]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'v3.10-rc2' into drm-intel-next-queued
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
39 *
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
42 *
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
45 */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 /* Be paranoid as we can arrive here with only partial
50 * state retrieved from the hardware during setup.
51 */
52 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58 u32 fbc_ctl;
59
60 /* Disable compression */
61 fbc_ctl = I915_READ(FBC_CONTROL);
62 if ((fbc_ctl & FBC_CTL_EN) == 0)
63 return;
64
65 fbc_ctl &= ~FBC_CTL_EN;
66 I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68 /* Wait for compressing bit to clear */
69 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 DRM_DEBUG_KMS("FBC idle timed out\n");
71 return;
72 }
73
74 DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 struct drm_device *dev = crtc->dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct drm_framebuffer *fb = crtc->fb;
82 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 struct drm_i915_gem_object *obj = intel_fb->obj;
84 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 int cfb_pitch;
86 int plane, i;
87 u32 fbc_ctl, fbc_ctl2;
88
89 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 if (fb->pitches[0] < cfb_pitch)
91 cfb_pitch = fb->pitches[0];
92
93 /* FBC_CTL wants 64B units */
94 cfb_pitch = (cfb_pitch / 64) - 1;
95 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97 /* Clear old tags */
98 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101 /* Set it up... */
102 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 fbc_ctl2 |= plane;
104 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107 /* enable it... */
108 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 if (IS_I945GM(dev))
110 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 fbc_ctl |= obj->fence_reg;
114 I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 struct drm_device *dev = crtc->dev;
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 struct drm_framebuffer *fb = crtc->fb;
132 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 struct drm_i915_gem_object *obj = intel_fb->obj;
134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 unsigned long stall_watermark = 200;
137 u32 dpfc_ctl;
138
139 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148 /* enable it... */
149 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 struct drm_i915_private *dev_priv = dev->dev_private;
157 u32 dpfc_ctl;
158
159 /* Disable compression */
160 dpfc_ctl = I915_READ(DPFC_CONTROL);
161 if (dpfc_ctl & DPFC_CTL_EN) {
162 dpfc_ctl &= ~DPFC_CTL_EN;
163 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165 DRM_DEBUG_KMS("disabled FBC\n");
166 }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 struct drm_i915_private *dev_priv = dev->dev_private;
172
173 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 u32 blt_ecoskpd;
180
181 /* Make sure blitter notifies FBC of writes */
182 gen6_gt_force_wake_get(dev_priv);
183 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 GEN6_BLITTER_LOCK_SHIFT;
186 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 GEN6_BLITTER_LOCK_SHIFT);
191 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 struct drm_device *dev = crtc->dev;
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_framebuffer *fb = crtc->fb;
201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 struct drm_i915_gem_object *obj = intel_fb->obj;
203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 unsigned long stall_watermark = 200;
206 u32 dpfc_ctl;
207
208 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 dpfc_ctl &= DPFC_RESERVED;
210 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 /* Set persistent mode for front-buffer rendering, ala X. */
212 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 /* enable it... */
222 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224 if (IS_GEN6(dev)) {
225 I915_WRITE(SNB_DPFC_CTL_SA,
226 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 sandybridge_blit_fbc_update(dev);
229 }
230
231 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 struct drm_i915_private *dev_priv = dev->dev_private;
237 u32 dpfc_ctl;
238
239 /* Disable compression */
240 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 if (dpfc_ctl & DPFC_CTL_EN) {
242 dpfc_ctl &= ~DPFC_CTL_EN;
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245 if (IS_IVYBRIDGE(dev))
246 /* WaFbcDisableDpfcClockGating:ivb */
247 I915_WRITE(ILK_DSPCLK_GATE_D,
248 I915_READ(ILK_DSPCLK_GATE_D) &
249 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250
251 if (IS_HASWELL(dev))
252 /* WaFbcDisableDpfcClockGating:hsw */
253 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
254 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
255 ~HSW_DPFC_GATING_DISABLE);
256
257 DRM_DEBUG_KMS("disabled FBC\n");
258 }
259 }
260
261 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264
265 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
266 }
267
268 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 {
270 struct drm_device *dev = crtc->dev;
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 struct drm_framebuffer *fb = crtc->fb;
273 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
274 struct drm_i915_gem_object *obj = intel_fb->obj;
275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276
277 I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
278
279 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
280 IVB_DPFC_CTL_FENCE_EN |
281 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282
283 if (IS_IVYBRIDGE(dev)) {
284 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
285 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286 /* WaFbcDisableDpfcClockGating:ivb */
287 I915_WRITE(ILK_DSPCLK_GATE_D,
288 I915_READ(ILK_DSPCLK_GATE_D) |
289 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290 } else {
291 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
292 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
293 HSW_BYPASS_FBC_QUEUE);
294 /* WaFbcDisableDpfcClockGating:hsw */
295 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
296 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
297 HSW_DPFC_GATING_DISABLE);
298 }
299
300 I915_WRITE(SNB_DPFC_CTL_SA,
301 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
302 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303
304 sandybridge_blit_fbc_update(dev);
305
306 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
307 }
308
309 bool intel_fbc_enabled(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312
313 if (!dev_priv->display.fbc_enabled)
314 return false;
315
316 return dev_priv->display.fbc_enabled(dev);
317 }
318
319 static void intel_fbc_work_fn(struct work_struct *__work)
320 {
321 struct intel_fbc_work *work =
322 container_of(to_delayed_work(__work),
323 struct intel_fbc_work, work);
324 struct drm_device *dev = work->crtc->dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 mutex_lock(&dev->struct_mutex);
328 if (work == dev_priv->fbc_work) {
329 /* Double check that we haven't switched fb without cancelling
330 * the prior work.
331 */
332 if (work->crtc->fb == work->fb) {
333 dev_priv->display.enable_fbc(work->crtc,
334 work->interval);
335
336 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->cfb_fb = work->crtc->fb->base.id;
338 dev_priv->cfb_y = work->crtc->y;
339 }
340
341 dev_priv->fbc_work = NULL;
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350 if (dev_priv->fbc_work == NULL)
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
356 * dev_priv->fbc_work, so we can perform the cancellation
357 * entirely asynchronously.
358 */
359 if (cancel_delayed_work(&dev_priv->fbc_work->work))
360 /* tasklet was killed before being run, clean up */
361 kfree(dev_priv->fbc_work);
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
368 dev_priv->fbc_work = NULL;
369 }
370
371 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 {
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
382 work = kzalloc(sizeof *work, GFP_KERNEL);
383 if (work == NULL) {
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393 dev_priv->fbc_work = work;
394
395 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
396
397 /* Delay the actual enabling to let pageflipping cease and the
398 * display to settle before starting the compression. Note that
399 * this delay also serves a second purpose: it allows for a
400 * vblank to pass after disabling the FBC before we attempt
401 * to modify the control registers.
402 *
403 * A more complicated solution would involve tracking vblanks
404 * following the termination of the page-flipping sequence
405 * and indeed performing the enable as a co-routine and not
406 * waiting synchronously upon the vblank.
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->cfb_plane = -1;
422 }
423
424 /**
425 * intel_update_fbc - enable/disable FBC as needed
426 * @dev: the drm_device
427 *
428 * Set up the framebuffer compression hardware at mode set time. We
429 * enable it if possible:
430 * - plane A only (on pre-965)
431 * - no pixel mulitply/line duplication
432 * - no alpha buffer discard
433 * - no dual wide
434 * - framebuffer <= 2048 in width, 1536 in height
435 *
436 * We can't assume that any compression will take place (worst case),
437 * so the compressed buffer has to be the same size as the uncompressed
438 * one. It also must reside (along with the line length buffer) in
439 * stolen memory.
440 *
441 * We need to enable/disable FBC on a global basis.
442 */
443 void intel_update_fbc(struct drm_device *dev)
444 {
445 struct drm_i915_private *dev_priv = dev->dev_private;
446 struct drm_crtc *crtc = NULL, *tmp_crtc;
447 struct intel_crtc *intel_crtc;
448 struct drm_framebuffer *fb;
449 struct intel_framebuffer *intel_fb;
450 struct drm_i915_gem_object *obj;
451 int enable_fbc;
452
453 if (!i915_powersave)
454 return;
455
456 if (!I915_HAS_FBC(dev))
457 return;
458
459 /*
460 * If FBC is already on, we just have to verify that we can
461 * keep it that way...
462 * Need to disable if:
463 * - more than one pipe is active
464 * - changing FBC params (stride, fence, mode)
465 * - new fb is too large to fit in compressed buffer
466 * - going to an unsupported config (interlace, pixel multiply, etc.)
467 */
468 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469 if (intel_crtc_active(tmp_crtc) &&
470 !to_intel_crtc(tmp_crtc)->primary_disabled) {
471 if (crtc) {
472 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
473 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
474 goto out_disable;
475 }
476 crtc = tmp_crtc;
477 }
478 }
479
480 if (!crtc || crtc->fb == NULL) {
481 DRM_DEBUG_KMS("no output, disabling\n");
482 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
483 goto out_disable;
484 }
485
486 intel_crtc = to_intel_crtc(crtc);
487 fb = crtc->fb;
488 intel_fb = to_intel_framebuffer(fb);
489 obj = intel_fb->obj;
490
491 enable_fbc = i915_enable_fbc;
492 if (enable_fbc < 0) {
493 DRM_DEBUG_KMS("fbc set to per-chip default\n");
494 enable_fbc = 1;
495 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
496 enable_fbc = 0;
497 }
498 if (!enable_fbc) {
499 DRM_DEBUG_KMS("fbc disabled per module param\n");
500 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
501 goto out_disable;
502 }
503 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
504 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
505 DRM_DEBUG_KMS("mode incompatible with compression, "
506 "disabling\n");
507 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
508 goto out_disable;
509 }
510 if ((crtc->mode.hdisplay > 2048) ||
511 (crtc->mode.vdisplay > 1536)) {
512 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
513 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
514 goto out_disable;
515 }
516 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
517 intel_crtc->plane != 0) {
518 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
519 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
520 goto out_disable;
521 }
522
523 /* The use of a CPU fence is mandatory in order to detect writes
524 * by the CPU to the scanout and trigger updates to the FBC.
525 */
526 if (obj->tiling_mode != I915_TILING_X ||
527 obj->fence_reg == I915_FENCE_REG_NONE) {
528 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
529 dev_priv->no_fbc_reason = FBC_NOT_TILED;
530 goto out_disable;
531 }
532
533 /* If the kernel debugger is active, always disable compression */
534 if (in_dbg_master())
535 goto out_disable;
536
537 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
538 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
539 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
540 goto out_disable;
541 }
542
543 /* If the scanout has not changed, don't modify the FBC settings.
544 * Note that we make the fundamental assumption that the fb->obj
545 * cannot be unpinned (and have its GTT offset and fence revoked)
546 * without first being decoupled from the scanout and FBC disabled.
547 */
548 if (dev_priv->cfb_plane == intel_crtc->plane &&
549 dev_priv->cfb_fb == fb->base.id &&
550 dev_priv->cfb_y == crtc->y)
551 return;
552
553 if (intel_fbc_enabled(dev)) {
554 /* We update FBC along two paths, after changing fb/crtc
555 * configuration (modeswitching) and after page-flipping
556 * finishes. For the latter, we know that not only did
557 * we disable the FBC at the start of the page-flip
558 * sequence, but also more than one vblank has passed.
559 *
560 * For the former case of modeswitching, it is possible
561 * to switch between two FBC valid configurations
562 * instantaneously so we do need to disable the FBC
563 * before we can modify its control registers. We also
564 * have to wait for the next vblank for that to take
565 * effect. However, since we delay enabling FBC we can
566 * assume that a vblank has passed since disabling and
567 * that we can safely alter the registers in the deferred
568 * callback.
569 *
570 * In the scenario that we go from a valid to invalid
571 * and then back to valid FBC configuration we have
572 * no strict enforcement that a vblank occurred since
573 * disabling the FBC. However, along all current pipe
574 * disabling paths we do need to wait for a vblank at
575 * some point. And we wait before enabling FBC anyway.
576 */
577 DRM_DEBUG_KMS("disabling active FBC for update\n");
578 intel_disable_fbc(dev);
579 }
580
581 intel_enable_fbc(crtc, 500);
582 return;
583
584 out_disable:
585 /* Multiple disables should be harmless */
586 if (intel_fbc_enabled(dev)) {
587 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
588 intel_disable_fbc(dev);
589 }
590 i915_gem_stolen_cleanup_compression(dev);
591 }
592
593 static void i915_pineview_get_mem_freq(struct drm_device *dev)
594 {
595 drm_i915_private_t *dev_priv = dev->dev_private;
596 u32 tmp;
597
598 tmp = I915_READ(CLKCFG);
599
600 switch (tmp & CLKCFG_FSB_MASK) {
601 case CLKCFG_FSB_533:
602 dev_priv->fsb_freq = 533; /* 133*4 */
603 break;
604 case CLKCFG_FSB_800:
605 dev_priv->fsb_freq = 800; /* 200*4 */
606 break;
607 case CLKCFG_FSB_667:
608 dev_priv->fsb_freq = 667; /* 167*4 */
609 break;
610 case CLKCFG_FSB_400:
611 dev_priv->fsb_freq = 400; /* 100*4 */
612 break;
613 }
614
615 switch (tmp & CLKCFG_MEM_MASK) {
616 case CLKCFG_MEM_533:
617 dev_priv->mem_freq = 533;
618 break;
619 case CLKCFG_MEM_667:
620 dev_priv->mem_freq = 667;
621 break;
622 case CLKCFG_MEM_800:
623 dev_priv->mem_freq = 800;
624 break;
625 }
626
627 /* detect pineview DDR3 setting */
628 tmp = I915_READ(CSHRDDR3CTL);
629 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
630 }
631
632 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
633 {
634 drm_i915_private_t *dev_priv = dev->dev_private;
635 u16 ddrpll, csipll;
636
637 ddrpll = I915_READ16(DDRMPLL1);
638 csipll = I915_READ16(CSIPLL0);
639
640 switch (ddrpll & 0xff) {
641 case 0xc:
642 dev_priv->mem_freq = 800;
643 break;
644 case 0x10:
645 dev_priv->mem_freq = 1066;
646 break;
647 case 0x14:
648 dev_priv->mem_freq = 1333;
649 break;
650 case 0x18:
651 dev_priv->mem_freq = 1600;
652 break;
653 default:
654 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
655 ddrpll & 0xff);
656 dev_priv->mem_freq = 0;
657 break;
658 }
659
660 dev_priv->ips.r_t = dev_priv->mem_freq;
661
662 switch (csipll & 0x3ff) {
663 case 0x00c:
664 dev_priv->fsb_freq = 3200;
665 break;
666 case 0x00e:
667 dev_priv->fsb_freq = 3733;
668 break;
669 case 0x010:
670 dev_priv->fsb_freq = 4266;
671 break;
672 case 0x012:
673 dev_priv->fsb_freq = 4800;
674 break;
675 case 0x014:
676 dev_priv->fsb_freq = 5333;
677 break;
678 case 0x016:
679 dev_priv->fsb_freq = 5866;
680 break;
681 case 0x018:
682 dev_priv->fsb_freq = 6400;
683 break;
684 default:
685 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
686 csipll & 0x3ff);
687 dev_priv->fsb_freq = 0;
688 break;
689 }
690
691 if (dev_priv->fsb_freq == 3200) {
692 dev_priv->ips.c_m = 0;
693 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
694 dev_priv->ips.c_m = 1;
695 } else {
696 dev_priv->ips.c_m = 2;
697 }
698 }
699
700 static const struct cxsr_latency cxsr_latency_table[] = {
701 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
702 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
703 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
704 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
705 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
706
707 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
708 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
709 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
710 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
711 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
712
713 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
714 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
715 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
716 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
717 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
718
719 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
720 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
721 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
722 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
723 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
724
725 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
726 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
727 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
728 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
729 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
730
731 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
732 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
733 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
734 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
735 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
736 };
737
738 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
739 int is_ddr3,
740 int fsb,
741 int mem)
742 {
743 const struct cxsr_latency *latency;
744 int i;
745
746 if (fsb == 0 || mem == 0)
747 return NULL;
748
749 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
750 latency = &cxsr_latency_table[i];
751 if (is_desktop == latency->is_desktop &&
752 is_ddr3 == latency->is_ddr3 &&
753 fsb == latency->fsb_freq && mem == latency->mem_freq)
754 return latency;
755 }
756
757 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
758
759 return NULL;
760 }
761
762 static void pineview_disable_cxsr(struct drm_device *dev)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765
766 /* deactivate cxsr */
767 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
768 }
769
770 /*
771 * Latency for FIFO fetches is dependent on several factors:
772 * - memory configuration (speed, channels)
773 * - chipset
774 * - current MCH state
775 * It can be fairly high in some situations, so here we assume a fairly
776 * pessimal value. It's a tradeoff between extra memory fetches (if we
777 * set this value too high, the FIFO will fetch frequently to stay full)
778 * and power consumption (set it too low to save power and we might see
779 * FIFO underruns and display "flicker").
780 *
781 * A value of 5us seems to be a good balance; safe for very low end
782 * platforms but not overly aggressive on lower latency configs.
