]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: fix reference counting in i915_gem_create
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 #define FORCEWAKE_ACK_TIMEOUT_MS 2
36
37 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
38 * framebuffer contents in-memory, aiming at reducing the required bandwidth
39 * during in-memory transfers and, therefore, reduce the power packet.
40 *
41 * The benefits of FBC are mostly visible with solid backgrounds and
42 * variation-less patterns.
43 *
44 * FBC-related functionality can be enabled by the means of the
45 * i915.i915_enable_fbc parameter
46 */
47
48 static bool intel_crtc_active(struct drm_crtc *crtc)
49 {
50 /* Be paranoid as we can arrive here with only partial
51 * state retrieved from the hardware during setup.
52 */
53 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
54 }
55
56 static void i8xx_disable_fbc(struct drm_device *dev)
57 {
58 struct drm_i915_private *dev_priv = dev->dev_private;
59 u32 fbc_ctl;
60
61 /* Disable compression */
62 fbc_ctl = I915_READ(FBC_CONTROL);
63 if ((fbc_ctl & FBC_CTL_EN) == 0)
64 return;
65
66 fbc_ctl &= ~FBC_CTL_EN;
67 I915_WRITE(FBC_CONTROL, fbc_ctl);
68
69 /* Wait for compressing bit to clear */
70 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
71 DRM_DEBUG_KMS("FBC idle timed out\n");
72 return;
73 }
74
75 DRM_DEBUG_KMS("disabled FBC\n");
76 }
77
78 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
79 {
80 struct drm_device *dev = crtc->dev;
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct drm_framebuffer *fb = crtc->fb;
83 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
84 struct drm_i915_gem_object *obj = intel_fb->obj;
85 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
86 int cfb_pitch;
87 int plane, i;
88 u32 fbc_ctl, fbc_ctl2;
89
90 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
91 if (fb->pitches[0] < cfb_pitch)
92 cfb_pitch = fb->pitches[0];
93
94 /* FBC_CTL wants 64B units */
95 cfb_pitch = (cfb_pitch / 64) - 1;
96 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
97
98 /* Clear old tags */
99 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
100 I915_WRITE(FBC_TAG + (i * 4), 0);
101
102 /* Set it up... */
103 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
104 fbc_ctl2 |= plane;
105 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
106 I915_WRITE(FBC_FENCE_OFF, crtc->y);
107
108 /* enable it... */
109 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
110 if (IS_I945GM(dev))
111 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
112 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
113 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
114 fbc_ctl |= obj->fence_reg;
115 I915_WRITE(FBC_CONTROL, fbc_ctl);
116
117 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
118 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
119 }
120
121 static bool i8xx_fbc_enabled(struct drm_device *dev)
122 {
123 struct drm_i915_private *dev_priv = dev->dev_private;
124
125 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
126 }
127
128 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
129 {
130 struct drm_device *dev = crtc->dev;
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 struct drm_framebuffer *fb = crtc->fb;
133 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
134 struct drm_i915_gem_object *obj = intel_fb->obj;
135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
136 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
137 unsigned long stall_watermark = 200;
138 u32 dpfc_ctl;
139
140 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
141 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
142 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
143
144 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
145 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
146 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
147 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
148
149 /* enable it... */
150 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
151
152 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
153 }
154
155 static void g4x_disable_fbc(struct drm_device *dev)
156 {
157 struct drm_i915_private *dev_priv = dev->dev_private;
158 u32 dpfc_ctl;
159
160 /* Disable compression */
161 dpfc_ctl = I915_READ(DPFC_CONTROL);
162 if (dpfc_ctl & DPFC_CTL_EN) {
163 dpfc_ctl &= ~DPFC_CTL_EN;
164 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
165
166 DRM_DEBUG_KMS("disabled FBC\n");
167 }
168 }
169
170 static bool g4x_fbc_enabled(struct drm_device *dev)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173
174 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
175 }
176
177 static void sandybridge_blit_fbc_update(struct drm_device *dev)
178 {
179 struct drm_i915_private *dev_priv = dev->dev_private;
180 u32 blt_ecoskpd;
181
182 /* Make sure blitter notifies FBC of writes */
183 gen6_gt_force_wake_get(dev_priv);
184 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
185 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
186 GEN6_BLITTER_LOCK_SHIFT;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
189 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
190 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
191 GEN6_BLITTER_LOCK_SHIFT);
192 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
193 POSTING_READ(GEN6_BLITTER_ECOSKPD);
194 gen6_gt_force_wake_put(dev_priv);
195 }
196
197 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
198 {
199 struct drm_device *dev = crtc->dev;
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct drm_framebuffer *fb = crtc->fb;
202 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
203 struct drm_i915_gem_object *obj = intel_fb->obj;
204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
205 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
206 unsigned long stall_watermark = 200;
207 u32 dpfc_ctl;
208
209 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
210 dpfc_ctl &= DPFC_RESERVED;
211 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
212 /* Set persistent mode for front-buffer rendering, ala X. */
213 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
214 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
215 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
216
217 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
218 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
219 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
220 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
221 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
222 /* enable it... */
223 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
224
225 if (IS_GEN6(dev)) {
226 I915_WRITE(SNB_DPFC_CTL_SA,
227 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
228 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
229 sandybridge_blit_fbc_update(dev);
230 }
231
232 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
233 }
234
235 static void ironlake_disable_fbc(struct drm_device *dev)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 u32 dpfc_ctl;
239
240 /* Disable compression */
241 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
242 if (dpfc_ctl & DPFC_CTL_EN) {
243 dpfc_ctl &= ~DPFC_CTL_EN;
244 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
245
246 if (IS_IVYBRIDGE(dev))
247 /* WaFbcDisableDpfcClockGating:ivb */
248 I915_WRITE(ILK_DSPCLK_GATE_D,
249 I915_READ(ILK_DSPCLK_GATE_D) &
250 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
251
252 if (IS_HASWELL(dev))
253 /* WaFbcDisableDpfcClockGating:hsw */
254 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
255 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
256 ~HSW_DPFC_GATING_DISABLE);
257
258 DRM_DEBUG_KMS("disabled FBC\n");
259 }
260 }
261
262 static bool ironlake_fbc_enabled(struct drm_device *dev)
263 {
264 struct drm_i915_private *dev_priv = dev->dev_private;
265
266 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
267 }
268
269 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
270 {
271 struct drm_device *dev = crtc->dev;
272 struct drm_i915_private *dev_priv = dev->dev_private;
273 struct drm_framebuffer *fb = crtc->fb;
274 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
275 struct drm_i915_gem_object *obj = intel_fb->obj;
276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
277
278 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
279
280 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
281 IVB_DPFC_CTL_FENCE_EN |
282 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
283
284 if (IS_IVYBRIDGE(dev)) {
285 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
286 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
287 /* WaFbcDisableDpfcClockGating:ivb */
288 I915_WRITE(ILK_DSPCLK_GATE_D,
289 I915_READ(ILK_DSPCLK_GATE_D) |
290 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
291 } else {
292 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
293 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
294 HSW_BYPASS_FBC_QUEUE);
295 /* WaFbcDisableDpfcClockGating:hsw */
296 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
297 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
298 HSW_DPFC_GATING_DISABLE);
299 }
300
301 I915_WRITE(SNB_DPFC_CTL_SA,
302 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305 sandybridge_blit_fbc_update(dev);
306
307 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
308 }
309
310 bool intel_fbc_enabled(struct drm_device *dev)
311 {
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.fbc_enabled)
315 return false;
316
317 return dev_priv->display.fbc_enabled(dev);
318 }
319
320 static void intel_fbc_work_fn(struct work_struct *__work)
321 {
322 struct intel_fbc_work *work =
323 container_of(to_delayed_work(__work),
324 struct intel_fbc_work, work);
325 struct drm_device *dev = work->crtc->dev;
326 struct drm_i915_private *dev_priv = dev->dev_private;
327
328 mutex_lock(&dev->struct_mutex);
329 if (work == dev_priv->fbc.fbc_work) {
330 /* Double check that we haven't switched fb without cancelling
331 * the prior work.
332 */
333 if (work->crtc->fb == work->fb) {
334 dev_priv->display.enable_fbc(work->crtc,
335 work->interval);
336
337 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
338 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
339 dev_priv->fbc.y = work->crtc->y;
340 }
341
342 dev_priv->fbc.fbc_work = NULL;
343 }
344 mutex_unlock(&dev->struct_mutex);
345
346 kfree(work);
347 }
348
349 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
350 {
351 if (dev_priv->fbc.fbc_work == NULL)
352 return;
353
354 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
355
356 /* Synchronisation is provided by struct_mutex and checking of
357 * dev_priv->fbc.fbc_work, so we can perform the cancellation
358 * entirely asynchronously.
