continue;
2787
2788 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2789
2790 results->wm_pipe[pipe] =
2791 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2792 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2793 r->cur_val;
2794 }
2795 }
2796
2797 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2798 * case both are at the same level. Prefer r1 in case they're the same. */
2799 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2800 struct intel_pipe_wm *r1,
2801 struct intel_pipe_wm *r2)
2802 {
2803 int level, max_level = ilk_wm_max_level(dev);
2804 int level1 = 0, level2 = 0;
2805
2806 for (level = 1; level <= max_level; level++) {
2807 if (r1->wm[level].enable)
2808 level1 = level;
2809 if (r2->wm[level].enable)
2810 level2 = level;
2811 }
2812
2813 if (level1 == level2) {
2814 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2815 return r2;
2816 else
2817 return r1;
2818 } else if (level1 > level2) {
2819 return r1;
2820 } else {
2821 return r2;
2822 }
2823 }
2824
2825 /* dirty bits used to track which watermarks need changes */
2826 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2827 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2828 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2829 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2830 #define WM_DIRTY_FBC (1 << 24)
2831 #define WM_DIRTY_DDB (1 << 25)
2832
2833 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2834 const struct ilk_wm_values *old,
2835 const struct ilk_wm_values *new)
2836 {
2837 unsigned int dirty = 0;
2838 enum pipe pipe;
2839 int wm_lp;
2840
2841 for_each_pipe(dev_priv, pipe) {
2842 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2843 dirty |= WM_DIRTY_LINETIME(pipe);
2844 /* Must disable LP1+ watermarks too */
2845 dirty |= WM_DIRTY_LP_ALL;
2846 }
2847
2848 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2849 dirty |= WM_DIRTY_PIPE(pipe);
2850 /* Must disable LP1+ watermarks too */
2851 dirty |= WM_DIRTY_LP_ALL;
2852 }
2853 }
2854
2855 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2856 dirty |= WM_DIRTY_FBC;
2857 /* Must disable LP1+ watermarks too */
2858 dirty |= WM_DIRTY_LP_ALL;
2859 }
2860
2861 if (old->partitioning != new->partitioning) {
2862 dirty |= WM_DIRTY_DDB;
2863 /* Must disable LP1+ watermarks too */
2864 dirty |= WM_DIRTY_LP_ALL;
2865 }
2866
2867 /* LP1+ watermarks already deemed dirty, no need to continue */
2868 if (dirty & WM_DIRTY_LP_ALL)
2869 return dirty;
2870
2871 /* Find the lowest numbered LP1+ watermark in need of an update... */
2872 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2873 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2874 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2875 break;
2876 }
2877
2878 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2879 for (; wm_lp <= 3; wm_lp++)
2880 dirty |= WM_DIRTY_LP(wm_lp);
2881
2882 return dirty;
2883 }
2884
2885 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2886 unsigned int dirty)
2887 {
2888 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2889 bool changed = false;
2890
2891 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2892 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2893 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2894 changed = true;
2895 }
2896 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2897 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2898 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2899 changed = true;
2900 }
2901 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2902 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2903 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2904 changed = true;
2905 }
2906
2907 /*
2908 * Don't touch WM1S_LP_EN here.
2909 * Doing so could cause underruns.
2910 */
2911
2912 return changed;
2913 }
2914
2915 /*
2916 * The spec says we shouldn't write when we don't need, because every write
2917 * causes WMs to be re-evaluated, expending some power.
2918 */
2919 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2920 struct ilk_wm_values *results)
2921 {
2922 struct drm_device *dev = dev_priv->dev;
2923 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2924 unsigned int dirty;
2925 uint32_t val;
2926
2927 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2928 if (!dirty)
2929 return;
2930
2931 _ilk_disable_lp_wm(dev_priv, dirty);
2932
2933 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2934 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2935 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2936 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2937 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2938 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2939
2940 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2941 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2942 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2943 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2944 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2945 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2946
2947 if (dirty & WM_DIRTY_DDB) {
2948 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2949 val = I915_READ(WM_MISC);
2950 if (results->partitioning == INTEL_DDB_PART_1_2)
2951 val &= ~WM_MISC_DATA_PARTITION_5_6;
2952 else
2953 val |= WM_MISC_DATA_PARTITION_5_6;
2954 I915_WRITE(WM_MISC, val);
2955 } else {
2956 val = I915_READ(DISP_ARB_CTL2);
2957 if (results->partitioning == INTEL_DDB_PART_1_2)
2958 val &= ~DISP_DATA_PARTITION_5_6;
2959 else
2960 val |= DISP_DATA_PARTITION_5_6;
2961 I915_WRITE(DISP_ARB_CTL2, val);
2962 }
2963 }
2964
2965 if (dirty & WM_DIRTY_FBC) {
2966 val = I915_READ(DISP_ARB_CTL);
2967 if (results->enable_fbc_wm)
2968 val &= ~DISP_FBC_WM_DIS;
2969 else
2970 val |= DISP_FBC_WM_DIS;
2971 I915_WRITE(DISP_ARB_CTL, val);
2972 }
2973
2974 if (dirty & WM_DIRTY_LP(1) &&
2975 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2976 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2977
2978 if (INTEL_INFO(dev)->gen >= 7) {
2979 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2980 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2981 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2982 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2983 }
2984
2985 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2986 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2987 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2988 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2989 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2990 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2991
2992 dev_priv->wm.hw = *results;
2993 }
2994
2995 static bool ilk_disable_lp_wm(struct drm_device *dev)
2996 {
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2998
2999 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3000 }
3001
3002 /*
3003 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
3004 * different active planes.
3005 */
3006
3007 #define SKL_DDB_SIZE 896 /* in blocks */
3008
3009 static void
3010 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3011 struct drm_crtc *for_crtc,
3012 const struct intel_wm_config *config,
3013 const struct skl_pipe_wm_parameters *params,
3014 struct skl_ddb_entry *alloc /* out */)
3015 {
3016 struct drm_crtc *crtc;
3017 unsigned int pipe_size, ddb_size;
3018 int nth_active_pipe;
3019
3020 if (!params->active) {
3021 alloc->start = 0;
3022 alloc->end = 0;
3023 return;
3024 }
3025
3026 ddb_size = SKL_DDB_SIZE;
3027
3028 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3029
3030 nth_active_pipe = 0;
3031 for_each_crtc(dev, crtc) {
3032 if (!intel_crtc_active(crtc))
3033 continue;
3034
3035 if (crtc == for_crtc)
3036 break;
3037
3038 nth_active_pipe++;
3039 }
3040
3041 pipe_size = ddb_size / config->num_pipes_active;
3042 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
3043 alloc->end = alloc->start + pipe_size;
3044 }
3045
3046 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
3047 {
3048 if (config->num_pipes_active == 1)
3049 return 32;
3050
3051 return 8;
3052 }
3053
3054 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3055 {
3056 entry->start = reg & 0x3ff;
3057 entry->end = (reg >> 16) & 0x3ff;
3058 if (entry->end)
3059 entry->end += 1;
3060 }
3061
3062 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3063 struct skl_ddb_allocation *ddb /* out */)
3064 {
3065 struct drm_device *dev = dev_priv->dev;
3066 enum pipe pipe;
3067 int plane;
3068 u32 val;
3069
3070 for_each_pipe(dev_priv, pipe) {
3071 for_each_plane(pipe, plane) {
3072 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3073 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3074 val);
3075 }
3076
3077 val = I915_READ(CUR_BUF_CFG(pipe));
3078 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
3079 }
3080 }
3081
3082 static unsigned int
3083 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
3084 {
3085 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
3086 }
3087
3088 /*
3089 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3090 * a 8192x4096@32bpp framebuffer:
3091 * 3 * 4096 * 8192 * 4 < 2^32
3092 */
3093 static unsigned int
3094 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
3095 const struct skl_pipe_wm_parameters *params)
3096 {
3097 unsigned int total_data_rate = 0;
3098 int plane;
3099
3100 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3101 const struct intel_plane_wm_parameters *p;
3102
3103 p = &params->plane[plane];
3104 if (!p->enabled)
3105 continue;
3106
3107 total_data_rate += skl_plane_relative_data_rate(p);
3108 }
3109
3110 return total_data_rate;
3111 }
3112
3113 static void
3114 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
3115 const struct intel_wm_config *config,
3116 const struct skl_pipe_wm_parameters *params,
3117 struct skl_ddb_allocation *ddb /* out */)
3118 {
3119 struct drm_device *dev = crtc->dev;
3120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3121 enum pipe pipe = intel_crtc->pipe;
3122 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3123 uint16_t alloc_size, start, cursor_blocks;
3124 unsigned int total_data_rate;
3125 int plane;
3126
3127 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
3128 alloc_size = skl_ddb_entry_size(alloc);
3129 if (alloc_size == 0) {
3130 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3131 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
3132 return;
3133 }
3134
3135 cursor_blocks = skl_cursor_allocation(config);
3136 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
3137 ddb->cursor[pipe].end = alloc->end;
3138
3139 alloc_size -= cursor_blocks;
3140 alloc->end -= cursor_blocks;
3141
3142 /*
3143 * Each active plane get a portion of the remaining space, in
3144 * proportion to the amount of data they need to fetch from memory.
3145 *
3146 * FIXME: we may not allocate every single block here.
3147 */
3148 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3149
3150 start = alloc->start;
3151 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3152 const struct intel_plane_wm_parameters *p;
3153 unsigned int data_rate;
3154 uint16_t plane_blocks;
3155
3156 p = &params->plane[plane];
3157 if (!p->enabled)
3158 continue;
3159
3160 data_rate = skl_plane_relative_data_rate(p);
3161
3162 /*
3163 * promote the expression to 64 bits to avoid overflowing, the
3164 * result is < available as data_rate / total_data_rate < 1
3165 */
3166 plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
3167 total_data_rate);
3168
3169 ddb->plane[pipe][plane].start = start;
3170 ddb->plane[pipe][plane].end = start + plane_blocks;
3171
3172 start += plane_blocks;
3173 }
3174
3175 }
3176
3177 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_config *config)
3178 {
3179 /* TODO: Take into account the scalers once we support them */
3180 return config->adjusted_mode.crtc_clock;
3181 }
3182
3183 /*
3184 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3185 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3186 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3187 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3188 */
3189 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3190 uint32_t latency)
3191 {
3192 uint32_t wm_intermediate_val, ret;
3193
3194 if (latency == 0)
3195 return UINT_MAX;
3196
3197 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
3198 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3199
3200 return ret;
3201 }
3202
3203 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3204 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3205 uint32_t latency)
3206 {
3207 uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
3208
3209 if (latency == 0)
3210 return UINT_MAX;
3211
3212 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3213 wm_intermediate_val = latency * pixel_rate;
3214 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3215 plane_bytes_per_line;
3216
3217 return ret;
3218 }
3219
3220 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3221 const struct intel_crtc *intel_crtc)
3222 {
3223 struct drm_device *dev = intel_crtc->base.dev;
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3226 enum pipe pipe = intel_crtc->pipe;
3227
3228 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3229 sizeof(new_ddb->plane[pipe])))
3230 return true;
3231
3232 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3233 sizeof(new_ddb->cursor[pipe])))
3234 return true;
3235
3236 return false;
3237 }
3238
3239 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3240 struct intel_wm_config *config)
3241 {
3242 struct drm_crtc *crtc;
3243 struct drm_plane *plane;
3244
3245 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3246 config->num_pipes_active += intel_crtc_active(crtc);
3247
3248 /* FIXME: I don't think we need those two global parameters on SKL */
3249 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3250 struct intel_plane *intel_plane = to_intel_plane(plane);
3251
3252 config->sprites_enabled |= intel_plane->wm.enabled;
3253 config->sprites_scaled |= intel_plane->wm.scaled;
3254 }
3255 }
3256
3257 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3258 struct skl_pipe_wm_parameters *p)
3259 {
3260 struct drm_device *dev = crtc->dev;
3261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3262 enum pipe pipe = intel_crtc->pipe;
3263 struct drm_plane *plane;
3264 int i = 1; /* Index for sprite planes start */
3265
3266 p->active = intel_crtc_active(crtc);
3267 if (p->active) {
3268 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
3269 p->pixel_rate = skl_pipe_pixel_rate(&intel_crtc->config);
3270
3271 /*
3272 * For now, assume primary and cursor planes are always enabled.
3273 */
3274 p->plane[0].enabled = true;
3275 p->plane[0].bytes_per_pixel =
3276 crtc->primary->fb->bits_per_pixel / 8;
3277 p->plane[0].horiz_pixels = intel_crtc->config.pipe_src_w;
3278 p->plane[0].vert_pixels = intel_crtc->config.pipe_src_h;
3279
3280 p->cursor.enabled = true;
3281 p->cursor.bytes_per_pixel = 4;
3282 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
3283 intel_crtc->cursor_width : 64;
3284 }
3285
3286 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3287 struct intel_plane *intel_plane = to_intel_plane(plane);
3288
3289 if (intel_plane->pipe == pipe)
3290 p->plane[i++] = intel_plane->wm;
3291 }
3292 }
3293
3294 static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
3295 struct intel_plane_wm_parameters *p_params,
3296 uint16_t ddb_allocation,
3297 uint32_t mem_value,
3298 uint16_t *out_blocks, /* out */
3299 uint8_t *out_lines /* out */)
3300 {
3301 uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
3302 uint32_t result_bytes;
3303
3304 if (mem_value == 0 || !p->active || !p_params->enabled)
3305 return false;
3306
3307 method1 = skl_wm_method1(p->pixel_rate,
3308 p_params->bytes_per_pixel,
3309 mem_value);
3310 method2 = skl_wm_method2(p->pixel_rate,
3311 p->pipe_htotal,
3312 p_params->horiz_pixels,
3313 p_params->bytes_per_pixel,
3314 mem_value);
3315
3316 plane_bytes_per_line = p_params->horiz_pixels *
3317 p_params->bytes_per_pixel;
3318
3319 /* For now xtile and linear */
3320 if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
3321 result_bytes = min(method1, method2);
3322 else
3323 result_bytes = method1;
3324
3325 res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
3326 res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
3327
3328 if (res_blocks > ddb_allocation || res_lines > 31)
3329 return false;
3330
3331 *out_blocks = res_blocks;
3332 *out_lines = res_lines;
3333
3334 return true;
3335 }
3336
3337 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3338 struct skl_ddb_allocation *ddb,
3339 struct skl_pipe_wm_parameters *p,
3340 enum pipe pipe,
3341 int level,
3342 int num_planes,
3343 struct skl_wm_level *result)
3344 {
3345 uint16_t latency = dev_priv->wm.skl_latency[level];
3346 uint16_t ddb_blocks;
3347 int i;
3348
3349 for (i = 0; i < num_planes; i++) {
3350 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3351
3352 result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
3353 ddb_blocks,
3354 latency,
3355 &result->plane_res_b[i],
3356 &result->plane_res_l[i]);
3357 }
3358
3359 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3360 result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
3361 latency, &result->cursor_res_b,
3362 &result->cursor_res_l);
3363 }
3364
3365 static uint32_t
3366 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3367 {
3368 if (!intel_crtc_active(crtc))
3369 return 0;
3370
3371 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3372
3373 }
3374
3375 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3376 struct skl_pipe_wm_parameters *params,
3377 struct skl_wm_level *trans_wm /* out */)
3378 {
3379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3380 int i;
3381
3382 if (!params->active)
3383 return;
3384
3385 /* Until we know more, just disable transition WMs */
3386 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3387 trans_wm->plane_en[i] = false;
3388 trans_wm->cursor_en = false;
3389 }
3390
3391 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3392 struct skl_ddb_allocation *ddb,
3393 struct skl_pipe_wm_parameters *params,
3394 struct skl_pipe_wm *pipe_wm)
3395 {
3396 struct drm_device *dev = crtc->dev;
3397 const struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399 int level, max_level = ilk_wm_max_level(dev);
3400
3401 for (level = 0; level <= max_level; level++) {
3402 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3403 level, intel_num_planes(intel_crtc),
3404 &pipe_wm->wm[level]);
3405 }
3406 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3407
3408 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3409 }
3410
3411 static void skl_compute_wm_results(struct drm_device *dev,
3412 struct skl_pipe_wm_parameters *p,
3413 struct skl_pipe_wm *p_wm,
3414 struct skl_wm_values *r,
3415 struct intel_crtc *intel_crtc)
3416 {
3417 int level, max_level = ilk_wm_max_level(dev);
3418 enum pipe pipe = intel_crtc->pipe;
3419 uint32_t temp;
3420 int i;
3421
3422 for (level = 0; level <= max_level; level++) {
3423 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3424 temp = 0;
3425
3426 temp |= p_wm->wm[level].plane_res_l[i] <<
3427 PLANE_WM_LINES_SHIFT;
3428 temp |= p_wm->wm[level].plane_res_b[i];
3429 if (p_wm->wm[level].plane_en[i])
3430 temp |= PLANE_WM_EN;
3431
3432 r->plane[pipe][i][level] = temp;
3433 }
3434
3435 temp = 0;
3436
3437 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3438 temp |= p_wm->wm[level].cursor_res_b;
3439
3440 if (p_wm->wm[level].cursor_en)
3441 temp |= PLANE_WM_EN;
3442
3443 r->cursor[pipe][level] = temp;
3444
3445 }
3446
3447 /* transition WMs */
3448 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3449 temp = 0;
3450 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3451 temp |= p_wm->trans_wm.plane_res_b[i];
3452 if (p_wm->trans_wm.plane_en[i])
3453 temp |= PLANE_WM_EN;
3454
3455 r->plane_trans[pipe][i] = temp;
3456 }
3457
3458 temp = 0;
3459 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3460 temp |= p_wm->trans_wm.cursor_res_b;
3461 if (p_wm->trans_wm.cursor_en)
3462 temp |= PLANE_WM_EN;
3463
3464 r->cursor_trans[pipe] = temp;
3465
3466 r->wm_linetime[pipe] = p_wm->linetime;
3467 }
3468
3469 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3470 const struct skl_ddb_entry *entry)
3471 {
3472 if (entry->end)
3473 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3474 else
3475 I915_WRITE(reg, 0);
3476 }
3477
3478 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3479 const struct skl_wm_values *new)
3480 {
3481 struct drm_device *dev = dev_priv->dev;
3482 struct intel_crtc *crtc;
3483
3484 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3485 int i, level, max_level = ilk_wm_max_level(dev);
3486 enum pipe pipe = crtc->pipe;
3487
3488 if (!new->dirty[pipe])
3489 continue;
3490
3491 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3492
3493 for (level = 0; level <= max_level; level++) {
3494 for (i = 0; i < intel_num_planes(crtc); i++)
3495 I915_WRITE(PLANE_WM(pipe, i, level),
3496 new->plane[pipe][i][level]);
3497 I915_WRITE(CUR_WM(pipe, level),
3498 new->cursor[pipe][level]);
3499 }
3500 for (i = 0; i < intel_num_planes(crtc); i++)
3501 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3502 new->plane_trans[pipe][i]);
3503 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3504
3505 for (i = 0; i < intel_num_planes(crtc); i++)
3506 skl_ddb_entry_write(dev_priv,
3507 PLANE_BUF_CFG(pipe, i),
3508 &new->ddb.plane[pipe][i]);
3509
3510 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3511 &new->ddb.cursor[pipe]);
3512 }
3513 }
3514
3515 /*
3516 * When setting up a new DDB allocation arrangement, we need to correctly
3517 * sequence the times at which the new allocations for the pipes are taken into
3518 * account or we'll have pipes fetching from space previously allocated to
3519 * another pipe.