783 */
784 static const int latency_ns = 5000;
785
786 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
787 {
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 uint32_t dsparb = I915_READ(DSPARB);
790 int size;
791
792 size = dsparb & 0x7f;
793 if (plane)
794 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
795
796 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
797 plane ? "B" : "A", size);
798
799 return size;
800 }
801
802 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
803 {
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 uint32_t dsparb = I915_READ(DSPARB);
806 int size;
807
808 size = dsparb & 0x1ff;
809 if (plane)
810 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
811 size >>= 1; /* Convert to cachelines */
812
813 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814 plane ? "B" : "A", size);
815
816 return size;
817 }
818
819 static int i845_get_fifo_size(struct drm_device *dev, int plane)
820 {
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 uint32_t dsparb = I915_READ(DSPARB);
823 int size;
824
825 size = dsparb & 0x7f;
826 size >>= 2; /* Convert to cachelines */
827
828 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
829 plane ? "B" : "A",
830 size);
831
832 return size;
833 }
834
835 static int i830_get_fifo_size(struct drm_device *dev, int plane)
836 {
837 struct drm_i915_private *dev_priv = dev->dev_private;
838 uint32_t dsparb = I915_READ(DSPARB);
839 int size;
840
841 size = dsparb & 0x7f;
842 size >>= 1; /* Convert to cachelines */
843
844 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845 plane ? "B" : "A", size);
846
847 return size;
848 }
849
850 /* Pineview has different values for various configs */
851 static const struct intel_watermark_params pineview_display_wm = {
852 PINEVIEW_DISPLAY_FIFO,
853 PINEVIEW_MAX_WM,
854 PINEVIEW_DFT_WM,
855 PINEVIEW_GUARD_WM,
856 PINEVIEW_FIFO_LINE_SIZE
857 };
858 static const struct intel_watermark_params pineview_display_hplloff_wm = {
859 PINEVIEW_DISPLAY_FIFO,
860 PINEVIEW_MAX_WM,
861 PINEVIEW_DFT_HPLLOFF_WM,
862 PINEVIEW_GUARD_WM,
863 PINEVIEW_FIFO_LINE_SIZE
864 };
865 static const struct intel_watermark_params pineview_cursor_wm = {
866 PINEVIEW_CURSOR_FIFO,
867 PINEVIEW_CURSOR_MAX_WM,
868 PINEVIEW_CURSOR_DFT_WM,
869 PINEVIEW_CURSOR_GUARD_WM,
870 PINEVIEW_FIFO_LINE_SIZE,
871 };
872 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
873 PINEVIEW_CURSOR_FIFO,
874 PINEVIEW_CURSOR_MAX_WM,
875 PINEVIEW_CURSOR_DFT_WM,
876 PINEVIEW_CURSOR_GUARD_WM,
877 PINEVIEW_FIFO_LINE_SIZE
878 };
879 static const struct intel_watermark_params g4x_wm_info = {
880 G4X_FIFO_SIZE,
881 G4X_MAX_WM,
882 G4X_MAX_WM,
883 2,
884 G4X_FIFO_LINE_SIZE,
885 };
886 static const struct intel_watermark_params g4x_cursor_wm_info = {
887 I965_CURSOR_FIFO,
888 I965_CURSOR_MAX_WM,
889 I965_CURSOR_DFT_WM,
890 2,
891 G4X_FIFO_LINE_SIZE,
892 };
893 static const struct intel_watermark_params valleyview_wm_info = {
894 VALLEYVIEW_FIFO_SIZE,
895 VALLEYVIEW_MAX_WM,
896 VALLEYVIEW_MAX_WM,
897 2,
898 G4X_FIFO_LINE_SIZE,
899 };
900 static const struct intel_watermark_params valleyview_cursor_wm_info = {
901 I965_CURSOR_FIFO,
902 VALLEYVIEW_CURSOR_MAX_WM,
903 I965_CURSOR_DFT_WM,
904 2,
905 G4X_FIFO_LINE_SIZE,
906 };
907 static const struct intel_watermark_params i965_cursor_wm_info = {
908 I965_CURSOR_FIFO,
909 I965_CURSOR_MAX_WM,
910 I965_CURSOR_DFT_WM,
911 2,
912 I915_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params i945_wm_info = {
915 I945_FIFO_SIZE,
916 I915_MAX_WM,
917 1,
918 2,
919 I915_FIFO_LINE_SIZE
920 };
921 static const struct intel_watermark_params i915_wm_info = {
922 I915_FIFO_SIZE,
923 I915_MAX_WM,
924 1,
925 2,
926 I915_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params i855_wm_info = {
929 I855GM_FIFO_SIZE,
930 I915_MAX_WM,
931 1,
932 2,
933 I830_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params i830_wm_info = {
936 I830_FIFO_SIZE,
937 I915_MAX_WM,
938 1,
939 2,
940 I830_FIFO_LINE_SIZE
941 };
942
943 static const struct intel_watermark_params ironlake_display_wm_info = {
944 ILK_DISPLAY_FIFO,
945 ILK_DISPLAY_MAXWM,
946 ILK_DISPLAY_DFTWM,
947 2,
948 ILK_FIFO_LINE_SIZE
949 };
950 static const struct intel_watermark_params ironlake_cursor_wm_info = {
951 ILK_CURSOR_FIFO,
952 ILK_CURSOR_MAXWM,
953 ILK_CURSOR_DFTWM,
954 2,
955 ILK_FIFO_LINE_SIZE
956 };
957 static const struct intel_watermark_params ironlake_display_srwm_info = {
958 ILK_DISPLAY_SR_FIFO,
959 ILK_DISPLAY_MAX_SRWM,
960 ILK_DISPLAY_DFT_SRWM,
961 2,
962 ILK_FIFO_LINE_SIZE
963 };
964 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
965 ILK_CURSOR_SR_FIFO,
966 ILK_CURSOR_MAX_SRWM,
967 ILK_CURSOR_DFT_SRWM,
968 2,
969 ILK_FIFO_LINE_SIZE
970 };
971
972 static const struct intel_watermark_params sandybridge_display_wm_info = {
973 SNB_DISPLAY_FIFO,
974 SNB_DISPLAY_MAXWM,
975 SNB_DISPLAY_DFTWM,
976 2,
977 SNB_FIFO_LINE_SIZE
978 };
979 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
980 SNB_CURSOR_FIFO,
981 SNB_CURSOR_MAXWM,
982 SNB_CURSOR_DFTWM,
983 2,
984 SNB_FIFO_LINE_SIZE
985 };
986 static const struct intel_watermark_params sandybridge_display_srwm_info = {
987 SNB_DISPLAY_SR_FIFO,
988 SNB_DISPLAY_MAX_SRWM,
989 SNB_DISPLAY_DFT_SRWM,
990 2,
991 SNB_FIFO_LINE_SIZE
992 };
993 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
994 SNB_CURSOR_SR_FIFO,
995 SNB_CURSOR_MAX_SRWM,
996 SNB_CURSOR_DFT_SRWM,
997 2,
998 SNB_FIFO_LINE_SIZE
999 };
1000
1001
1002 /**
1003 * intel_calculate_wm - calculate watermark level
1004 * @clock_in_khz: pixel clock
1005 * @wm: chip FIFO params
1006 * @pixel_size: display pixel size
1007 * @latency_ns: memory latency for the platform
1008 *
1009 * Calculate the watermark level (the level at which the display plane will
1010 * start fetching from memory again). Each chip has a different display
1011 * FIFO size and allocation, so the caller needs to figure that out and pass
1012 * in the correct intel_watermark_params structure.
1013 *
1014 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1015 * on the pixel size. When it reaches the watermark level, it'll start
1016 * fetching FIFO line sized based chunks from memory until the FIFO fills
1017 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1018 * will occur, and a display engine hang could result.
1019 */
1020 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1021 const struct intel_watermark_params *wm,
1022 int fifo_size,
1023 int pixel_size,
1024 unsigned long latency_ns)
1025 {
1026 long entries_required, wm_size;
1027
1028 /*
1029 * Note: we need to make sure we don't overflow for various clock &
1030 * latency values.
1031 * clocks go from a few thousand to several hundred thousand.
1032 * latency is usually a few thousand
1033 */
1034 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1035 1000;
1036 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1037
1038 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1039
1040 wm_size = fifo_size - (entries_required + wm->guard_size);
1041
1042 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1043
1044 /* Don't promote wm_size to unsigned... */
1045 if (wm_size > (long)wm->max_wm)
1046 wm_size = wm->max_wm;
1047 if (wm_size <= 0)
1048 wm_size = wm->default_wm;
1049 return wm_size;
1050 }
1051
1052 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1053 {
1054 struct drm_crtc *crtc, *enabled = NULL;
1055
1056 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1057 if (intel_crtc_active(crtc)) {
1058 if (enabled)
1059 return NULL;
1060 enabled = crtc;
1061 }
1062 }
1063
1064 return enabled;
1065 }
1066
1067 static void pineview_update_wm(struct drm_device *dev)
1068 {
1069 struct drm_i915_private *dev_priv = dev->dev_private;
1070 struct drm_crtc *crtc;
1071 const struct cxsr_latency *latency;
1072 u32 reg;
1073 unsigned long wm;
1074
1075 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1076 dev_priv->fsb_freq, dev_priv->mem_freq);
1077 if (!latency) {
1078 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1079 pineview_disable_cxsr(dev);
1080 return;
1081 }
1082
1083 crtc = single_enabled_crtc(dev);
1084 if (crtc) {
1085 int clock = crtc->mode.clock;
1086 int pixel_size = crtc->fb->bits_per_pixel / 8;
1087
1088 /* Display SR */
1089 wm = intel_calculate_wm(clock, &pineview_display_wm,
1090 pineview_display_wm.fifo_size,
1091 pixel_size, latency->display_sr);
1092 reg = I915_READ(DSPFW1);
1093 reg &= ~DSPFW_SR_MASK;
1094 reg |= wm << DSPFW_SR_SHIFT;
1095 I915_WRITE(DSPFW1, reg);
1096 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1097
1098 /* cursor SR */
1099 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1100 pineview_display_wm.fifo_size,
1101 pixel_size, latency->cursor_sr);
1102 reg = I915_READ(DSPFW3);
1103 reg &= ~DSPFW_CURSOR_SR_MASK;
1104 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1105 I915_WRITE(DSPFW3, reg);
1106
1107 /* Display HPLL off SR */
1108 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1109 pineview_display_hplloff_wm.fifo_size,
1110 pixel_size, latency->display_hpll_disable);
1111 reg = I915_READ(DSPFW3);
1112 reg &= ~DSPFW_HPLL_SR_MASK;
1113 reg |= wm & DSPFW_HPLL_SR_MASK;
1114 I915_WRITE(DSPFW3, reg);
1115
1116 /* cursor HPLL off SR */
1117 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1118 pineview_display_hplloff_wm.fifo_size,
1119 pixel_size, latency->cursor_hpll_disable);
1120 reg = I915_READ(DSPFW3);
1121 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1122 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1123 I915_WRITE(DSPFW3, reg);
1124 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1125
1126 /* activate cxsr */
1127 I915_WRITE(DSPFW3,
1128 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1129 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1130 } else {
1131 pineview_disable_cxsr(dev);
1132 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1133 }
1134 }
1135
1136 static bool g4x_compute_wm0(struct drm_device *dev,
1137 int plane,
1138 const struct intel_watermark_params *display,
1139 int display_latency_ns,
1140 const struct intel_watermark_params *cursor,
1141 int cursor_latency_ns,
1142 int *plane_wm,
1143 int *cursor_wm)
1144 {
1145 struct drm_crtc *crtc;
1146 int htotal, hdisplay, clock, pixel_size;
1147 int line_time_us, line_count;
1148 int entries, tlb_miss;
1149
1150 crtc = intel_get_crtc_for_plane(dev, plane);
1151 if (!intel_crtc_active(crtc)) {
1152 *cursor_wm = cursor->guard_size;
1153 *plane_wm = display->guard_size;
1154 return false;
1155 }
1156
1157 htotal = crtc->mode.htotal;
1158 hdisplay = crtc->mode.hdisplay;
1159 clock = crtc->mode.clock;
1160 pixel_size = crtc->fb->bits_per_pixel / 8;
1161
1162 /* Use the small buffer method to calculate plane watermark */
1163 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1164 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1165 if (tlb_miss > 0)
1166 entries += tlb_miss;
1167 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1168 *plane_wm = entries + display->guard_size;
1169 if (*plane_wm > (int)display->max_wm)
1170 *plane_wm = display->max_wm;
1171
1172 /* Use the large buffer method to calculate cursor watermark */
1173 line_time_us = ((htotal * 1000) / clock);
1174 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1175 entries = line_count * 64 * pixel_size;
1176 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1177 if (tlb_miss > 0)
1178 entries += tlb_miss;
1179 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1180 *cursor_wm = entries + cursor->guard_size;
1181 if (*cursor_wm > (int)cursor->max_wm)
1182 *cursor_wm = (int)cursor->max_wm;
1183
1184 return true;
1185 }
1186
1187 /*
1188 * Check the wm result.
1189 *
1190 * If any calculated watermark values is larger than the maximum value that
1191 * can be programmed into the associated watermark register, that watermark
1192 * must be disabled.
1193 */
1194 static bool g4x_check_srwm(struct drm_device *dev,
1195 int display_wm, int cursor_wm,
1196 const struct intel_watermark_params *display,
1197 const struct intel_watermark_params *cursor)
1198 {
1199 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1200 display_wm, cursor_wm);
1201
1202 if (display_wm > display->max_wm) {
1203 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1204 display_wm, display->max_wm);
1205 return false;
1206 }
1207
1208 if (cursor_wm > cursor->max_wm) {
1209 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1210 cursor_wm, cursor->max_wm);
1211 return false;
1212 }
1213
1214 if (!(display_wm || cursor_wm)) {
1215 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1216 return false;
1217 }
1218
1219 return true;
1220 }
1221
1222 static bool g4x_compute_srwm(struct drm_device *dev,
1223 int plane,
1224 int latency_ns,
1225 const struct intel_watermark_params *display,
1226 const struct intel_watermark_params *cursor,
1227 int *display_wm, int *cursor_wm)
1228 {
1229 struct drm_crtc *crtc;
1230 int hdisplay, htotal, pixel_size, clock;
1231 unsigned long line_time_us;
1232 int line_count, line_size;
1233 int small, large;
1234 int entries;
1235
1236 if (!latency_ns) {
1237 *display_wm = *cursor_wm = 0;
1238 return false;
1239 }
1240
1241 crtc = intel_get_crtc_for_plane(dev, plane);
1242 hdisplay = crtc->mode.hdisplay;
1243 htotal = crtc->mode.htotal;
1244 clock = crtc->mode.clock;
1245 pixel_size = crtc->fb->bits_per_pixel / 8;
1246
1247 line_time_us = (htotal * 1000) / clock;
1248 line_count = (latency_ns / line_time_us + 1000) / 1000;
1249 line_size = hdisplay * pixel_size;
1250
1251 /* Use the minimum of the small and large buffer method for primary */
1252 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1253 large = line_count * line_size;
1254
1255 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1256 *display_wm = entries + display->guard_size;
1257
1258 /* calculate the self-refresh watermark for display cursor */
1259 entries = line_count * pixel_size * 64;
1260 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1261 *cursor_wm = entries + cursor->guard_size;
1262
1263 return g4x_check_srwm(dev,
1264 *display_wm, *cursor_wm,
1265 display, cursor);
1266 }
1267
1268 static bool vlv_compute_drain_latency(struct drm_device *dev,
1269 int plane,
1270 int *plane_prec_mult,
1271 int *plane_dl,
1272 int *cursor_prec_mult,
1273 int *cursor_dl)
1274 {
1275 struct drm_crtc *crtc;
1276 int clock, pixel_size;
1277 int entries;
1278
1279 crtc = intel_get_crtc_for_plane(dev, plane);
1280 if (!intel_crtc_active(crtc))
1281 return false;
1282
1283 clock = crtc->mode.clock; /* VESA DOT Clock */
1284 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1285
1286 entries = (clock / 1000) * pixel_size;
1287 *plane_prec_mult = (entries > 256) ?
1288 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1289 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1290 pixel_size);
1291
1292 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1293 *cursor_prec_mult = (entries > 256) ?
1294 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1295 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1296
1297 return true;
1298 }
1299
1300 /*
1301 * Update drain latency registers of memory arbiter
1302 *
1303 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1304 * to be programmed. Each plane has a drain latency multiplier and a drain
1305 * latency value.