359 */
360 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
361 /* tasklet was killed before being run, clean up */
362 kfree(dev_priv->fbc.fbc_work);
363
364 /* Mark the work as no longer wanted so that if it does
365 * wake-up (because the work was already running and waiting
366 * for our mutex), it will discover that is no longer
367 * necessary to run.
368 */
369 dev_priv->fbc.fbc_work = NULL;
370 }
371
372 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
373 {
374 struct intel_fbc_work *work;
375 struct drm_device *dev = crtc->dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377
378 if (!dev_priv->display.enable_fbc)
379 return;
380
381 intel_cancel_fbc_work(dev_priv);
382
383 work = kzalloc(sizeof *work, GFP_KERNEL);
384 if (work == NULL) {
385 DRM_ERROR("Failed to allocate FBC work structure\n");
386 dev_priv->display.enable_fbc(crtc, interval);
387 return;
388 }
389
390 work->crtc = crtc;
391 work->fb = crtc->fb;
392 work->interval = interval;
393 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
394
395 dev_priv->fbc.fbc_work = work;
396
397 /* Delay the actual enabling to let pageflipping cease and the
398 * display to settle before starting the compression. Note that
399 * this delay also serves a second purpose: it allows for a
400 * vblank to pass after disabling the FBC before we attempt
401 * to modify the control registers.
402 *
403 * A more complicated solution would involve tracking vblanks
404 * following the termination of the page-flipping sequence
405 * and indeed performing the enable as a co-routine and not
406 * waiting synchronously upon the vblank.
407 *
408 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
409 */
410 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
411 }
412
413 void intel_disable_fbc(struct drm_device *dev)
414 {
415 struct drm_i915_private *dev_priv = dev->dev_private;
416
417 intel_cancel_fbc_work(dev_priv);
418
419 if (!dev_priv->display.disable_fbc)
420 return;
421
422 dev_priv->display.disable_fbc(dev);
423 dev_priv->fbc.plane = -1;
424 }
425
426 /**
427 * intel_update_fbc - enable/disable FBC as needed
428 * @dev: the drm_device
429 *
430 * Set up the framebuffer compression hardware at mode set time. We
431 * enable it if possible:
432 * - plane A only (on pre-965)
433 * - no pixel mulitply/line duplication
434 * - no alpha buffer discard
435 * - no dual wide
436 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
437 *
438 * We can't assume that any compression will take place (worst case),
439 * so the compressed buffer has to be the same size as the uncompressed
440 * one. It also must reside (along with the line length buffer) in
441 * stolen memory.
442 *
443 * We need to enable/disable FBC on a global basis.
444 */
445 void intel_update_fbc(struct drm_device *dev)
446 {
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 struct drm_crtc *crtc = NULL, *tmp_crtc;
449 struct intel_crtc *intel_crtc;
450 struct drm_framebuffer *fb;
451 struct intel_framebuffer *intel_fb;
452 struct drm_i915_gem_object *obj;
453 unsigned int max_hdisplay, max_vdisplay;
454
455 if (!i915_powersave)
456 return;
457
458 if (!I915_HAS_FBC(dev))
459 return;
460
461 /*
462 * If FBC is already on, we just have to verify that we can
463 * keep it that way...
464 * Need to disable if:
465 * - more than one pipe is active
466 * - changing FBC params (stride, fence, mode)
467 * - new fb is too large to fit in compressed buffer
468 * - going to an unsupported config (interlace, pixel multiply, etc.)
469 */
470 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
471 if (intel_crtc_active(tmp_crtc) &&
472 !to_intel_crtc(tmp_crtc)->primary_disabled) {
473 if (crtc) {
474 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
475 dev_priv->fbc.no_fbc_reason =
476 FBC_MULTIPLE_PIPES;
477 goto out_disable;
478 }
479 crtc = tmp_crtc;
480 }
481 }
482
483 if (!crtc || crtc->fb == NULL) {
484 DRM_DEBUG_KMS("no output, disabling\n");
485 dev_priv->fbc.no_fbc_reason = FBC_NO_OUTPUT;
486 goto out_disable;
487 }
488
489 intel_crtc = to_intel_crtc(crtc);
490 fb = crtc->fb;
491 intel_fb = to_intel_framebuffer(fb);
492 obj = intel_fb->obj;
493
494 if (i915_enable_fbc < 0 &&
495 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
496 DRM_DEBUG_KMS("disabled per chip default\n");
497 dev_priv->fbc.no_fbc_reason = FBC_CHIP_DEFAULT;
498 goto out_disable;
499 }
500 if (!i915_enable_fbc) {
501 DRM_DEBUG_KMS("fbc disabled per module param\n");
502 dev_priv->fbc.no_fbc_reason = FBC_MODULE_PARAM;
503 goto out_disable;
504 }
505 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
506 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
507 DRM_DEBUG_KMS("mode incompatible with compression, "
508 "disabling\n");
509 dev_priv->fbc.no_fbc_reason = FBC_UNSUPPORTED_MODE;
510 goto out_disable;
511 }
512
513 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
514 max_hdisplay = 4096;
515 max_vdisplay = 2048;
516 } else {
517 max_hdisplay = 2048;
518 max_vdisplay = 1536;
519 }
520 if ((crtc->mode.hdisplay > max_hdisplay) ||
521 (crtc->mode.vdisplay > max_vdisplay)) {
522 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
523 dev_priv->fbc.no_fbc_reason = FBC_MODE_TOO_LARGE;
524 goto out_disable;
525 }
526 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
527 intel_crtc->plane != 0) {
528 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
529 dev_priv->fbc.no_fbc_reason = FBC_BAD_PLANE;
530 goto out_disable;
531 }
532
533 /* The use of a CPU fence is mandatory in order to detect writes
534 * by the CPU to the scanout and trigger updates to the FBC.
535 */
536 if (obj->tiling_mode != I915_TILING_X ||
537 obj->fence_reg == I915_FENCE_REG_NONE) {
538 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
539 dev_priv->fbc.no_fbc_reason = FBC_NOT_TILED;
540 goto out_disable;
541 }
542
543 /* If the kernel debugger is active, always disable compression */
544 if (in_dbg_master())
545 goto out_disable;
546
547 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
548 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
549 dev_priv->fbc.no_fbc_reason = FBC_STOLEN_TOO_SMALL;
550 goto out_disable;
551 }
552
553 /* If the scanout has not changed, don't modify the FBC settings.
554 * Note that we make the fundamental assumption that the fb->obj
555 * cannot be unpinned (and have its GTT offset and fence revoked)
556 * without first being decoupled from the scanout and FBC disabled.
557 */
558 if (dev_priv->fbc.plane == intel_crtc->plane &&
559 dev_priv->fbc.fb_id == fb->base.id &&
560 dev_priv->fbc.y == crtc->y)
561 return;
562
563 if (intel_fbc_enabled(dev)) {
564 /* We update FBC along two paths, after changing fb/crtc
565 * configuration (modeswitching) and after page-flipping
566 * finishes. For the latter, we know that not only did
567 * we disable the FBC at the start of the page-flip
568 * sequence, but also more than one vblank has passed.
569 *
570 * For the former case of modeswitching, it is possible
571 * to switch between two FBC valid configurations
572 * instantaneously so we do need to disable the FBC
573 * before we can modify its control registers. We also
574 * have to wait for the next vblank for that to take
575 * effect. However, since we delay enabling FBC we can
576 * assume that a vblank has passed since disabling and
577 * that we can safely alter the registers in the deferred
578 * callback.
579 *
580 * In the scenario that we go from a valid to invalid
581 * and then back to valid FBC configuration we have
582 * no strict enforcement that a vblank occurred since
583 * disabling the FBC. However, along all current pipe
584 * disabling paths we do need to wait for a vblank at
585 * some point. And we wait before enabling FBC anyway.