3520 *
3521 * Roughly the sequence looks like:
3522 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3523 * overlapping with a previous light-up pipe (another way to put it is:
3524 * pipes with their new allocation strickly included into their old ones).
3525 * 2. re-allocate the other pipes that get their allocation reduced
3526 * 3. allocate the pipes having their allocation increased
3527 *
3528 * Steps 1. and 2. are here to take care of the following case:
3529 * - Initially DDB looks like this:
3530 * | B | C |
3531 * - enable pipe A.
3532 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3533 * allocation
3534 * | A | B | C |
3535 *
3536 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3537 */
3538
3539 static void
3540 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3541 {
3542 struct drm_device *dev = dev_priv->dev;
3543 int plane;
3544
3545 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3546
3547 for_each_plane(pipe, plane) {
3548 I915_WRITE(PLANE_SURF(pipe, plane),
3549 I915_READ(PLANE_SURF(pipe, plane)));
3550 }
3551 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3552 }
3553
3554 static bool
3555 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3556 const struct skl_ddb_allocation *new,
3557 enum pipe pipe)
3558 {
3559 uint16_t old_size, new_size;
3560
3561 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3562 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3563
3564 return old_size != new_size &&
3565 new->pipe[pipe].start >= old->pipe[pipe].start &&
3566 new->pipe[pipe].end <= old->pipe[pipe].end;
3567 }
3568
3569 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3570 struct skl_wm_values *new_values)
3571 {
3572 struct drm_device *dev = dev_priv->dev;
3573 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3574 bool reallocated[I915_MAX_PIPES] = {false, false, false};
3575 struct intel_crtc *crtc;
3576 enum pipe pipe;
3577
3578 new_ddb = &new_values->ddb;
3579 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3580
3581 /*
3582 * First pass: flush the pipes with the new allocation contained into
3583 * the old space.
3584 *
3585 * We'll wait for the vblank on those pipes to ensure we can safely
3586 * re-allocate the freed space without this pipe fetching from it.
3587 */
3588 for_each_intel_crtc(dev, crtc) {
3589 if (!crtc->active)
3590 continue;
3591
3592 pipe = crtc->pipe;
3593
3594 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3595 continue;
3596
3597 skl_wm_flush_pipe(dev_priv, pipe, 1);
3598 intel_wait_for_vblank(dev, pipe);
3599
3600 reallocated[pipe] = true;
3601 }
3602
3603
3604 /*
3605 * Second pass: flush the pipes that are having their allocation
3606 * reduced, but overlapping with a previous allocation.
3607 *
3608 * Here as well we need to wait for the vblank to make sure the freed
3609 * space is not used anymore.
3610 */
3611 for_each_intel_crtc(dev, crtc) {
3612 if (!crtc->active)
3613 continue;
3614
3615 pipe = crtc->pipe;
3616
3617 if (reallocated[pipe])
3618 continue;
3619
3620 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3621 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3622 skl_wm_flush_pipe(dev_priv, pipe, 2);
3623 intel_wait_for_vblank(dev, pipe);
3624 }
3625
3626 reallocated[pipe] = true;
3627 }
3628
3629 /*
3630 * Third pass: flush the pipes that got more space allocated.
3631 *
3632 * We don't need to actively wait for the update here, next vblank
3633 * will just get more DDB space with the correct WM values.
3634 */
3635 for_each_intel_crtc(dev, crtc) {
3636 if (!crtc->active)
3637 continue;
3638
3639 pipe = crtc->pipe;
3640
3641 /*
3642 * At this point, only the pipes more space than before are
3643 * left to re-allocate.
3644 */
3645 if (reallocated[pipe])
3646 continue;
3647
3648 skl_wm_flush_pipe(dev_priv, pipe, 3);
3649 }
3650 }
3651
3652 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3653 struct skl_pipe_wm_parameters *params,
3654 struct intel_wm_config *config,
3655 struct skl_ddb_allocation *ddb, /* out */
3656 struct skl_pipe_wm *pipe_wm /* out */)
3657 {
3658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3659
3660 skl_compute_wm_pipe_parameters(crtc, params);
3661 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3662 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3663
3664 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3665 return false;
3666
3667 intel_crtc->wm.skl_active = *pipe_wm;
3668 return true;
3669 }
3670
3671 static void skl_update_other_pipe_wm(struct drm_device *dev,
3672 struct drm_crtc *crtc,
3673 struct intel_wm_config *config,
3674 struct skl_wm_values *r)
3675 {
3676 struct intel_crtc *intel_crtc;
3677 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3678
3679 /*
3680 * If the WM update hasn't changed the allocation for this_crtc (the
3681 * crtc we are currently computing the new WM values for), other
3682 * enabled crtcs will keep the same allocation and we don't need to
3683 * recompute anything for them.
3684 */
3685 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3686 return;
3687
3688 /*
3689 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3690 * other active pipes need new DDB allocation and WM values.
3691 */
3692 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3693 base.head) {
3694 struct skl_pipe_wm_parameters params = {};
3695 struct skl_pipe_wm pipe_wm = {};
3696 bool wm_changed;
3697
3698 if (this_crtc->pipe == intel_crtc->pipe)
3699 continue;
3700
3701 if (!intel_crtc->active)
3702 continue;
3703
3704 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3705 &params, config,
3706 &r->ddb, &pipe_wm);
3707
3708 /*
3709 * If we end up re-computing the other pipe WM values, it's
3710 * because it was really needed, so we expect the WM values to
3711 * be different.
3712 */
3713 WARN_ON(!wm_changed);
3714
3715 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3716 r->dirty[intel_crtc->pipe] = true;
3717 }
3718 }
3719
3720 static void skl_update_wm(struct drm_crtc *crtc)
3721 {
3722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3723 struct drm_device *dev = crtc->dev;
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 struct skl_pipe_wm_parameters params = {};
3726 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3727 struct skl_pipe_wm pipe_wm = {};
3728 struct intel_wm_config config = {};
3729
3730 memset(results, 0, sizeof(*results));
3731
3732 skl_compute_wm_global_parameters(dev, &config);
3733
3734 if (!skl_update_pipe_wm(crtc, &params, &config,
3735 &results->ddb, &pipe_wm))
3736 return;
3737
3738 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3739 results->dirty[intel_crtc->pipe] = true;
3740
3741 skl_update_other_pipe_wm(dev, crtc, &config, results);
3742 skl_write_wm_values(dev_priv, results);
3743 skl_flush_wm_values(dev_priv, results);
3744
3745 /* store the new configuration */
3746 dev_priv->wm.skl_hw = *results;
3747 }
3748
3749 static void
3750 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3751 uint32_t sprite_width, uint32_t sprite_height,
3752 int pixel_size, bool enabled, bool scaled)
3753 {
3754 struct intel_plane *intel_plane = to_intel_plane(plane);
3755
3756 intel_plane->wm.enabled = enabled;
3757 intel_plane->wm.scaled = scaled;
3758 intel_plane->wm.horiz_pixels = sprite_width;
3759 intel_plane->wm.vert_pixels = sprite_height;
3760 intel_plane->wm.bytes_per_pixel = pixel_size;
3761
3762 skl_update_wm(crtc);
3763 }
3764
3765 static void ilk_update_wm(struct drm_crtc *crtc)
3766 {
3767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 struct drm_device *dev = crtc->dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 struct ilk_wm_maximums max;
3771 struct ilk_pipe_wm_parameters params = {};
3772 struct ilk_wm_values results = {};
3773 enum intel_ddb_partitioning partitioning;
3774 struct intel_pipe_wm pipe_wm = {};
3775 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3776 struct intel_wm_config config = {};
3777
3778 ilk_compute_wm_parameters(crtc, &params);
3779
3780 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3781
3782 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3783 return;
3784
3785 intel_crtc->wm.active = pipe_wm;
3786
3787 ilk_compute_wm_config(dev, &config);
3788
3789 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3790 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3791
3792 /* 5/6 split only in single pipe config on IVB+ */
3793 if (INTEL_INFO(dev)->gen >= 7 &&
3794 config.num_pipes_active == 1 && config.sprites_enabled) {
3795 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3796 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3797
3798 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3799 } else {
3800 best_lp_wm = &lp_wm_1_2;
3801 }
3802
3803 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3804 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3805
3806 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3807
3808 ilk_write_wm_values(dev_priv, &results);
3809 }
3810
3811 static void
3812 ilk_update_sprite_wm(struct drm_plane *plane,
3813 struct drm_crtc *crtc,
3814 uint32_t sprite_width, uint32_t sprite_height,
3815 int pixel_size, bool enabled, bool scaled)
3816 {
3817 struct drm_device *dev = plane->dev;
3818 struct intel_plane *intel_plane = to_intel_plane(plane);
3819
3820 intel_plane->wm.enabled = enabled;
3821 intel_plane->wm.scaled = scaled;
3822 intel_plane->wm.horiz_pixels = sprite_width;
3823 intel_plane->wm.vert_pixels = sprite_width;
3824 intel_plane->wm.bytes_per_pixel = pixel_size;
3825
3826 /*
3827 * IVB workaround: must disable low power watermarks for at least
3828 * one frame before enabling scaling. LP watermarks can be re-enabled
3829 * when scaling is disabled.
3830 *
3831 * WaCxSRDisabledForSpriteScaling:ivb
3832 */
3833 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3834 intel_wait_for_vblank(dev, intel_plane->pipe);
3835
3836 ilk_update_wm(crtc);
3837 }
3838
3839 static void skl_pipe_wm_active_state(uint32_t val,
3840 struct skl_pipe_wm *active,
3841 bool is_transwm,
3842 bool is_cursor,
3843 int i,
3844 int level)
3845 {
3846 bool is_enabled = (val & PLANE_WM_EN) != 0;
3847
3848 if (!is_transwm) {
3849 if (!is_cursor) {
3850 active->wm[level].plane_en[i] = is_enabled;
3851 active->wm[level].plane_res_b[i] =
3852 val & PLANE_WM_BLOCKS_MASK;
3853 active->wm[level].plane_res_l[i] =
3854 (val >> PLANE_WM_LINES_SHIFT) &
3855 PLANE_WM_LINES_MASK;
3856 } else {
3857 active->wm[level].cursor_en = is_enabled;
3858 active->wm[level].cursor_res_b =
3859 val & PLANE_WM_BLOCKS_MASK;
3860 active->wm[level].cursor_res_l =
3861 (val >> PLANE_WM_LINES_SHIFT) &
3862 PLANE_WM_LINES_MASK;
3863 }
3864 } else {
3865 if (!is_cursor) {
3866 active->trans_wm.plane_en[i] = is_enabled;
3867 active->trans_wm.plane_res_b[i] =
3868 val & PLANE_WM_BLOCKS_MASK;
3869 active->trans_wm.plane_res_l[i] =
3870 (val >> PLANE_WM_LINES_SHIFT) &
3871 PLANE_WM_LINES_MASK;
3872 } else {
3873 active->trans_wm.cursor_en = is_enabled;
3874 active->trans_wm.cursor_res_b =
3875 val & PLANE_WM_BLOCKS_MASK;
3876 active->trans_wm.cursor_res_l =
3877 (val >> PLANE_WM_LINES_SHIFT) &
3878 PLANE_WM_LINES_MASK;
3879 }
3880 }
3881 }
3882
3883 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3884 {
3885 struct drm_device *dev = crtc->dev;
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3887 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3889 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3890 enum pipe pipe = intel_crtc->pipe;
3891 int level, i, max_level;
3892 uint32_t temp;
3893
3894 max_level = ilk_wm_max_level(dev);
3895
3896 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3897
3898 for (level = 0; level <= max_level; level++) {
3899 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3900 hw->plane[pipe][i][level] =
3901 I915_READ(PLANE_WM(pipe, i, level));
3902 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3903 }
3904
3905 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3906 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3907 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3908
3909 if (!intel_crtc_active(crtc))
3910 return;
3911
3912 hw->dirty[pipe] = true;
3913
3914 active->linetime = hw->wm_linetime[pipe];
3915
3916 for (level = 0; level <= max_level; level++) {
3917 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3918 temp = hw->plane[pipe][i][level];
3919 skl_pipe_wm_active_state(temp, active, false,
3920 false, i, level);
3921 }
3922 temp = hw->cursor[pipe][level];
3923 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3924 }
3925
3926 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3927 temp = hw->plane_trans[pipe][i];
3928 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3929 }
3930
3931 temp = hw->cursor_trans[pipe];
3932 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3933 }
3934
3935 void skl_wm_get_hw_state(struct drm_device *dev)
3936 {
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3939 struct drm_crtc *crtc;
3940
3941 skl_ddb_get_hw_state(dev_priv, ddb);
3942 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3943 skl_pipe_wm_get_hw_state(crtc);
3944 }
3945
3946 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3947 {
3948 struct drm_device *dev = crtc->dev;
3949 struct drm_i915_private *dev_priv = dev->dev_private;
3950 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3952 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3953 enum pipe pipe = intel_crtc->pipe;
3954 static const unsigned int wm0_pipe_reg[] = {
3955 [PIPE_A] = WM0_PIPEA_ILK,
3956 [PIPE_B] = WM0_PIPEB_ILK,
3957 [PIPE_C] = WM0_PIPEC_IVB,
3958 };
3959
3960 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3961 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3962 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3963
3964 active->pipe_enabled = intel_crtc_active(crtc);
3965
3966 if (active->pipe_enabled) {
3967 u32 tmp = hw->wm_pipe[pipe];
3968
3969 /*
3970 * For active pipes LP0 watermark is marked as
3971 * enabled, and LP1+ watermaks as disabled since
3972 * we can't really reverse compute them in case
3973 * multiple pipes are active.