1306 */
1307
1308 static void vlv_update_drain_latency(struct drm_device *dev)
1309 {
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1312 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1313 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1314 either 16 or 32 */
1315
1316 /* For plane A, Cursor A */
1317 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1318 &cursor_prec_mult, &cursora_dl)) {
1319 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1320 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1321 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1322 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1323
1324 I915_WRITE(VLV_DDL1, cursora_prec |
1325 (cursora_dl << DDL_CURSORA_SHIFT) |
1326 planea_prec | planea_dl);
1327 }
1328
1329 /* For plane B, Cursor B */
1330 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1331 &cursor_prec_mult, &cursorb_dl)) {
1332 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1333 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1334 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1335 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1336
1337 I915_WRITE(VLV_DDL2, cursorb_prec |
1338 (cursorb_dl << DDL_CURSORB_SHIFT) |
1339 planeb_prec | planeb_dl);
1340 }
1341 }
1342
1343 #define single_plane_enabled(mask) is_power_of_2(mask)
1344
1345 static void valleyview_update_wm(struct drm_device *dev)
1346 {
1347 static const int sr_latency_ns = 12000;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1350 int plane_sr, cursor_sr;
1351 int ignore_plane_sr, ignore_cursor_sr;
1352 unsigned int enabled = 0;
1353
1354 vlv_update_drain_latency(dev);
1355
1356 if (g4x_compute_wm0(dev, PIPE_A,
1357 &valleyview_wm_info, latency_ns,
1358 &valleyview_cursor_wm_info, latency_ns,
1359 &planea_wm, &cursora_wm))
1360 enabled |= 1 << PIPE_A;
1361
1362 if (g4x_compute_wm0(dev, PIPE_B,
1363 &valleyview_wm_info, latency_ns,
1364 &valleyview_cursor_wm_info, latency_ns,
1365 &planeb_wm, &cursorb_wm))
1366 enabled |= 1 << PIPE_B;
1367
1368 if (single_plane_enabled(enabled) &&
1369 g4x_compute_srwm(dev, ffs(enabled) - 1,
1370 sr_latency_ns,
1371 &valleyview_wm_info,
1372 &valleyview_cursor_wm_info,
1373 &plane_sr, &ignore_cursor_sr) &&
1374 g4x_compute_srwm(dev, ffs(enabled) - 1,
1375 2*sr_latency_ns,
1376 &valleyview_wm_info,
1377 &valleyview_cursor_wm_info,
1378 &ignore_plane_sr, &cursor_sr)) {
1379 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1380 } else {
1381 I915_WRITE(FW_BLC_SELF_VLV,
1382 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1383 plane_sr = cursor_sr = 0;
1384 }
1385
1386 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387 planea_wm, cursora_wm,
1388 planeb_wm, cursorb_wm,
1389 plane_sr, cursor_sr);
1390
1391 I915_WRITE(DSPFW1,
1392 (plane_sr << DSPFW_SR_SHIFT) |
1393 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395 planea_wm);
1396 I915_WRITE(DSPFW2,
1397 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398 (cursora_wm << DSPFW_CURSORA_SHIFT));
1399 I915_WRITE(DSPFW3,
1400 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1401 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 }
1403
1404 static void g4x_update_wm(struct drm_device *dev)
1405 {
1406 static const int sr_latency_ns = 12000;
1407 struct drm_i915_private *dev_priv = dev->dev_private;
1408 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1409 int plane_sr, cursor_sr;
1410 unsigned int enabled = 0;
1411
1412 if (g4x_compute_wm0(dev, PIPE_A,
1413 &g4x_wm_info, latency_ns,
1414 &g4x_cursor_wm_info, latency_ns,
1415 &planea_wm, &cursora_wm))
1416 enabled |= 1 << PIPE_A;
1417
1418 if (g4x_compute_wm0(dev, PIPE_B,
1419 &g4x_wm_info, latency_ns,
1420 &g4x_cursor_wm_info, latency_ns,
1421 &planeb_wm, &cursorb_wm))
1422 enabled |= 1 << PIPE_B;
1423
1424 if (single_plane_enabled(enabled) &&
1425 g4x_compute_srwm(dev, ffs(enabled) - 1,
1426 sr_latency_ns,
1427 &g4x_wm_info,
1428 &g4x_cursor_wm_info,
1429 &plane_sr, &cursor_sr)) {
1430 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1431 } else {
1432 I915_WRITE(FW_BLC_SELF,
1433 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1434 plane_sr = cursor_sr = 0;
1435 }
1436
1437 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1438 planea_wm, cursora_wm,
1439 planeb_wm, cursorb_wm,
1440 plane_sr, cursor_sr);
1441
1442 I915_WRITE(DSPFW1,
1443 (plane_sr << DSPFW_SR_SHIFT) |
1444 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1445 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1446 planea_wm);
1447 I915_WRITE(DSPFW2,
1448 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1449 (cursora_wm << DSPFW_CURSORA_SHIFT));
1450 /* HPLL off in SR has some issues on G4x... disable it */
1451 I915_WRITE(DSPFW3,
1452 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1453 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1454 }
1455
1456 static void i965_update_wm(struct drm_device *dev)
1457 {
1458 struct drm_i915_private *dev_priv = dev->dev_private;
1459 struct drm_crtc *crtc;
1460 int srwm = 1;
1461 int cursor_sr = 16;
1462
1463 /* Calc sr entries for one plane configs */
1464 crtc = single_enabled_crtc(dev);
1465 if (crtc) {
1466 /* self-refresh has much higher latency */
1467 static const int sr_latency_ns = 12000;
1468 int clock = crtc->mode.clock;
1469 int htotal = crtc->mode.htotal;
1470 int hdisplay = crtc->mode.hdisplay;
1471 int pixel_size = crtc->fb->bits_per_pixel / 8;
1472 unsigned long line_time_us;
1473 int entries;
1474
1475 line_time_us = ((htotal * 1000) / clock);
1476
1477 /* Use ns/us then divide to preserve precision */
1478 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479 pixel_size * hdisplay;
1480 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1481 srwm = I965_FIFO_SIZE - entries;
1482 if (srwm < 0)
1483 srwm = 1;
1484 srwm &= 0x1ff;
1485 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1486 entries, srwm);
1487
1488 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489 pixel_size * 64;
1490 entries = DIV_ROUND_UP(entries,
1491 i965_cursor_wm_info.cacheline_size);
1492 cursor_sr = i965_cursor_wm_info.fifo_size -
1493 (entries + i965_cursor_wm_info.guard_size);
1494
1495 if (cursor_sr > i965_cursor_wm_info.max_wm)
1496 cursor_sr = i965_cursor_wm_info.max_wm;
1497
1498 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1499 "cursor %d\n", srwm, cursor_sr);
1500
1501 if (IS_CRESTLINE(dev))
1502 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1503 } else {
1504 /* Turn off self refresh if both pipes are enabled */
1505 if (IS_CRESTLINE(dev))
1506 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1507 & ~FW_BLC_SELF_EN);
1508 }
1509
1510 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1511 srwm);
1512
1513 /* 965 has limitations... */
1514 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1515 (8 << 16) | (8 << 8) | (8 << 0));
1516 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1517 /* update cursor SR watermark */
1518 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1519 }
1520
1521 static void i9xx_update_wm(struct drm_device *dev)
1522 {
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 const struct intel_watermark_params *wm_info;
1525 uint32_t fwater_lo;
1526 uint32_t fwater_hi;
1527 int cwm, srwm = 1;
1528 int fifo_size;
1529 int planea_wm, planeb_wm;
1530 struct drm_crtc *crtc, *enabled = NULL;
1531
1532 if (IS_I945GM(dev))
1533 wm_info = &i945_wm_info;
1534 else if (!IS_GEN2(dev))
1535 wm_info = &i915_wm_info;
1536 else
1537 wm_info = &i855_wm_info;
1538
1539 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1540 crtc = intel_get_crtc_for_plane(dev, 0);
1541 if (intel_crtc_active(crtc)) {
1542 int cpp = crtc->fb->bits_per_pixel / 8;
1543 if (IS_GEN2(dev))
1544 cpp = 4;
1545
1546 planea_wm = intel_calculate_wm(crtc->mode.clock,
1547 wm_info, fifo_size, cpp,
1548 latency_ns);
1549 enabled = crtc;
1550 } else
1551 planea_wm = fifo_size - wm_info->guard_size;
1552
1553 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554 crtc = intel_get_crtc_for_plane(dev, 1);
1555 if (intel_crtc_active(crtc)) {
1556 int cpp = crtc->fb->bits_per_pixel / 8;
1557 if (IS_GEN2(dev))
1558 cpp = 4;
1559
1560 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1561 wm_info, fifo_size, cpp,
1562 latency_ns);
1563 if (enabled == NULL)
1564 enabled = crtc;
1565 else
1566 enabled = NULL;
1567 } else
1568 planeb_wm = fifo_size - wm_info->guard_size;
1569
1570 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1571
1572 /*
1573 * Overlay gets an aggressive default since video jitter is bad.
1574 */
1575 cwm = 2;
1576
1577 /* Play safe and disable self-refresh before adjusting watermarks. */
1578 if (IS_I945G(dev) || IS_I945GM(dev))
1579 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1580 else if (IS_I915GM(dev))
1581 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1582
1583 /* Calc sr entries for one plane configs */
1584 if (HAS_FW_BLC(dev) && enabled) {
1585 /* self-refresh has much higher latency */
1586 static const int sr_latency_ns = 6000;
1587 int clock = enabled->mode.clock;
1588 int htotal = enabled->mode.htotal;
1589 int hdisplay = enabled->mode.hdisplay;
1590 int pixel_size = enabled->fb->bits_per_pixel / 8;
1591 unsigned long line_time_us;
1592 int entries;
1593
1594 line_time_us = (htotal * 1000) / clock;
1595
1596 /* Use ns/us then divide to preserve precision */
1597 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1598 pixel_size * hdisplay;
1599 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1600 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1601 srwm = wm_info->fifo_size - entries;
1602 if (srwm < 0)
1603 srwm = 1;
1604
1605 if (IS_I945G(dev) || IS_I945GM(dev))
1606 I915_WRITE(FW_BLC_SELF,
1607 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1608 else if (IS_I915GM(dev))
1609 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1610 }
1611
1612 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1613 planea_wm, planeb_wm, cwm, srwm);
1614
1615 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1616 fwater_hi = (cwm & 0x1f);
1617
1618 /* Set request length to 8 cachelines per fetch */
1619 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1620 fwater_hi = fwater_hi | (1 << 8);
1621
1622 I915_WRITE(FW_BLC, fwater_lo);
1623 I915_WRITE(FW_BLC2, fwater_hi);
1624
1625 if (HAS_FW_BLC(dev)) {
1626 if (enabled) {
1627 if (IS_I945G(dev) || IS_I945GM(dev))
1628 I915_WRITE(FW_BLC_SELF,
1629 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1630 else if (IS_I915GM(dev))
1631 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1632 DRM_DEBUG_KMS("memory self refresh enabled\n");
1633 } else
1634 DRM_DEBUG_KMS("memory self refresh disabled\n");
1635 }
1636 }
1637
1638 static void i830_update_wm(struct drm_device *dev)
1639 {
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 struct drm_crtc *crtc;
1642 uint32_t fwater_lo;
1643 int planea_wm;
1644
1645 crtc = single_enabled_crtc(dev);
1646 if (crtc == NULL)
1647 return;
1648
1649 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1650 dev_priv->display.get_fifo_size(dev, 0),
1651 4, latency_ns);
1652 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1653 fwater_lo |= (3<<8) | planea_wm;
1654
1655 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1656
1657 I915_WRITE(FW_BLC, fwater_lo);
1658 }
1659
1660 #define ILK_LP0_PLANE_LATENCY 700
1661 #define ILK_LP0_CURSOR_LATENCY 1300
1662
1663 /*
1664 * Check the wm result.
1665 *
1666 * If any calculated watermark values is larger than the maximum value that
1667 * can be programmed into the associated watermark register, that watermark
1668 * must be disabled.
1669 */
1670 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1671 int fbc_wm, int display_wm, int cursor_wm,
1672 const struct intel_watermark_params *display,
1673 const struct intel_watermark_params *cursor)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1678 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1679
1680 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1681 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1682 fbc_wm, SNB_FBC_MAX_SRWM, level);
1683
1684 /* fbc has it's own way to disable FBC WM */
1685 I915_WRITE(DISP_ARB_CTL,
1686 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1687 return false;
1688 } else if (INTEL_INFO(dev)->gen >= 6) {
1689 /* enable FBC WM (except on ILK, where it must remain off) */
1690 I915_WRITE(DISP_ARB_CTL,
1691 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1692 }
1693
1694 if (display_wm > display->max_wm) {
1695 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1696 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1697 return false;
1698 }
1699
1700 if (cursor_wm > cursor->max_wm) {
1701 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1702 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1703 return false;
1704 }
1705
1706 if (!(fbc_wm || display_wm || cursor_wm)) {
1707 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1708 return false;
1709 }
1710
1711 return true;
1712 }
1713
1714 /*
1715 * Compute watermark values of WM[1-3],
1716 */
1717 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1718 int latency_ns,
1719 const struct intel_watermark_params *display,
1720 const struct intel_watermark_params *cursor,
1721 int *fbc_wm, int *display_wm, int *cursor_wm)
1722 {
1723 struct drm_crtc *crtc;
1724 unsigned long line_time_us;
1725 int hdisplay, htotal, pixel_size, clock;
1726 int line_count, line_size;
1727 int small, large;
1728 int entries;
1729
1730 if (!latency_ns) {
1731 *fbc_wm = *display_wm = *cursor_wm = 0;
1732 return false;
1733 }
1734
1735 crtc = intel_get_crtc_for_plane(dev, plane);
1736 hdisplay = crtc->mode.hdisplay;
1737 htotal = crtc->mode.htotal;
1738 clock = crtc->mode.clock;
1739 pixel_size = crtc->fb->bits_per_pixel / 8;
1740
1741 line_time_us = (htotal * 1000) / clock;
1742 line_count = (latency_ns / line_time_us + 1000) / 1000;
1743 line_size = hdisplay * pixel_size;
1744
1745 /* Use the minimum of the small and large buffer method for primary */
1746 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1747 large = line_count * line_size;
1748
1749 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1750 *display_wm = entries + display->guard_size;
1751
1752 /*
1753 * Spec says:
1754 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1755 */
1756 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1757
1758 /* calculate the self-refresh watermark for display cursor */
1759 entries = line_count * pixel_size * 64;
1760 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1761 *cursor_wm = entries + cursor->guard_size;
1762
1763 return ironlake_check_srwm(dev, level,
1764 *fbc_wm, *display_wm, *cursor_wm,
1765 display, cursor);
1766 }
1767
1768 static void ironlake_update_wm(struct drm_device *dev)
1769 {
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 int fbc_wm, plane_wm, cursor_wm;
1772 unsigned int enabled;
1773
1774 enabled = 0;
1775 if (g4x_compute_wm0(dev, PIPE_A,
1776 &ironlake_display_wm_info,
1777 ILK_LP0_PLANE_LATENCY,
1778 &ironlake_cursor_wm_info,
1779 ILK_LP0_CURSOR_LATENCY,
1780 &plane_wm, &cursor_wm)) {
1781 I915_WRITE(WM0_PIPEA_ILK,
1782 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1783 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1784 " plane %d, " "cursor: %d\n",
1785 plane_wm, cursor_wm);
1786 enabled |= 1 << PIPE_A;
1787 }
1788
1789 if (g4x_compute_wm0(dev, PIPE_B,
1790 &ironlake_display_wm_info,
1791 ILK_LP0_PLANE_LATENCY,
1792 &ironlake_cursor_wm_info,
1793 ILK_LP0_CURSOR_LATENCY,
1794 &plane_wm, &cursor_wm)) {
1795 I915_WRITE(WM0_PIPEB_ILK,
1796 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1797 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1798 " plane %d, cursor: %d\n",
1799 plane_wm, cursor_wm);
1800 enabled |= 1 << PIPE_B;
1801 }
1802
1803 /*
1804 * Calculate and update the self-refresh watermark only when one
1805 * display plane is used.
1806 */
1807 I915_WRITE(WM3_LP_ILK, 0);
1808 I915_WRITE(WM2_LP_ILK, 0);
1809 I915_WRITE(WM1_LP_ILK, 0);
1810
1811 if (!single_plane_enabled(enabled))
1812 return;
1813 enabled = ffs(enabled) - 1;
1814
1815 /* WM1 */
1816 if (!ironlake_compute_srwm(dev, 1, enabled,
1817 ILK_READ_WM1_LATENCY() * 500,
1818 &ironlake_display_srwm_info,
1819 &ironlake_cursor_srwm_info,
1820 &fbc_wm, &plane_wm, &cursor_wm))
1821 return;
1822
1823 I915_WRITE(WM1_LP_ILK,
1824 WM1_LP_SR_EN |
1825 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1826 (fbc_wm << WM1_LP_FBC_SHIFT) |
1827 (plane_wm << WM1_LP_SR_SHIFT) |
1828 cursor_wm);
1829
1830 /* WM2 */
1831 if (!ironlake_compute_srwm(dev, 2, enabled,
1832 ILK_READ_WM2_LATENCY() * 500,
1833 &ironlake_display_srwm_info,
1834 &ironlake_cursor_srwm_info,
1835 &fbc_wm, &plane_wm, &cursor_wm))
1836 return;
1837
1838 I915_WRITE(WM2_LP_ILK,
1839 WM2_LP_EN |
1840 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1841 (fbc_wm << WM1_LP_FBC_SHIFT) |
1842 (plane_wm << WM1_LP_SR_SHIFT) |
1843 cursor_wm);
1844
1845 /*
1846 * WM3 is unsupported on ILK, probably because we don't have latency
1847 * data for that power state
1848 */
1849 }
1850
1851 static void sandybridge_update_wm(struct drm_device *dev)
1852 {
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1855 u32 val;
1856 int fbc_wm, plane_wm, cursor_wm;
1857 unsigned int enabled;
1858
1859 enabled = 0;
1860 if (g4x_compute_wm0(dev, PIPE_A,
1861 &sandybridge_display_wm_info, latency,
1862 &sandybridge_cursor_wm_info, latency,
1863 &plane_wm, &cursor_wm)) {
1864 val = I915_READ(WM0_PIPEA_ILK);
1865 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1866 I915_WRITE(WM0_PIPEA_ILK, val |
1867 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1868 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1869 " plane %d, " "cursor: %d\n",
1870 plane_wm, cursor_wm);
1871 enabled |= 1 << PIPE_A;
1872 }
1873
1874 if (g4x_compute_wm0(dev, PIPE_B,
1875 &sandybridge_display_wm_info, latency,
1876 &sandybridge_cursor_wm_info, latency,
1877 &plane_wm, &cursor_wm)) {
1878 val = I915_READ(WM0_PIPEB_ILK);
1879 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1880 I915_WRITE(WM0_PIPEB_ILK, val |
1881 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1882 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1883 " plane %d, cursor: %d\n",
1884 plane_wm, cursor_wm);
1885 enabled |= 1 << PIPE_B;
1886 }
1887
1888 /*
1889 * Calculate and update the self-refresh watermark only when one
1890 * display plane is used.
1891 *
1892 * SNB support 3 levels of watermark.
1893 *
1894 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1895 * and disabled in the descending order
1896 *
1897 */
1898 I915_WRITE(WM3_LP_ILK, 0);
1899 I915_WRITE(WM2_LP_ILK, 0);
1900 I915_WRITE(WM1_LP_ILK, 0);
1901
1902 if (!single_plane_enabled(enabled) ||
1903 dev_priv->sprite_scaling_enabled)
1904 return;
1905 enabled = ffs(enabled) - 1;
1906
1907 /* WM1 */
1908 if (!ironlake_compute_srwm(dev, 1, enabled,
1909 SNB_READ_WM1_LATENCY() * 500,
1910 &sandybridge_display_srwm_info,
1911 &sandybridge_cursor_srwm_info,
1912 &fbc_wm, &plane_wm, &cursor_wm))
1913 return;
1914
1915 I915_WRITE(WM1_LP_ILK,
1916 WM1_LP_SR_EN |
1917 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1918 (fbc_wm << WM1_LP_FBC_SHIFT) |
1919 (plane_wm << WM1_LP_SR_SHIFT) |
1920 cursor_wm);
1921
1922 /* WM2 */
1923 if (!ironlake_compute_srwm(dev, 2, enabled,
1924 SNB_READ_WM2_LATENCY() * 500,
1925 &sandybridge_display_srwm_info,
1926 &sandybridge_cursor_srwm_info,
1927 &fbc_wm, &plane_wm, &cursor_wm))
1928 return;
1929
1930 I915_WRITE(WM2_LP_ILK,
1931 WM2_LP_EN |
1932 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1933 (fbc_wm << WM1_LP_FBC_SHIFT) |
1934 (plane_wm << WM1_LP_SR_SHIFT) |
1935 cursor_wm);
1936
1937 /* WM3 */
1938 if (!ironlake_compute_srwm(dev, 3, enabled,
1939 SNB_READ_WM3_LATENCY() * 500,
1940 &sandybridge_display_srwm_info,
1941 &sandybridge_cursor_srwm_info,
1942 &fbc_wm, &plane_wm, &cursor_wm))
1943 return;
1944
1945 I915_WRITE(WM3_LP_ILK,
1946 WM3_LP_EN |
1947 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1948 (fbc_wm << WM1_LP_FBC_SHIFT) |
1949 (plane_wm << WM1_LP_SR_SHIFT) |
1950 cursor_wm);
1951 }
1952
1953 static void ivybridge_update_wm(struct drm_device *dev)
1954 {
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1957 u32 val;
1958 int fbc_wm, plane_wm, cursor_wm;
1959 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1960 unsigned int enabled;
1961
1962 enabled = 0;
1963 if (g4x_compute_wm0(dev, PIPE_A,
1964 &sandybridge_display_wm_info, latency,
1965 &sandybridge_cursor_wm_info, latency,
1966 &plane_wm, &cursor_wm)) {
1967 val = I915_READ(WM0_PIPEA_ILK);
1968 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1969 I915_WRITE(WM0_PIPEA_ILK, val |
1970 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1971 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1972 " plane %d, " "cursor: %d\n",
1973 plane_wm, cursor_wm);
1974 enabled |= 1 << PIPE_A;
1975 }
1976
1977 if (g4x_compute_wm0(dev, PIPE_B,
1978 &sandybridge_display_wm_info, latency,
1979 &sandybridge_cursor_wm_info, latency,
1980 &plane_wm, &cursor_wm)) {
1981 val = I915_READ(WM0_PIPEB_ILK);
1982 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1983 I915_WRITE(WM0_PIPEB_ILK, val |
1984 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1985 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1986 " plane %d, cursor: %d\n",
1987 plane_wm, cursor_wm);
1988 enabled |= 1 << PIPE_B;
1989 }
1990
1991 if (g4x_compute_wm0(dev, PIPE_C,
1992 &sandybridge_display_wm_info, latency,
1993 &sandybridge_cursor_wm_info, latency,
1994 &plane_wm, &cursor_wm)) {
1995 val = I915_READ(WM0_PIPEC_IVB);
1996 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1997 I915_WRITE(WM0_PIPEC_IVB, val |
1998 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1999 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2000 " plane %d, cursor: %d\n",
2001 plane_wm, cursor_wm);
2002 enabled |= 1 << PIPE_C;
2003 }
2004
2005 /*
2006 * Calculate and update the self-refresh watermark only when one
2007 * display plane is used.