586 */
587 DRM_DEBUG_KMS("disabling active FBC for update\n");
588 intel_disable_fbc(dev);
589 }
590
591 intel_enable_fbc(crtc, 500);
592 return;
593
594 out_disable:
595 /* Multiple disables should be harmless */
596 if (intel_fbc_enabled(dev)) {
597 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
598 intel_disable_fbc(dev);
599 }
600 i915_gem_stolen_cleanup_compression(dev);
601 }
602
603 static void i915_pineview_get_mem_freq(struct drm_device *dev)
604 {
605 drm_i915_private_t *dev_priv = dev->dev_private;
606 u32 tmp;
607
608 tmp = I915_READ(CLKCFG);
609
610 switch (tmp & CLKCFG_FSB_MASK) {
611 case CLKCFG_FSB_533:
612 dev_priv->fsb_freq = 533; /* 133*4 */
613 break;
614 case CLKCFG_FSB_800:
615 dev_priv->fsb_freq = 800; /* 200*4 */
616 break;
617 case CLKCFG_FSB_667:
618 dev_priv->fsb_freq = 667; /* 167*4 */
619 break;
620 case CLKCFG_FSB_400:
621 dev_priv->fsb_freq = 400; /* 100*4 */
622 break;
623 }
624
625 switch (tmp & CLKCFG_MEM_MASK) {
626 case CLKCFG_MEM_533:
627 dev_priv->mem_freq = 533;
628 break;
629 case CLKCFG_MEM_667:
630 dev_priv->mem_freq = 667;
631 break;
632 case CLKCFG_MEM_800:
633 dev_priv->mem_freq = 800;
634 break;
635 }
636
637 /* detect pineview DDR3 setting */
638 tmp = I915_READ(CSHRDDR3CTL);
639 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
640 }
641
642 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
643 {
644 drm_i915_private_t *dev_priv = dev->dev_private;
645 u16 ddrpll, csipll;
646
647 ddrpll = I915_READ16(DDRMPLL1);
648 csipll = I915_READ16(CSIPLL0);
649
650 switch (ddrpll & 0xff) {
651 case 0xc:
652 dev_priv->mem_freq = 800;
653 break;
654 case 0x10:
655 dev_priv->mem_freq = 1066;
656 break;
657 case 0x14:
658 dev_priv->mem_freq = 1333;
659 break;
660 case 0x18:
661 dev_priv->mem_freq = 1600;
662 break;
663 default:
664 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
665 ddrpll & 0xff);
666 dev_priv->mem_freq = 0;
667 break;
668 }
669
670 dev_priv->ips.r_t = dev_priv->mem_freq;
671
672 switch (csipll & 0x3ff) {
673 case 0x00c:
674 dev_priv->fsb_freq = 3200;
675 break;
676 case 0x00e:
677 dev_priv->fsb_freq = 3733;
678 break;
679 case 0x010:
680 dev_priv->fsb_freq = 4266;
681 break;
682 case 0x012:
683 dev_priv->fsb_freq = 4800;
684 break;
685 case 0x014:
686 dev_priv->fsb_freq = 5333;
687 break;
688 case 0x016:
689 dev_priv->fsb_freq = 5866;
690 break;
691 case 0x018:
692 dev_priv->fsb_freq = 6400;
693 break;
694 default:
695 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
696 csipll & 0x3ff);
697 dev_priv->fsb_freq = 0;
698 break;
699 }
700
701 if (dev_priv->fsb_freq == 3200) {
702 dev_priv->ips.c_m = 0;
703 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
704 dev_priv->ips.c_m = 1;
705 } else {
706 dev_priv->ips.c_m = 2;
707 }
708 }
709
710 static const struct cxsr_latency cxsr_latency_table[] = {
711 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
712 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
713 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
714 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
715 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
716
717 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
718 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
719 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
720 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
721 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
722
723 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
724 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
725 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
726 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
727 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
728
729 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
730 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
731 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
732 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
733 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
734
735 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
736 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
737 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
738 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
739 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
740
741 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
742 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
743 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
744 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
745 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
746 };
747
748 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
749 int is_ddr3,
750 int fsb,
751 int mem)
752 {
753 const struct cxsr_latency *latency;
754 int i;
755
756 if (fsb == 0 || mem == 0)
757 return NULL;
758
759 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
760 latency = &cxsr_latency_table[i];
761 if (is_desktop == latency->is_desktop &&
762 is_ddr3 == latency->is_ddr3 &&
763 fsb == latency->fsb_freq && mem == latency->mem_freq)
764 return latency;
765 }
766
767 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
768
769 return NULL;
770 }
771
772 static void pineview_disable_cxsr(struct drm_device *dev)
773 {
774 struct drm_i915_private *dev_priv = dev->dev_private;
775
776 /* deactivate cxsr */
777 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
778 }
779
780 /*
781 * Latency for FIFO fetches is dependent on several factors:
782 * - memory configuration (speed, channels)
783 * - chipset
784 * - current MCH state
785 * It can be fairly high in some situations, so here we assume a fairly
786 * pessimal value. It's a tradeoff between extra memory fetches (if we
787 * set this value too high, the FIFO will fetch frequently to stay full)
788 * and power consumption (set it too low to save power and we might see
789 * FIFO underruns and display "flicker").
790 *
791 * A value of 5us seems to be a good balance; safe for very low end
792 * platforms but not overly aggressive on lower latency configs.
793 */
794 static const int latency_ns = 5000;
795
796 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 uint32_t dsparb = I915_READ(DSPARB);
800 int size;
801
802 size = dsparb & 0x7f;
803 if (plane)
804 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
805
806 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
807 plane ? "B" : "A", size);
808
809 return size;
810 }
811
812 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
813 {
814 struct drm_i915_private *dev_priv = dev->dev_private;
815 uint32_t dsparb = I915_READ(DSPARB);
816 int size;
817
818 size = dsparb & 0x1ff;
819 if (plane)
820 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
821 size >>= 1; /* Convert to cachelines */
822
823 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
824 plane ? "B" : "A", size);
825
826 return size;
827 }
828
829 static int i845_get_fifo_size(struct drm_device *dev, int plane)
830 {
831 struct drm_i915_private *dev_priv = dev->dev_private;
832 uint32_t dsparb = I915_READ(DSPARB);
833 int size;
834
835 size = dsparb & 0x7f;
836 size >>= 2; /* Convert to cachelines */
837
838 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839 plane ? "B" : "A",
840 size);
841
842 return size;
843 }
844
845 static int i830_get_fifo_size(struct drm_device *dev, int plane)
846 {
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 uint32_t dsparb = I915_READ(DSPARB);
849 int size;
850
851 size = dsparb & 0x7f;
852 size >>= 1; /* Convert to cachelines */
853
854 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
855 plane ? "B" : "A", size);
856
857 return size;
858 }
859
860 /* Pineview has different values for various configs */
861 static const struct intel_watermark_params pineview_display_wm = {
862 PINEVIEW_DISPLAY_FIFO,
863 PINEVIEW_MAX_WM,
864 PINEVIEW_DFT_WM,
865 PINEVIEW_GUARD_WM,
866 PINEVIEW_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params pineview_display_hplloff_wm = {
869 PINEVIEW_DISPLAY_FIFO,
870 PINEVIEW_MAX_WM,
871 PINEVIEW_DFT_HPLLOFF_WM,
872 PINEVIEW_GUARD_WM,
873 PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_cursor_wm = {
876 PINEVIEW_CURSOR_FIFO,
877 PINEVIEW_CURSOR_MAX_WM,
878 PINEVIEW_CURSOR_DFT_WM,
879 PINEVIEW_CURSOR_GUARD_WM,
880 PINEVIEW_FIFO_LINE_SIZE,
881 };
882 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883 PINEVIEW_CURSOR_FIFO,
884 PINEVIEW_CURSOR_MAX_WM,
885 PINEVIEW_CURSOR_DFT_WM,
886 PINEVIEW_CURSOR_GUARD_WM,
887 PINEVIEW_FIFO_LINE_SIZE
888 };
889 static const struct intel_watermark_params g4x_wm_info = {
890 G4X_FIFO_SIZE,
891 G4X_MAX_WM,
892 G4X_MAX_WM,
893 2,
894 G4X_FIFO_LINE_SIZE,
895 };
896 static const struct intel_watermark_params g4x_cursor_wm_info = {
897 I965_CURSOR_FIFO,
898 I965_CURSOR_MAX_WM,
899 I965_CURSOR_DFT_WM,
900 2,
901 G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params valleyview_wm_info = {