3974 */
3975 active->wm[0].enable = true;
3976 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3977 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3978 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3979 active->linetime = hw->wm_linetime[pipe];
3980 } else {
3981 int level, max_level = ilk_wm_max_level(dev);
3982
3983 /*
3984 * For inactive pipes, all watermark levels
3985 * should be marked as enabled but zeroed,
3986 * which is what we'd compute them to.
3987 */
3988 for (level = 0; level <= max_level; level++)
3989 active->wm[level].enable = true;
3990 }
3991 }
3992
3993 void ilk_wm_get_hw_state(struct drm_device *dev)
3994 {
3995 struct drm_i915_private *dev_priv = dev->dev_private;
3996 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3997 struct drm_crtc *crtc;
3998
3999 for_each_crtc(dev, crtc)
4000 ilk_pipe_wm_get_hw_state(crtc);
4001
4002 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4003 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4004 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4005
4006 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4007 if (INTEL_INFO(dev)->gen >= 7) {
4008 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4009 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4010 }
4011
4012 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4013 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4014 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4015 else if (IS_IVYBRIDGE(dev))
4016 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4017 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4018
4019 hw->enable_fbc_wm =
4020 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4021 }
4022
4023 /**
4024 * intel_update_watermarks - update FIFO watermark values based on current modes
4025 *
4026 * Calculate watermark values for the various WM regs based on current mode
4027 * and plane configuration.
4028 *
4029 * There are several cases to deal with here:
4030 * - normal (i.e. non-self-refresh)
4031 * - self-refresh (SR) mode
4032 * - lines are large relative to FIFO size (buffer can hold up to 2)
4033 * - lines are small relative to FIFO size (buffer can hold more than 2
4034 * lines), so need to account for TLB latency
4035 *
4036 * The normal calculation is:
4037 * watermark = dotclock * bytes per pixel * latency
4038 * where latency is platform & configuration dependent (we assume pessimal
4039 * values here).
4040 *
4041 * The SR calculation is:
4042 * watermark = (trunc(latency/line time)+1) * surface width *
4043 * bytes per pixel
4044 * where
4045 * line time = htotal / dotclock
4046 * surface width = hdisplay for normal plane and 64 for cursor
4047 * and latency is assumed to be high, as above.
4048 *
4049 * The final value programmed to the register should always be rounded up,
4050 * and include an extra 2 entries to account for clock crossings.
4051 *
4052 * We don't use the sprite, so we can ignore that. And on Crestline we have
4053 * to set the non-SR watermarks to 8.
4054 */
4055 void intel_update_watermarks(struct drm_crtc *crtc)
4056 {
4057 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4058
4059 if (dev_priv->display.update_wm)
4060 dev_priv->display.update_wm(crtc);
4061 }
4062
4063 void intel_update_sprite_watermarks(struct drm_plane *plane,
4064 struct drm_crtc *crtc,
4065 uint32_t sprite_width,
4066 uint32_t sprite_height,
4067 int pixel_size,
4068 bool enabled, bool scaled)
4069 {
4070 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4071
4072 if (dev_priv->display.update_sprite_wm)
4073 dev_priv->display.update_sprite_wm(plane, crtc,
4074 sprite_width, sprite_height,
4075 pixel_size, enabled, scaled);
4076 }
4077
4078 static struct drm_i915_gem_object *
4079 intel_alloc_context_page(struct drm_device *dev)
4080 {
4081 struct drm_i915_gem_object *ctx;
4082 int ret;
4083
4084 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4085
4086 ctx = i915_gem_alloc_object(dev, 4096);
4087 if (!ctx) {
4088 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4089 return NULL;
4090 }
4091
4092 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
4093 if (ret) {
4094 DRM_ERROR("failed to pin power context: %d\n", ret);
4095 goto err_unref;
4096 }
4097
4098 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
4099 if (ret) {
4100 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4101 goto err_unpin;
4102 }
4103
4104 return ctx;
4105
4106 err_unpin:
4107 i915_gem_object_ggtt_unpin(ctx);
4108 err_unref:
4109 drm_gem_object_unreference(&ctx->base);
4110 return NULL;
4111 }
4112
4113 /**
4114 * Lock protecting IPS related data structures
4115 */
4116 DEFINE_SPINLOCK(mchdev_lock);
4117
4118 /* Global for IPS driver to get at the current i915 device. Protected by
4119 * mchdev_lock. */
4120 static struct drm_i915_private *i915_mch_dev;
4121
4122 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4123 {
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 u16 rgvswctl;
4126
4127 assert_spin_locked(&mchdev_lock);
4128
4129 rgvswctl = I915_READ16(MEMSWCTL);
4130 if (rgvswctl & MEMCTL_CMD_STS) {
4131 DRM_DEBUG("gpu busy, RCS change rejected\n");
4132 return false; /* still busy with another command */
4133 }
4134
4135 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4136 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4137 I915_WRITE16(MEMSWCTL, rgvswctl);
4138 POSTING_READ16(MEMSWCTL);
4139
4140 rgvswctl |= MEMCTL_CMD_STS;
4141 I915_WRITE16(MEMSWCTL, rgvswctl);
4142
4143 return true;
4144 }
4145
4146 static void ironlake_enable_drps(struct drm_device *dev)
4147 {
4148 struct drm_i915_private *dev_priv = dev->dev_private;
4149 u32 rgvmodectl = I915_READ(MEMMODECTL);
4150 u8 fmax, fmin, fstart, vstart;
4151
4152 spin_lock_irq(&mchdev_lock);
4153
4154 /* Enable temp reporting */
4155 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4156 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4157
4158 /* 100ms RC evaluation intervals */
4159 I915_WRITE(RCUPEI, 100000);
4160 I915_WRITE(RCDNEI, 100000);
4161
4162 /* Set max/min thresholds to 90ms and 80ms respectively */
4163 I915_WRITE(RCBMAXAVG, 90000);
4164 I915_WRITE(RCBMINAVG, 80000);
4165
4166 I915_WRITE(MEMIHYST, 1);
4167
4168 /* Set up min, max, and cur for interrupt handling */
4169 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4170 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4171 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4172 MEMMODE_FSTART_SHIFT;
4173
4174 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4175 PXVFREQ_PX_SHIFT;
4176
4177 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4178 dev_priv->ips.fstart = fstart;
4179
4180 dev_priv->ips.max_delay = fstart;
4181 dev_priv->ips.min_delay = fmin;
4182 dev_priv->ips.cur_delay = fstart;
4183
4184 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4185 fmax, fmin, fstart);
4186
4187 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4188
4189 /*
4190 * Interrupts will be enabled in ironlake_irq_postinstall
4191 */
4192
4193 I915_WRITE(VIDSTART, vstart);
4194 POSTING_READ(VIDSTART);
4195
4196 rgvmodectl |= MEMMODE_SWMODE_EN;
4197 I915_WRITE(MEMMODECTL, rgvmodectl);
4198
4199 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4200 DRM_ERROR("stuck trying to change perf mode\n");
4201 mdelay(1);
4202
4203 ironlake_set_drps(dev, fstart);
4204
4205 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4206 I915_READ(0x112e0);
4207 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4208 dev_priv->ips.last_count2 = I915_READ(0x112f4);
4209 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4210
4211 spin_unlock_irq(&mchdev_lock);
4212 }
4213
4214 static void ironlake_disable_drps(struct drm_device *dev)
4215 {
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 u16 rgvswctl;
4218
4219 spin_lock_irq(&mchdev_lock);
4220
4221 rgvswctl = I915_READ16(MEMSWCTL);
4222
4223 /* Ack interrupts, disable EFC interrupt */
4224 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4225 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4226 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4227 I915_WRITE(DEIIR, DE_PCU_EVENT);
4228 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4229
4230 /* Go back to the starting frequency */
4231 ironlake_set_drps(dev, dev_priv->ips.fstart);
4232 mdelay(1);
4233 rgvswctl |= MEMCTL_CMD_STS;
4234 I915_WRITE(MEMSWCTL, rgvswctl);
4235 mdelay(1);
4236
4237 spin_unlock_irq(&mchdev_lock);
4238 }
4239
4240 /* There's a funny hw issue where the hw returns all 0 when reading from
4241 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4242 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4243 * all limits and the gpu stuck at whatever frequency it is at atm).
4244 */
4245 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4246 {
4247 u32 limits;
4248
4249 /* Only set the down limit when we've reached the lowest level to avoid
4250 * getting more interrupts, otherwise leave this clear. This prevents a
4251 * race in the hw when coming out of rc6: There's a tiny window where
4252 * the hw runs at the minimal clock before selecting the desired
4253 * frequency, if the down threshold expires in that window we will not
4254 * receive a down interrupt. */
4255 limits = dev_priv->rps.max_freq_softlimit << 24;
4256 if (val <= dev_priv->rps.min_freq_softlimit)
4257 limits |= dev_priv->rps.min_freq_softlimit << 16;
4258
4259 return limits;
4260 }
4261
4262 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4263 {
4264 int new_power;
4265
4266 new_power = dev_priv->rps.power;
4267 switch (dev_priv->rps.power) {
4268 case LOW_POWER:
4269 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4270 new_power = BETWEEN;
4271 break;
4272
4273 case BETWEEN:
4274 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4275 new_power = LOW_POWER;
4276 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4277 new_power = HIGH_POWER;
4278 break;
4279
4280 case HIGH_POWER:
4281 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4282 new_power = BETWEEN;
4283 break;
4284 }
4285 /* Max/min bins are special */
4286 if (val == dev_priv->rps.min_freq_softlimit)
4287 new_power = LOW_POWER;
4288 if (val == dev_priv->rps.max_freq_softlimit)
4289 new_power = HIGH_POWER;
4290 if (new_power == dev_priv->rps.power)
4291 return;
4292
4293 /* Note the units here are not exactly 1us, but 1280ns. */
4294 switch (new_power) {
4295 case LOW_POWER:
4296 /* Upclock if more than 95% busy over 16ms */
4297 I915_WRITE(GEN6_RP_UP_EI, 12500);
4298 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
4299
4300 /* Downclock if less than 85% busy over 32ms */
4301 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4302 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
4303
4304 I915_WRITE(GEN6_RP_CONTROL,
4305 GEN6_RP_MEDIA_TURBO |
4306 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4307 GEN6_RP_MEDIA_IS_GFX |
4308 GEN6_RP_ENABLE |
4309 GEN6_RP_UP_BUSY_AVG |
4310 GEN6_RP_DOWN_IDLE_AVG);
4311 break;
4312
4313 case BETWEEN:
4314 /* Upclock if more than 90% busy over 13ms */
4315 I915_WRITE(GEN6_RP_UP_EI, 10250);
4316 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
4317
4318 /* Downclock if less than 75% busy over 32ms */
4319 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4320 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
4321
4322 I915_WRITE(GEN6_RP_CONTROL,
4323 GEN6_RP_MEDIA_TURBO |
4324 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4325 GEN6_RP_MEDIA_IS_GFX |
4326 GEN6_RP_ENABLE |
4327 GEN6_RP_UP_BUSY_AVG |
4328 GEN6_RP_DOWN_IDLE_AVG);
4329 break;
4330
4331 case HIGH_POWER:
4332 /* Upclock if more than 85% busy over 10ms */
4333 I915_WRITE(GEN6_RP_UP_EI, 8000);
4334 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
4335
4336 /* Downclock if less than 60% busy over 32ms */
4337 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4338 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
4339
4340 I915_WRITE(GEN6_RP_CONTROL,
4341 GEN6_RP_MEDIA_TURBO |
4342 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4343 GEN6_RP_MEDIA_IS_GFX |
4344 GEN6_RP_ENABLE |
4345 GEN6_RP_UP_BUSY_AVG |
4346 GEN6_RP_DOWN_IDLE_AVG);
4347 break;
4348 }
4349
4350 dev_priv->rps.power = new_power;
4351 dev_priv->rps.last_adj = 0;
4352 }
4353
4354 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4355 {
4356 u32 mask = 0;
4357
4358 if (val > dev_priv->rps.min_freq_softlimit)
4359 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4360 if (val < dev_priv->rps.max_freq_softlimit)
4361 mask |= GEN6_PM_RP_UP_THRESHOLD;
4362
4363 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
4364 mask &= dev_priv->pm_rps_events;
4365
4366 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4367 }
4368
4369 /* gen6_set_rps is called to update the frequency request, but should also be
4370 * called when the range (min_delay and max_delay) is modified so that we can
4371 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4372 void gen6_set_rps(struct drm_device *dev, u8 val)
4373 {
4374 struct drm_i915_private *dev_priv = dev->dev_private;
4375
4376 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4377 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
4378 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4379
4380 /* min/max delay may still have been modified so be sure to
4381 * write the limits value.
4382 */
4383 if (val != dev_priv->rps.cur_freq) {
4384 gen6_set_rps_thresholds(dev_priv, val);
4385
4386 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4387 I915_WRITE(GEN6_RPNSWREQ,
4388 HSW_FREQUENCY(val));
4389 else
4390 I915_WRITE(GEN6_RPNSWREQ,
4391 GEN6_FREQUENCY(val) |
4392 GEN6_OFFSET(0) |
4393 GEN6_AGGRESSIVE_TURBO);
4394 }
4395
4396 /* Make sure we continue to get interrupts
4397 * until we hit the minimum or maximum frequencies.
4398 */
4399 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
4400 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4401
4402 POSTING_READ(GEN6_RPNSWREQ);
4403
4404 dev_priv->rps.cur_freq = val;
4405 trace_intel_gpu_freq_change(val * 50);
4406 }
4407
4408 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4409 *
4410 * * If Gfx is Idle, then
4411 * 1. Mask Turbo interrupts
4412 * 2. Bring up Gfx clock
4413 * 3. Change the freq to Rpn and wait till P-Unit updates freq
4414 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4415 * 5. Unmask Turbo interrupts
4416 */
4417 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4418 {
4419 struct drm_device *dev = dev_priv->dev;
4420
4421 /* Latest VLV doesn't need to force the gfx clock */
4422 if (dev->pdev->revision >= 0xd) {
4423 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4424 return;
4425 }
4426
4427 /*
4428 * When we are idle. Drop to min voltage state.