2008 *
2009 * SNB support 3 levels of watermark.
2010 *
2011 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2012 * and disabled in the descending order
2013 *
2014 */
2015 I915_WRITE(WM3_LP_ILK, 0);
2016 I915_WRITE(WM2_LP_ILK, 0);
2017 I915_WRITE(WM1_LP_ILK, 0);
2018
2019 if (!single_plane_enabled(enabled) ||
2020 dev_priv->sprite_scaling_enabled)
2021 return;
2022 enabled = ffs(enabled) - 1;
2023
2024 /* WM1 */
2025 if (!ironlake_compute_srwm(dev, 1, enabled,
2026 SNB_READ_WM1_LATENCY() * 500,
2027 &sandybridge_display_srwm_info,
2028 &sandybridge_cursor_srwm_info,
2029 &fbc_wm, &plane_wm, &cursor_wm))
2030 return;
2031
2032 I915_WRITE(WM1_LP_ILK,
2033 WM1_LP_SR_EN |
2034 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2035 (fbc_wm << WM1_LP_FBC_SHIFT) |
2036 (plane_wm << WM1_LP_SR_SHIFT) |
2037 cursor_wm);
2038
2039 /* WM2 */
2040 if (!ironlake_compute_srwm(dev, 2, enabled,
2041 SNB_READ_WM2_LATENCY() * 500,
2042 &sandybridge_display_srwm_info,
2043 &sandybridge_cursor_srwm_info,
2044 &fbc_wm, &plane_wm, &cursor_wm))
2045 return;
2046
2047 I915_WRITE(WM2_LP_ILK,
2048 WM2_LP_EN |
2049 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2050 (fbc_wm << WM1_LP_FBC_SHIFT) |
2051 (plane_wm << WM1_LP_SR_SHIFT) |
2052 cursor_wm);
2053
2054 /* WM3, note we have to correct the cursor latency */
2055 if (!ironlake_compute_srwm(dev, 3, enabled,
2056 SNB_READ_WM3_LATENCY() * 500,
2057 &sandybridge_display_srwm_info,
2058 &sandybridge_cursor_srwm_info,
2059 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2060 !ironlake_compute_srwm(dev, 3, enabled,
2061 2 * SNB_READ_WM3_LATENCY() * 500,
2062 &sandybridge_display_srwm_info,
2063 &sandybridge_cursor_srwm_info,
2064 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2065 return;
2066
2067 I915_WRITE(WM3_LP_ILK,
2068 WM3_LP_EN |
2069 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2070 (fbc_wm << WM1_LP_FBC_SHIFT) |
2071 (plane_wm << WM1_LP_SR_SHIFT) |
2072 cursor_wm);
2073 }
2074
2075 static void
2076 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2077 struct drm_display_mode *mode)
2078 {
2079 struct drm_i915_private *dev_priv = dev->dev_private;
2080 u32 temp;
2081
2082 temp = I915_READ(PIPE_WM_LINETIME(pipe));
2083 temp &= ~PIPE_WM_LINETIME_MASK;
2084
2085 /* The WM are computed with base on how long it takes to fill a single
2086 * row at the given clock rate, multiplied by 8.
2087 * */
2088 temp |= PIPE_WM_LINETIME_TIME(
2089 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2090
2091 /* IPS watermarks are only used by pipe A, and are ignored by
2092 * pipes B and C. They are calculated similarly to the common
2093 * linetime values, except that we are using CD clock frequency
2094 * in MHz instead of pixel rate for the division.
2095 *
2096 * This is a placeholder for the IPS watermark calculation code.
2097 */
2098
2099 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2100 }
2101
2102 static bool
2103 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2104 uint32_t sprite_width, int pixel_size,
2105 const struct intel_watermark_params *display,
2106 int display_latency_ns, int *sprite_wm)
2107 {
2108 struct drm_crtc *crtc;
2109 int clock;
2110 int entries, tlb_miss;
2111
2112 crtc = intel_get_crtc_for_plane(dev, plane);
2113 if (!intel_crtc_active(crtc)) {
2114 *sprite_wm = display->guard_size;
2115 return false;
2116 }
2117
2118 clock = crtc->mode.clock;
2119
2120 /* Use the small buffer method to calculate the sprite watermark */
2121 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2122 tlb_miss = display->fifo_size*display->cacheline_size -
2123 sprite_width * 8;
2124 if (tlb_miss > 0)
2125 entries += tlb_miss;
2126 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2127 *sprite_wm = entries + display->guard_size;
2128 if (*sprite_wm > (int)display->max_wm)
2129 *sprite_wm = display->max_wm;
2130
2131 return true;
2132 }
2133
2134 static bool
2135 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2136 uint32_t sprite_width, int pixel_size,
2137 const struct intel_watermark_params *display,
2138 int latency_ns, int *sprite_wm)
2139 {
2140 struct drm_crtc *crtc;
2141 unsigned long line_time_us;
2142 int clock;
2143 int line_count, line_size;
2144 int small, large;
2145 int entries;
2146
2147 if (!latency_ns) {
2148 *sprite_wm = 0;
2149 return false;
2150 }
2151
2152 crtc = intel_get_crtc_for_plane(dev, plane);
2153 clock = crtc->mode.clock;
2154 if (!clock) {
2155 *sprite_wm = 0;
2156 return false;
2157 }
2158
2159 line_time_us = (sprite_width * 1000) / clock;
2160 if (!line_time_us) {
2161 *sprite_wm = 0;
2162 return false;
2163 }
2164
2165 line_count = (latency_ns / line_time_us + 1000) / 1000;
2166 line_size = sprite_width * pixel_size;
2167
2168 /* Use the minimum of the small and large buffer method for primary */
2169 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2170 large = line_count * line_size;
2171
2172 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2173 *sprite_wm = entries + display->guard_size;
2174
2175 return *sprite_wm > 0x3ff ? false : true;
2176 }
2177
2178 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2179 uint32_t sprite_width, int pixel_size)
2180 {
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2183 u32 val;
2184 int sprite_wm, reg;
2185 int ret;
2186
2187 switch (pipe) {
2188 case 0:
2189 reg = WM0_PIPEA_ILK;
2190 break;
2191 case 1:
2192 reg = WM0_PIPEB_ILK;
2193 break;
2194 case 2:
2195 reg = WM0_PIPEC_IVB;
2196 break;
2197 default:
2198 return; /* bad pipe */
2199 }
2200
2201 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2202 &sandybridge_display_wm_info,
2203 latency, &sprite_wm);
2204 if (!ret) {
2205 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2206 pipe_name(pipe));
2207 return;
2208 }
2209
2210 val = I915_READ(reg);
2211 val &= ~WM0_PIPE_SPRITE_MASK;
2212 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2213 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2214
2215
2216 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2217 pixel_size,
2218 &sandybridge_display_srwm_info,
2219 SNB_READ_WM1_LATENCY() * 500,
2220 &sprite_wm);
2221 if (!ret) {
2222 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2223 pipe_name(pipe));
2224 return;
2225 }
2226 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2227
2228 /* Only IVB has two more LP watermarks for sprite */
2229 if (!IS_IVYBRIDGE(dev))
2230 return;
2231
2232 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2233 pixel_size,
2234 &sandybridge_display_srwm_info,
2235 SNB_READ_WM2_LATENCY() * 500,
2236 &sprite_wm);
2237 if (!ret) {
2238 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2239 pipe_name(pipe));
2240 return;
2241 }
2242 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2243
2244 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2245 pixel_size,
2246 &sandybridge_display_srwm_info,
2247 SNB_READ_WM3_LATENCY() * 500,
2248 &sprite_wm);
2249 if (!ret) {
2250 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2251 pipe_name(pipe));
2252 return;
2253 }
2254 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2255 }
2256
2257 /**
2258 * intel_update_watermarks - update FIFO watermark values based on current modes
2259 *
2260 * Calculate watermark values for the various WM regs based on current mode
2261 * and plane configuration.
2262 *
2263 * There are several cases to deal with here:
2264 * - normal (i.e. non-self-refresh)
2265 * - self-refresh (SR) mode
2266 * - lines are large relative to FIFO size (buffer can hold up to 2)
2267 * - lines are small relative to FIFO size (buffer can hold more than 2
2268 * lines), so need to account for TLB latency
2269 *
2270 * The normal calculation is:
2271 * watermark = dotclock * bytes per pixel * latency
2272 * where latency is platform & configuration dependent (we assume pessimal
2273 * values here).
2274 *
2275 * The SR calculation is:
2276 * watermark = (trunc(latency/line time)+1) * surface width *
2277 * bytes per pixel
2278 * where
2279 * line time = htotal / dotclock
2280 * surface width = hdisplay for normal plane and 64 for cursor
2281 * and latency is assumed to be high, as above.
2282 *
2283 * The final value programmed to the register should always be rounded up,
2284 * and include an extra 2 entries to account for clock crossings.
2285 *
2286 * We don't use the sprite, so we can ignore that. And on Crestline we have
2287 * to set the non-SR watermarks to 8.
2288 */
2289 void intel_update_watermarks(struct drm_device *dev)
2290 {
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292
2293 if (dev_priv->display.update_wm)
2294 dev_priv->display.update_wm(dev);
2295 }
2296
2297 void intel_update_linetime_watermarks(struct drm_device *dev,
2298 int pipe, struct drm_display_mode *mode)
2299 {
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301
2302 if (dev_priv->display.update_linetime_wm)
2303 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2304 }
2305
2306 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2307 uint32_t sprite_width, int pixel_size)
2308 {
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310
2311 if (dev_priv->display.update_sprite_wm)
2312 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2313 pixel_size);
2314 }
2315
2316 static struct drm_i915_gem_object *
2317 intel_alloc_context_page(struct drm_device *dev)
2318 {
2319 struct drm_i915_gem_object *ctx;
2320 int ret;
2321
2322 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2323
2324 ctx = i915_gem_alloc_object(dev, 4096);
2325 if (!ctx) {
2326 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2327 return NULL;
2328 }
2329
2330 ret = i915_gem_object_pin(ctx, 4096, true, false);
2331 if (ret) {
2332 DRM_ERROR("failed to pin power context: %d\n", ret);
2333 goto err_unref;
2334 }
2335
2336 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2337 if (ret) {
2338 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2339 goto err_unpin;
2340 }
2341
2342 return ctx;
2343
2344 err_unpin:
2345 i915_gem_object_unpin(ctx);
2346 err_unref:
2347 drm_gem_object_unreference(&ctx->base);
2348 return NULL;
2349 }
2350
2351 /**
2352 * Lock protecting IPS related data structures
2353 */
2354 DEFINE_SPINLOCK(mchdev_lock);
2355
2356 /* Global for IPS driver to get at the current i915 device. Protected by
2357 * mchdev_lock. */
2358 static struct drm_i915_private *i915_mch_dev;
2359
2360 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2361 {
2362 struct drm_i915_private *dev_priv = dev->dev_private;
2363 u16 rgvswctl;
2364
2365 assert_spin_locked(&mchdev_lock);
2366
2367 rgvswctl = I915_READ16(MEMSWCTL);
2368 if (rgvswctl & MEMCTL_CMD_STS) {
2369 DRM_DEBUG("gpu busy, RCS change rejected\n");
2370 return false; /* still busy with another command */
2371 }
2372
2373 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2374 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2375 I915_WRITE16(MEMSWCTL, rgvswctl);
2376 POSTING_READ16(MEMSWCTL);
2377
2378 rgvswctl |= MEMCTL_CMD_STS;
2379 I915_WRITE16(MEMSWCTL, rgvswctl);
2380
2381 return true;
2382 }
2383
2384 static void ironlake_enable_drps(struct drm_device *dev)
2385 {
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 u32 rgvmodectl = I915_READ(MEMMODECTL);
2388 u8 fmax, fmin, fstart, vstart;
2389
2390 spin_lock_irq(&mchdev_lock);
2391
2392 /* Enable temp reporting */
2393 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2394 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2395
2396 /* 100ms RC evaluation intervals */
2397 I915_WRITE(RCUPEI, 100000);
2398 I915_WRITE(RCDNEI, 100000);
2399
2400 /* Set max/min thresholds to 90ms and 80ms respectively */
2401 I915_WRITE(RCBMAXAVG, 90000);
2402 I915_WRITE(RCBMINAVG, 80000);
2403
2404 I915_WRITE(MEMIHYST, 1);
2405
2406 /* Set up min, max, and cur for interrupt handling */
2407 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2408 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2409 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2410 MEMMODE_FSTART_SHIFT;
2411
2412 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2413 PXVFREQ_PX_SHIFT;
2414
2415 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2416 dev_priv->ips.fstart = fstart;
2417
2418 dev_priv->ips.max_delay = fstart;
2419 dev_priv->ips.min_delay = fmin;
2420 dev_priv->ips.cur_delay = fstart;
2421
2422 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2423 fmax, fmin, fstart);
2424
2425 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2426
2427 /*
2428 * Interrupts will be enabled in ironlake_irq_postinstall
2429 */
2430
2431 I915_WRITE(VIDSTART, vstart);
2432 POSTING_READ(VIDSTART);
2433
2434 rgvmodectl |= MEMMODE_SWMODE_EN;
2435 I915_WRITE(MEMMODECTL, rgvmodectl);
2436
2437 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2438 DRM_ERROR("stuck trying to change perf mode\n");
2439 mdelay(1);
2440
2441 ironlake_set_drps(dev, fstart);
2442
2443 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2444 I915_READ(0x112e0);
2445 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2446 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2447 getrawmonotonic(&dev_priv->ips.last_time2);
2448
2449 spin_unlock_irq(&mchdev_lock);
2450 }
2451
2452 static void ironlake_disable_drps(struct drm_device *dev)
2453 {
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 u16 rgvswctl;
2456
2457 spin_lock_irq(&mchdev_lock);
2458
2459 rgvswctl = I915_READ16(MEMSWCTL);
2460
2461 /* Ack interrupts, disable EFC interrupt */
2462 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2463 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2464 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2465 I915_WRITE(DEIIR, DE_PCU_EVENT);
2466 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2467
2468 /* Go back to the starting frequency */
2469 ironlake_set_drps(dev, dev_priv->ips.fstart);
2470 mdelay(1);
2471 rgvswctl |= MEMCTL_CMD_STS;
2472 I915_WRITE(MEMSWCTL, rgvswctl);
2473 mdelay(1);
2474
2475 spin_unlock_irq(&mchdev_lock);
2476 }
2477
2478 /* There's a funny hw issue where the hw returns all 0 when reading from
2479 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2480 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2481 * all limits and the gpu stuck at whatever frequency it is at atm).
2482 */
2483 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2484 {
2485 u32 limits;
2486
2487 limits = 0;
2488
2489 if (*val >= dev_priv->rps.max_delay)
2490 *val = dev_priv->rps.max_delay;
2491 limits |= dev_priv->rps.max_delay << 24;
2492
2493 /* Only set the down limit when we've reached the lowest level to avoid
2494 * getting more interrupts, otherwise leave this clear. This prevents a
2495 * race in the hw when coming out of rc6: There's a tiny window where
2496 * the hw runs at the minimal clock before selecting the desired
2497 * frequency, if the down threshold expires in that window we will not
2498 * receive a down interrupt. */
2499 if (*val <= dev_priv->rps.min_delay) {
2500 *val = dev_priv->rps.min_delay;
2501 limits |= dev_priv->rps.min_delay << 16;
2502 }
2503
2504 return limits;
2505 }
2506
2507 void gen6_set_rps(struct drm_device *dev, u8 val)
2508 {
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 u32 limits = gen6_rps_limits(dev_priv, &val);
2511
2512 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2513 WARN_ON(val > dev_priv->rps.max_delay);
2514 WARN_ON(val < dev_priv->rps.min_delay);
2515
2516 if (val == dev_priv->rps.cur_delay)
2517 return;
2518
2519 if (IS_HASWELL(dev))
2520 I915_WRITE(GEN6_RPNSWREQ,
2521 HSW_FREQUENCY(val));
2522 else
2523 I915_WRITE(GEN6_RPNSWREQ,
2524 GEN6_FREQUENCY(val) |
2525 GEN6_OFFSET(0) |
2526 GEN6_AGGRESSIVE_TURBO);
2527
2528 /* Make sure we continue to get interrupts
2529 * until we hit the minimum or maximum frequencies.