904 VALLEYVIEW_FIFO_SIZE,
905 VALLEYVIEW_MAX_WM,
906 VALLEYVIEW_MAX_WM,
907 2,
908 G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_cursor_wm_info = {
911 I965_CURSOR_FIFO,
912 VALLEYVIEW_CURSOR_MAX_WM,
913 I965_CURSOR_DFT_WM,
914 2,
915 G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params i965_cursor_wm_info = {
918 I965_CURSOR_FIFO,
919 I965_CURSOR_MAX_WM,
920 I965_CURSOR_DFT_WM,
921 2,
922 I915_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i945_wm_info = {
925 I945_FIFO_SIZE,
926 I915_MAX_WM,
927 1,
928 2,
929 I915_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params i915_wm_info = {
932 I915_FIFO_SIZE,
933 I915_MAX_WM,
934 1,
935 2,
936 I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i855_wm_info = {
939 I855GM_FIFO_SIZE,
940 I915_MAX_WM,
941 1,
942 2,
943 I830_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i830_wm_info = {
946 I830_FIFO_SIZE,
947 I915_MAX_WM,
948 1,
949 2,
950 I830_FIFO_LINE_SIZE
951 };
952
953 static const struct intel_watermark_params ironlake_display_wm_info = {
954 ILK_DISPLAY_FIFO,
955 ILK_DISPLAY_MAXWM,
956 ILK_DISPLAY_DFTWM,
957 2,
958 ILK_FIFO_LINE_SIZE
959 };
960 static const struct intel_watermark_params ironlake_cursor_wm_info = {
961 ILK_CURSOR_FIFO,
962 ILK_CURSOR_MAXWM,
963 ILK_CURSOR_DFTWM,
964 2,
965 ILK_FIFO_LINE_SIZE
966 };
967 static const struct intel_watermark_params ironlake_display_srwm_info = {
968 ILK_DISPLAY_SR_FIFO,
969 ILK_DISPLAY_MAX_SRWM,
970 ILK_DISPLAY_DFT_SRWM,
971 2,
972 ILK_FIFO_LINE_SIZE
973 };
974 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
975 ILK_CURSOR_SR_FIFO,
976 ILK_CURSOR_MAX_SRWM,
977 ILK_CURSOR_DFT_SRWM,
978 2,
979 ILK_FIFO_LINE_SIZE
980 };
981
982 static const struct intel_watermark_params sandybridge_display_wm_info = {
983 SNB_DISPLAY_FIFO,
984 SNB_DISPLAY_MAXWM,
985 SNB_DISPLAY_DFTWM,
986 2,
987 SNB_FIFO_LINE_SIZE
988 };
989 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
990 SNB_CURSOR_FIFO,
991 SNB_CURSOR_MAXWM,
992 SNB_CURSOR_DFTWM,
993 2,
994 SNB_FIFO_LINE_SIZE
995 };
996 static const struct intel_watermark_params sandybridge_display_srwm_info = {
997 SNB_DISPLAY_SR_FIFO,
998 SNB_DISPLAY_MAX_SRWM,
999 SNB_DISPLAY_DFT_SRWM,
1000 2,
1001 SNB_FIFO_LINE_SIZE
1002 };
1003 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1004 SNB_CURSOR_SR_FIFO,
1005 SNB_CURSOR_MAX_SRWM,
1006 SNB_CURSOR_DFT_SRWM,
1007 2,
1008 SNB_FIFO_LINE_SIZE
1009 };
1010
1011
1012 /**
1013 * intel_calculate_wm - calculate watermark level
1014 * @clock_in_khz: pixel clock
1015 * @wm: chip FIFO params
1016 * @pixel_size: display pixel size
1017 * @latency_ns: memory latency for the platform
1018 *
1019 * Calculate the watermark level (the level at which the display plane will
1020 * start fetching from memory again). Each chip has a different display
1021 * FIFO size and allocation, so the caller needs to figure that out and pass
1022 * in the correct intel_watermark_params structure.
1023 *
1024 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1025 * on the pixel size. When it reaches the watermark level, it'll start
1026 * fetching FIFO line sized based chunks from memory until the FIFO fills
1027 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1028 * will occur, and a display engine hang could result.
1029 */
1030 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1031 const struct intel_watermark_params *wm,
1032 int fifo_size,
1033 int pixel_size,
1034 unsigned long latency_ns)
1035 {
1036 long entries_required, wm_size;
1037
1038 /*
1039 * Note: we need to make sure we don't overflow for various clock &
1040 * latency values.
1041 * clocks go from a few thousand to several hundred thousand.
1042 * latency is usually a few thousand
1043 */
1044 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1045 1000;
1046 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1047
1048 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1049
1050 wm_size = fifo_size - (entries_required + wm->guard_size);
1051
1052 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1053
1054 /* Don't promote wm_size to unsigned... */
1055 if (wm_size > (long)wm->max_wm)
1056 wm_size = wm->max_wm;
1057 if (wm_size <= 0)
1058 wm_size = wm->default_wm;
1059 return wm_size;
1060 }
1061
1062 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1063 {
1064 struct drm_crtc *crtc, *enabled = NULL;
1065
1066 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1067 if (intel_crtc_active(crtc)) {
1068 if (enabled)
1069 return NULL;
1070 enabled = crtc;
1071 }
1072 }
1073
1074 return enabled;
1075 }
1076
1077 static void pineview_update_wm(struct drm_device *dev)
1078 {
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 struct drm_crtc *crtc;
1081 const struct cxsr_latency *latency;
1082 u32 reg;
1083 unsigned long wm;
1084
1085 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1086 dev_priv->fsb_freq, dev_priv->mem_freq);
1087 if (!latency) {
1088 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1089 pineview_disable_cxsr(dev);
1090 return;
1091 }
1092
1093 crtc = single_enabled_crtc(dev);
1094 if (crtc) {
1095 int clock = crtc->mode.clock;
1096 int pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098 /* Display SR */
1099 wm = intel_calculate_wm(clock, &pineview_display_wm,
1100 pineview_display_wm.fifo_size,
1101 pixel_size, latency->display_sr);
1102 reg = I915_READ(DSPFW1);
1103 reg &= ~DSPFW_SR_MASK;
1104 reg |= wm << DSPFW_SR_SHIFT;
1105 I915_WRITE(DSPFW1, reg);
1106 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1107
1108 /* cursor SR */
1109 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1110 pineview_display_wm.fifo_size,
1111 pixel_size, latency->cursor_sr);
1112 reg = I915_READ(DSPFW3);
1113 reg &= ~DSPFW_CURSOR_SR_MASK;
1114 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1115 I915_WRITE(DSPFW3, reg);
1116
1117 /* Display HPLL off SR */
1118 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1119 pineview_display_hplloff_wm.fifo_size,
1120 pixel_size, latency->display_hpll_disable);
1121 reg = I915_READ(DSPFW3);
1122 reg &= ~DSPFW_HPLL_SR_MASK;
1123 reg |= wm & DSPFW_HPLL_SR_MASK;
1124 I915_WRITE(DSPFW3, reg);
1125
1126 /* cursor HPLL off SR */
1127 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1128 pineview_display_hplloff_wm.fifo_size,
1129 pixel_size, latency->cursor_hpll_disable);
1130 reg = I915_READ(DSPFW3);
1131 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1132 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1133 I915_WRITE(DSPFW3, reg);
1134 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1135
1136 /* activate cxsr */
1137 I915_WRITE(DSPFW3,
1138 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1139 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1140 } else {
1141 pineview_disable_cxsr(dev);
1142 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1143 }
1144 }
1145
1146 static bool g4x_compute_wm0(struct drm_device *dev,
1147 int plane,
1148 const struct intel_watermark_params *display,
1149 int display_latency_ns,
1150 const struct intel_watermark_params *cursor,
1151 int cursor_latency_ns,
1152 int *plane_wm,
1153 int *cursor_wm)
1154 {
1155 struct drm_crtc *crtc;
1156 int htotal, hdisplay, clock, pixel_size;
1157 int line_time_us, line_count;
1158 int entries, tlb_miss;
1159
1160 crtc = intel_get_crtc_for_plane(dev, plane);
1161 if (!intel_crtc_active(crtc)) {
1162 *cursor_wm = cursor->guard_size;
1163 *plane_wm = display->guard_size;
1164 return false;
1165 }
1166
1167 htotal = crtc->mode.htotal;
1168 hdisplay = crtc->mode.hdisplay;
1169 clock = crtc->mode.clock;
1170 pixel_size = crtc->fb->bits_per_pixel / 8;
1171
1172 /* Use the small buffer method to calculate plane watermark */
1173 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1174 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1175 if (tlb_miss > 0)
1176 entries += tlb_miss;
1177 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1178 *plane_wm = entries + display->guard_size;
1179 if (*plane_wm > (int)display->max_wm)
1180 *plane_wm = display->max_wm;
1181
1182 /* Use the large buffer method to calculate cursor watermark */
1183 line_time_us = ((htotal * 1000) / clock);
1184 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1185 entries = line_count * 64 * pixel_size;
1186 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1187 if (tlb_miss > 0)
1188 entries += tlb_miss;
1189 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1190 *cursor_wm = entries + cursor->guard_size;
1191 if (*cursor_wm > (int)cursor->max_wm)
1192 *cursor_wm = (int)cursor->max_wm;
1193
1194 return true;
1195 }
1196
1197 /*
1198 * Check the wm result.
1199 *
1200 * If any calculated watermark values is larger than the maximum value that
1201 * can be programmed into the associated watermark register, that watermark
1202 * must be disabled.