4429 */
4430
4431 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
4432 return;
4433
4434 /* Mask turbo interrupt so that they will not come in between */
4435 I915_WRITE(GEN6_PMINTRMSK,
4436 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4437
4438 vlv_force_gfx_clock(dev_priv, true);
4439
4440 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
4441
4442 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
4443 dev_priv->rps.min_freq_softlimit);
4444
4445 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4446 & GENFREQSTATUS) == 0, 100))
4447 DRM_ERROR("timed out waiting for Punit\n");
4448
4449 vlv_force_gfx_clock(dev_priv, false);
4450
4451 I915_WRITE(GEN6_PMINTRMSK,
4452 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4453 }
4454
4455 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4456 {
4457 struct drm_device *dev = dev_priv->dev;
4458
4459 mutex_lock(&dev_priv->rps.hw_lock);
4460 if (dev_priv->rps.enabled) {
4461 if (IS_CHERRYVIEW(dev))
4462 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4463 else if (IS_VALLEYVIEW(dev))
4464 vlv_set_rps_idle(dev_priv);
4465 else
4466 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4467 dev_priv->rps.last_adj = 0;
4468 }
4469 mutex_unlock(&dev_priv->rps.hw_lock);
4470 }
4471
4472 void gen6_rps_boost(struct drm_i915_private *dev_priv)
4473 {
4474 struct drm_device *dev = dev_priv->dev;
4475
4476 mutex_lock(&dev_priv->rps.hw_lock);
4477 if (dev_priv->rps.enabled) {
4478 if (IS_VALLEYVIEW(dev))
4479 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4480 else
4481 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4482 dev_priv->rps.last_adj = 0;
4483 }
4484 mutex_unlock(&dev_priv->rps.hw_lock);
4485 }
4486
4487 void valleyview_set_rps(struct drm_device *dev, u8 val)
4488 {
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490
4491 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4492 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
4493 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4494
4495 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4496 "Odd GPU freq value\n"))
4497 val &= ~1;
4498
4499 if (val != dev_priv->rps.cur_freq)
4500 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4501
4502 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4503
4504 dev_priv->rps.cur_freq = val;
4505 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
4506 }
4507
4508 static void gen9_disable_rps(struct drm_device *dev)
4509 {
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4511
4512 I915_WRITE(GEN6_RC_CONTROL, 0);
4513 }
4514
4515 static void gen6_disable_rps(struct drm_device *dev)
4516 {
4517 struct drm_i915_private *dev_priv = dev->dev_private;
4518
4519 I915_WRITE(GEN6_RC_CONTROL, 0);
4520 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4521 }
4522
4523 static void cherryview_disable_rps(struct drm_device *dev)
4524 {
4525 struct drm_i915_private *dev_priv = dev->dev_private;
4526
4527 I915_WRITE(GEN6_RC_CONTROL, 0);
4528 }
4529
4530 static void valleyview_disable_rps(struct drm_device *dev)
4531 {
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533
4534 /* we're doing forcewake before Disabling RC6,
4535 * This what the BIOS expects when going into suspend */
4536 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4537
4538 I915_WRITE(GEN6_RC_CONTROL, 0);
4539
4540 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4541 }
4542
4543 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4544 {
4545 if (IS_VALLEYVIEW(dev)) {
4546 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4547 mode = GEN6_RC_CTL_RC6_ENABLE;
4548 else
4549 mode = 0;
4550 }
4551 if (HAS_RC6p(dev))
4552 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4553 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4554 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4555 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4556
4557 else
4558 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4559 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4560 }
4561
4562 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4563 {
4564 /* No RC6 before Ironlake */
4565 if (INTEL_INFO(dev)->gen < 5)
4566 return 0;
4567
4568 /* RC6 is only on Ironlake mobile not on desktop */
4569 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4570 return 0;
4571
4572 /* Respect the kernel parameter if it is set */
4573 if (enable_rc6 >= 0) {
4574 int mask;
4575
4576 if (HAS_RC6p(dev))
4577 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4578 INTEL_RC6pp_ENABLE;
4579 else
4580 mask = INTEL_RC6_ENABLE;
4581
4582 if ((enable_rc6 & mask) != enable_rc6)
4583 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4584 enable_rc6 & mask, enable_rc6, mask);
4585
4586 return enable_rc6 & mask;
4587 }
4588
4589 /* Disable RC6 on Ironlake */
4590 if (INTEL_INFO(dev)->gen == 5)
4591 return 0;
4592
4593 if (IS_IVYBRIDGE(dev))
4594 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4595
4596 return INTEL_RC6_ENABLE;
4597 }
4598
4599 int intel_enable_rc6(const struct drm_device *dev)
4600 {
4601 return i915.enable_rc6;
4602 }
4603
4604 static void gen6_init_rps_frequencies(struct drm_device *dev)
4605 {
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 uint32_t rp_state_cap;
4608 u32 ddcc_status = 0;
4609 int ret;
4610
4611 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4612 /* All of these values are in units of 50MHz */
4613 dev_priv->rps.cur_freq = 0;
4614 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4615 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4616 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4617 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4618 /* hw_max = RP0 until we check for overclocking */
4619 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4620
4621 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4622 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4623 ret = sandybridge_pcode_read(dev_priv,
4624 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4625 &ddcc_status);
4626 if (0 == ret)
4627 dev_priv->rps.efficient_freq =
4628 (ddcc_status >> 8) & 0xff;
4629 }
4630
4631 /* Preserve min/max settings in case of re-init */
4632 if (dev_priv->rps.max_freq_softlimit == 0)
4633 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4634
4635 if (dev_priv->rps.min_freq_softlimit == 0) {
4636 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4637 dev_priv->rps.min_freq_softlimit =
4638 /* max(RPe, 450 MHz) */
4639 max(dev_priv->rps.efficient_freq, (u8) 9);
4640 else
4641 dev_priv->rps.min_freq_softlimit =
4642 dev_priv->rps.min_freq;
4643 }
4644 }
4645
4646 static void gen9_enable_rps(struct drm_device *dev)
4647 {
4648 struct drm_i915_private *dev_priv = dev->dev_private;
4649 struct intel_engine_cs *ring;
4650 uint32_t rc6_mask = 0;
4651 int unused;
4652
4653 /* 1a: Software RC state - RC0 */
4654 I915_WRITE(GEN6_RC_STATE, 0);
4655
4656 /* 1b: Get forcewake during program sequence. Although the driver
4657 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4658 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4659
4660 /* 2a: Disable RC states. */
4661 I915_WRITE(GEN6_RC_CONTROL, 0);
4662
4663 /* 2b: Program RC6 thresholds.*/
4664 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4665 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4666 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4667 for_each_ring(ring, dev_priv, unused)
4668 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4669 I915_WRITE(GEN6_RC_SLEEP, 0);
4670 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4671
4672 /* 3a: Enable RC6 */
4673 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4674 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4675 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4676 "on" : "off");
4677 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4678 GEN6_RC_CTL_EI_MODE(1) |
4679 rc6_mask);
4680
4681 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4682
4683 }
4684
4685 static void gen8_enable_rps(struct drm_device *dev)
4686 {
4687 struct drm_i915_private *dev_priv = dev->dev_private;
4688 struct intel_engine_cs *ring;
4689 uint32_t rc6_mask = 0;
4690 int unused;
4691
4692 /* 1a: Software RC state - RC0 */
4693 I915_WRITE(GEN6_RC_STATE, 0);
4694
4695 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4696 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4697 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4698
4699 /* 2a: Disable RC states. */
4700 I915_WRITE(GEN6_RC_CONTROL, 0);
4701
4702 /* Initialize rps frequencies */
4703 gen6_init_rps_frequencies(dev);
4704
4705 /* 2b: Program RC6 thresholds.*/
4706 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4707 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4708 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4709 for_each_ring(ring, dev_priv, unused)
4710 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4711 I915_WRITE(GEN6_RC_SLEEP, 0);
4712 if (IS_BROADWELL(dev))
4713 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4714 else
4715 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4716
4717 /* 3: Enable RC6 */
4718 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4719 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4720 intel_print_rc6_info(dev, rc6_mask);
4721 if (IS_BROADWELL(dev))
4722 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4723 GEN7_RC_CTL_TO_MODE |
4724 rc6_mask);
4725 else
4726 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4727 GEN6_RC_CTL_EI_MODE(1) |
4728 rc6_mask);
4729
4730 /* 4 Program defaults and thresholds for RPS*/
4731 I915_WRITE(GEN6_RPNSWREQ,
4732 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4733 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4734 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4735 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4736 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4737
4738 /* Docs recommend 900MHz, and 300 MHz respectively */
4739 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4740 dev_priv->rps.max_freq_softlimit << 24 |
4741 dev_priv->rps.min_freq_softlimit << 16);
4742
4743 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4744 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4745 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4746 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4747
4748 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4749
4750 /* 5: Enable RPS */
4751 I915_WRITE(GEN6_RP_CONTROL,
4752 GEN6_RP_MEDIA_TURBO |
4753 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4754 GEN6_RP_MEDIA_IS_GFX |
4755 GEN6_RP_ENABLE |
4756 GEN6_RP_UP_BUSY_AVG |
4757 GEN6_RP_DOWN_IDLE_AVG);
4758
4759 /* 6: Ring frequency + overclocking (our driver does this later */
4760
4761 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4762 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4763
4764 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4765 }
4766
4767 static void gen6_enable_rps(struct drm_device *dev)
4768 {
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 struct intel_engine_cs *ring;
4771 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4772 u32 gtfifodbg;
4773 int rc6_mode;
4774 int i, ret;
4775
4776 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4777
4778 /* Here begins a magic sequence of register writes to enable
4779 * auto-downclocking.
4780 *
4781 * Perhaps there might be some value in exposing these to
4782 * userspace...
4783 */
4784 I915_WRITE(GEN6_RC_STATE, 0);
4785
4786 /* Clear the DBG now so we don't confuse earlier errors */
4787 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4788 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4789 I915_WRITE(GTFIFODBG, gtfifodbg);
4790 }
4791
4792 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4793
4794 /* Initialize rps frequencies */
4795 gen6_init_rps_frequencies(dev);
4796
4797 /* disable the counters and set deterministic thresholds */
4798 I915_WRITE(GEN6_RC_CONTROL, 0);
4799
4800 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4801 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4802 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4803 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4804 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4805
4806 for_each_ring(ring, dev_priv, i)
4807 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4808
4809 I915_WRITE(GEN6_RC_SLEEP, 0);
4810 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4811 if (IS_IVYBRIDGE(dev))
4812 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4813 else
4814 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4815 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4816 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4817
4818 /* Check if we are enabling RC6 */
4819 rc6_mode = intel_enable_rc6(dev_priv->dev);
4820 if (rc6_mode & INTEL_RC6_ENABLE)
4821 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4822
4823 /* We don't use those on Haswell */
4824 if (!IS_HASWELL(dev)) {
4825 if (rc6_mode & INTEL_RC6p_ENABLE)
4826 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4827
4828 if (rc6_mode & INTEL_RC6pp_ENABLE)
4829 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4830 }
4831
4832 intel_print_rc6_info(dev, rc6_mask);
4833
4834 I915_WRITE(GEN6_RC_CONTROL,
4835 rc6_mask |
4836 GEN6_RC_CTL_EI_MODE(1) |
4837 GEN6_RC_CTL_HW_ENABLE);
4838
4839 /* Power down if completely idle for over 50ms */
4840 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4841 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4842
4843 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4844 if (ret)
4845 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4846
4847 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4848 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4849 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4850 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4851 (pcu_mbox & 0xff) * 50);
4852 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4853 }
4854
4855 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4856 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4857
4858 rc6vids = 0;
4859 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4860 if (IS_GEN6(dev) && ret) {
4861 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4862 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4863 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4864 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4865 rc6vids &= 0xffff00;
4866 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4867 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4868 if (ret)
4869 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4870 }
4871
4872 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4873 }
4874
4875 static void __gen6_update_ring_freq(struct drm_device *dev)
4876 {
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 int min_freq = 15;
4879 unsigned int gpu_freq;
4880 unsigned int max_ia_freq, min_ring_freq;
4881 int scaling_factor = 180;
4882 struct cpufreq_policy *policy;
4883
4884 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4885
4886 policy = cpufreq_cpu_get(0);
4887 if (policy) {
4888 max_ia_freq = policy->cpuinfo.max_freq;
4889 cpufreq_cpu_put(policy);
4890 } else {
4891 /*
4892 * Default to measured freq if none found, PCU will ensure we
4893 * don't go over
4894 */
4895 max_ia_freq = tsc_khz;
4896 }
4897
4898 /* Convert from kHz to MHz */
4899 max_ia_freq /= 1000;
4900
4901 min_ring_freq = I915_READ(DCLK) & 0xf;
4902 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4903 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4904
4905 /*
4906 * For each potential GPU frequency, load a ring frequency we'd like
4907 * to use for memory access. We do this by specifying the IA frequency
4908 * the PCU should use as a reference to determine the ring frequency.
4909 */
4910 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4911 gpu_freq--) {
4912 int diff = dev_priv->rps.max_freq - gpu_freq;
4913 unsigned int ia_freq = 0, ring_freq = 0;
4914
4915 if (INTEL_INFO(dev)->gen >= 8) {
4916 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4917 ring_freq = max(min_ring_freq, gpu_freq);
4918 } else if (IS_HASWELL(dev)) {
4919 ring_freq = mult_frac(gpu_freq, 5, 4);
4920 ring_freq = max(min_ring_freq, ring_freq);
4921 /* leave ia_freq as the default, chosen by cpufreq */
4922 } else {
4923 /* On older processors, there is no separate ring
4924 * clock domain, so in order to boost the bandwidth
4925 * of the ring, we need to upclock the CPU (ia_freq).
4926 *
4927 * For GPU frequencies less than 750MHz,
4928 * just use the lowest ring freq.
4929 */
4930 if (gpu_freq < min_freq)
4931 ia_freq = 800;
4932 else
4933 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4934 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4935 }
4936
4937 sandybridge_pcode_write(dev_priv,
4938 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4939 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4940 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4941 gpu_freq);
4942 }
4943 }
4944
4945 void gen6_update_ring_freq(struct drm_device *dev)
4946 {
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4948
4949 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4950 return;
4951
4952 mutex_lock(&dev_priv->rps.hw_lock);
4953 __gen6_update_ring_freq(dev);
4954 mutex_unlock(&dev_priv->rps.hw_lock);
4955 }
4956
4957 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4958 {
4959 u32 val, rp0;
4960
4961 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4962 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4963
4964 return rp0;
4965 }
4966
4967 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4968 {
4969 u32 val, rpe;
4970
4971 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4972 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4973
4974 return rpe;
4975 }
4976
4977 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4978 {
4979 u32 val, rp1;
4980
4981 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4982 rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4983
4984 return rp1;
4985 }
4986
4987 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4988 {
4989 u32 val, rpn;
4990
4991 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4992 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4993 return rpn;
4994 }
4995
4996 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4997 {
4998 u32 val, rp1;
4999
5000 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5001
5002 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5003
5004 return rp1;
5005 }
5006
5007 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5008 {
5009 u32 val, rp0;
5010
5011 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5012
5013 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5014 /* Clamp to max */
5015 rp0 = min_t(u32, rp0, 0xea);
5016
5017 return rp0;
5018 }
5019
5020 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5021 {
5022 u32 val, rpe;
5023
5024 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5025 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5026 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5027 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5028
5029 return rpe;
5030 }
5031
5032 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5033 {
5034 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5035 }
5036
5037 /* Check that the pctx buffer wasn't move under us. */
5038 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5039 {
5040 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5041
5042 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5043 dev_priv->vlv_pctx->stolen->start);
5044 }
5045
5046
5047 /* Check that the pcbr address is not empty. */
5048 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5049 {
5050 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5051
5052 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5053 }
5054
5055 static void cherryview_setup_pctx(struct drm_device *dev)
5056 {
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 unsigned long pctx_paddr, paddr;
5059 struct i915_gtt *gtt = &dev_priv->gtt;
5060 u32 pcbr;
5061 int pctx_size = 32*1024;
5062
5063 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5064
5065 pcbr = I915_READ(VLV_PCBR);
5066 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5067 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5068 paddr = (dev_priv->mm.stolen_base +
5069 (gtt->stolen_size - pctx_size));
5070
5071 pctx_paddr = (paddr & (~4095));
5072 I915_WRITE(VLV_PCBR, pctx_paddr);
5073 }
5074
5075 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5076 }
5077
5078 static void valleyview_setup_pctx(struct drm_device *dev)
5079 {
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct drm_i915_gem_object *pctx;
5082 unsigned long pctx_paddr;
5083 u32 pcbr;
5084 int pctx_size = 24*1024;
5085
5086 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5087
5088 pcbr = I915_READ(VLV_PCBR);
5089 if (pcbr) {
5090 /* BIOS set it up already, grab the pre-alloc'd space */
5091 int pcbr_offset;
5092
5093 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5094 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5095 pcbr_offset,
5096 I915_GTT_OFFSET_NONE,
5097 pctx_size);
5098 goto out;
5099 }
5100
5101 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5102
5103 /*
5104 * From the Gunit register HAS:
5105 * The Gfx driver is expected to program this register and ensure
5106 * proper allocation within Gfx stolen memory. For example, this
5107 * register should be programmed such than the PCBR range does not
5108 * overlap with other ranges, such as the frame buffer, protected
5109 * memory, or any other relevant ranges.