2530 */
2531 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2532
2533 POSTING_READ(GEN6_RPNSWREQ);
2534
2535 dev_priv->rps.cur_delay = val;
2536
2537 trace_intel_gpu_freq_change(val * 50);
2538 }
2539
2540 void valleyview_set_rps(struct drm_device *dev, u8 val)
2541 {
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543 unsigned long timeout = jiffies + msecs_to_jiffies(10);
2544 u32 limits = gen6_rps_limits(dev_priv, &val);
2545 u32 pval;
2546
2547 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2548 WARN_ON(val > dev_priv->rps.max_delay);
2549 WARN_ON(val < dev_priv->rps.min_delay);
2550
2551 DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
2552 vlv_gpu_freq(dev_priv->mem_freq,
2553 dev_priv->rps.cur_delay),
2554 vlv_gpu_freq(dev_priv->mem_freq, val));
2555
2556 if (val == dev_priv->rps.cur_delay)
2557 return;
2558
2559 valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
2560
2561 do {
2562 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2563 if (time_after(jiffies, timeout)) {
2564 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
2565 break;
2566 }
2567 udelay(10);
2568 } while (pval & 1);
2569
2570 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2571 if ((pval >> 8) != val)
2572 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
2573 val, pval >> 8);
2574
2575 /* Make sure we continue to get interrupts
2576 * until we hit the minimum or maximum frequencies.
2577 */
2578 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2579
2580 dev_priv->rps.cur_delay = pval >> 8;
2581
2582 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
2583 }
2584
2585
2586 static void gen6_disable_rps(struct drm_device *dev)
2587 {
2588 struct drm_i915_private *dev_priv = dev->dev_private;
2589
2590 I915_WRITE(GEN6_RC_CONTROL, 0);
2591 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2592 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2593 I915_WRITE(GEN6_PMIER, 0);
2594 /* Complete PM interrupt masking here doesn't race with the rps work
2595 * item again unmasking PM interrupts because that is using a different
2596 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2597 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2598
2599 spin_lock_irq(&dev_priv->rps.lock);
2600 dev_priv->rps.pm_iir = 0;
2601 spin_unlock_irq(&dev_priv->rps.lock);
2602
2603 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2604 }
2605
2606 static void valleyview_disable_rps(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609
2610 I915_WRITE(GEN6_RC_CONTROL, 0);
2611 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2612 I915_WRITE(GEN6_PMIER, 0);
2613 /* Complete PM interrupt masking here doesn't race with the rps work
2614 * item again unmasking PM interrupts because that is using a different
2615 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2616 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2617
2618 spin_lock_irq(&dev_priv->rps.lock);
2619 dev_priv->rps.pm_iir = 0;
2620 spin_unlock_irq(&dev_priv->rps.lock);
2621
2622 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2623
2624 if (dev_priv->vlv_pctx) {
2625 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
2626 dev_priv->vlv_pctx = NULL;
2627 }
2628 }
2629
2630 int intel_enable_rc6(const struct drm_device *dev)
2631 {
2632 /* Respect the kernel parameter if it is set */
2633 if (i915_enable_rc6 >= 0)
2634 return i915_enable_rc6;
2635
2636 /* Disable RC6 on Ironlake */
2637 if (INTEL_INFO(dev)->gen == 5)
2638 return 0;
2639
2640 if (IS_HASWELL(dev)) {
2641 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2642 return INTEL_RC6_ENABLE;
2643 }
2644
2645 /* snb/ivb have more than one rc6 state. */
2646 if (INTEL_INFO(dev)->gen == 6) {
2647 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2648 return INTEL_RC6_ENABLE;
2649 }
2650
2651 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2652 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2653 }
2654
2655 static void gen6_enable_rps(struct drm_device *dev)
2656 {
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct intel_ring_buffer *ring;
2659 u32 rp_state_cap;
2660 u32 gt_perf_status;
2661 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2662 u32 gtfifodbg;
2663 int rc6_mode;
2664 int i, ret;
2665
2666 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2667
2668 /* Here begins a magic sequence of register writes to enable
2669 * auto-downclocking.
2670 *
2671 * Perhaps there might be some value in exposing these to
2672 * userspace...
2673 */
2674 I915_WRITE(GEN6_RC_STATE, 0);
2675
2676 /* Clear the DBG now so we don't confuse earlier errors */
2677 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2678 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2679 I915_WRITE(GTFIFODBG, gtfifodbg);
2680 }
2681
2682 gen6_gt_force_wake_get(dev_priv);
2683
2684 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2685 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2686
2687 /* In units of 50MHz */
2688 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2689 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2690 dev_priv->rps.cur_delay = 0;
2691
2692 /* disable the counters and set deterministic thresholds */
2693 I915_WRITE(GEN6_RC_CONTROL, 0);
2694
2695 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2696 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2697 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2698 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2699 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2700
2701 for_each_ring(ring, dev_priv, i)
2702 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2703
2704 I915_WRITE(GEN6_RC_SLEEP, 0);
2705 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2706 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2707 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2708 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2709
2710 /* Check if we are enabling RC6 */
2711 rc6_mode = intel_enable_rc6(dev_priv->dev);
2712 if (rc6_mode & INTEL_RC6_ENABLE)
2713 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2714
2715 /* We don't use those on Haswell */
2716 if (!IS_HASWELL(dev)) {
2717 if (rc6_mode & INTEL_RC6p_ENABLE)
2718 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2719
2720 if (rc6_mode & INTEL_RC6pp_ENABLE)
2721 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2722 }
2723
2724 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2725 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2726 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2727 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2728
2729 I915_WRITE(GEN6_RC_CONTROL,
2730 rc6_mask |
2731 GEN6_RC_CTL_EI_MODE(1) |
2732 GEN6_RC_CTL_HW_ENABLE);
2733
2734 if (IS_HASWELL(dev)) {
2735 I915_WRITE(GEN6_RPNSWREQ,
2736 HSW_FREQUENCY(10));
2737 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2738 HSW_FREQUENCY(12));
2739 } else {
2740 I915_WRITE(GEN6_RPNSWREQ,
2741 GEN6_FREQUENCY(10) |
2742 GEN6_OFFSET(0) |
2743 GEN6_AGGRESSIVE_TURBO);
2744 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2745 GEN6_FREQUENCY(12));
2746 }
2747
2748 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2749 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2750 dev_priv->rps.max_delay << 24 |
2751 dev_priv->rps.min_delay << 16);
2752
2753 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2754 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2755 I915_WRITE(GEN6_RP_UP_EI, 66000);
2756 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2757
2758 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2759 I915_WRITE(GEN6_RP_CONTROL,
2760 GEN6_RP_MEDIA_TURBO |
2761 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2762 GEN6_RP_MEDIA_IS_GFX |
2763 GEN6_RP_ENABLE |
2764 GEN6_RP_UP_BUSY_AVG |
2765 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2766
2767 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2768 if (!ret) {
2769 pcu_mbox = 0;
2770 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2771 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2772 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2773 (dev_priv->rps.max_delay & 0xff) * 50,
2774 (pcu_mbox & 0xff) * 50);
2775 dev_priv->rps.hw_max = pcu_mbox & 0xff;
2776 }
2777 } else {
2778 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2779 }
2780
2781 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2782
2783 /* requires MSI enabled */
2784 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2785 spin_lock_irq(&dev_priv->rps.lock);
2786 WARN_ON(dev_priv->rps.pm_iir != 0);
2787 I915_WRITE(GEN6_PMIMR, 0);
2788 spin_unlock_irq(&dev_priv->rps.lock);
2789 /* enable all PM interrupts */
2790 I915_WRITE(GEN6_PMINTRMSK, 0);
2791
2792 rc6vids = 0;
2793 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2794 if (IS_GEN6(dev) && ret) {
2795 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2796 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2797 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2798 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2799 rc6vids &= 0xffff00;
2800 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2801 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2802 if (ret)
2803 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2804 }
2805
2806 gen6_gt_force_wake_put(dev_priv);
2807 }
2808
2809 static void gen6_update_ring_freq(struct drm_device *dev)
2810 {
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 int min_freq = 15;
2813 unsigned int gpu_freq;
2814 unsigned int max_ia_freq, min_ring_freq;
2815 int scaling_factor = 180;
2816
2817 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2818
2819 max_ia_freq = cpufreq_quick_get_max(0);
2820 /*
2821 * Default to measured freq if none found, PCU will ensure we don't go
2822 * over
2823 */
2824 if (!max_ia_freq)
2825 max_ia_freq = tsc_khz;
2826
2827 /* Convert from kHz to MHz */
2828 max_ia_freq /= 1000;
2829
2830 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2831 /* convert DDR frequency from units of 133.3MHz to bandwidth */
2832 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2833
2834 /*
2835 * For each potential GPU frequency, load a ring frequency we'd like
2836 * to use for memory access. We do this by specifying the IA frequency
2837 * the PCU should use as a reference to determine the ring frequency.
2838 */
2839 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2840 gpu_freq--) {
2841 int diff = dev_priv->rps.max_delay - gpu_freq;
2842 unsigned int ia_freq = 0, ring_freq = 0;
2843
2844 if (IS_HASWELL(dev)) {
2845 ring_freq = (gpu_freq * 5 + 3) / 4;
2846 ring_freq = max(min_ring_freq, ring_freq);
2847 /* leave ia_freq as the default, chosen by cpufreq */
2848 } else {
2849 /* On older processors, there is no separate ring
2850 * clock domain, so in order to boost the bandwidth
2851 * of the ring, we need to upclock the CPU (ia_freq).
2852 *
2853 * For GPU frequencies less than 750MHz,
2854 * just use the lowest ring freq.
2855 */
2856 if (gpu_freq < min_freq)
2857 ia_freq = 800;
2858 else
2859 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2860 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2861 }
2862
2863 sandybridge_pcode_write(dev_priv,
2864 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2865 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2866 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2867 gpu_freq);
2868 }
2869 }
2870
2871 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
2872 {
2873 u32 val, rp0;
2874
2875 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
2876
2877 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
2878 /* Clamp to max */
2879 rp0 = min_t(u32, rp0, 0xea);
2880
2881 return rp0;
2882 }
2883
2884 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
2885 {
2886 u32 val, rpe;
2887
2888 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
2889 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
2890 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
2891 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
2892
2893 return rpe;
2894 }
2895
2896 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
2897 {
2898 u32 val;
2899
2900 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
2901
2902 return val & 0xff;
2903 }
2904
2905 static void vlv_rps_timer_work(struct work_struct *work)
2906 {
2907 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
2908 rps.vlv_work.work);
2909
2910 /*
2911 * Timer fired, we must be idle. Drop to min voltage state.
2912 * Note: we use RPe here since it should match the
2913 * Vmin we were shooting for. That should give us better
2914 * perf when we come back out of RC6 than if we used the
2915 * min freq available.
2916 */
2917 mutex_lock(&dev_priv->rps.hw_lock);
2918 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
2919 mutex_unlock(&dev_priv->rps.hw_lock);
2920 }
2921
2922 static void valleyview_setup_pctx(struct drm_device *dev)
2923 {
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 struct drm_i915_gem_object *pctx;
2926 unsigned long pctx_paddr;
2927 u32 pcbr;
2928 int pctx_size = 24*1024;
2929
2930 pcbr = I915_READ(VLV_PCBR);
2931 if (pcbr) {
2932 /* BIOS set it up already, grab the pre-alloc'd space */
2933 int pcbr_offset;
2934
2935 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
2936 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
2937 pcbr_offset,
2938 -1,
2939 pctx_size);
2940 goto out;
2941 }
2942
2943 /*
2944 * From the Gunit register HAS:
2945 * The Gfx driver is expected to program this register and ensure
2946 * proper allocation within Gfx stolen memory. For example, this
2947 * register should be programmed such than the PCBR range does not
2948 * overlap with other ranges, such as the frame buffer, protected
2949 * memory, or any other relevant ranges.
2950 */
2951 pctx = i915_gem_object_create_stolen(dev, pctx_size);
2952 if (!pctx) {
2953 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
2954 return;
2955 }
2956
2957 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
2958 I915_WRITE(VLV_PCBR, pctx_paddr);
2959
2960 out:
2961 dev_priv->vlv_pctx = pctx;
2962 }
2963
2964 static void valleyview_enable_rps(struct drm_device *dev)
2965 {
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_ring_buffer *ring;
2968 u32 gtfifodbg, val, rpe;
2969 int i;
2970
2971 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2972
2973 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2974 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2975 I915_WRITE(GTFIFODBG, gtfifodbg);
2976 }
2977
2978 valleyview_setup_pctx(dev);
2979
2980 gen6_gt_force_wake_get(dev_priv);
2981
2982 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2983 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2984 I915_WRITE(GEN6_RP_UP_EI, 66000);
2985 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2986
2987 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2988
2989 I915_WRITE(GEN6_RP_CONTROL,
2990 GEN6_RP_MEDIA_TURBO |
2991 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2992 GEN6_RP_MEDIA_IS_GFX |
2993 GEN6_RP_ENABLE |
2994 GEN6_RP_UP_BUSY_AVG |
2995 GEN6_RP_DOWN_IDLE_CONT);
2996
2997 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
2998 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2999 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3000
3001 for_each_ring(ring, dev_priv, i)
3002 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3003
3004 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3005
3006 /* allows RC6 residency counter to work */
3007 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3008 I915_WRITE(GEN6_RC_CONTROL,
3009 GEN7_RC_CTL_TO_MODE);
3010
3011 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
3012 switch ((val >> 6) & 3) {
3013 case 0:
3014 case 1:
3015 dev_priv->mem_freq = 800;
3016 break;
3017 case 2:
3018 dev_priv->mem_freq = 1066;
3019 break;
3020 case 3:
3021 dev_priv->mem_freq = 1333;
3022 break;
3023 }
3024 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3025
3026 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3027 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3028
3029 DRM_DEBUG_DRIVER("current GPU freq: %d\n",
3030 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
3031 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3032
3033 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3034 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3035 DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3036 dev_priv->rps.max_delay));
3037
3038 rpe = valleyview_rps_rpe_freq(dev_priv);
3039 DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
3040 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3041 dev_priv->rps.rpe_delay = rpe;
3042
3043 val = valleyview_rps_min_freq(dev_priv);
3044 DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3045 val));
3046 dev_priv->rps.min_delay = val;
3047
3048 DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
3049 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3050
3051 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3052
3053 valleyview_set_rps(dev_priv->dev, rpe);
3054
3055 /* requires MSI enabled */
3056 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
3057 spin_lock_irq(&dev_priv->rps.lock);
3058 WARN_ON(dev_priv->rps.pm_iir != 0);
3059 I915_WRITE(GEN6_PMIMR, 0);
3060 spin_unlock_irq(&dev_priv->rps.lock);
3061 /* enable all PM interrupts */
3062 I915_WRITE(GEN6_PMINTRMSK, 0);
3063
3064 gen6_gt_force_wake_put(dev_priv);
3065 }
3066
3067 void ironlake_teardown_rc6(struct drm_device *dev)
3068 {
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070
3071 if (dev_priv->ips.renderctx) {
3072 i915_gem_object_unpin(dev_priv->ips.renderctx);
3073 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3074 dev_priv->ips.renderctx = NULL;
3075 }
3076
3077 if (dev_priv->ips.pwrctx) {
3078 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3079 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3080 dev_priv->ips.pwrctx = NULL;
3081 }
3082 }
3083
3084 static void ironlake_disable_rc6(struct drm_device *dev)
3085 {
3086 struct drm_i915_private *dev_priv = dev->dev_private;
3087
3088 if (I915_READ(PWRCTXA)) {
3089 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3090 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3091 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3092 50);
3093
3094 I915_WRITE(PWRCTXA, 0);
3095 POSTING_READ(PWRCTXA);
3096
3097 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3098 POSTING_READ(RSTDBYCTL);
3099 }
3100 }
3101
3102 static int ironlake_setup_rc6(struct drm_device *dev)
3103 {
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105
3106 if (dev_priv->ips.renderctx == NULL)
3107 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3108 if (!dev_priv->ips.renderctx)
3109 return -ENOMEM;
3110
3111 if (dev_priv->ips.pwrctx == NULL)
3112 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3113 if (!dev_priv->ips.pwrctx) {
3114 ironlake_teardown_rc6(dev);
3115 return -ENOMEM;
3116 }
3117
3118 return 0;
3119 }
3120
3121 static void ironlake_enable_rc6(struct drm_device *dev)
3122 {
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3125 bool was_interruptible;
3126 int ret;
3127
3128 /* rc6 disabled by default due to repeated reports of hanging during
3129 * boot and resume.
3130 */
3131 if (!intel_enable_rc6(dev))
3132 return;
3133
3134 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3135
3136 ret = ironlake_setup_rc6(dev);
3137 if (ret)
3138 return;
3139
3140 was_interruptible = dev_priv->mm.interruptible;
3141 dev_priv->mm.interruptible = false;
3142
3143 /*
3144 * GPU can automatically power down the render unit if given a page
3145 * to save state.
3146 */
3147 ret = intel_ring_begin(ring, 6);
3148 if (ret) {
3149 ironlake_teardown_rc6(dev);
3150 dev_priv->mm.interruptible = was_interruptible;
3151 return;
3152 }
3153
3154 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3155 intel_ring_emit(ring, MI_SET_CONTEXT);
3156 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3157 MI_MM_SPACE_GTT |
3158 MI_SAVE_EXT_STATE_EN |
3159 MI_RESTORE_EXT_STATE_EN |
3160 MI_RESTORE_INHIBIT);
3161 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3162 intel_ring_emit(ring, MI_NOOP);
3163 intel_ring_emit(ring, MI_FLUSH);
3164 intel_ring_advance(ring);
3165
3166 /*
3167 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3168 * does an implicit flush, combined with MI_FLUSH above, it should be
3169 * safe to assume that renderctx is valid
3170 */
3171 ret = intel_ring_idle(ring);
3172 dev_priv->mm.interruptible = was_interruptible;
3173 if (ret) {
3174 DRM_ERROR("failed to enable ironlake power savings\n");
3175 ironlake_teardown_rc6(dev);
3176 return;
3177 }
3178
3179 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3180 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3181 }
3182
3183 static unsigned long intel_pxfreq(u32 vidfreq)
3184 {
3185 unsigned long freq;
3186 int div = (vidfreq & 0x3f0000) >> 16;
3187 int post = (vidfreq & 0x3000) >> 12;
3188 int pre = (vidfreq & 0x7);
3189
3190 if (!pre)
3191 return 0;
3192
3193 freq = ((div * 133333) / ((1<<post) * pre));
3194
3195 return freq;
3196 }
3197
3198 static const struct cparams {
3199 u16 i;
3200 u16 t;
3201 u16 m;
3202 u16 c;
3203 } cparams[] = {
3204 { 1, 1333, 301, 28664 },
3205 { 1, 1066, 294, 24460 },
3206 { 1, 800, 294, 25192 },
3207 { 0, 1333, 276, 27605 },
3208 { 0, 1066, 276, 27605 },
3209 { 0, 800, 231, 23784 },
3210 };
3211
3212 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3213 {
3214 u64 total_count, diff, ret;
3215 u32 count1, count2, count3, m = 0, c = 0;
3216 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3217 int i;
3218
3219 assert_spin_locked(&mchdev_lock);
3220
3221 diff1 = now - dev_priv->ips.last_time1;
3222
3223 /* Prevent division-by-zero if we are asking too fast.