1203 */
1204 static bool g4x_check_srwm(struct drm_device *dev,
1205 int display_wm, int cursor_wm,
1206 const struct intel_watermark_params *display,
1207 const struct intel_watermark_params *cursor)
1208 {
1209 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1210 display_wm, cursor_wm);
1211
1212 if (display_wm > display->max_wm) {
1213 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1214 display_wm, display->max_wm);
1215 return false;
1216 }
1217
1218 if (cursor_wm > cursor->max_wm) {
1219 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1220 cursor_wm, cursor->max_wm);
1221 return false;
1222 }
1223
1224 if (!(display_wm || cursor_wm)) {
1225 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1226 return false;
1227 }
1228
1229 return true;
1230 }
1231
1232 static bool g4x_compute_srwm(struct drm_device *dev,
1233 int plane,
1234 int latency_ns,
1235 const struct intel_watermark_params *display,
1236 const struct intel_watermark_params *cursor,
1237 int *display_wm, int *cursor_wm)
1238 {
1239 struct drm_crtc *crtc;
1240 int hdisplay, htotal, pixel_size, clock;
1241 unsigned long line_time_us;
1242 int line_count, line_size;
1243 int small, large;
1244 int entries;
1245
1246 if (!latency_ns) {
1247 *display_wm = *cursor_wm = 0;
1248 return false;
1249 }
1250
1251 crtc = intel_get_crtc_for_plane(dev, plane);
1252 hdisplay = crtc->mode.hdisplay;
1253 htotal = crtc->mode.htotal;
1254 clock = crtc->mode.clock;
1255 pixel_size = crtc->fb->bits_per_pixel / 8;
1256
1257 line_time_us = (htotal * 1000) / clock;
1258 line_count = (latency_ns / line_time_us + 1000) / 1000;
1259 line_size = hdisplay * pixel_size;
1260
1261 /* Use the minimum of the small and large buffer method for primary */
1262 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1263 large = line_count * line_size;
1264
1265 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1266 *display_wm = entries + display->guard_size;
1267
1268 /* calculate the self-refresh watermark for display cursor */
1269 entries = line_count * pixel_size * 64;
1270 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1271 *cursor_wm = entries + cursor->guard_size;
1272
1273 return g4x_check_srwm(dev,
1274 *display_wm, *cursor_wm,
1275 display, cursor);
1276 }
1277
1278 static bool vlv_compute_drain_latency(struct drm_device *dev,
1279 int plane,
1280 int *plane_prec_mult,
1281 int *plane_dl,
1282 int *cursor_prec_mult,
1283 int *cursor_dl)
1284 {
1285 struct drm_crtc *crtc;
1286 int clock, pixel_size;
1287 int entries;
1288
1289 crtc = intel_get_crtc_for_plane(dev, plane);
1290 if (!intel_crtc_active(crtc))
1291 return false;
1292
1293 clock = crtc->mode.clock; /* VESA DOT Clock */
1294 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1295
1296 entries = (clock / 1000) * pixel_size;
1297 *plane_prec_mult = (entries > 256) ?
1298 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1299 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1300 pixel_size);
1301
1302 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1303 *cursor_prec_mult = (entries > 256) ?
1304 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1305 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1306
1307 return true;
1308 }
1309
1310 /*
1311 * Update drain latency registers of memory arbiter
1312 *
1313 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1314 * to be programmed. Each plane has a drain latency multiplier and a drain
1315 * latency value.
1316 */
1317
1318 static void vlv_update_drain_latency(struct drm_device *dev)
1319 {
1320 struct drm_i915_private *dev_priv = dev->dev_private;
1321 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1322 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1323 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1324 either 16 or 32 */
1325
1326 /* For plane A, Cursor A */
1327 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1328 &cursor_prec_mult, &cursora_dl)) {
1329 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1330 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1331 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1332 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1333
1334 I915_WRITE(VLV_DDL1, cursora_prec |
1335 (cursora_dl << DDL_CURSORA_SHIFT) |
1336 planea_prec | planea_dl);
1337 }
1338
1339 /* For plane B, Cursor B */
1340 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1341 &cursor_prec_mult, &cursorb_dl)) {
1342 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1344 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1346
1347 I915_WRITE(VLV_DDL2, cursorb_prec |
1348 (cursorb_dl << DDL_CURSORB_SHIFT) |
1349 planeb_prec | planeb_dl);
1350 }
1351 }
1352
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354
1355 static void valleyview_update_wm(struct drm_device *dev)
1356 {
1357 static const int sr_latency_ns = 12000;
1358 struct drm_i915_private *dev_priv = dev->dev_private;
1359 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1360 int plane_sr, cursor_sr;
1361 int ignore_plane_sr, ignore_cursor_sr;
1362 unsigned int enabled = 0;
1363
1364 vlv_update_drain_latency(dev);
1365
1366 if (g4x_compute_wm0(dev, PIPE_A,
1367 &valleyview_wm_info, latency_ns,
1368 &valleyview_cursor_wm_info, latency_ns,
1369 &planea_wm, &cursora_wm))
1370 enabled |= 1 << PIPE_A;
1371
1372 if (g4x_compute_wm0(dev, PIPE_B,
1373 &valleyview_wm_info, latency_ns,
1374 &valleyview_cursor_wm_info, latency_ns,
1375 &planeb_wm, &cursorb_wm))
1376 enabled |= 1 << PIPE_B;
1377
1378 if (single_plane_enabled(enabled) &&
1379 g4x_compute_srwm(dev, ffs(enabled) - 1,
1380 sr_latency_ns,
1381 &valleyview_wm_info,
1382 &valleyview_cursor_wm_info,
1383 &plane_sr, &ignore_cursor_sr) &&
1384 g4x_compute_srwm(dev, ffs(enabled) - 1,
1385 2*sr_latency_ns,
1386 &valleyview_wm_info,
1387 &valleyview_cursor_wm_info,
1388 &ignore_plane_sr, &cursor_sr)) {
1389 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1390 } else {
1391 I915_WRITE(FW_BLC_SELF_VLV,
1392 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1393 plane_sr = cursor_sr = 0;
1394 }
1395
1396 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1397 planea_wm, cursora_wm,
1398 planeb_wm, cursorb_wm,
1399 plane_sr, cursor_sr);
1400
1401 I915_WRITE(DSPFW1,
1402 (plane_sr << DSPFW_SR_SHIFT) |
1403 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1404 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1405 planea_wm);
1406 I915_WRITE(DSPFW2,
1407 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1408 (cursora_wm << DSPFW_CURSORA_SHIFT));
1409 I915_WRITE(DSPFW3,
1410 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1411 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1412 }
1413
1414 static void g4x_update_wm(struct drm_device *dev)
1415 {
1416 static const int sr_latency_ns = 12000;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419 int plane_sr, cursor_sr;
1420 unsigned int enabled = 0;
1421
1422 if (g4x_compute_wm0(dev, PIPE_A,
1423 &g4x_wm_info, latency_ns,
1424 &g4x_cursor_wm_info, latency_ns,
1425 &planea_wm, &cursora_wm))
1426 enabled |= 1 << PIPE_A;
1427
1428 if (g4x_compute_wm0(dev, PIPE_B,
1429 &g4x_wm_info, latency_ns,
1430 &g4x_cursor_wm_info, latency_ns,
1431 &planeb_wm, &cursorb_wm))
1432 enabled |= 1 << PIPE_B;
1433
1434 if (single_plane_enabled(enabled) &&
1435 g4x_compute_srwm(dev, ffs(enabled) - 1,
1436 sr_latency_ns,
1437 &g4x_wm_info,
1438 &g4x_cursor_wm_info,
1439 &plane_sr, &cursor_sr)) {
1440 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1441 } else {
1442 I915_WRITE(FW_BLC_SELF,
1443 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1444 plane_sr = cursor_sr = 0;
1445 }
1446
1447 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1448 planea_wm, cursora_wm,
1449 planeb_wm, cursorb_wm,
1450 plane_sr, cursor_sr);
1451
1452 I915_WRITE(DSPFW1,
1453 (plane_sr << DSPFW_SR_SHIFT) |
1454 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1455 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1456 planea_wm);
1457 I915_WRITE(DSPFW2,
1458 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1459 (cursora_wm << DSPFW_CURSORA_SHIFT));
1460 /* HPLL off in SR has some issues on G4x... disable it */
1461 I915_WRITE(DSPFW3,
1462 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1463 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1464 }
1465
1466 static void i965_update_wm(struct drm_device *dev)
1467 {
1468 struct drm_i915_private *dev_priv = dev->dev_private;
1469 struct drm_crtc *crtc;
1470 int srwm = 1;
1471 int cursor_sr = 16;
1472
1473 /* Calc sr entries for one plane configs */
1474 crtc = single_enabled_crtc(dev);
1475 if (crtc) {
1476 /* self-refresh has much higher latency */
1477 static const int sr_latency_ns = 12000;
1478 int clock = crtc->mode.clock;
1479 int htotal = crtc->mode.htotal;
1480 int hdisplay = crtc->mode.hdisplay;
1481 int pixel_size = crtc->fb->bits_per_pixel / 8;
1482 unsigned long line_time_us;
1483 int entries;
1484
1485 line_time_us = ((htotal * 1000) / clock);
1486
1487 /* Use ns/us then divide to preserve precision */
1488 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489 pixel_size * hdisplay;
1490 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1491 srwm = I965_FIFO_SIZE - entries;
1492 if (srwm < 0)
1493 srwm = 1;
1494 srwm &= 0x1ff;
1495 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1496 entries, srwm);
1497
1498 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1499 pixel_size * 64;
1500 entries = DIV_ROUND_UP(entries,
1501 i965_cursor_wm_info.cacheline_size);
1502 cursor_sr = i965_cursor_wm_info.fifo_size -
1503 (entries + i965_cursor_wm_info.guard_size);
1504
1505 if (cursor_sr > i965_cursor_wm_info.max_wm)
1506 cursor_sr = i965_cursor_wm_info.max_wm;