5110 */
5111 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5112 if (!pctx) {
5113 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5114 return;
5115 }
5116
5117 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5118 I915_WRITE(VLV_PCBR, pctx_paddr);
5119
5120 out:
5121 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5122 dev_priv->vlv_pctx = pctx;
5123 }
5124
5125 static void valleyview_cleanup_pctx(struct drm_device *dev)
5126 {
5127 struct drm_i915_private *dev_priv = dev->dev_private;
5128
5129 if (WARN_ON(!dev_priv->vlv_pctx))
5130 return;
5131
5132 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5133 dev_priv->vlv_pctx = NULL;
5134 }
5135
5136 static void valleyview_init_gt_powersave(struct drm_device *dev)
5137 {
5138 struct drm_i915_private *dev_priv = dev->dev_private;
5139 u32 val;
5140
5141 valleyview_setup_pctx(dev);
5142
5143 mutex_lock(&dev_priv->rps.hw_lock);
5144
5145 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5146 switch ((val >> 6) & 3) {
5147 case 0:
5148 case 1:
5149 dev_priv->mem_freq = 800;
5150 break;
5151 case 2:
5152 dev_priv->mem_freq = 1066;
5153 break;
5154 case 3:
5155 dev_priv->mem_freq = 1333;
5156 break;
5157 }
5158 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5159
5160 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5161 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5162 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5163 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5164 dev_priv->rps.max_freq);
5165
5166 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5167 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5168 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5169 dev_priv->rps.efficient_freq);
5170
5171 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5172 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5173 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5174 dev_priv->rps.rp1_freq);
5175
5176 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5177 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5178 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5179 dev_priv->rps.min_freq);
5180
5181 /* Preserve min/max settings in case of re-init */
5182 if (dev_priv->rps.max_freq_softlimit == 0)
5183 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5184
5185 if (dev_priv->rps.min_freq_softlimit == 0)
5186 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5187
5188 mutex_unlock(&dev_priv->rps.hw_lock);
5189 }
5190
5191 static void cherryview_init_gt_powersave(struct drm_device *dev)
5192 {
5193 struct drm_i915_private *dev_priv = dev->dev_private;
5194 u32 val;
5195
5196 cherryview_setup_pctx(dev);
5197
5198 mutex_lock(&dev_priv->rps.hw_lock);
5199
5200 mutex_lock(&dev_priv->dpio_lock);
5201 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5202 mutex_unlock(&dev_priv->dpio_lock);
5203
5204 switch ((val >> 2) & 0x7) {
5205 case 0:
5206 case 1:
5207 dev_priv->rps.cz_freq = 200;
5208 dev_priv->mem_freq = 1600;
5209 break;
5210 case 2:
5211 dev_priv->rps.cz_freq = 267;
5212 dev_priv->mem_freq = 1600;
5213 break;
5214 case 3:
5215 dev_priv->rps.cz_freq = 333;
5216 dev_priv->mem_freq = 2000;
5217 break;
5218 case 4:
5219 dev_priv->rps.cz_freq = 320;
5220 dev_priv->mem_freq = 1600;
5221 break;
5222 case 5:
5223 dev_priv->rps.cz_freq = 400;
5224 dev_priv->mem_freq = 1600;
5225 break;
5226 }
5227 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5228
5229 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5230 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5231 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5232 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5233 dev_priv->rps.max_freq);
5234
5235 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5236 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5237 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5238 dev_priv->rps.efficient_freq);
5239
5240 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5241 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5242 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5243 dev_priv->rps.rp1_freq);
5244
5245 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
5246 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5247 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5248 dev_priv->rps.min_freq);
5249
5250 WARN_ONCE((dev_priv->rps.max_freq |
5251 dev_priv->rps.efficient_freq |
5252 dev_priv->rps.rp1_freq |
5253 dev_priv->rps.min_freq) & 1,
5254 "Odd GPU freq values\n");
5255
5256 /* Preserve min/max settings in case of re-init */
5257 if (dev_priv->rps.max_freq_softlimit == 0)
5258 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5259
5260 if (dev_priv->rps.min_freq_softlimit == 0)
5261 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5262
5263 mutex_unlock(&dev_priv->rps.hw_lock);
5264 }
5265
5266 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5267 {
5268 valleyview_cleanup_pctx(dev);
5269 }
5270
5271 static void cherryview_enable_rps(struct drm_device *dev)
5272 {
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 struct intel_engine_cs *ring;
5275 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5276 int i;
5277
5278 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5279
5280 gtfifodbg = I915_READ(GTFIFODBG);
5281 if (gtfifodbg) {
5282 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5283 gtfifodbg);
5284 I915_WRITE(GTFIFODBG, gtfifodbg);
5285 }
5286
5287 cherryview_check_pctx(dev_priv);
5288
5289 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5290 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5291 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
5292
5293 /* 2a: Program RC6 thresholds.*/
5294 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5295 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5296 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5297
5298 for_each_ring(ring, dev_priv, i)
5299 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5300 I915_WRITE(GEN6_RC_SLEEP, 0);
5301
5302 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5303
5304 /* allows RC6 residency counter to work */
5305 I915_WRITE(VLV_COUNTER_CONTROL,
5306 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5307 VLV_MEDIA_RC6_COUNT_EN |
5308 VLV_RENDER_RC6_COUNT_EN));
5309
5310 /* For now we assume BIOS is allocating and populating the PCBR */
5311 pcbr = I915_READ(VLV_PCBR);
5312
5313 /* 3: Enable RC6 */
5314 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5315 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5316 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
5317
5318 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5319
5320 /* 4 Program defaults and thresholds for RPS*/
5321 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5322 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5323 I915_WRITE(GEN6_RP_UP_EI, 66000);
5324 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5325
5326 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5327
5328 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
5329 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
5330 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
5331
5332 /* 5: Enable RPS */
5333 I915_WRITE(GEN6_RP_CONTROL,
5334 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5335 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
5336 GEN6_RP_ENABLE |
5337 GEN6_RP_UP_BUSY_AVG |
5338 GEN6_RP_DOWN_IDLE_AVG);
5339
5340 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5341
5342 /* RPS code assumes GPLL is used */
5343 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5344
5345 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5346 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5347
5348 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5349 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5350 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5351 dev_priv->rps.cur_freq);
5352
5353 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5354 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5355 dev_priv->rps.efficient_freq);
5356
5357 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5358
5359 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
5360 }
5361
5362 static void valleyview_enable_rps(struct drm_device *dev)
5363 {
5364 struct drm_i915_private *dev_priv = dev->dev_private;
5365 struct intel_engine_cs *ring;
5366 u32 gtfifodbg, val, rc6_mode = 0;
5367 int i;
5368
5369 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5370
5371 valleyview_check_pctx(dev_priv);
5372
5373 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5374 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5375 gtfifodbg);
5376 I915_WRITE(GTFIFODBG, gtfifodbg);
5377 }
5378
5379 /* If VLV, Forcewake all wells, else re-direct to regular path */
5380 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
5381
5382 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5383 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5384 I915_WRITE(GEN6_RP_UP_EI, 66000);
5385 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5386
5387 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5388 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
5389
5390 I915_WRITE(GEN6_RP_CONTROL,
5391 GEN6_RP_MEDIA_TURBO |
5392 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5393 GEN6_RP_MEDIA_IS_GFX |
5394 GEN6_RP_ENABLE |
5395 GEN6_RP_UP_BUSY_AVG |
5396 GEN6_RP_DOWN_IDLE_CONT);
5397
5398 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5399 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5400 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5401
5402 for_each_ring(ring, dev_priv, i)
5403 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5404
5405 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5406
5407 /* allows RC6 residency counter to work */
5408 I915_WRITE(VLV_COUNTER_CONTROL,
5409 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5410 VLV_RENDER_RC0_COUNT_EN |
5411 VLV_MEDIA_RC6_COUNT_EN |
5412 VLV_RENDER_RC6_COUNT_EN));
5413
5414 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5415 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5416
5417 intel_print_rc6_info(dev, rc6_mode);
5418
5419 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5420
5421 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5422
5423 /* RPS code assumes GPLL is used */
5424 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5425
5426 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5427 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5428
5429 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5430 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5431 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5432 dev_priv->rps.cur_freq);
5433
5434 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5435 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5436 dev_priv->rps.efficient_freq);
5437
5438 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5439
5440 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
5441 }
5442
5443 void ironlake_teardown_rc6(struct drm_device *dev)
5444 {
5445 struct drm_i915_private *dev_priv = dev->dev_private;
5446
5447 if (dev_priv->ips.renderctx) {
5448 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
5449 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
5450 dev_priv->ips.renderctx = NULL;
5451 }
5452
5453 if (dev_priv->ips.pwrctx) {
5454 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
5455 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
5456 dev_priv->ips.pwrctx = NULL;
5457 }
5458 }
5459
5460 static void ironlake_disable_rc6(struct drm_device *dev)
5461 {
5462 struct drm_i915_private *dev_priv = dev->dev_private;
5463
5464 if (I915_READ(PWRCTXA)) {
5465 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
5466 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
5467 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
5468 50);
5469
5470 I915_WRITE(PWRCTXA, 0);
5471 POSTING_READ(PWRCTXA);
5472
5473 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5474 POSTING_READ(RSTDBYCTL);
5475 }
5476 }
5477
5478 static int ironlake_setup_rc6(struct drm_device *dev)
5479 {
5480 struct drm_i915_private *dev_priv = dev->dev_private;
5481
5482 if (dev_priv->ips.renderctx == NULL)
5483 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
5484 if (!dev_priv->ips.renderctx)
5485 return -ENOMEM;
5486
5487 if (dev_priv->ips.pwrctx == NULL)
5488 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
5489 if (!dev_priv->ips.pwrctx) {
5490 ironlake_teardown_rc6(dev);
5491 return -ENOMEM;
5492 }
5493
5494 return 0;
5495 }
5496
5497 static void ironlake_enable_rc6(struct drm_device *dev)
5498 {
5499 struct drm_i915_private *dev_priv = dev->dev_private;
5500 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
5501 bool was_interruptible;
5502 int ret;
5503
5504 /* rc6 disabled by default due to repeated reports of hanging during
5505 * boot and resume.
5506 */
5507 if (!intel_enable_rc6(dev))
5508 return;
5509
5510 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5511
5512 ret = ironlake_setup_rc6(dev);
5513 if (ret)
5514 return;
5515
5516 was_interruptible = dev_priv->mm.interruptible;
5517 dev_priv->mm.interruptible = false;
5518
5519 /*
5520 * GPU can automatically power down the render unit if given a page
5521 * to save state.
5522 */
5523 ret = intel_ring_begin(ring, 6);
5524 if (ret) {
5525 ironlake_teardown_rc6(dev);
5526 dev_priv->mm.interruptible = was_interruptible;
5527 return;
5528 }
5529
5530 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
5531 intel_ring_emit(ring, MI_SET_CONTEXT);
5532 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
5533 MI_MM_SPACE_GTT |
5534 MI_SAVE_EXT_STATE_EN |
5535 MI_RESTORE_EXT_STATE_EN |
5536 MI_RESTORE_INHIBIT);
5537 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5538 intel_ring_emit(ring, MI_NOOP);
5539 intel_ring_emit(ring, MI_FLUSH);
5540 intel_ring_advance(ring);
5541
5542 /*
5543 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5544 * does an implicit flush, combined with MI_FLUSH above, it should be
5545 * safe to assume that renderctx is valid
5546 */
5547 ret = intel_ring_idle(ring);
5548 dev_priv->mm.interruptible = was_interruptible;
5549 if (ret) {
5550 DRM_ERROR("failed to enable ironlake power savings\n");
5551 ironlake_teardown_rc6(dev);
5552 return;
5553 }
5554
5555 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5556 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5557
5558 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5559 }
5560
5561 static unsigned long intel_pxfreq(u32 vidfreq)
5562 {
5563 unsigned long freq;
5564 int div = (vidfreq & 0x3f0000) >> 16;
5565 int post = (vidfreq & 0x3000) >> 12;
5566 int pre = (vidfreq & 0x7);
5567
5568 if (!pre)
5569 return 0;
5570
5571 freq = ((div * 133333) / ((1<<post) * pre));
5572
5573 return freq;
5574 }
5575
5576 static const struct cparams {
5577 u16 i;
5578 u16 t;
5579 u16 m;
5580 u16 c;
5581 } cparams[] = {
5582 { 1, 1333, 301, 28664 },
5583 { 1, 1066, 294, 24460 },
5584 { 1, 800, 294, 25192 },
5585 { 0, 1333, 276, 27605 },
5586 { 0, 1066, 276, 27605 },
5587 { 0, 800, 231, 23784 },
5588 };
5589
5590 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5591 {
5592 u64 total_count, diff, ret;
5593 u32 count1, count2, count3, m = 0, c = 0;
5594 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5595 int i;
5596
5597 assert_spin_locked(&mchdev_lock);
5598
5599 diff1 = now - dev_priv->ips.last_time1;
5600
5601 /* Prevent division-by-zero if we are asking too fast.
5602 * Also, we don't get interesting results if we are polling
5603 * faster than once in 10ms, so just return the saved value
5604 * in such cases.