3224 * Also, we don't get interesting results if we are polling
3225 * faster than once in 10ms, so just return the saved value
3226 * in such cases.
3227 */
3228 if (diff1 <= 10)
3229 return dev_priv->ips.chipset_power;
3230
3231 count1 = I915_READ(DMIEC);
3232 count2 = I915_READ(DDREC);
3233 count3 = I915_READ(CSIEC);
3234
3235 total_count = count1 + count2 + count3;
3236
3237 /* FIXME: handle per-counter overflow */
3238 if (total_count < dev_priv->ips.last_count1) {
3239 diff = ~0UL - dev_priv->ips.last_count1;
3240 diff += total_count;
3241 } else {
3242 diff = total_count - dev_priv->ips.last_count1;
3243 }
3244
3245 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3246 if (cparams[i].i == dev_priv->ips.c_m &&
3247 cparams[i].t == dev_priv->ips.r_t) {
3248 m = cparams[i].m;
3249 c = cparams[i].c;
3250 break;
3251 }
3252 }
3253
3254 diff = div_u64(diff, diff1);
3255 ret = ((m * diff) + c);
3256 ret = div_u64(ret, 10);
3257
3258 dev_priv->ips.last_count1 = total_count;
3259 dev_priv->ips.last_time1 = now;
3260
3261 dev_priv->ips.chipset_power = ret;
3262
3263 return ret;
3264 }
3265
3266 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3267 {
3268 unsigned long val;
3269
3270 if (dev_priv->info->gen != 5)
3271 return 0;
3272
3273 spin_lock_irq(&mchdev_lock);
3274
3275 val = __i915_chipset_val(dev_priv);
3276
3277 spin_unlock_irq(&mchdev_lock);
3278
3279 return val;
3280 }
3281
3282 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3283 {
3284 unsigned long m, x, b;
3285 u32 tsfs;
3286
3287 tsfs = I915_READ(TSFS);
3288
3289 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3290 x = I915_READ8(TR1);
3291
3292 b = tsfs & TSFS_INTR_MASK;
3293
3294 return ((m * x) / 127) - b;
3295 }
3296
3297 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3298 {
3299 static const struct v_table {
3300 u16 vd; /* in .1 mil */
3301 u16 vm; /* in .1 mil */
3302 } v_table[] = {
3303 { 0, 0, },
3304 { 375, 0, },
3305 { 500, 0, },
3306 { 625, 0, },
3307 { 750, 0, },
3308 { 875, 0, },
3309 { 1000, 0, },
3310 { 1125, 0, },
3311 { 4125, 3000, },
3312 { 4125, 3000, },
3313 { 4125, 3000, },
3314 { 4125, 3000, },
3315 { 4125, 3000, },
3316 { 4125, 3000, },
3317 { 4125, 3000, },
3318 { 4125, 3000, },
3319 { 4125, 3000, },
3320 { 4125, 3000, },
3321 { 4125, 3000, },
3322 { 4125, 3000, },
3323 { 4125, 3000, },
3324 { 4125, 3000, },
3325 { 4125, 3000, },
3326 { 4125, 3000, },
3327 { 4125, 3000, },
3328 { 4125, 3000, },
3329 { 4125, 3000, },
3330 { 4125, 3000, },
3331 { 4125, 3000, },
3332 { 4125, 3000, },
3333 { 4125, 3000, },
3334 { 4125, 3000, },
3335 { 4250, 3125, },
3336 { 4375, 3250, },
3337 { 4500, 3375, },
3338 { 4625, 3500, },
3339 { 4750, 3625, },
3340 { 4875, 3750, },
3341 { 5000, 3875, },
3342 { 5125, 4000, },
3343 { 5250, 4125, },
3344 { 5375, 4250, },
3345 { 5500, 4375, },
3346 { 5625, 4500, },
3347 { 5750, 4625, },
3348 { 5875, 4750, },
3349 { 6000, 4875, },
3350 { 6125, 5000, },
3351 { 6250, 5125, },
3352 { 6375, 5250, },
3353 { 6500, 5375, },
3354 { 6625, 5500, },
3355 { 6750, 5625, },
3356 { 6875, 5750, },
3357 { 7000, 5875, },
3358 { 7125, 6000, },
3359 { 7250, 6125, },
3360 { 7375, 6250, },
3361 { 7500, 6375, },
3362 { 7625, 6500, },
3363 { 7750, 6625, },
3364 { 7875, 6750, },
3365 { 8000, 6875, },
3366 { 8125, 7000, },
3367 { 8250, 7125, },
3368 { 8375, 7250, },
3369 { 8500, 7375, },
3370 { 8625, 7500, },
3371 { 8750, 7625, },
3372 { 8875, 7750, },
3373 { 9000, 7875, },
3374 { 9125, 8000, },
3375 { 9250, 8125, },
3376 { 9375, 8250, },
3377 { 9500, 8375, },
3378 { 9625, 8500, },
3379 { 9750, 8625, },
3380 { 9875, 8750, },
3381 { 10000, 8875, },
3382 { 10125, 9000, },
3383 { 10250, 9125, },
3384 { 10375, 9250, },
3385 { 10500, 9375, },
3386 { 10625, 9500, },
3387 { 10750, 9625, },
3388 { 10875, 9750, },
3389 { 11000, 9875, },
3390 { 11125, 10000, },
3391 { 11250, 10125, },
3392 { 11375, 10250, },
3393 { 11500, 10375, },
3394 { 11625, 10500, },
3395 { 11750, 10625, },
3396 { 11875, 10750, },
3397 { 12000, 10875, },
3398 { 12125, 11000, },
3399 { 12250, 11125, },
3400 { 12375, 11250, },
3401 { 12500, 11375, },
3402 { 12625, 11500, },
3403 { 12750, 11625, },
3404 { 12875, 11750, },
3405 { 13000, 11875, },
3406 { 13125, 12000, },
3407 { 13250, 12125, },
3408 { 13375, 12250, },
3409 { 13500, 12375, },
3410 { 13625, 12500, },
3411 { 13750, 12625, },
3412 { 13875, 12750, },
3413 { 14000, 12875, },
3414 { 14125, 13000, },
3415 { 14250, 13125, },
3416 { 14375, 13250, },
3417 { 14500, 13375, },
3418 { 14625, 13500, },
3419 { 14750, 13625, },
3420 { 14875, 13750, },
3421 { 15000, 13875, },
3422 { 15125, 14000, },
3423 { 15250, 14125, },
3424 { 15375, 14250, },
3425 { 15500, 14375, },
3426 { 15625, 14500, },
3427 { 15750, 14625, },
3428 { 15875, 14750, },
3429 { 16000, 14875, },
3430 { 16125, 15000, },
3431 };
3432 if (dev_priv->info->is_mobile)
3433 return v_table[pxvid].vm;
3434 else
3435 return v_table[pxvid].vd;
3436 }
3437
3438 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3439 {
3440 struct timespec now, diff1;
3441 u64 diff;
3442 unsigned long diffms;
3443 u32 count;
3444
3445 assert_spin_locked(&mchdev_lock);
3446
3447 getrawmonotonic(&now);
3448 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3449
3450 /* Don't divide by 0 */
3451 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3452 if (!diffms)
3453 return;
3454
3455 count = I915_READ(GFXEC);
3456
3457 if (count < dev_priv->ips.last_count2) {
3458 diff = ~0UL - dev_priv->ips.last_count2;
3459 diff += count;
3460 } else {
3461 diff = count - dev_priv->ips.last_count2;
3462 }
3463
3464 dev_priv->ips.last_count2 = count;
3465 dev_priv->ips.last_time2 = now;
3466
3467 /* More magic constants... */
3468 diff = diff * 1181;
3469 diff = div_u64(diff, diffms * 10);
3470 dev_priv->ips.gfx_power = diff;
3471 }
3472
3473 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3474 {
3475 if (dev_priv->info->gen != 5)
3476 return;
3477
3478 spin_lock_irq(&mchdev_lock);
3479
3480 __i915_update_gfx_val(dev_priv);
3481
3482 spin_unlock_irq(&mchdev_lock);
3483 }
3484
3485 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3486 {
3487 unsigned long t, corr, state1, corr2, state2;
3488 u32 pxvid, ext_v;
3489
3490 assert_spin_locked(&mchdev_lock);
3491
3492 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3493 pxvid = (pxvid >> 24) & 0x7f;
3494 ext_v = pvid_to_extvid(dev_priv, pxvid);
3495
3496 state1 = ext_v;
3497
3498 t = i915_mch_val(dev_priv);
3499
3500 /* Revel in the empirically derived constants */
3501
3502 /* Correction factor in 1/100000 units */
3503 if (t > 80)
3504 corr = ((t * 2349) + 135940);
3505 else if (t >= 50)
3506 corr = ((t * 964) + 29317);
3507 else /* < 50 */
3508 corr = ((t * 301) + 1004);
3509
3510 corr = corr * ((150142 * state1) / 10000 - 78642);
3511 corr /= 100000;
3512 corr2 = (corr * dev_priv->ips.corr);
3513
3514 state2 = (corr2 * state1) / 10000;
3515 state2 /= 100; /* convert to mW */
3516
3517 __i915_update_gfx_val(dev_priv);
3518
3519 return dev_priv->ips.gfx_power + state2;
3520 }
3521
3522 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3523 {
3524 unsigned long val;
3525
3526 if (dev_priv->info->gen != 5)
3527 return 0;
3528
3529 spin_lock_irq(&mchdev_lock);
3530
3531 val = __i915_gfx_val(dev_priv);
3532
3533 spin_unlock_irq(&mchdev_lock);
3534
3535 return val;
3536 }
3537
3538 /**
3539 * i915_read_mch_val - return value for IPS use
3540 *
3541 * Calculate and return a value for the IPS driver to use when deciding whether
3542 * we have thermal and power headroom to increase CPU or GPU power budget.
3543 */
3544 unsigned long i915_read_mch_val(void)
3545 {
3546 struct drm_i915_private *dev_priv;
3547 unsigned long chipset_val, graphics_val, ret = 0;
3548
3549 spin_lock_irq(&mchdev_lock);
3550 if (!i915_mch_dev)
3551 goto out_unlock;
3552 dev_priv = i915_mch_dev;
3553
3554 chipset_val = __i915_chipset_val(dev_priv);
3555 graphics_val = __i915_gfx_val(dev_priv);
3556
3557 ret = chipset_val + graphics_val;
3558
3559 out_unlock:
3560 spin_unlock_irq(&mchdev_lock);
3561
3562 return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3565
3566 /**
3567 * i915_gpu_raise - raise GPU frequency limit
3568 *
3569 * Raise the limit; IPS indicates we have thermal headroom.
3570 */
3571 bool i915_gpu_raise(void)
3572 {
3573 struct drm_i915_private *dev_priv;
3574 bool ret = true;
3575
3576 spin_lock_irq(&mchdev_lock);
3577 if (!i915_mch_dev) {
3578 ret = false;
3579 goto out_unlock;
3580 }
3581 dev_priv = i915_mch_dev;
3582
3583 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3584 dev_priv->ips.max_delay--;
3585
3586 out_unlock:
3587 spin_unlock_irq(&mchdev_lock);
3588
3589 return ret;
3590 }
3591 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3592
3593 /**
3594 * i915_gpu_lower - lower GPU frequency limit
3595 *
3596 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3597 * frequency maximum.
3598 */
3599 bool i915_gpu_lower(void)
3600 {
3601 struct drm_i915_private *dev_priv;
3602 bool ret = true;
3603
3604 spin_lock_irq(&mchdev_lock);
3605 if (!i915_mch_dev) {
3606 ret = false;
3607 goto out_unlock;
3608 }
3609 dev_priv = i915_mch_dev;
3610
3611 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3612 dev_priv->ips.max_delay++;
3613
3614 out_unlock:
3615 spin_unlock_irq(&mchdev_lock);
3616
3617 return ret;
3618 }
3619 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3620
3621 /**
3622 * i915_gpu_busy - indicate GPU business to IPS
3623 *
3624 * Tell the IPS driver whether or not the GPU is busy.
3625 */
3626 bool i915_gpu_busy(void)
3627 {
3628 struct drm_i915_private *dev_priv;
3629 struct intel_ring_buffer *ring;
3630 bool ret = false;
3631 int i;
3632
3633 spin_lock_irq(&mchdev_lock);
3634 if (!i915_mch_dev)
3635 goto out_unlock;
3636 dev_priv = i915_mch_dev;
3637
3638 for_each_ring(ring, dev_priv, i)
3639 ret |= !list_empty(&ring->request_list);
3640
3641 out_unlock:
3642 spin_unlock_irq(&mchdev_lock);
3643
3644 return ret;
3645 }
3646 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3647
3648 /**
3649 * i915_gpu_turbo_disable - disable graphics turbo
3650 *
3651 * Disable graphics turbo by resetting the max frequency and setting the
3652 * current frequency to the default.
3653 */
3654 bool i915_gpu_turbo_disable(void)
3655 {
3656 struct drm_i915_private *dev_priv;
3657 bool ret = true;
3658
3659 spin_lock_irq(&mchdev_lock);
3660 if (!i915_mch_dev) {
3661 ret = false;
3662 goto out_unlock;
3663 }
3664 dev_priv = i915_mch_dev;
3665
3666 dev_priv->ips.max_delay = dev_priv->ips.fstart;
3667
3668 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3669 ret = false;
3670
3671 out_unlock:
3672 spin_unlock_irq(&mchdev_lock);
3673
3674 return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3677
3678 /**
3679 * Tells the intel_ips driver that the i915 driver is now loaded, if
3680 * IPS got loaded first.
3681 *
3682 * This awkward dance is so that neither module has to depend on the
3683 * other in order for IPS to do the appropriate communication of
3684 * GPU turbo limits to i915.
3685 */
3686 static void
3687 ips_ping_for_i915_load(void)
3688 {
3689 void (*link)(void);
3690
3691 link = symbol_get(ips_link_to_i915_driver);
3692 if (link) {
3693 link();
3694 symbol_put(ips_link_to_i915_driver);
3695 }
3696 }
3697
3698 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3699 {
3700 /* We only register the i915 ips part with intel-ips once everything is
3701 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3702 spin_lock_irq(&mchdev_lock);
3703 i915_mch_dev = dev_priv;
3704 spin_unlock_irq(&mchdev_lock);
3705
3706 ips_ping_for_i915_load();
3707 }
3708
3709 void intel_gpu_ips_teardown(void)
3710 {
3711 spin_lock_irq(&mchdev_lock);
3712 i915_mch_dev = NULL;
3713 spin_unlock_irq(&mchdev_lock);
3714 }
3715 static void intel_init_emon(struct drm_device *dev)
3716 {
3717 struct drm_i915_private *dev_priv = dev->dev_private;
3718 u32 lcfuse;
3719 u8 pxw[16];
3720 int i;
3721
3722 /* Disable to program */
3723 I915_WRITE(ECR, 0);
3724 POSTING_READ(ECR);
3725
3726 /* Program energy weights for various events */
3727 I915_WRITE(SDEW, 0x15040d00);
3728 I915_WRITE(CSIEW0, 0x007f0000);
3729 I915_WRITE(CSIEW1, 0x1e220004);
3730 I915_WRITE(CSIEW2, 0x04000004);
3731
3732 for (i = 0; i < 5; i++)
3733 I915_WRITE(PEW + (i * 4), 0);
3734 for (i = 0; i < 3; i++)
3735 I915_WRITE(DEW + (i * 4), 0);
3736
3737 /* Program P-state weights to account for frequency power adjustment */
3738 for (i = 0; i < 16; i++) {
3739 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3740 unsigned long freq = intel_pxfreq(pxvidfreq);
3741 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3742 PXVFREQ_PX_SHIFT;
3743 unsigned long val;
3744
3745 val = vid * vid;
3746 val *= (freq / 1000);
3747 val *= 255;
3748 val /= (127*127*900);
3749 if (val > 0xff)
3750 DRM_ERROR("bad pxval: %ld\n", val);
3751 pxw[i] = val;
3752 }
3753 /* Render standby states get 0 weight */
3754 pxw[14] = 0;
3755 pxw[15] = 0;
3756
3757 for (i = 0; i < 4; i++) {
3758 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3759 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3760 I915_WRITE(PXW + (i * 4), val);
3761 }
3762
3763 /* Adjust magic regs to magic values (more experimental results) */
3764 I915_WRITE(OGW0, 0);
3765 I915_WRITE(OGW1, 0);
3766 I915_WRITE(EG0, 0x00007f00);
3767 I915_WRITE(EG1, 0x0000000e);
3768 I915_WRITE(EG2, 0x000e0000);
3769 I915_WRITE(EG3, 0x68000300);
3770 I915_WRITE(EG4, 0x42000000);
3771 I915_WRITE(EG5, 0x00140031);
3772 I915_WRITE(EG6, 0);
3773 I915_WRITE(EG7, 0);
3774
3775 for (i = 0; i < 8; i++)
3776 I915_WRITE(PXWL + (i * 4), 0);
3777
3778 /* Enable PMON + select events */
3779 I915_WRITE(ECR, 0x80000019);
3780
3781 lcfuse = I915_READ(LCFUSE02);
3782
3783 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3784 }
3785
3786 void intel_disable_gt_powersave(struct drm_device *dev)
3787 {
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789
3790 /* Interrupts should be disabled already to avoid re-arming. */
3791 WARN_ON(dev->irq_enabled);
3792
3793 if (IS_IRONLAKE_M(dev)) {
3794 ironlake_disable_drps(dev);
3795 ironlake_disable_rc6(dev);
3796 } else if (INTEL_INFO(dev)->gen >= 6) {
3797 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3798 cancel_work_sync(&dev_priv->rps.work);
3799 if (IS_VALLEYVIEW(dev))
3800 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
3801 mutex_lock(&dev_priv->rps.hw_lock);
3802 if (IS_VALLEYVIEW(dev))
3803 valleyview_disable_rps(dev);
3804 else
3805 gen6_disable_rps(dev);
3806 mutex_unlock(&dev_priv->rps.hw_lock);
3807 }
3808 }
3809
3810 static void intel_gen6_powersave_work(struct work_struct *work)
3811 {
3812 struct drm_i915_private *dev_priv =
3813 container_of(work, struct drm_i915_private,
3814 rps.delayed_resume_work.work);
3815 struct drm_device *dev = dev_priv->dev;
3816
3817 mutex_lock(&dev_priv->rps.hw_lock);
3818
3819 if (IS_VALLEYVIEW(dev)) {
3820 valleyview_enable_rps(dev);
3821 } else {
3822 gen6_enable_rps(dev);
3823 gen6_update_ring_freq(dev);
3824 }
3825 mutex_unlock(&dev_priv->rps.hw_lock);
3826 }
3827
3828 void intel_enable_gt_powersave(struct drm_device *dev)
3829 {
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832 if (IS_IRONLAKE_M(dev)) {
3833 ironlake_enable_drps(dev);
3834 ironlake_enable_rc6(dev);
3835 intel_init_emon(dev);
3836 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3837 /*
3838 * PCU communication is slow and this doesn't need to be
3839 * done at any specific time, so do this out of our fast path
3840 * to make resume and init faster.