1507
1508 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1509 "cursor %d\n", srwm, cursor_sr);
1510
1511 if (IS_CRESTLINE(dev))
1512 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1513 } else {
1514 /* Turn off self refresh if both pipes are enabled */
1515 if (IS_CRESTLINE(dev))
1516 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1517 & ~FW_BLC_SELF_EN);
1518 }
1519
1520 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1521 srwm);
1522
1523 /* 965 has limitations... */
1524 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1525 (8 << 16) | (8 << 8) | (8 << 0));
1526 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1527 /* update cursor SR watermark */
1528 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1529 }
1530
1531 static void i9xx_update_wm(struct drm_device *dev)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 const struct intel_watermark_params *wm_info;
1535 uint32_t fwater_lo;
1536 uint32_t fwater_hi;
1537 int cwm, srwm = 1;
1538 int fifo_size;
1539 int planea_wm, planeb_wm;
1540 struct drm_crtc *crtc, *enabled = NULL;
1541
1542 if (IS_I945GM(dev))
1543 wm_info = &i945_wm_info;
1544 else if (!IS_GEN2(dev))
1545 wm_info = &i915_wm_info;
1546 else
1547 wm_info = &i855_wm_info;
1548
1549 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1550 crtc = intel_get_crtc_for_plane(dev, 0);
1551 if (intel_crtc_active(crtc)) {
1552 int cpp = crtc->fb->bits_per_pixel / 8;
1553 if (IS_GEN2(dev))
1554 cpp = 4;
1555
1556 planea_wm = intel_calculate_wm(crtc->mode.clock,
1557 wm_info, fifo_size, cpp,
1558 latency_ns);
1559 enabled = crtc;
1560 } else
1561 planea_wm = fifo_size - wm_info->guard_size;
1562
1563 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1564 crtc = intel_get_crtc_for_plane(dev, 1);
1565 if (intel_crtc_active(crtc)) {
1566 int cpp = crtc->fb->bits_per_pixel / 8;
1567 if (IS_GEN2(dev))
1568 cpp = 4;
1569
1570 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1571 wm_info, fifo_size, cpp,
1572 latency_ns);
1573 if (enabled == NULL)
1574 enabled = crtc;
1575 else
1576 enabled = NULL;
1577 } else
1578 planeb_wm = fifo_size - wm_info->guard_size;
1579
1580 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582 /*
1583 * Overlay gets an aggressive default since video jitter is bad.
1584 */
1585 cwm = 2;
1586
1587 /* Play safe and disable self-refresh before adjusting watermarks. */
1588 if (IS_I945G(dev) || IS_I945GM(dev))
1589 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1590 else if (IS_I915GM(dev))
1591 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1592
1593 /* Calc sr entries for one plane configs */
1594 if (HAS_FW_BLC(dev) && enabled) {
1595 /* self-refresh has much higher latency */
1596 static const int sr_latency_ns = 6000;
1597 int clock = enabled->mode.clock;
1598 int htotal = enabled->mode.htotal;
1599 int hdisplay = enabled->mode.hdisplay;
1600 int pixel_size = enabled->fb->bits_per_pixel / 8;
1601 unsigned long line_time_us;
1602 int entries;
1603
1604 line_time_us = (htotal * 1000) / clock;
1605
1606 /* Use ns/us then divide to preserve precision */
1607 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1608 pixel_size * hdisplay;
1609 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1610 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1611 srwm = wm_info->fifo_size - entries;
1612 if (srwm < 0)
1613 srwm = 1;
1614
1615 if (IS_I945G(dev) || IS_I945GM(dev))
1616 I915_WRITE(FW_BLC_SELF,
1617 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1618 else if (IS_I915GM(dev))
1619 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1620 }
1621
1622 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1623 planea_wm, planeb_wm, cwm, srwm);
1624
1625 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1626 fwater_hi = (cwm & 0x1f);
1627
1628 /* Set request length to 8 cachelines per fetch */
1629 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1630 fwater_hi = fwater_hi | (1 << 8);
1631
1632 I915_WRITE(FW_BLC, fwater_lo);
1633 I915_WRITE(FW_BLC2, fwater_hi);
1634
1635 if (HAS_FW_BLC(dev)) {
1636 if (enabled) {
1637 if (IS_I945G(dev) || IS_I945GM(dev))
1638 I915_WRITE(FW_BLC_SELF,
1639 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1640 else if (IS_I915GM(dev))
1641 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1642 DRM_DEBUG_KMS("memory self refresh enabled\n");
1643 } else
1644 DRM_DEBUG_KMS("memory self refresh disabled\n");
1645 }
1646 }
1647
1648 static void i830_update_wm(struct drm_device *dev)
1649 {
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 struct drm_crtc *crtc;
1652 uint32_t fwater_lo;
1653 int planea_wm;
1654
1655 crtc = single_enabled_crtc(dev);
1656 if (crtc == NULL)
1657 return;
1658
1659 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1660 dev_priv->display.get_fifo_size(dev, 0),
1661 4, latency_ns);
1662 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1663 fwater_lo |= (3<<8) | planea_wm;
1664
1665 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1666
1667 I915_WRITE(FW_BLC, fwater_lo);
1668 }
1669
1670 #define ILK_LP0_PLANE_LATENCY 700
1671 #define ILK_LP0_CURSOR_LATENCY 1300
1672
1673 /*
1674 * Check the wm result.
1675 *
1676 * If any calculated watermark values is larger than the maximum value that
1677 * can be programmed into the associated watermark register, that watermark
1678 * must be disabled.
1679 */
1680 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1681 int fbc_wm, int display_wm, int cursor_wm,
1682 const struct intel_watermark_params *display,
1683 const struct intel_watermark_params *cursor)
1684 {
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1688 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1689
1690 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1691 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1692 fbc_wm, SNB_FBC_MAX_SRWM, level);
1693
1694 /* fbc has it's own way to disable FBC WM */
1695 I915_WRITE(DISP_ARB_CTL,
1696 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1697 return false;
1698 } else if (INTEL_INFO(dev)->gen >= 6) {
1699 /* enable FBC WM (except on ILK, where it must remain off) */
1700 I915_WRITE(DISP_ARB_CTL,
1701 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1702 }
1703
1704 if (display_wm > display->max_wm) {
1705 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1706 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1707 return false;
1708 }
1709
1710 if (cursor_wm > cursor->max_wm) {
1711 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1712 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1713 return false;
1714 }
1715
1716 if (!(fbc_wm || display_wm || cursor_wm)) {
1717 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1718 return false;
1719 }
1720
1721 return true;
1722 }
1723
1724 /*
1725 * Compute watermark values of WM[1-3],
1726 */
1727 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1728 int latency_ns,
1729 const struct intel_watermark_params *display,
1730 const struct intel_watermark_params *cursor,
1731 int *fbc_wm, int *display_wm, int *cursor_wm)
1732 {
1733 struct drm_crtc *crtc;
1734 unsigned long line_time_us;
1735 int hdisplay, htotal, pixel_size, clock;
1736 int line_count, line_size;
1737 int small, large;
1738 int entries;
1739
1740 if (!latency_ns) {
1741 *fbc_wm = *display_wm = *cursor_wm = 0;
1742 return false;
1743 }
1744
1745 crtc = intel_get_crtc_for_plane(dev, plane);
1746 hdisplay = crtc->mode.hdisplay;
1747 htotal = crtc->mode.htotal;
1748 clock = crtc->mode.clock;
1749 pixel_size = crtc->fb->bits_per_pixel / 8;
1750
1751 line_time_us = (htotal * 1000) / clock;
1752 line_count = (latency_ns / line_time_us + 1000) / 1000;
1753 line_size = hdisplay * pixel_size;
1754
1755 /* Use the minimum of the small and large buffer method for primary */
1756 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1757 large = line_count * line_size;
1758
1759 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1760 *display_wm = entries + display->guard_size;
1761
1762 /*
1763 * Spec says:
1764 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1765 */
1766 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1767
1768 /* calculate the self-refresh watermark for display cursor */
1769 entries = line_count * pixel_size * 64;
1770 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1771 *cursor_wm = entries + cursor->guard_size;
1772
1773 return ironlake_check_srwm(dev, level,
1774 *fbc_wm, *display_wm, *cursor_wm,
1775 display, cursor);
1776 }
1777
1778 static void ironlake_update_wm(struct drm_device *dev)
1779 {
1780 struct drm_i915_private *dev_priv = dev->dev_private;
1781 int fbc_wm, plane_wm, cursor_wm;
1782 unsigned int enabled;
1783
1784 enabled = 0;
1785 if (g4x_compute_wm0(dev, PIPE_A,
1786 &ironlake_display_wm_info,
1787 ILK_LP0_PLANE_LATENCY,
1788 &ironlake_cursor_wm_info,
1789 ILK_LP0_CURSOR_LATENCY,
1790 &plane_wm, &cursor_wm)) {
1791 I915_WRITE(WM0_PIPEA_ILK,
1792 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1793 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1794 " plane %d, " "cursor: %d\n",
1795 plane_wm, cursor_wm);
1796 enabled |= 1 << PIPE_A;
1797 }
1798
1799 if (g4x_compute_wm0(dev, PIPE_B,
1800 &ironlake_display_wm_info,
1801 ILK_LP0_PLANE_LATENCY,
1802 &ironlake_cursor_wm_info,
1803 ILK_LP0_CURSOR_LATENCY,
1804 &plane_wm, &cursor_wm)) {
1805 I915_WRITE(WM0_PIPEB_ILK,
1806 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1807 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1808 " plane %d, cursor: %d\n",
1809 plane_wm, cursor_wm);
1810 enabled |= 1 << PIPE_B;
1811 }
1812
1813 /*
1814 * Calculate and update the self-refresh watermark only when one
1815 * display plane is used.