5605 */
5606 if (diff1 <= 10)
5607 return dev_priv->ips.chipset_power;
5608
5609 count1 = I915_READ(DMIEC);
5610 count2 = I915_READ(DDREC);
5611 count3 = I915_READ(CSIEC);
5612
5613 total_count = count1 + count2 + count3;
5614
5615 /* FIXME: handle per-counter overflow */
5616 if (total_count < dev_priv->ips.last_count1) {
5617 diff = ~0UL - dev_priv->ips.last_count1;
5618 diff += total_count;
5619 } else {
5620 diff = total_count - dev_priv->ips.last_count1;
5621 }
5622
5623 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5624 if (cparams[i].i == dev_priv->ips.c_m &&
5625 cparams[i].t == dev_priv->ips.r_t) {
5626 m = cparams[i].m;
5627 c = cparams[i].c;
5628 break;
5629 }
5630 }
5631
5632 diff = div_u64(diff, diff1);
5633 ret = ((m * diff) + c);
5634 ret = div_u64(ret, 10);
5635
5636 dev_priv->ips.last_count1 = total_count;
5637 dev_priv->ips.last_time1 = now;
5638
5639 dev_priv->ips.chipset_power = ret;
5640
5641 return ret;
5642 }
5643
5644 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5645 {
5646 struct drm_device *dev = dev_priv->dev;
5647 unsigned long val;
5648
5649 if (INTEL_INFO(dev)->gen != 5)
5650 return 0;
5651
5652 spin_lock_irq(&mchdev_lock);
5653
5654 val = __i915_chipset_val(dev_priv);
5655
5656 spin_unlock_irq(&mchdev_lock);
5657
5658 return val;
5659 }
5660
5661 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5662 {
5663 unsigned long m, x, b;
5664 u32 tsfs;
5665
5666 tsfs = I915_READ(TSFS);
5667
5668 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5669 x = I915_READ8(TR1);
5670
5671 b = tsfs & TSFS_INTR_MASK;
5672
5673 return ((m * x) / 127) - b;
5674 }
5675
5676 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5677 {
5678 struct drm_device *dev = dev_priv->dev;
5679 static const struct v_table {
5680 u16 vd; /* in .1 mil */
5681 u16 vm; /* in .1 mil */
5682 } v_table[] = {
5683 { 0, 0, },
5684 { 375, 0, },
5685 { 500, 0, },
5686 { 625, 0, },
5687 { 750, 0, },
5688 { 875, 0, },
5689 { 1000, 0, },
5690 { 1125, 0, },
5691 { 4125, 3000, },
5692 { 4125, 3000, },
5693 { 4125, 3000, },
5694 { 4125, 3000, },
5695 { 4125, 3000, },
5696 { 4125, 3000, },
5697 { 4125, 3000, },
5698 { 4125, 3000, },
5699 { 4125, 3000, },
5700 { 4125, 3000, },
5701 { 4125, 3000, },
5702 { 4125, 3000, },
5703 { 4125, 3000, },
5704 { 4125, 3000, },
5705 { 4125, 3000, },
5706 { 4125, 3000, },
5707 { 4125, 3000, },
5708 { 4125, 3000, },
5709 { 4125, 3000, },
5710 { 4125, 3000, },
5711 { 4125, 3000, },
5712 { 4125, 3000, },
5713 { 4125, 3000, },
5714 { 4125, 3000, },
5715 { 4250, 3125, },
5716 { 4375, 3250, },
5717 { 4500, 3375, },
5718 { 4625, 3500, },
5719 { 4750, 3625, },
5720 { 4875, 3750, },
5721 { 5000, 3875, },
5722 { 5125, 4000, },
5723 { 5250, 4125, },
5724 { 5375, 4250, },
5725 { 5500, 4375, },
5726 { 5625, 4500, },
5727 { 5750, 4625, },
5728 { 5875, 4750, },
5729 { 6000, 4875, },
5730 { 6125, 5000, },
5731 { 6250, 5125, },
5732 { 6375, 5250, },
5733 { 6500, 5375, },
5734 { 6625, 5500, },
5735 { 6750, 5625, },
5736 { 6875, 5750, },
5737 { 7000, 5875, },
5738 { 7125, 6000, },
5739 { 7250, 6125, },
5740 { 7375, 6250, },
5741 { 7500, 6375, },
5742 { 7625, 6500, },
5743 { 7750, 6625, },
5744 { 7875, 6750, },
5745 { 8000, 6875, },
5746 { 8125, 7000, },
5747 { 8250, 7125, },
5748 { 8375, 7250, },
5749 { 8500, 7375, },
5750 { 8625, 7500, },
5751 { 8750, 7625, },
5752 { 8875, 7750, },
5753 { 9000, 7875, },
5754 { 9125, 8000, },
5755 { 9250, 8125, },
5756 { 9375, 8250, },
5757 { 9500, 8375, },
5758 { 9625, 8500, },
5759 { 9750, 8625, },
5760 { 9875, 8750, },
5761 { 10000, 8875, },
5762 { 10125, 9000, },
5763 { 10250, 9125, },
5764 { 10375, 9250, },
5765 { 10500, 9375, },
5766 { 10625, 9500, },
5767 { 10750, 9625, },
5768 { 10875, 9750, },
5769 { 11000, 9875, },
5770 { 11125, 10000, },
5771 { 11250, 10125, },
5772 { 11375, 10250, },
5773 { 11500, 10375, },
5774 { 11625, 10500, },
5775 { 11750, 10625, },
5776 { 11875, 10750, },
5777 { 12000, 10875, },
5778 { 12125, 11000, },
5779 { 12250, 11125, },
5780 { 12375, 11250, },
5781 { 12500, 11375, },
5782 { 12625, 11500, },
5783 { 12750, 11625, },
5784 { 12875, 11750, },
5785 { 13000, 11875, },
5786 { 13125, 12000, },
5787 { 13250, 12125, },
5788 { 13375, 12250, },
5789 { 13500, 12375, },
5790 { 13625, 12500, },
5791 { 13750, 12625, },
5792 { 13875, 12750, },
5793 { 14000, 12875, },
5794 { 14125, 13000, },
5795 { 14250, 13125, },
5796 { 14375, 13250, },
5797 { 14500, 13375, },
5798 { 14625, 13500, },
5799 { 14750, 13625, },
5800 { 14875, 13750, },
5801 { 15000, 13875, },
5802 { 15125, 14000, },
5803 { 15250, 14125, },
5804 { 15375, 14250, },
5805 { 15500, 14375, },
5806 { 15625, 14500, },
5807 { 15750, 14625, },
5808 { 15875, 14750, },
5809 { 16000, 14875, },
5810 { 16125, 15000, },
5811 };
5812 if (INTEL_INFO(dev)->is_mobile)
5813 return v_table[pxvid].vm;
5814 else
5815 return v_table[pxvid].vd;
5816 }
5817
5818 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5819 {
5820 u64 now, diff, diffms;
5821 u32 count;
5822
5823 assert_spin_locked(&mchdev_lock);
5824
5825 now = ktime_get_raw_ns();
5826 diffms = now - dev_priv->ips.last_time2;
5827 do_div(diffms, NSEC_PER_MSEC);
5828
5829 /* Don't divide by 0 */
5830 if (!diffms)
5831 return;
5832
5833 count = I915_READ(GFXEC);
5834
5835 if (count < dev_priv->ips.last_count2) {
5836 diff = ~0UL - dev_priv->ips.last_count2;
5837 diff += count;
5838 } else {
5839 diff = count - dev_priv->ips.last_count2;
5840 }
5841
5842 dev_priv->ips.last_count2 = count;
5843 dev_priv->ips.last_time2 = now;
5844
5845 /* More magic constants... */
5846 diff = diff * 1181;
5847 diff = div_u64(diff, diffms * 10);
5848 dev_priv->ips.gfx_power = diff;
5849 }
5850
5851 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5852 {
5853 struct drm_device *dev = dev_priv->dev;
5854
5855 if (INTEL_INFO(dev)->gen != 5)
5856 return;
5857
5858 spin_lock_irq(&mchdev_lock);
5859
5860 __i915_update_gfx_val(dev_priv);
5861
5862 spin_unlock_irq(&mchdev_lock);
5863 }
5864
5865 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5866 {
5867 unsigned long t, corr, state1, corr2, state2;
5868 u32 pxvid, ext_v;
5869
5870 assert_spin_locked(&mchdev_lock);
5871
5872 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5873 pxvid = (pxvid >> 24) & 0x7f;
5874 ext_v = pvid_to_extvid(dev_priv, pxvid);
5875
5876 state1 = ext_v;
5877
5878 t = i915_mch_val(dev_priv);
5879
5880 /* Revel in the empirically derived constants */
5881
5882 /* Correction factor in 1/100000 units */
5883 if (t > 80)
5884 corr = ((t * 2349) + 135940);
5885 else if (t >= 50)
5886 corr = ((t * 964) + 29317);
5887 else /* < 50 */
5888 corr = ((t * 301) + 1004);
5889
5890 corr = corr * ((150142 * state1) / 10000 - 78642);
5891 corr /= 100000;
5892 corr2 = (corr * dev_priv->ips.corr);
5893
5894 state2 = (corr2 * state1) / 10000;
5895 state2 /= 100; /* convert to mW */
5896
5897 __i915_update_gfx_val(dev_priv);
5898
5899 return dev_priv->ips.gfx_power + state2;
5900 }
5901
5902 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5903 {
5904 struct drm_device *dev = dev_priv->dev;
5905 unsigned long val;
5906
5907 if (INTEL_INFO(dev)->gen != 5)
5908 return 0;
5909
5910 spin_lock_irq(&mchdev_lock);
5911
5912 val = __i915_gfx_val(dev_priv);
5913
5914 spin_unlock_irq(&mchdev_lock);
5915
5916 return val;
5917 }
5918
5919 /**
5920 * i915_read_mch_val - return value for IPS use
5921 *
5922 * Calculate and return a value for the IPS driver to use when deciding whether
5923 * we have thermal and power headroom to increase CPU or GPU power budget.
5924 */
5925 unsigned long i915_read_mch_val(void)
5926 {
5927 struct drm_i915_private *dev_priv;
5928 unsigned long chipset_val, graphics_val, ret = 0;
5929
5930 spin_lock_irq(&mchdev_lock);
5931 if (!i915_mch_dev)
5932 goto out_unlock;
5933 dev_priv = i915_mch_dev;
5934
5935 chipset_val = __i915_chipset_val(dev_priv);
5936 graphics_val = __i915_gfx_val(dev_priv);
5937
5938 ret = chipset_val + graphics_val;
5939
5940 out_unlock:
5941 spin_unlock_irq(&mchdev_lock);
5942
5943 return ret;
5944 }
5945 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5946
5947 /**
5948 * i915_gpu_raise - raise GPU frequency limit
5949 *
5950 * Raise the limit; IPS indicates we have thermal headroom.
5951 */
5952 bool i915_gpu_raise(void)
5953 {
5954 struct drm_i915_private *dev_priv;
5955 bool ret = true;
5956
5957 spin_lock_irq(&mchdev_lock);
5958 if (!i915_mch_dev) {
5959 ret = false;
5960 goto out_unlock;
5961 }
5962 dev_priv = i915_mch_dev;
5963
5964 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5965 dev_priv->ips.max_delay--;
5966
5967 out_unlock:
5968 spin_unlock_irq(&mchdev_lock);
5969
5970 return ret;
5971 }
5972 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5973
5974 /**
5975 * i915_gpu_lower - lower GPU frequency limit
5976 *
5977 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5978 * frequency maximum.
5979 */
5980 bool i915_gpu_lower(void)
5981 {
5982 struct drm_i915_private *dev_priv;
5983 bool ret = true;
5984
5985 spin_lock_irq(&mchdev_lock);
5986 if (!i915_mch_dev) {
5987 ret = false;
5988 goto out_unlock;
5989 }
5990 dev_priv = i915_mch_dev;
5991
5992 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5993 dev_priv->ips.max_delay++;
5994
5995 out_unlock:
5996 spin_unlock_irq(&mchdev_lock);
5997
5998 return ret;
5999 }
6000 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6001
6002 /**
6003 * i915_gpu_busy - indicate GPU business to IPS
6004 *
6005 * Tell the IPS driver whether or not the GPU is busy.
6006 */
6007 bool i915_gpu_busy(void)
6008 {
6009 struct drm_i915_private *dev_priv;
6010 struct intel_engine_cs *ring;
6011 bool ret = false;
6012 int i;
6013
6014 spin_lock_irq(&mchdev_lock);
6015 if (!i915_mch_dev)
6016 goto out_unlock;
6017 dev_priv = i915_mch_dev;
6018
6019 for_each_ring(ring, dev_priv, i)
6020 ret |= !list_empty(&ring->request_list);
6021
6022 out_unlock:
6023 spin_unlock_irq(&mchdev_lock);
6024
6025 return ret;
6026 }
6027 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6028
6029 /**
6030 * i915_gpu_turbo_disable - disable graphics turbo
6031 *
6032 * Disable graphics turbo by resetting the max frequency and setting the
6033 * current frequency to the default.
6034 */
6035 bool i915_gpu_turbo_disable(void)
6036 {
6037 struct drm_i915_private *dev_priv;
6038 bool ret = true;
6039
6040 spin_lock_irq(&mchdev_lock);
6041 if (!i915_mch_dev) {
6042 ret = false;
6043 goto out_unlock;
6044 }
6045 dev_priv = i915_mch_dev;
6046
6047 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6048
6049 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6050 ret = false;
6051
6052 out_unlock:
6053 spin_unlock_irq(&mchdev_lock);
6054
6055 return ret;
6056 }
6057 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6058
6059 /**
6060 * Tells the intel_ips driver that the i915 driver is now loaded, if
6061 * IPS got loaded first.
6062 *
6063 * This awkward dance is so that neither module has to depend on the
6064 * other in order for IPS to do the appropriate communication of
6065 * GPU turbo limits to i915.
6066 */
6067 static void
6068 ips_ping_for_i915_load(void)
6069 {
6070 void (*link)(void);
6071
6072 link = symbol_get(ips_link_to_i915_driver);
6073 if (link) {
6074 link();
6075 symbol_put(ips_link_to_i915_driver);
6076 }
6077 }
6078
6079 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6080 {
6081 /* We only register the i915 ips part with intel-ips once everything is
6082 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6083 spin_lock_irq(&mchdev_lock);
6084 i915_mch_dev = dev_priv;
6085 spin_unlock_irq(&mchdev_lock);
6086
6087 ips_ping_for_i915_load();
6088 }
6089
6090 void intel_gpu_ips_teardown(void)
6091 {
6092 spin_lock_irq(&mchdev_lock);
6093 i915_mch_dev = NULL;
6094 spin_unlock_irq(&mchdev_lock);
6095 }
6096
6097 static void intel_init_emon(struct drm_device *dev)
6098 {
6099 struct drm_i915_private *dev_priv = dev->dev_private;
6100 u32 lcfuse;
6101 u8 pxw[16];
6102 int i;
6103
6104 /* Disable to program */
6105 I915_WRITE(ECR, 0);
6106 POSTING_READ(ECR);
6107
6108 /* Program energy weights for various events */
6109 I915_WRITE(SDEW, 0x15040d00);
6110 I915_WRITE(CSIEW0, 0x007f0000);
6111 I915_WRITE(CSIEW1, 0x1e220004);
6112 I915_WRITE(CSIEW2, 0x04000004);
6113
6114 for (i = 0; i < 5; i++)
6115 I915_WRITE(PEW + (i * 4), 0);
6116 for (i = 0; i < 3; i++)
6117 I915_WRITE(DEW + (i * 4), 0);
6118
6119 /* Program P-state weights to account for frequency power adjustment */
6120 for (i = 0; i < 16; i++) {
6121 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6122 unsigned long freq = intel_pxfreq(pxvidfreq);
6123 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6124 PXVFREQ_PX_SHIFT;
6125 unsigned long val;
6126
6127 val = vid * vid;
6128 val *= (freq / 1000);
6129 val *= 255;
6130 val /= (127*127*900);
6131 if (val > 0xff)
6132 DRM_ERROR("bad pxval: %ld\n", val);
6133 pxw[i] = val;
6134 }
6135 /* Render standby states get 0 weight */
6136 pxw[14] = 0;
6137 pxw[15] = 0;
6138
6139 for (i = 0; i < 4; i++) {
6140 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6141 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6142 I915_WRITE(PXW + (i * 4), val);
6143 }
6144
6145 /* Adjust magic regs to magic values (more experimental results) */
6146 I915_WRITE(OGW0, 0);
6147 I915_WRITE(OGW1, 0);
6148 I915_WRITE(EG0, 0x00007f00);
6149 I915_WRITE(EG1, 0x0000000e);
6150 I915_WRITE(EG2, 0x000e0000);
6151 I915_WRITE(EG3, 0x68000300);
6152 I915_WRITE(EG4, 0x42000000);
6153 I915_WRITE(EG5, 0x00140031);
6154 I915_WRITE(EG6, 0);
6155 I915_WRITE(EG7, 0);
6156
6157 for (i = 0; i < 8; i++)
6158 I915_WRITE(PXWL + (i * 4), 0);
6159
6160 /* Enable PMON + select events */
6161 I915_WRITE(ECR, 0x80000019);
6162
6163 lcfuse = I915_READ(LCFUSE02);
6164
6165 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6166 }
6167
6168 void intel_init_gt_powersave(struct drm_device *dev)
6169 {
6170 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6171
6172 if (IS_CHERRYVIEW(dev))
6173 cherryview_init_gt_powersave(dev);
6174 else if (IS_VALLEYVIEW(dev))
6175 valleyview_init_gt_powersave(dev);
6176 }
6177
6178 void intel_cleanup_gt_powersave(struct drm_device *dev)
6179 {
6180 if (IS_CHERRYVIEW(dev))
6181 return;
6182 else if (IS_VALLEYVIEW(dev))
6183 valleyview_cleanup_gt_powersave(dev);
6184 }
6185
6186 static void gen6_suspend_rps(struct drm_device *dev)
6187 {
6188 struct drm_i915_private *dev_priv = dev->dev_private;
6189
6190 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6191
6192 /*
6193 * TODO: disable RPS interrupts on GEN9+ too once RPS support
6194 * is added for it.
6195 */
6196 if (INTEL_INFO(dev)->gen < 9)
6197 gen6_disable_rps_interrupts(dev);
6198 }
6199
6200 /**
6201 * intel_suspend_gt_powersave - suspend PM work and helper threads
6202 * @dev: drm device
6203 *
6204 * We don't want to disable RC6 or other features here, we just want
6205 * to make sure any work we've queued has finished and won't bother
6206 * us while we're suspended.