3841 */
3842 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3843 round_jiffies_up_relative(HZ));
3844 }
3845 }
3846
3847 static void ibx_init_clock_gating(struct drm_device *dev)
3848 {
3849 struct drm_i915_private *dev_priv = dev->dev_private;
3850
3851 /*
3852 * On Ibex Peak and Cougar Point, we need to disable clock
3853 * gating for the panel power sequencer or it will fail to
3854 * start up when no ports are active.
3855 */
3856 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3857 }
3858
3859 static void ironlake_init_clock_gating(struct drm_device *dev)
3860 {
3861 struct drm_i915_private *dev_priv = dev->dev_private;
3862 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3863
3864 /* Required for FBC */
3865 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3866 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3867 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3868
3869 I915_WRITE(PCH_3DCGDIS0,
3870 MARIUNIT_CLOCK_GATE_DISABLE |
3871 SVSMUNIT_CLOCK_GATE_DISABLE);
3872 I915_WRITE(PCH_3DCGDIS1,
3873 VFMUNIT_CLOCK_GATE_DISABLE);
3874
3875 /*
3876 * According to the spec the following bits should be set in
3877 * order to enable memory self-refresh
3878 * The bit 22/21 of 0x42004
3879 * The bit 5 of 0x42020
3880 * The bit 15 of 0x45000
3881 */
3882 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3883 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3884 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3885 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3886 I915_WRITE(DISP_ARB_CTL,
3887 (I915_READ(DISP_ARB_CTL) |
3888 DISP_FBC_WM_DIS));
3889 I915_WRITE(WM3_LP_ILK, 0);
3890 I915_WRITE(WM2_LP_ILK, 0);
3891 I915_WRITE(WM1_LP_ILK, 0);
3892
3893 /*
3894 * Based on the document from hardware guys the following bits
3895 * should be set unconditionally in order to enable FBC.
3896 * The bit 22 of 0x42000
3897 * The bit 22 of 0x42004
3898 * The bit 7,8,9 of 0x42020.
3899 */
3900 if (IS_IRONLAKE_M(dev)) {
3901 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3902 I915_READ(ILK_DISPLAY_CHICKEN1) |
3903 ILK_FBCQ_DIS);
3904 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3905 I915_READ(ILK_DISPLAY_CHICKEN2) |
3906 ILK_DPARB_GATE);
3907 }
3908
3909 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3910
3911 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3912 I915_READ(ILK_DISPLAY_CHICKEN2) |
3913 ILK_ELPIN_409_SELECT);
3914 I915_WRITE(_3D_CHICKEN2,
3915 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3916 _3D_CHICKEN2_WM_READ_PIPELINED);
3917
3918 /* WaDisableRenderCachePipelinedFlush:ilk */
3919 I915_WRITE(CACHE_MODE_0,
3920 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3921
3922 ibx_init_clock_gating(dev);
3923 }
3924
3925 static void cpt_init_clock_gating(struct drm_device *dev)
3926 {
3927 struct drm_i915_private *dev_priv = dev->dev_private;
3928 int pipe;
3929 uint32_t val;
3930
3931 /*
3932 * On Ibex Peak and Cougar Point, we need to disable clock
3933 * gating for the panel power sequencer or it will fail to
3934 * start up when no ports are active.
3935 */
3936 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3937 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3938 DPLS_EDP_PPS_FIX_DIS);
3939 /* The below fixes the weird display corruption, a few pixels shifted
3940 * downward, on (only) LVDS of some HP laptops with IVY.
3941 */
3942 for_each_pipe(pipe) {
3943 val = I915_READ(TRANS_CHICKEN2(pipe));
3944 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3945 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3946 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3947 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3948 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3949 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3950 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3951 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3952 }
3953 /* WADP0ClockGatingDisable */
3954 for_each_pipe(pipe) {
3955 I915_WRITE(TRANS_CHICKEN1(pipe),
3956 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3957 }
3958 }
3959
3960 static void gen6_check_mch_setup(struct drm_device *dev)
3961 {
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 uint32_t tmp;
3964
3965 tmp = I915_READ(MCH_SSKPD);
3966 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3967 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3968 DRM_INFO("This can cause pipe underruns and display issues.\n");
3969 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3970 }
3971 }
3972
3973 static void gen6_init_clock_gating(struct drm_device *dev)
3974 {
3975 struct drm_i915_private *dev_priv = dev->dev_private;
3976 int pipe;
3977 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3978
3979 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3980
3981 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3982 I915_READ(ILK_DISPLAY_CHICKEN2) |
3983 ILK_ELPIN_409_SELECT);
3984
3985 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3986 I915_WRITE(_3D_CHICKEN,
3987 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3988
3989 /* WaSetupGtModeTdRowDispatch:snb */
3990 if (IS_SNB_GT1(dev))
3991 I915_WRITE(GEN6_GT_MODE,
3992 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3993
3994 I915_WRITE(WM3_LP_ILK, 0);
3995 I915_WRITE(WM2_LP_ILK, 0);
3996 I915_WRITE(WM1_LP_ILK, 0);
3997
3998 I915_WRITE(CACHE_MODE_0,
3999 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4000
4001 I915_WRITE(GEN6_UCGCTL1,
4002 I915_READ(GEN6_UCGCTL1) |
4003 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4004 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4005
4006 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4007 * gating disable must be set. Failure to set it results in
4008 * flickering pixels due to Z write ordering failures after
4009 * some amount of runtime in the Mesa "fire" demo, and Unigine
4010 * Sanctuary and Tropics, and apparently anything else with
4011 * alpha test or pixel discard.
4012 *
4013 * According to the spec, bit 11 (RCCUNIT) must also be set,
4014 * but we didn't debug actual testcases to find it out.
4015 *
4016 * Also apply WaDisableVDSUnitClockGating:snb and
4017 * WaDisableRCPBUnitClockGating:snb.
4018 */
4019 I915_WRITE(GEN6_UCGCTL2,
4020 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4021 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4022 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4023
4024 /* Bspec says we need to always set all mask bits. */
4025 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4026 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4027
4028 /*
4029 * According to the spec the following bits should be
4030 * set in order to enable memory self-refresh and fbc:
4031 * The bit21 and bit22 of 0x42000
4032 * The bit21 and bit22 of 0x42004
4033 * The bit5 and bit7 of 0x42020
4034 * The bit14 of 0x70180
4035 * The bit14 of 0x71180
4036 */
4037 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4038 I915_READ(ILK_DISPLAY_CHICKEN1) |
4039 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4040 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4041 I915_READ(ILK_DISPLAY_CHICKEN2) |
4042 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4043 I915_WRITE(ILK_DSPCLK_GATE_D,
4044 I915_READ(ILK_DSPCLK_GATE_D) |
4045 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4046 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4047
4048 /* WaMbcDriverBootEnable:snb */
4049 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4050 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4051
4052 for_each_pipe(pipe) {
4053 I915_WRITE(DSPCNTR(pipe),
4054 I915_READ(DSPCNTR(pipe)) |
4055 DISPPLANE_TRICKLE_FEED_DISABLE);
4056 intel_flush_display_plane(dev_priv, pipe);
4057 }
4058
4059 /* The default value should be 0x200 according to docs, but the two
4060 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4061 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4062 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4063
4064 cpt_init_clock_gating(dev);
4065
4066 gen6_check_mch_setup(dev);
4067 }
4068
4069 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4070 {
4071 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4072
4073 reg &= ~GEN7_FF_SCHED_MASK;
4074 reg |= GEN7_FF_TS_SCHED_HW;
4075 reg |= GEN7_FF_VS_SCHED_HW;
4076 reg |= GEN7_FF_DS_SCHED_HW;
4077
4078 if (IS_HASWELL(dev_priv->dev))
4079 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4080
4081 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4082 }
4083
4084 static void lpt_init_clock_gating(struct drm_device *dev)
4085 {
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087
4088 /*
4089 * TODO: this bit should only be enabled when really needed, then
4090 * disabled when not needed anymore in order to save power.
4091 */
4092 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4093 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4094 I915_READ(SOUTH_DSPCLK_GATE_D) |
4095 PCH_LP_PARTITION_LEVEL_DISABLE);
4096
4097 /* WADPOClockGatingDisable:hsw */
4098 I915_WRITE(_TRANSA_CHICKEN1,
4099 I915_READ(_TRANSA_CHICKEN1) |
4100 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4101 }
4102
4103 static void lpt_suspend_hw(struct drm_device *dev)
4104 {
4105 struct drm_i915_private *dev_priv = dev->dev_private;
4106
4107 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4108 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4109
4110 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4111 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4112 }
4113 }
4114
4115 static void haswell_init_clock_gating(struct drm_device *dev)
4116 {
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 int pipe;
4119
4120 I915_WRITE(WM3_LP_ILK, 0);
4121 I915_WRITE(WM2_LP_ILK, 0);
4122 I915_WRITE(WM1_LP_ILK, 0);
4123
4124 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4125 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4126 */
4127 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4128
4129 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4130 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4131 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4132
4133 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4134 I915_WRITE(GEN7_L3CNTLREG1,
4135 GEN7_WA_FOR_GEN7_L3_CONTROL);
4136 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4137 GEN7_WA_L3_CHICKEN_MODE);
4138
4139 /* This is required by WaCatErrorRejectionIssue:hsw */
4140 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4141 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4142 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4143
4144 for_each_pipe(pipe) {
4145 I915_WRITE(DSPCNTR(pipe),
4146 I915_READ(DSPCNTR(pipe)) |
4147 DISPPLANE_TRICKLE_FEED_DISABLE);
4148 intel_flush_display_plane(dev_priv, pipe);
4149 }
4150
4151 /* WaVSRefCountFullforceMissDisable:hsw */
4152 gen7_setup_fixed_func_scheduler(dev_priv);
4153
4154 /* WaDisable4x2SubspanOptimization:hsw */
4155 I915_WRITE(CACHE_MODE_1,
4156 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4157
4158 /* WaMbcDriverBootEnable:hsw */
4159 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4160 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4161
4162 /* WaSwitchSolVfFArbitrationPriority:hsw */
4163 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4164
4165 /* XXX: This is a workaround for early silicon revisions and should be
4166 * removed later.
4167 */
4168 I915_WRITE(WM_DBG,
4169 I915_READ(WM_DBG) |
4170 WM_DBG_DISALLOW_MULTIPLE_LP |
4171 WM_DBG_DISALLOW_SPRITE |
4172 WM_DBG_DISALLOW_MAXFIFO);
4173
4174 lpt_init_clock_gating(dev);
4175 }
4176
4177 static void ivybridge_init_clock_gating(struct drm_device *dev)
4178 {
4179 struct drm_i915_private *dev_priv = dev->dev_private;
4180 int pipe;
4181 uint32_t snpcr;
4182
4183 I915_WRITE(WM3_LP_ILK, 0);
4184 I915_WRITE(WM2_LP_ILK, 0);
4185 I915_WRITE(WM1_LP_ILK, 0);
4186
4187 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4188
4189 /* WaDisableEarlyCull:ivb */
4190 I915_WRITE(_3D_CHICKEN3,
4191 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4192
4193 /* WaDisableBackToBackFlipFix:ivb */
4194 I915_WRITE(IVB_CHICKEN3,
4195 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4196 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4197
4198 /* WaDisablePSDDualDispatchEnable:ivb */
4199 if (IS_IVB_GT1(dev))
4200 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4201 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4202 else
4203 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4204 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4205
4206 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4207 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4208 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4209
4210 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4211 I915_WRITE(GEN7_L3CNTLREG1,
4212 GEN7_WA_FOR_GEN7_L3_CONTROL);
4213 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4214 GEN7_WA_L3_CHICKEN_MODE);
4215 if (IS_IVB_GT1(dev))
4216 I915_WRITE(GEN7_ROW_CHICKEN2,
4217 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4218 else
4219 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4220 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4221
4222
4223 /* WaForceL3Serialization:ivb */
4224 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4225 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4226
4227 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4228 * gating disable must be set. Failure to set it results in
4229 * flickering pixels due to Z write ordering failures after
4230 * some amount of runtime in the Mesa "fire" demo, and Unigine
4231 * Sanctuary and Tropics, and apparently anything else with
4232 * alpha test or pixel discard.
4233 *
4234 * According to the spec, bit 11 (RCCUNIT) must also be set,
4235 * but we didn't debug actual testcases to find it out.
4236 *
4237 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4238 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4239 */
4240 I915_WRITE(GEN6_UCGCTL2,
4241 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4242 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4243
4244 /* This is required by WaCatErrorRejectionIssue:ivb */
4245 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4246 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4247 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4248
4249 for_each_pipe(pipe) {
4250 I915_WRITE(DSPCNTR(pipe),
4251 I915_READ(DSPCNTR(pipe)) |
4252 DISPPLANE_TRICKLE_FEED_DISABLE);
4253 intel_flush_display_plane(dev_priv, pipe);
4254 }
4255
4256 /* WaMbcDriverBootEnable:ivb */
4257 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4258 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4259
4260 /* WaVSRefCountFullforceMissDisable:ivb */
4261 gen7_setup_fixed_func_scheduler(dev_priv);
4262
4263 /* WaDisable4x2SubspanOptimization:ivb */
4264 I915_WRITE(CACHE_MODE_1,
4265 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4266
4267 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4268 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4269 snpcr |= GEN6_MBC_SNPCR_MED;
4270 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4271
4272 if (!HAS_PCH_NOP(dev))
4273 cpt_init_clock_gating(dev);
4274
4275 gen6_check_mch_setup(dev);
4276 }
4277
4278 static void valleyview_init_clock_gating(struct drm_device *dev)
4279 {
4280 struct drm_i915_private *dev_priv = dev->dev_private;
4281 int pipe;
4282
4283 I915_WRITE(WM3_LP_ILK, 0);
4284 I915_WRITE(WM2_LP_ILK, 0);
4285 I915_WRITE(WM1_LP_ILK, 0);
4286
4287 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4288
4289 /* WaDisableEarlyCull:vlv */
4290 I915_WRITE(_3D_CHICKEN3,
4291 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4292
4293 /* WaDisableBackToBackFlipFix:vlv */
4294 I915_WRITE(IVB_CHICKEN3,
4295 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4296 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4297
4298 /* WaDisablePSDDualDispatchEnable:vlv */
4299 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4300 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4301 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4302
4303 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4304 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4305 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4306
4307 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4308 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4309 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4310
4311 /* WaForceL3Serialization:vlv */
4312 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4313 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4314
4315 /* WaDisableDopClockGating:vlv */
4316 I915_WRITE(GEN7_ROW_CHICKEN2,
4317 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4318
4319 /* WaForceL3Serialization:vlv */
4320 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4321 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4322
4323 /* This is required by WaCatErrorRejectionIssue:vlv */
4324 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4325 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4326 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4327
4328 /* WaMbcDriverBootEnable:vlv */
4329 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4330 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4331
4332
4333 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4334 * gating disable must be set. Failure to set it results in
4335 * flickering pixels due to Z write ordering failures after
4336 * some amount of runtime in the Mesa "fire" demo, and Unigine
4337 * Sanctuary and Tropics, and apparently anything else with
4338 * alpha test or pixel discard.
4339 *
4340 * According to the spec, bit 11 (RCCUNIT) must also be set,
4341 * but we didn't debug actual testcases to find it out.
4342 *
4343 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4344 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4345 *
4346 * Also apply WaDisableVDSUnitClockGating:vlv and
4347 * WaDisableRCPBUnitClockGating:vlv.
4348 */
4349 I915_WRITE(GEN6_UCGCTL2,
4350 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4351 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4352 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4353 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4354 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4355
4356 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4357
4358 for_each_pipe(pipe) {
4359 I915_WRITE(DSPCNTR(pipe),
4360 I915_READ(DSPCNTR(pipe)) |
4361 DISPPLANE_TRICKLE_FEED_DISABLE);
4362 intel_flush_display_plane(dev_priv, pipe);
4363 }
4364
4365 I915_WRITE(CACHE_MODE_1,
4366 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4367
4368 /*
4369 * WaDisableVLVClockGating_VBIIssue:vlv
4370 * Disable clock gating on th GCFG unit to prevent a delay
4371 * in the reporting of vblank events.