1816 */
1817 I915_WRITE(WM3_LP_ILK, 0);
1818 I915_WRITE(WM2_LP_ILK, 0);
1819 I915_WRITE(WM1_LP_ILK, 0);
1820
1821 if (!single_plane_enabled(enabled))
1822 return;
1823 enabled = ffs(enabled) - 1;
1824
1825 /* WM1 */
1826 if (!ironlake_compute_srwm(dev, 1, enabled,
1827 ILK_READ_WM1_LATENCY() * 500,
1828 &ironlake_display_srwm_info,
1829 &ironlake_cursor_srwm_info,
1830 &fbc_wm, &plane_wm, &cursor_wm))
1831 return;
1832
1833 I915_WRITE(WM1_LP_ILK,
1834 WM1_LP_SR_EN |
1835 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1836 (fbc_wm << WM1_LP_FBC_SHIFT) |
1837 (plane_wm << WM1_LP_SR_SHIFT) |
1838 cursor_wm);
1839
1840 /* WM2 */
1841 if (!ironlake_compute_srwm(dev, 2, enabled,
1842 ILK_READ_WM2_LATENCY() * 500,
1843 &ironlake_display_srwm_info,
1844 &ironlake_cursor_srwm_info,
1845 &fbc_wm, &plane_wm, &cursor_wm))
1846 return;
1847
1848 I915_WRITE(WM2_LP_ILK,
1849 WM2_LP_EN |
1850 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851 (fbc_wm << WM1_LP_FBC_SHIFT) |
1852 (plane_wm << WM1_LP_SR_SHIFT) |
1853 cursor_wm);
1854
1855 /*
1856 * WM3 is unsupported on ILK, probably because we don't have latency
1857 * data for that power state
1858 */
1859 }
1860
1861 static void sandybridge_update_wm(struct drm_device *dev)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1865 u32 val;
1866 int fbc_wm, plane_wm, cursor_wm;
1867 unsigned int enabled;
1868
1869 enabled = 0;
1870 if (g4x_compute_wm0(dev, PIPE_A,
1871 &sandybridge_display_wm_info, latency,
1872 &sandybridge_cursor_wm_info, latency,
1873 &plane_wm, &cursor_wm)) {
1874 val = I915_READ(WM0_PIPEA_ILK);
1875 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1876 I915_WRITE(WM0_PIPEA_ILK, val |
1877 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1878 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1879 " plane %d, " "cursor: %d\n",
1880 plane_wm, cursor_wm);
1881 enabled |= 1 << PIPE_A;
1882 }
1883
1884 if (g4x_compute_wm0(dev, PIPE_B,
1885 &sandybridge_display_wm_info, latency,
1886 &sandybridge_cursor_wm_info, latency,
1887 &plane_wm, &cursor_wm)) {
1888 val = I915_READ(WM0_PIPEB_ILK);
1889 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1890 I915_WRITE(WM0_PIPEB_ILK, val |
1891 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1892 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1893 " plane %d, cursor: %d\n",
1894 plane_wm, cursor_wm);
1895 enabled |= 1 << PIPE_B;
1896 }
1897
1898 /*
1899 * Calculate and update the self-refresh watermark only when one
1900 * display plane is used.
1901 *
1902 * SNB support 3 levels of watermark.
1903 *
1904 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1905 * and disabled in the descending order
1906 *
1907 */
1908 I915_WRITE(WM3_LP_ILK, 0);
1909 I915_WRITE(WM2_LP_ILK, 0);
1910 I915_WRITE(WM1_LP_ILK, 0);
1911
1912 if (!single_plane_enabled(enabled) ||
1913 dev_priv->sprite_scaling_enabled)
1914 return;
1915 enabled = ffs(enabled) - 1;
1916
1917 /* WM1 */
1918 if (!ironlake_compute_srwm(dev, 1, enabled,
1919 SNB_READ_WM1_LATENCY() * 500,
1920 &sandybridge_display_srwm_info,
1921 &sandybridge_cursor_srwm_info,
1922 &fbc_wm, &plane_wm, &cursor_wm))
1923 return;
1924
1925 I915_WRITE(WM1_LP_ILK,
1926 WM1_LP_SR_EN |
1927 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1928 (fbc_wm << WM1_LP_FBC_SHIFT) |
1929 (plane_wm << WM1_LP_SR_SHIFT) |
1930 cursor_wm);
1931
1932 /* WM2 */
1933 if (!ironlake_compute_srwm(dev, 2, enabled,
1934 SNB_READ_WM2_LATENCY() * 500,
1935 &sandybridge_display_srwm_info,
1936 &sandybridge_cursor_srwm_info,
1937 &fbc_wm, &plane_wm, &cursor_wm))
1938 return;
1939
1940 I915_WRITE(WM2_LP_ILK,
1941 WM2_LP_EN |
1942 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1943 (fbc_wm << WM1_LP_FBC_SHIFT) |
1944 (plane_wm << WM1_LP_SR_SHIFT) |
1945 cursor_wm);
1946
1947 /* WM3 */
1948 if (!ironlake_compute_srwm(dev, 3, enabled,
1949 SNB_READ_WM3_LATENCY() * 500,
1950 &sandybridge_display_srwm_info,
1951 &sandybridge_cursor_srwm_info,
1952 &fbc_wm, &plane_wm, &cursor_wm))
1953 return;
1954
1955 I915_WRITE(WM3_LP_ILK,
1956 WM3_LP_EN |
1957 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1958 (fbc_wm << WM1_LP_FBC_SHIFT) |
1959 (plane_wm << WM1_LP_SR_SHIFT) |
1960 cursor_wm);
1961 }
1962
1963 static void ivybridge_update_wm(struct drm_device *dev)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1967 u32 val;
1968 int fbc_wm, plane_wm, cursor_wm;
1969 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1970 unsigned int enabled;
1971
1972 enabled = 0;
1973 if (g4x_compute_wm0(dev, PIPE_A,
1974 &sandybridge_display_wm_info, latency,
1975 &sandybridge_cursor_wm_info, latency,
1976 &plane_wm, &cursor_wm)) {
1977 val = I915_READ(WM0_PIPEA_ILK);
1978 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1979 I915_WRITE(WM0_PIPEA_ILK, val |
1980 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1981 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1982 " plane %d, " "cursor: %d\n",
1983 plane_wm, cursor_wm);
1984 enabled |= 1 << PIPE_A;
1985 }
1986
1987 if (g4x_compute_wm0(dev, PIPE_B,
1988 &sandybridge_display_wm_info, latency,
1989 &sandybridge_cursor_wm_info, latency,
1990 &plane_wm, &cursor_wm)) {
1991 val = I915_READ(WM0_PIPEB_ILK);
1992 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1993 I915_WRITE(WM0_PIPEB_ILK, val |
1994 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1995 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1996 " plane %d, cursor: %d\n",
1997 plane_wm, cursor_wm);
1998 enabled |= 1 << PIPE_B;
1999 }
2000
2001 if (g4x_compute_wm0(dev, PIPE_C,
2002 &sandybridge_display_wm_info, latency,
2003 &sandybridge_cursor_wm_info, latency,
2004 &plane_wm, &cursor_wm)) {
2005 val = I915_READ(WM0_PIPEC_IVB);
2006 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2007 I915_WRITE(WM0_PIPEC_IVB, val |
2008 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2009 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2010 " plane %d, cursor: %d\n",
2011 plane_wm, cursor_wm);
2012 enabled |= 1 << PIPE_C;
2013 }
2014
2015 /*
2016 * Calculate and update the self-refresh watermark only when one
2017 * display plane is used.