6207 */
6208 void intel_suspend_gt_powersave(struct drm_device *dev)
6209 {
6210 struct drm_i915_private *dev_priv = dev->dev_private;
6211
6212 if (INTEL_INFO(dev)->gen < 6)
6213 return;
6214
6215 gen6_suspend_rps(dev);
6216
6217 /* Force GPU to min freq during suspend */
6218 gen6_rps_idle(dev_priv);
6219 }
6220
6221 void intel_disable_gt_powersave(struct drm_device *dev)
6222 {
6223 struct drm_i915_private *dev_priv = dev->dev_private;
6224
6225 if (IS_IRONLAKE_M(dev)) {
6226 ironlake_disable_drps(dev);
6227 ironlake_disable_rc6(dev);
6228 } else if (INTEL_INFO(dev)->gen >= 6) {
6229 intel_suspend_gt_powersave(dev);
6230
6231 mutex_lock(&dev_priv->rps.hw_lock);
6232 if (INTEL_INFO(dev)->gen >= 9)
6233 gen9_disable_rps(dev);
6234 else if (IS_CHERRYVIEW(dev))
6235 cherryview_disable_rps(dev);
6236 else if (IS_VALLEYVIEW(dev))
6237 valleyview_disable_rps(dev);
6238 else
6239 gen6_disable_rps(dev);
6240
6241 dev_priv->rps.enabled = false;
6242 mutex_unlock(&dev_priv->rps.hw_lock);
6243 }
6244 }
6245
6246 static void intel_gen6_powersave_work(struct work_struct *work)
6247 {
6248 struct drm_i915_private *dev_priv =
6249 container_of(work, struct drm_i915_private,
6250 rps.delayed_resume_work.work);
6251 struct drm_device *dev = dev_priv->dev;
6252
6253 mutex_lock(&dev_priv->rps.hw_lock);
6254
6255 /*
6256 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
6257 * added for it.
6258 */
6259 if (INTEL_INFO(dev)->gen < 9)
6260 gen6_reset_rps_interrupts(dev);
6261
6262 if (IS_CHERRYVIEW(dev)) {
6263 cherryview_enable_rps(dev);
6264 } else if (IS_VALLEYVIEW(dev)) {
6265 valleyview_enable_rps(dev);
6266 } else if (INTEL_INFO(dev)->gen >= 9) {
6267 gen9_enable_rps(dev);
6268 } else if (IS_BROADWELL(dev)) {
6269 gen8_enable_rps(dev);
6270 __gen6_update_ring_freq(dev);
6271 } else {
6272 gen6_enable_rps(dev);
6273 __gen6_update_ring_freq(dev);
6274 }
6275 dev_priv->rps.enabled = true;
6276
6277 if (INTEL_INFO(dev)->gen < 9)
6278 gen6_enable_rps_interrupts(dev);
6279
6280 mutex_unlock(&dev_priv->rps.hw_lock);
6281
6282 intel_runtime_pm_put(dev_priv);
6283 }
6284
6285 void intel_enable_gt_powersave(struct drm_device *dev)
6286 {
6287 struct drm_i915_private *dev_priv = dev->dev_private;
6288
6289 if (IS_IRONLAKE_M(dev)) {
6290 mutex_lock(&dev->struct_mutex);
6291 ironlake_enable_drps(dev);
6292 ironlake_enable_rc6(dev);
6293 intel_init_emon(dev);
6294 mutex_unlock(&dev->struct_mutex);
6295 } else if (INTEL_INFO(dev)->gen >= 6) {
6296 /*
6297 * PCU communication is slow and this doesn't need to be
6298 * done at any specific time, so do this out of our fast path
6299 * to make resume and init faster.
6300 *
6301 * We depend on the HW RC6 power context save/restore
6302 * mechanism when entering D3 through runtime PM suspend. So
6303 * disable RPM until RPS/RC6 is properly setup. We can only
6304 * get here via the driver load/system resume/runtime resume
6305 * paths, so the _noresume version is enough (and in case of
6306 * runtime resume it's necessary).
6307 */
6308 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6309 round_jiffies_up_relative(HZ)))
6310 intel_runtime_pm_get_noresume(dev_priv);
6311 }
6312 }
6313
6314 void intel_reset_gt_powersave(struct drm_device *dev)
6315 {
6316 struct drm_i915_private *dev_priv = dev->dev_private;
6317
6318 if (INTEL_INFO(dev)->gen < 6)
6319 return;
6320
6321 gen6_suspend_rps(dev);
6322 dev_priv->rps.enabled = false;
6323 }
6324
6325 static void ibx_init_clock_gating(struct drm_device *dev)
6326 {
6327 struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329 /*
6330 * On Ibex Peak and Cougar Point, we need to disable clock
6331 * gating for the panel power sequencer or it will fail to
6332 * start up when no ports are active.
6333 */
6334 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6335 }
6336
6337 static void g4x_disable_trickle_feed(struct drm_device *dev)
6338 {
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340 int pipe;
6341
6342 for_each_pipe(dev_priv, pipe) {
6343 I915_WRITE(DSPCNTR(pipe),
6344 I915_READ(DSPCNTR(pipe)) |
6345 DISPPLANE_TRICKLE_FEED_DISABLE);
6346 intel_flush_primary_plane(dev_priv, pipe);
6347 }
6348 }
6349
6350 static void ilk_init_lp_watermarks(struct drm_device *dev)
6351 {
6352 struct drm_i915_private *dev_priv = dev->dev_private;
6353
6354 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6355 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6356 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6357
6358 /*
6359 * Don't touch WM1S_LP_EN here.
6360 * Doing so could cause underruns.
6361 */
6362 }
6363
6364 static void ironlake_init_clock_gating(struct drm_device *dev)
6365 {
6366 struct drm_i915_private *dev_priv = dev->dev_private;
6367 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6368
6369 /*
6370 * Required for FBC
6371 * WaFbcDisableDpfcClockGating:ilk
6372 */
6373 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6374 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6375 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6376
6377 I915_WRITE(PCH_3DCGDIS0,
6378 MARIUNIT_CLOCK_GATE_DISABLE |
6379 SVSMUNIT_CLOCK_GATE_DISABLE);
6380 I915_WRITE(PCH_3DCGDIS1,
6381 VFMUNIT_CLOCK_GATE_DISABLE);
6382
6383 /*
6384 * According to the spec the following bits should be set in
6385 * order to enable memory self-refresh
6386 * The bit 22/21 of 0x42004
6387 * The bit 5 of 0x42020
6388 * The bit 15 of 0x45000
6389 */
6390 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6391 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6392 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6393 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6394 I915_WRITE(DISP_ARB_CTL,
6395 (I915_READ(DISP_ARB_CTL) |
6396 DISP_FBC_WM_DIS));
6397
6398 ilk_init_lp_watermarks(dev);
6399
6400 /*
6401 * Based on the document from hardware guys the following bits
6402 * should be set unconditionally in order to enable FBC.
6403 * The bit 22 of 0x42000
6404 * The bit 22 of 0x42004
6405 * The bit 7,8,9 of 0x42020.
6406 */
6407 if (IS_IRONLAKE_M(dev)) {
6408 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6409 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6410 I915_READ(ILK_DISPLAY_CHICKEN1) |
6411 ILK_FBCQ_DIS);
6412 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6413 I915_READ(ILK_DISPLAY_CHICKEN2) |
6414 ILK_DPARB_GATE);
6415 }
6416
6417 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6418
6419 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6420 I915_READ(ILK_DISPLAY_CHICKEN2) |
6421 ILK_ELPIN_409_SELECT);
6422 I915_WRITE(_3D_CHICKEN2,
6423 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6424 _3D_CHICKEN2_WM_READ_PIPELINED);
6425
6426 /* WaDisableRenderCachePipelinedFlush:ilk */
6427 I915_WRITE(CACHE_MODE_0,
6428 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6429
6430 /* WaDisable_RenderCache_OperationalFlush:ilk */
6431 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6432
6433 g4x_disable_trickle_feed(dev);
6434
6435 ibx_init_clock_gating(dev);
6436 }
6437
6438 static void cpt_init_clock_gating(struct drm_device *dev)
6439 {
6440 struct drm_i915_private *dev_priv = dev->dev_private;
6441 int pipe;
6442 uint32_t val;
6443
6444 /*
6445 * On Ibex Peak and Cougar Point, we need to disable clock
6446 * gating for the panel power sequencer or it will fail to
6447 * start up when no ports are active.
6448 */
6449 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6450 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6451 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6452 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6453 DPLS_EDP_PPS_FIX_DIS);
6454 /* The below fixes the weird display corruption, a few pixels shifted
6455 * downward, on (only) LVDS of some HP laptops with IVY.
6456 */
6457 for_each_pipe(dev_priv, pipe) {
6458 val = I915_READ(TRANS_CHICKEN2(pipe));
6459 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6460 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6461 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6462 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6463 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6464 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6465 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6466 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6467 }
6468 /* WADP0ClockGatingDisable */
6469 for_each_pipe(dev_priv, pipe) {
6470 I915_WRITE(TRANS_CHICKEN1(pipe),
6471 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6472 }
6473 }
6474
6475 static void gen6_check_mch_setup(struct drm_device *dev)
6476 {
6477 struct drm_i915_private *dev_priv = dev->dev_private;
6478 uint32_t tmp;
6479
6480 tmp = I915_READ(MCH_SSKPD);
6481 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6482 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6483 tmp);
6484 }
6485
6486 static void gen6_init_clock_gating(struct drm_device *dev)
6487 {
6488 struct drm_i915_private *dev_priv = dev->dev_private;
6489 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6490
6491 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6492
6493 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6494 I915_READ(ILK_DISPLAY_CHICKEN2) |
6495 ILK_ELPIN_409_SELECT);
6496
6497 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6498 I915_WRITE(_3D_CHICKEN,
6499 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6500
6501 /* WaDisable_RenderCache_OperationalFlush:snb */
6502 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6503
6504 /*
6505 * BSpec recoomends 8x4 when MSAA is used,
6506 * however in practice 16x4 seems fastest.
6507 *
6508 * Note that PS/WM thread counts depend on the WIZ hashing
6509 * disable bit, which we don't touch here, but it's good
6510 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6511 */
6512 I915_WRITE(GEN6_GT_MODE,
6513 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6514
6515 ilk_init_lp_watermarks(dev);
6516
6517 I915_WRITE(CACHE_MODE_0,
6518 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6519
6520 I915_WRITE(GEN6_UCGCTL1,
6521 I915_READ(GEN6_UCGCTL1) |
6522 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6523 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6524
6525 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6526 * gating disable must be set. Failure to set it results in
6527 * flickering pixels due to Z write ordering failures after
6528 * some amount of runtime in the Mesa "fire" demo, and Unigine
6529 * Sanctuary and Tropics, and apparently anything else with
6530 * alpha test or pixel discard.
6531 *
6532 * According to the spec, bit 11 (RCCUNIT) must also be set,
6533 * but we didn't debug actual testcases to find it out.
6534 *
6535 * WaDisableRCCUnitClockGating:snb
6536 * WaDisableRCPBUnitClockGating:snb
6537 */
6538 I915_WRITE(GEN6_UCGCTL2,
6539 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6540 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6541
6542 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6543 I915_WRITE(_3D_CHICKEN3,
6544 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6545
6546 /*
6547 * Bspec says:
6548 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6549 * 3DSTATE_SF number of SF output attributes is more than 16."
6550 */
6551 I915_WRITE(_3D_CHICKEN3,
6552 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6553
6554 /*
6555 * According to the spec the following bits should be
6556 * set in order to enable memory self-refresh and fbc:
6557 * The bit21 and bit22 of 0x42000
6558 * The bit21 and bit22 of 0x42004
6559 * The bit5 and bit7 of 0x42020
6560 * The bit14 of 0x70180
6561 * The bit14 of 0x71180
6562 *
6563 * WaFbcAsynchFlipDisableFbcQueue:snb
6564 */
6565 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6566 I915_READ(ILK_DISPLAY_CHICKEN1) |
6567 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6568 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6569 I915_READ(ILK_DISPLAY_CHICKEN2) |
6570 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6571 I915_WRITE(ILK_DSPCLK_GATE_D,
6572 I915_READ(ILK_DSPCLK_GATE_D) |
6573 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6574 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6575
6576 g4x_disable_trickle_feed(dev);
6577
6578 cpt_init_clock_gating(dev);
6579
6580 gen6_check_mch_setup(dev);
6581 }
6582
6583 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6584 {
6585 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6586
6587 /*
6588 * WaVSThreadDispatchOverride:ivb,vlv
6589 *
6590 * This actually overrides the dispatch
6591 * mode for all thread types.
6592 */
6593 reg &= ~GEN7_FF_SCHED_MASK;
6594 reg |= GEN7_FF_TS_SCHED_HW;
6595 reg |= GEN7_FF_VS_SCHED_HW;
6596 reg |= GEN7_FF_DS_SCHED_HW;
6597
6598 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6599 }
6600
6601 static void lpt_init_clock_gating(struct drm_device *dev)
6602 {
6603 struct drm_i915_private *dev_priv = dev->dev_private;
6604
6605 /*
6606 * TODO: this bit should only be enabled when really needed, then
6607 * disabled when not needed anymore in order to save power.
6608 */
6609 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6610 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6611 I915_READ(SOUTH_DSPCLK_GATE_D) |
6612 PCH_LP_PARTITION_LEVEL_DISABLE);
6613
6614 /* WADPOClockGatingDisable:hsw */
6615 I915_WRITE(_TRANSA_CHICKEN1,
6616 I915_READ(_TRANSA_CHICKEN1) |
6617 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6618 }
6619
6620 static void lpt_suspend_hw(struct drm_device *dev)
6621 {
6622 struct drm_i915_private *dev_priv = dev->dev_private;
6623
6624 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6625 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6626
6627 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6628 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6629 }
6630 }
6631
6632 static void broadwell_init_clock_gating(struct drm_device *dev)
6633 {
6634 struct drm_i915_private *dev_priv = dev->dev_private;
6635 enum pipe pipe;
6636
6637 I915_WRITE(WM3_LP_ILK, 0);
6638 I915_WRITE(WM2_LP_ILK, 0);
6639 I915_WRITE(WM1_LP_ILK, 0);
6640
6641 /* WaSwitchSolVfFArbitrationPriority:bdw */
6642 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6643
6644 /* WaPsrDPAMaskVBlankInSRD:bdw */
6645 I915_WRITE(CHICKEN_PAR1_1,
6646 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6647
6648 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6649 for_each_pipe(dev_priv, pipe) {
6650 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6651 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6652 BDW_DPRS_MASK_VBLANK_SRD);
6653 }
6654
6655 /* WaVSRefCountFullforceMissDisable:bdw */
6656 /* WaDSRefCountFullforceMissDisable:bdw */
6657 I915_WRITE(GEN7_FF_THREAD_MODE,
6658 I915_READ(GEN7_FF_THREAD_MODE) &
6659 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6660
6661 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6662 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6663
6664 /* WaDisableSDEUnitClockGating:bdw */
6665 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6666 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6667
6668 lpt_init_clock_gating(dev);
6669 }
6670
6671 static void haswell_init_clock_gating(struct drm_device *dev)
6672 {
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674
6675 ilk_init_lp_watermarks(dev);
6676
6677 /* L3 caching of data atomics doesn't work -- disable it. */
6678 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6679 I915_WRITE(HSW_ROW_CHICKEN3,
6680 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6681
6682 /* This is required by WaCatErrorRejectionIssue:hsw */
6683 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6684 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6685 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6686
6687 /* WaVSRefCountFullforceMissDisable:hsw */
6688 I915_WRITE(GEN7_FF_THREAD_MODE,
6689 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6690
6691 /* WaDisable_RenderCache_OperationalFlush:hsw */
6692 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6693
6694 /* enable HiZ Raw Stall Optimization */
6695 I915_WRITE(CACHE_MODE_0_GEN7,
6696 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6697
6698 /* WaDisable4x2SubspanOptimization:hsw */
6699 I915_WRITE(CACHE_MODE_1,
6700 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6701
6702 /*
6703 * BSpec recommends 8x4 when MSAA is used,
6704 * however in practice 16x4 seems fastest.