4372 */
4373 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4374
4375 /* Conservative clock gating settings for now */
4376 I915_WRITE(0x9400, 0xffffffff);
4377 I915_WRITE(0x9404, 0xffffffff);
4378 I915_WRITE(0x9408, 0xffffffff);
4379 I915_WRITE(0x940c, 0xffffffff);
4380 I915_WRITE(0x9410, 0xffffffff);
4381 I915_WRITE(0x9414, 0xffffffff);
4382 I915_WRITE(0x9418, 0xffffffff);
4383 }
4384
4385 static void g4x_init_clock_gating(struct drm_device *dev)
4386 {
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 uint32_t dspclk_gate;
4389
4390 I915_WRITE(RENCLK_GATE_D1, 0);
4391 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4392 GS_UNIT_CLOCK_GATE_DISABLE |
4393 CL_UNIT_CLOCK_GATE_DISABLE);
4394 I915_WRITE(RAMCLK_GATE_D, 0);
4395 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4396 OVRUNIT_CLOCK_GATE_DISABLE |
4397 OVCUNIT_CLOCK_GATE_DISABLE;
4398 if (IS_GM45(dev))
4399 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4400 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4401
4402 /* WaDisableRenderCachePipelinedFlush */
4403 I915_WRITE(CACHE_MODE_0,
4404 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4405 }
4406
4407 static void crestline_init_clock_gating(struct drm_device *dev)
4408 {
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410
4411 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4412 I915_WRITE(RENCLK_GATE_D2, 0);
4413 I915_WRITE(DSPCLK_GATE_D, 0);
4414 I915_WRITE(RAMCLK_GATE_D, 0);
4415 I915_WRITE16(DEUC, 0);
4416 }
4417
4418 static void broadwater_init_clock_gating(struct drm_device *dev)
4419 {
4420 struct drm_i915_private *dev_priv = dev->dev_private;
4421
4422 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4423 I965_RCC_CLOCK_GATE_DISABLE |
4424 I965_RCPB_CLOCK_GATE_DISABLE |
4425 I965_ISC_CLOCK_GATE_DISABLE |
4426 I965_FBC_CLOCK_GATE_DISABLE);
4427 I915_WRITE(RENCLK_GATE_D2, 0);
4428 }
4429
4430 static void gen3_init_clock_gating(struct drm_device *dev)
4431 {
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 u32 dstate = I915_READ(D_STATE);
4434
4435 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4436 DSTATE_DOT_CLOCK_GATING;
4437 I915_WRITE(D_STATE, dstate);
4438
4439 if (IS_PINEVIEW(dev))
4440 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4441
4442 /* IIR "flip pending" means done if this bit is set */
4443 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4444 }
4445
4446 static void i85x_init_clock_gating(struct drm_device *dev)
4447 {
4448 struct drm_i915_private *dev_priv = dev->dev_private;
4449
4450 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4451 }
4452
4453 static void i830_init_clock_gating(struct drm_device *dev)
4454 {
4455 struct drm_i915_private *dev_priv = dev->dev_private;
4456
4457 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4458 }
4459
4460 void intel_init_clock_gating(struct drm_device *dev)
4461 {
4462 struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464 dev_priv->display.init_clock_gating(dev);
4465 }
4466
4467 void intel_suspend_hw(struct drm_device *dev)
4468 {
4469 if (HAS_PCH_LPT(dev))
4470 lpt_suspend_hw(dev);
4471 }
4472
4473 /**
4474 * We should only use the power well if we explicitly asked the hardware to
4475 * enable it, so check if it's enabled and also check if we've requested it to
4476 * be enabled.
4477 */
4478 bool intel_display_power_enabled(struct drm_device *dev,
4479 enum intel_display_power_domain domain)
4480 {
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482
4483 if (!HAS_POWER_WELL(dev))
4484 return true;
4485
4486 switch (domain) {
4487 case POWER_DOMAIN_PIPE_A:
4488 case POWER_DOMAIN_TRANSCODER_EDP:
4489 return true;
4490 case POWER_DOMAIN_PIPE_B:
4491 case POWER_DOMAIN_PIPE_C:
4492 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
4493 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
4494 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
4495 case POWER_DOMAIN_TRANSCODER_A:
4496 case POWER_DOMAIN_TRANSCODER_B:
4497 case POWER_DOMAIN_TRANSCODER_C:
4498 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4499 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4500 default:
4501 BUG();
4502 }
4503 }
4504
4505 void intel_set_power_well(struct drm_device *dev, bool enable)
4506 {
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 bool is_enabled, enable_requested;
4509 uint32_t tmp;
4510
4511 if (!HAS_POWER_WELL(dev))
4512 return;
4513
4514 if (!i915_disable_power_well && !enable)
4515 return;
4516
4517 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4518 is_enabled = tmp & HSW_PWR_WELL_STATE;
4519 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4520
4521 if (enable) {
4522 if (!enable_requested)
4523 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4524
4525 if (!is_enabled) {
4526 DRM_DEBUG_KMS("Enabling power well\n");
4527 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4528 HSW_PWR_WELL_STATE), 20))
4529 DRM_ERROR("Timeout enabling power well\n");
4530 }
4531 } else {
4532 if (enable_requested) {
4533 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4534 DRM_DEBUG_KMS("Requesting to disable the power well\n");
4535 }
4536 }
4537 }
4538
4539 /*
4540 * Starting with Haswell, we have a "Power Down Well" that can be turned off
4541 * when not needed anymore. We have 4 registers that can request the power well
4542 * to be enabled, and it will only be disabled if none of the registers is
4543 * requesting it to be enabled.
4544 */
4545 void intel_init_power_well(struct drm_device *dev)
4546 {
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4548
4549 if (!HAS_POWER_WELL(dev))
4550 return;
4551
4552 /* For now, we need the power well to be always enabled. */
4553 intel_set_power_well(dev, true);
4554
4555 /* We're taking over the BIOS, so clear any requests made by it since
4556 * the driver is in charge now. */
4557 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4558 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4559 }
4560
4561 /* Set up chip specific power management-related functions */
4562 void intel_init_pm(struct drm_device *dev)
4563 {
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565
4566 if (I915_HAS_FBC(dev)) {
4567 if (HAS_PCH_SPLIT(dev)) {
4568 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4569 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4570 dev_priv->display.enable_fbc =
4571 gen7_enable_fbc;
4572 else
4573 dev_priv->display.enable_fbc =
4574 ironlake_enable_fbc;
4575 dev_priv->display.disable_fbc = ironlake_disable_fbc;
4576 } else if (IS_GM45(dev)) {
4577 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4578 dev_priv->display.enable_fbc = g4x_enable_fbc;
4579 dev_priv->display.disable_fbc = g4x_disable_fbc;
4580 } else if (IS_CRESTLINE(dev)) {
4581 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4582 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4583 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4584 }
4585 /* 855GM needs testing */
4586 }
4587
4588 /* For cxsr */
4589 if (IS_PINEVIEW(dev))
4590 i915_pineview_get_mem_freq(dev);
4591 else if (IS_GEN5(dev))
4592 i915_ironlake_get_mem_freq(dev);
4593
4594 /* For FIFO watermark updates */
4595 if (HAS_PCH_SPLIT(dev)) {
4596 if (IS_GEN5(dev)) {
4597 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4598 dev_priv->display.update_wm = ironlake_update_wm;
4599 else {
4600 DRM_DEBUG_KMS("Failed to get proper latency. "
4601 "Disable CxSR\n");
4602 dev_priv->display.update_wm = NULL;
4603 }
4604 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4605 } else if (IS_GEN6(dev)) {
4606 if (SNB_READ_WM0_LATENCY()) {
4607 dev_priv->display.update_wm = sandybridge_update_wm;
4608 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4609 } else {
4610 DRM_DEBUG_KMS("Failed to read display plane latency. "
4611 "Disable CxSR\n");
4612 dev_priv->display.update_wm = NULL;
4613 }
4614 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4615 } else if (IS_IVYBRIDGE(dev)) {
4616 if (SNB_READ_WM0_LATENCY()) {
4617 dev_priv->display.update_wm = ivybridge_update_wm;
4618 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4619 } else {
4620 DRM_DEBUG_KMS("Failed to read display plane latency. "
4621 "Disable CxSR\n");
4622 dev_priv->display.update_wm = NULL;
4623 }
4624 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4625 } else if (IS_HASWELL(dev)) {
4626 if (SNB_READ_WM0_LATENCY()) {
4627 dev_priv->display.update_wm = sandybridge_update_wm;
4628 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4629 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4630 } else {
4631 DRM_DEBUG_KMS("Failed to read display plane latency. "
4632 "Disable CxSR\n");
4633 dev_priv->display.update_wm = NULL;
4634 }
4635 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4636 } else
4637 dev_priv->display.update_wm = NULL;
4638 } else if (IS_VALLEYVIEW(dev)) {
4639 dev_priv->display.update_wm = valleyview_update_wm;
4640 dev_priv->display.init_clock_gating =
4641 valleyview_init_clock_gating;
4642 } else if (IS_PINEVIEW(dev)) {
4643 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4644 dev_priv->is_ddr3,
4645 dev_priv->fsb_freq,
4646 dev_priv->mem_freq)) {
4647 DRM_INFO("failed to find known CxSR latency "
4648 "(found ddr%s fsb freq %d, mem freq %d), "
4649 "disabling CxSR\n",
4650 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4651 dev_priv->fsb_freq, dev_priv->mem_freq);
4652 /* Disable CxSR and never update its watermark again */
4653 pineview_disable_cxsr(dev);
4654 dev_priv->display.update_wm = NULL;
4655 } else
4656 dev_priv->display.update_wm = pineview_update_wm;
4657 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4658 } else if (IS_G4X(dev)) {
4659 dev_priv->display.update_wm = g4x_update_wm;
4660 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4661 } else if (IS_GEN4(dev)) {
4662 dev_priv->display.update_wm = i965_update_wm;
4663 if (IS_CRESTLINE(dev))
4664 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4665 else if (IS_BROADWATER(dev))
4666 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4667 } else if (IS_GEN3(dev)) {
4668 dev_priv->display.update_wm = i9xx_update_wm;
4669 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4670 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4671 } else if (IS_I865G(dev)) {
4672 dev_priv->display.update_wm = i830_update_wm;
4673 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4674 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4675 } else if (IS_I85X(dev)) {
4676 dev_priv->display.update_wm = i9xx_update_wm;
4677 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4678 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4679 } else {
4680 dev_priv->display.update_wm = i830_update_wm;
4681 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4682 if (IS_845G(dev))
4683 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4684 else
4685 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4686 }
4687 }
4688
4689 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4690 {
4691 u32 gt_thread_status_mask;
4692
4693 if (IS_HASWELL(dev_priv->dev))
4694 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4695 else
4696 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4697
4698 /* w/a for a sporadic read returning 0 by waiting for the GT
4699 * thread to wake up.
4700 */
4701 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4702 DRM_ERROR("GT thread status wait timed out\n");
4703 }
4704
4705 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4706 {
4707 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4708 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4709 }
4710
4711 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4712 {
4713 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4714 FORCEWAKE_ACK_TIMEOUT_MS))
4715 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4716
4717 I915_WRITE_NOTRACE(FORCEWAKE, 1);
4718 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4719
4720 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4721 FORCEWAKE_ACK_TIMEOUT_MS))
4722 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4723
4724 /* WaRsForcewakeWaitTC0:snb */
4725 __gen6_gt_wait_for_thread_c0(dev_priv);
4726 }
4727
4728 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4729 {
4730 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4731 /* something from same cacheline, but !FORCEWAKE_MT */
4732 POSTING_READ(ECOBUS);
4733 }
4734
4735 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4736 {
4737 u32 forcewake_ack;
4738
4739 if (IS_HASWELL(dev_priv->dev))
4740 forcewake_ack = FORCEWAKE_ACK_HSW;
4741 else
4742 forcewake_ack = FORCEWAKE_MT_ACK;
4743
4744 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4745 FORCEWAKE_ACK_TIMEOUT_MS))
4746 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4747
4748 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4749 /* something from same cacheline, but !FORCEWAKE_MT */
4750 POSTING_READ(ECOBUS);
4751
4752 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4753 FORCEWAKE_ACK_TIMEOUT_MS))
4754 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4755
4756 /* WaRsForcewakeWaitTC0:ivb,hsw */
4757 __gen6_gt_wait_for_thread_c0(dev_priv);
4758 }
4759
4760 /*
4761 * Generally this is called implicitly by the register read function. However,
4762 * if some sequence requires the GT to not power down then this function should
4763 * be called at the beginning of the sequence followed by a call to
4764 * gen6_gt_force_wake_put() at the end of the sequence.
4765 */
4766 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4767 {
4768 unsigned long irqflags;
4769
4770 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4771 if (dev_priv->forcewake_count++ == 0)
4772 dev_priv->gt.force_wake_get(dev_priv);
4773 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4774 }
4775
4776 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4777 {
4778 u32 gtfifodbg;
4779 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4780 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4781 "MMIO read or write has been dropped %x\n", gtfifodbg))
4782 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4783 }
4784
4785 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4786 {
4787 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4788 /* something from same cacheline, but !FORCEWAKE */
4789 POSTING_READ(ECOBUS);
4790 gen6_gt_check_fifodbg(dev_priv);
4791 }
4792
4793 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4794 {
4795 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4796 /* something from same cacheline, but !FORCEWAKE_MT */
4797 POSTING_READ(ECOBUS);
4798 gen6_gt_check_fifodbg(dev_priv);
4799 }
4800
4801 /*
4802 * see gen6_gt_force_wake_get()
4803 */
4804 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4805 {
4806 unsigned long irqflags;
4807
4808 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4809 if (--dev_priv->forcewake_count == 0)
4810 dev_priv->gt.force_wake_put(dev_priv);
4811 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4812 }
4813
4814 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4815 {
4816 int ret = 0;
4817
4818 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4819 int loop = 500;
4820 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4821 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4822 udelay(10);
4823 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4824 }
4825 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4826 ++ret;
4827 dev_priv->gt_fifo_count = fifo;
4828 }
4829 dev_priv->gt_fifo_count--;
4830
4831 return ret;
4832 }
4833
4834 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4835 {
4836 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4837 /* something from same cacheline, but !FORCEWAKE_VLV */
4838 POSTING_READ(FORCEWAKE_ACK_VLV);
4839 }
4840
4841 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4842 {
4843 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4844 FORCEWAKE_ACK_TIMEOUT_MS))
4845 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4846
4847 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4848 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4849 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4850
4851 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4852 FORCEWAKE_ACK_TIMEOUT_MS))
4853 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4854
4855 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4856 FORCEWAKE_KERNEL),
4857 FORCEWAKE_ACK_TIMEOUT_MS))
4858 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4859
4860 /* WaRsForcewakeWaitTC0:vlv */
4861 __gen6_gt_wait_for_thread_c0(dev_priv);
4862 }
4863
4864 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4865 {
4866 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4867 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4868 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4869 /* The below doubles as a POSTING_READ */
4870 gen6_gt_check_fifodbg(dev_priv);
4871 }
4872
4873 void intel_gt_reset(struct drm_device *dev)
4874 {
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4876
4877 if (IS_VALLEYVIEW(dev)) {
4878 vlv_force_wake_reset(dev_priv);
4879 } else if (INTEL_INFO(dev)->gen >= 6) {
4880 __gen6_gt_force_wake_reset(dev_priv);
4881 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4882 __gen6_gt_force_wake_mt_reset(dev_priv);
4883 }
4884 }
4885
4886 void intel_gt_init(struct drm_device *dev)
4887 {
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889
4890 spin_lock_init(&dev_priv->gt_lock);
4891
4892 intel_gt_reset(dev);
4893
4894 if (IS_VALLEYVIEW(dev)) {
4895 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4896 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4897 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4898 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4899 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4900 } else if (IS_GEN6(dev)) {
4901 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4902 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4903 }
4904 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4905 intel_gen6_powersave_work);
4906 }
4907
4908 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4909 {
4910 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4911
4912 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4913 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4914 return -EAGAIN;
4915 }
4916
4917 I915_WRITE(GEN6_PCODE_DATA, *val);
4918 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4919
4920 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4921 500)) {
4922 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4923 return -ETIMEDOUT;
4924 }
4925
4926 *val = I915_READ(GEN6_PCODE_DATA);
4927 I915_WRITE(GEN6_PCODE_DATA, 0);
4928
4929 return 0;
4930 }
4931
4932 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4933 {
4934 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4935
4936 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4937 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4938 return -EAGAIN;
4939 }
4940
4941 I915_WRITE(GEN6_PCODE_DATA, val);
4942 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4943
4944 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4945 500)) {
4946 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4947 return -ETIMEDOUT;
4948 }
4949
4950 I915_WRITE(GEN6_PCODE_DATA, 0);
4951
4952 return 0;
4953 }
4954
4955 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
4956 u8 addr, u32 *val)
4957 {
4958 u32 cmd, devfn, be, bar;
4959
4960 bar = 0;
4961 be = 0xf;
4962 devfn = PCI_DEVFN(2, 0);
4963
4964 cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4965 (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4966 (bar << IOSF_BAR_SHIFT);
4967
4968 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4969
4970 if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4971 DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4972 opcode == PUNIT_OPCODE_REG_READ ?
4973 "read" : "write");
4974 return -EAGAIN;
4975 }
4976
4977 I915_WRITE(VLV_IOSF_ADDR, addr);
4978 if (opcode == PUNIT_OPCODE_REG_WRITE)
4979 I915_WRITE(VLV_IOSF_DATA, *val);
4980 I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4981
4982 if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4983 5)) {
4984 DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4985 opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4986 addr);
4987 return -ETIMEDOUT;
4988 }
4989
4990 if (opcode == PUNIT_OPCODE_REG_READ)
4991 *val = I915_READ(VLV_IOSF_DATA);
4992 I915_WRITE(VLV_IOSF_DATA, 0);
4993
4994 return 0;
4995 }
4996
4997 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4998 {
4999 return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
5000 addr, val);
5001 }
5002
5003 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
5004 {
5005 return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
5006 addr, &val);
5007 }
5008
5009 int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
5010 {
5011 return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
5012 addr, val);
5013 }
5014
5015 int vlv_gpu_freq(int ddr_freq, int val)
5016 {
5017 int mult, base;
5018
5019 switch (ddr_freq) {
5020 case 800:
5021 mult = 20;
5022 base = 120;
5023 break;
5024 case 1066:
5025 mult = 22;
5026 base = 133;
5027 break;
5028 case 1333:
5029 mult = 21;
5030 base = 125;
5031 break;
5032 default:
5033 return -1;
5034 }
5035
5036 return ((val - 0xbd) * mult) + base;
5037 }
5038
5039 int vlv_freq_opcode(int ddr_freq, int val)
5040 {
5041 int mult, base;
5042
5043 switch (ddr_freq) {
5044 case 800:
5045 mult = 20;
5046 base = 120;
5047 break;
5048 case 1066:
5049 mult = 22;
5050 base = 133;
5051 break;
5052 case 1333:
5053 mult = 21;
5054 base = 125;
5055 break;
5056 default:
5057 return -1;
5058 }
5059
5060 val /= mult;
5061 val -= base / mult;
5062 val += 0xbd;
5063
5064 if (val > 0xea)
5065 val = 0xea;
5066
5067 return val;
5068 }
5069