6705 *
6706 * Note that PS/WM thread counts depend on the WIZ hashing
6707 * disable bit, which we don't touch here, but it's good
6708 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6709 */
6710 I915_WRITE(GEN7_GT_MODE,
6711 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6712
6713 /* WaSwitchSolVfFArbitrationPriority:hsw */
6714 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716 /* WaRsPkgCStateDisplayPMReq:hsw */
6717 I915_WRITE(CHICKEN_PAR1_1,
6718 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720 lpt_init_clock_gating(dev);
6721 }
6722
6723 static void ivybridge_init_clock_gating(struct drm_device *dev)
6724 {
6725 struct drm_i915_private *dev_priv = dev->dev_private;
6726 uint32_t snpcr;
6727
6728 ilk_init_lp_watermarks(dev);
6729
6730 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732 /* WaDisableEarlyCull:ivb */
6733 I915_WRITE(_3D_CHICKEN3,
6734 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736 /* WaDisableBackToBackFlipFix:ivb */
6737 I915_WRITE(IVB_CHICKEN3,
6738 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741 /* WaDisablePSDDualDispatchEnable:ivb */
6742 if (IS_IVB_GT1(dev))
6743 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746 /* WaDisable_RenderCache_OperationalFlush:ivb */
6747 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6754 I915_WRITE(GEN7_L3CNTLREG1,
6755 GEN7_WA_FOR_GEN7_L3_CONTROL);
6756 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757 GEN7_WA_L3_CHICKEN_MODE);
6758 if (IS_IVB_GT1(dev))
6759 I915_WRITE(GEN7_ROW_CHICKEN2,
6760 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761 else {
6762 /* must write both registers */
6763 I915_WRITE(GEN7_ROW_CHICKEN2,
6764 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767 }
6768
6769 /* WaForceL3Serialization:ivb */
6770 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773 /*
6774 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776 */
6777 I915_WRITE(GEN6_UCGCTL2,
6778 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780 /* This is required by WaCatErrorRejectionIssue:ivb */
6781 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785 g4x_disable_trickle_feed(dev);
6786
6787 gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789 if (0) { /* causes HiZ corruption on ivb:gt1 */
6790 /* enable HiZ Raw Stall Optimization */
6791 I915_WRITE(CACHE_MODE_0_GEN7,
6792 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793 }
6794
6795 /* WaDisable4x2SubspanOptimization:ivb */
6796 I915_WRITE(CACHE_MODE_1,
6797 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799 /*
6800 * BSpec recommends 8x4 when MSAA is used,
6801 * however in practice 16x4 seems fastest.
6802 *
6803 * Note that PS/WM thread counts depend on the WIZ hashing
6804 * disable bit, which we don't touch here, but it's good
6805 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806 */
6807 I915_WRITE(GEN7_GT_MODE,
6808 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812 snpcr |= GEN6_MBC_SNPCR_MED;
6813 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815 if (!HAS_PCH_NOP(dev))
6816 cpt_init_clock_gating(dev);
6817
6818 gen6_check_mch_setup(dev);
6819 }
6820
6821 static void valleyview_init_clock_gating(struct drm_device *dev)
6822 {
6823 struct drm_i915_private *dev_priv = dev->dev_private;
6824
6825 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6826
6827 /* WaDisableEarlyCull:vlv */
6828 I915_WRITE(_3D_CHICKEN3,
6829 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6830
6831 /* WaDisableBackToBackFlipFix:vlv */
6832 I915_WRITE(IVB_CHICKEN3,
6833 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6834 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6835
6836 /* WaPsdDispatchEnable:vlv */
6837 /* WaDisablePSDDualDispatchEnable:vlv */
6838 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6839 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6840 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6841
6842 /* WaDisable_RenderCache_OperationalFlush:vlv */
6843 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6844
6845 /* WaForceL3Serialization:vlv */
6846 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6847 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6848
6849 /* WaDisableDopClockGating:vlv */
6850 I915_WRITE(GEN7_ROW_CHICKEN2,
6851 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6852
6853 /* This is required by WaCatErrorRejectionIssue:vlv */
6854 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6855 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6856 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6857
6858 gen7_setup_fixed_func_scheduler(dev_priv);
6859
6860 /*
6861 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6862 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6863 */
6864 I915_WRITE(GEN6_UCGCTL2,
6865 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6866
6867 /* WaDisableL3Bank2xClockGate:vlv
6868 * Disabling L3 clock gating- MMIO 940c[25] = 1
6869 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6870 I915_WRITE(GEN7_UCGCTL4,
6871 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6872
6873 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6874
6875 /*
6876 * BSpec says this must be set, even though
6877 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6878 */
6879 I915_WRITE(CACHE_MODE_1,
6880 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6881
6882 /*
6883 * WaIncreaseL3CreditsForVLVB0:vlv
6884 * This is the hardware default actually.
6885 */
6886 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6887
6888 /*
6889 * WaDisableVLVClockGating_VBIIssue:vlv
6890 * Disable clock gating on th GCFG unit to prevent a delay
6891 * in the reporting of vblank events.
6892 */
6893 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6894 }
6895
6896 static void cherryview_init_clock_gating(struct drm_device *dev)
6897 {
6898 struct drm_i915_private *dev_priv = dev->dev_private;
6899
6900 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6901
6902 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6903
6904 /* WaVSRefCountFullforceMissDisable:chv */
6905 /* WaDSRefCountFullforceMissDisable:chv */
6906 I915_WRITE(GEN7_FF_THREAD_MODE,
6907 I915_READ(GEN7_FF_THREAD_MODE) &
6908 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6909
6910 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6911 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6912 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6913
6914 /* WaDisableCSUnitClockGating:chv */
6915 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6916 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6917
6918 /* WaDisableSDEUnitClockGating:chv */
6919 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6920 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6921 }
6922
6923 static void g4x_init_clock_gating(struct drm_device *dev)
6924 {
6925 struct drm_i915_private *dev_priv = dev->dev_private;
6926 uint32_t dspclk_gate;
6927
6928 I915_WRITE(RENCLK_GATE_D1, 0);
6929 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6930 GS_UNIT_CLOCK_GATE_DISABLE |
6931 CL_UNIT_CLOCK_GATE_DISABLE);
6932 I915_WRITE(RAMCLK_GATE_D, 0);
6933 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6934 OVRUNIT_CLOCK_GATE_DISABLE |
6935 OVCUNIT_CLOCK_GATE_DISABLE;
6936 if (IS_GM45(dev))
6937 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6938 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6939
6940 /* WaDisableRenderCachePipelinedFlush */
6941 I915_WRITE(CACHE_MODE_0,
6942 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6943
6944 /* WaDisable_RenderCache_OperationalFlush:g4x */
6945 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6946
6947 g4x_disable_trickle_feed(dev);
6948 }
6949
6950 static void crestline_init_clock_gating(struct drm_device *dev)
6951 {
6952 struct drm_i915_private *dev_priv = dev->dev_private;
6953
6954 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6955 I915_WRITE(RENCLK_GATE_D2, 0);
6956 I915_WRITE(DSPCLK_GATE_D, 0);
6957 I915_WRITE(RAMCLK_GATE_D, 0);
6958 I915_WRITE16(DEUC, 0);
6959 I915_WRITE(MI_ARB_STATE,
6960 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6961
6962 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6963 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6964 }
6965
6966 static void broadwater_init_clock_gating(struct drm_device *dev)
6967 {
6968 struct drm_i915_private *dev_priv = dev->dev_private;
6969
6970 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6971 I965_RCC_CLOCK_GATE_DISABLE |
6972 I965_RCPB_CLOCK_GATE_DISABLE |
6973 I965_ISC_CLOCK_GATE_DISABLE |
6974 I965_FBC_CLOCK_GATE_DISABLE);
6975 I915_WRITE(RENCLK_GATE_D2, 0);
6976 I915_WRITE(MI_ARB_STATE,
6977 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6978
6979 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6980 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6981 }
6982
6983 static void gen3_init_clock_gating(struct drm_device *dev)
6984 {
6985 struct drm_i915_private *dev_priv = dev->dev_private;
6986 u32 dstate = I915_READ(D_STATE);
6987
6988 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6989 DSTATE_DOT_CLOCK_GATING;
6990 I915_WRITE(D_STATE, dstate);
6991
6992 if (IS_PINEVIEW(dev))
6993 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6994
6995 /* IIR "flip pending" means done if this bit is set */
6996 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6997
6998 /* interrupts should cause a wake up from C3 */
6999 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7000
7001 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7002 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7003
7004 I915_WRITE(MI_ARB_STATE,
7005 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7006 }
7007
7008 static void i85x_init_clock_gating(struct drm_device *dev)
7009 {
7010 struct drm_i915_private *dev_priv = dev->dev_private;
7011
7012 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7013
7014 /* interrupts should cause a wake up from C3 */
7015 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7016 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7017
7018 I915_WRITE(MEM_MODE,
7019 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7020 }
7021
7022 static void i830_init_clock_gating(struct drm_device *dev)
7023 {
7024 struct drm_i915_private *dev_priv = dev->dev_private;
7025
7026 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7027
7028 I915_WRITE(MEM_MODE,
7029 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7030 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7031 }
7032
7033 void intel_init_clock_gating(struct drm_device *dev)
7034 {
7035 struct drm_i915_private *dev_priv = dev->dev_private;
7036
7037 dev_priv->display.init_clock_gating(dev);
7038 }
7039
7040 void intel_suspend_hw(struct drm_device *dev)
7041 {
7042 if (HAS_PCH_LPT(dev))
7043 lpt_suspend_hw(dev);
7044 }
7045
7046 static void intel_init_fbc(struct drm_i915_private *dev_priv)
7047 {
7048 if (!HAS_FBC(dev_priv)) {
7049 dev_priv->fbc.enabled = false;
7050 return;
7051 }
7052
7053 if (INTEL_INFO(dev_priv)->gen >= 7) {
7054 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7055 dev_priv->display.enable_fbc = gen7_enable_fbc;
7056 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7057 } else if (INTEL_INFO(dev_priv)->gen >= 5) {
7058 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7059 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7060 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7061 } else if (IS_GM45(dev_priv)) {
7062 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7063 dev_priv->display.enable_fbc = g4x_enable_fbc;
7064 dev_priv->display.disable_fbc = g4x_disable_fbc;
7065 } else {
7066 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7067 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7068 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7069
7070 /* This value was pulled out of someone's hat */
7071 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7072 }
7073
7074 dev_priv->fbc.enabled = dev_priv->display.fbc_enabled(dev_priv->dev);
7075 }
7076
7077 /* Set up chip specific power management-related functions */
7078 void intel_init_pm(struct drm_device *dev)
7079 {
7080 struct drm_i915_private *dev_priv = dev->dev_private;
7081
7082 intel_init_fbc(dev_priv);
7083
7084 /* For cxsr */
7085 if (IS_PINEVIEW(dev))
7086 i915_pineview_get_mem_freq(dev);
7087 else if (IS_GEN5(dev))
7088 i915_ironlake_get_mem_freq(dev);
7089
7090 /* For FIFO watermark updates */
7091 if (INTEL_INFO(dev)->gen >= 9) {
7092 skl_setup_wm_latency(dev);
7093
7094 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
7095 dev_priv->display.update_wm = skl_update_wm;
7096 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7097 } else if (HAS_PCH_SPLIT(dev)) {
7098 ilk_setup_wm_latency(dev);
7099
7100 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7101 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7102 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7103 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7104 dev_priv->display.update_wm = ilk_update_wm;
7105 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7106 } else {
7107 DRM_DEBUG_KMS("Failed to read display plane latency. "
7108 "Disable CxSR\n");
7109 }
7110
7111 if (IS_GEN5(dev))
7112 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7113 else if (IS_GEN6(dev))
7114 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7115 else if (IS_IVYBRIDGE(dev))
7116 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7117 else if (IS_HASWELL(dev))
7118 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7119 else if (INTEL_INFO(dev)->gen == 8)
7120 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7121 } else if (IS_CHERRYVIEW(dev)) {
7122 dev_priv->display.update_wm = cherryview_update_wm;
7123 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7124 dev_priv->display.init_clock_gating =
7125 cherryview_init_clock_gating;
7126 } else if (IS_VALLEYVIEW(dev)) {
7127 dev_priv->display.update_wm = valleyview_update_wm;
7128 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7129 dev_priv->display.init_clock_gating =
7130 valleyview_init_clock_gating;
7131 } else if (IS_PINEVIEW(dev)) {
7132 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7133 dev_priv->is_ddr3,
7134 dev_priv->fsb_freq,
7135 dev_priv->mem_freq)) {
7136 DRM_INFO("failed to find known CxSR latency "
7137 "(found ddr%s fsb freq %d, mem freq %d), "
7138 "disabling CxSR\n",
7139 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7140 dev_priv->fsb_freq, dev_priv->mem_freq);
7141 /* Disable CxSR and never update its watermark again */
7142 intel_set_memory_cxsr(dev_priv, false);
7143 dev_priv->display.update_wm = NULL;
7144 } else
7145 dev_priv->display.update_wm = pineview_update_wm;
7146 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7147 } else if (IS_G4X(dev)) {
7148 dev_priv->display.update_wm = g4x_update_wm;
7149 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7150 } else if (IS_GEN4(dev)) {
7151 dev_priv->display.update_wm = i965_update_wm;
7152 if (IS_CRESTLINE(dev))
7153 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7154 else if (IS_BROADWATER(dev))
7155 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7156 } else if (IS_GEN3(dev)) {
7157 dev_priv->display.update_wm = i9xx_update_wm;
7158 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7159 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7160 } else if (IS_GEN2(dev)) {
7161 if (INTEL_INFO(dev)->num_pipes == 1) {
7162 dev_priv->display.update_wm = i845_update_wm;
7163 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7164 } else {
7165 dev_priv->display.update_wm = i9xx_update_wm;
7166 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7167 }
7168
7169 if (IS_I85X(dev) || IS_I865G(dev))
7170 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7171 else
7172 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7173 } else {
7174 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7175 }
7176 }
7177
7178 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7179 {
7180 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7181
7182 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7183 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7184 return -EAGAIN;
7185 }
7186
7187 I915_WRITE(GEN6_PCODE_DATA, *val);
7188 I915_WRITE(GEN6_PCODE_DATA1, 0);
7189 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7190
7191 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7192 500)) {
7193 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7194 return -ETIMEDOUT;
7195 }
7196
7197 *val = I915_READ(GEN6_PCODE_DATA);
7198 I915_WRITE(GEN6_PCODE_DATA, 0);
7199
7200 return 0;
7201 }
7202
7203 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7204 {
7205 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7206
7207 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7208 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7209 return -EAGAIN;
7210 }
7211
7212 I915_WRITE(GEN6_PCODE_DATA, val);
7213 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7214
7215 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7216 500)) {
7217 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7218 return -ETIMEDOUT;
7219 }
7220
7221 I915_WRITE(GEN6_PCODE_DATA, 0);
7222
7223 return 0;
7224 }
7225
7226 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7227 {
7228 switch (czclk_freq) {
7229 case 200:
7230 return 10;
7231 case 267:
7232 return 12;
7233 case 320:
7234 case 333:
7235 return 16;
7236 case 400:
7237 return 20;
7238 default:
7239 return -1;
7240 }
7241 }
7242
7243 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7244 {
7245 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7246
7247 div = vlv_gpu_freq_div(czclk_freq);
7248 if (div < 0)
7249 return div;
7250
7251 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7252 }
7253
7254 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7255 {
7256 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7257
7258 mul = vlv_gpu_freq_div(czclk_freq);
7259 if (mul < 0)
7260 return mul;
7261
7262 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7263 }
7264
7265 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7266 {
7267 int div, czclk_freq = dev_priv->rps.cz_freq;
7268
7269 div = vlv_gpu_freq_div(czclk_freq) / 2;
7270 if (div < 0)
7271 return div;
7272
7273 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7274 }
7275
7276 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7277 {
7278 int mul, czclk_freq = dev_priv->rps.cz_freq;
7279
7280 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7281 if (mul < 0)
7282 return mul;
7283
7284 /* CHV needs even values */
7285 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286 }
7287
7288 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289 {
7290 int ret = -1;
7291
7292 if (IS_CHERRYVIEW(dev_priv->dev))
7293 ret = chv_gpu_freq(dev_priv, val);
7294 else if (IS_VALLEYVIEW(dev_priv->dev))
7295 ret = byt_gpu_freq(dev_priv, val);
7296
7297 return ret;
7298 }
7299
7300 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7301 {
7302 int ret = -1;
7303
7304 if (IS_CHERRYVIEW(dev_priv->dev))
7305 ret = chv_freq_opcode(dev_priv, val);
7306 else if (IS_VALLEYVIEW(dev_priv->dev))
7307 ret = byt_freq_opcode(dev_priv, val);
7308
7309 return ret;
7310 }
7311
7312 void intel_pm_setup(struct drm_device *dev)
7313 {
7314 struct drm_i915_private *dev_priv = dev->dev_private;
7315
7316 mutex_init(&dev_priv->rps.hw_lock);
7317
7318 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7319 intel_gen6_powersave_work);
7320
7321 dev_priv->pm.suspended = false;
7322 }