2018 *
2019 * SNB support 3 levels of watermark.
2020 *
2021 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2022 * and disabled in the descending order
2023 *
2024 */
2025 I915_WRITE(WM3_LP_ILK, 0);
2026 I915_WRITE(WM2_LP_ILK, 0);
2027 I915_WRITE(WM1_LP_ILK, 0);
2028
2029 if (!single_plane_enabled(enabled) ||
2030 dev_priv->sprite_scaling_enabled)
2031 return;
2032 enabled = ffs(enabled) - 1;
2033
2034 /* WM1 */
2035 if (!ironlake_compute_srwm(dev, 1, enabled,
2036 SNB_READ_WM1_LATENCY() * 500,
2037 &sandybridge_display_srwm_info,
2038 &sandybridge_cursor_srwm_info,
2039 &fbc_wm, &plane_wm, &cursor_wm))
2040 return;
2041
2042 I915_WRITE(WM1_LP_ILK,
2043 WM1_LP_SR_EN |
2044 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2045 (fbc_wm << WM1_LP_FBC_SHIFT) |
2046 (plane_wm << WM1_LP_SR_SHIFT) |
2047 cursor_wm);
2048
2049 /* WM2 */
2050 if (!ironlake_compute_srwm(dev, 2, enabled,
2051 SNB_READ_WM2_LATENCY() * 500,
2052 &sandybridge_display_srwm_info,
2053 &sandybridge_cursor_srwm_info,
2054 &fbc_wm, &plane_wm, &cursor_wm))
2055 return;
2056
2057 I915_WRITE(WM2_LP_ILK,
2058 WM2_LP_EN |
2059 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2060 (fbc_wm << WM1_LP_FBC_SHIFT) |
2061 (plane_wm << WM1_LP_SR_SHIFT) |
2062 cursor_wm);
2063
2064 /* WM3, note we have to correct the cursor latency */
2065 if (!ironlake_compute_srwm(dev, 3, enabled,
2066 SNB_READ_WM3_LATENCY() * 500,
2067 &sandybridge_display_srwm_info,
2068 &sandybridge_cursor_srwm_info,
2069 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2070 !ironlake_compute_srwm(dev, 3, enabled,
2071 2 * SNB_READ_WM3_LATENCY() * 500,
2072 &sandybridge_display_srwm_info,
2073 &sandybridge_cursor_srwm_info,
2074 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2075 return;
2076
2077 I915_WRITE(WM3_LP_ILK,
2078 WM3_LP_EN |
2079 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2080 (fbc_wm << WM1_LP_FBC_SHIFT) |
2081 (plane_wm << WM1_LP_SR_SHIFT) |
2082 cursor_wm);
2083 }
2084
2085 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2086 struct drm_crtc *crtc)
2087 {
2088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2089 uint32_t pixel_rate, pfit_size;
2090
2091 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2092
2093 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2094 * adjust the pixel_rate here. */
2095
2096 pfit_size = intel_crtc->config.pch_pfit.size;
2097 if (pfit_size) {
2098 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2099
2100 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2101 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2102 pfit_w = (pfit_size >> 16) & 0xFFFF;
2103 pfit_h = pfit_size & 0xFFFF;
2104 if (pipe_w < pfit_w)
2105 pipe_w = pfit_w;
2106 if (pipe_h < pfit_h)
2107 pipe_h = pfit_h;
2108
2109 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2110 pfit_w * pfit_h);
2111 }
2112
2113 return pixel_rate;
2114 }
2115
2116 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2117 uint32_t latency)
2118 {
2119 uint64_t ret;
2120
2121 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2122 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2123
2124 return ret;
2125 }
2126
2127 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2128 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2129 uint32_t latency)
2130 {
2131 uint32_t ret;
2132
2133 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2134 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2135 ret = DIV_ROUND_UP(ret, 64) + 2;
2136 return ret;
2137 }
2138
2139 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2140 uint8_t bytes_per_pixel)
2141 {
2142 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2143 }
2144
2145 struct hsw_pipe_wm_parameters {
2146 bool active;
2147 bool sprite_enabled;
2148 uint8_t pri_bytes_per_pixel;
2149 uint8_t spr_bytes_per_pixel;
2150 uint8_t cur_bytes_per_pixel;
2151 uint32_t pri_horiz_pixels;
2152 uint32_t spr_horiz_pixels;
2153 uint32_t cur_horiz_pixels;
2154 uint32_t pipe_htotal;
2155 uint32_t pixel_rate;
2156 };
2157
2158 struct hsw_wm_maximums {
2159 uint16_t pri;
2160 uint16_t spr;
2161 uint16_t cur;
2162 uint16_t fbc;
2163 };
2164
2165 struct hsw_lp_wm_result {
2166 bool enable;
2167 bool fbc_enable;
2168 uint32_t pri_val;
2169 uint32_t spr_val;
2170 uint32_t cur_val;
2171 uint32_t fbc_val;
2172 };
2173
2174 struct hsw_wm_values {
2175 uint32_t wm_pipe[3];
2176 uint32_t wm_lp[3];
2177 uint32_t wm_lp_spr[3];
2178 uint32_t wm_linetime[3];
2179 bool enable_fbc_wm;
2180 };
2181
2182 enum hsw_data_buf_partitioning {
2183 HSW_DATA_BUF_PART_1_2,
2184 HSW_DATA_BUF_PART_5_6,
2185 };
2186
2187 /* For both WM_PIPE and WM_LP. */
2188 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2189 uint32_t mem_value,
2190 bool is_lp)
2191 {
2192 uint32_t method1, method2;
2193
2194 /* TODO: for now, assume the primary plane is always enabled. */
2195 if (!params->active)
2196 return 0;
2197
2198 method1 = hsw_wm_method1(params->pixel_rate,
2199 params->pri_bytes_per_pixel,
2200 mem_value);
2201
2202 if (!is_lp)
2203 return method1;
2204
2205 method2 = hsw_wm_method2(params->pixel_rate,
2206 params->pipe_htotal,
2207 params->pri_horiz_pixels,
2208 params->pri_bytes_per_pixel,
2209 mem_value);
2210
2211 return min(method1, method2);
2212 }
2213
2214 /* For both WM_PIPE and WM_LP. */
2215 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2216 uint32_t mem_value)
2217 {
2218 uint32_t method1, method2;
2219
2220 if (!params->active || !params->sprite_enabled)
2221 return 0;
2222
2223 method1 = hsw_wm_method1(params->pixel_rate,
2224 params->spr_bytes_per_pixel,
2225 mem_value);
2226 method2 = hsw_wm_method2(params->pixel_rate,
2227 params->pipe_htotal,
2228 params->spr_horiz_pixels,
2229 params->spr_bytes_per_pixel,
2230 mem_value);
2231 return min(method1, method2);
2232 }
2233
2234 /* For both WM_PIPE and WM_LP. */
2235 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2236 uint32_t mem_value)
2237 {
2238 if (!params->active)
2239 return 0;
2240
2241 return hsw_wm_method2(params->pixel_rate,
2242 params->pipe_htotal,
2243 params->cur_horiz_pixels,
2244 params->cur_bytes_per_pixel,
2245 mem_value);
2246 }
2247
2248 /* Only for WM_LP. */
2249 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2250 uint32_t pri_val,
2251 uint32_t mem_value)
2252 {
2253 if (!params->active)
2254 return 0;
2255
2256 return hsw_wm_fbc(pri_val,
2257 params->pri_horiz_pixels,
2258 params->pri_bytes_per_pixel);
2259 }
2260
2261 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2262 struct hsw_pipe_wm_parameters *params,
2263 struct hsw_lp_wm_result *result)
2264 {
2265 enum pipe pipe;
2266 uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2267
2268 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2269 struct hsw_pipe_wm_parameters *p = &params[pipe];
2270
2271 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2272 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2273 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2274 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2275 }
2276
2277 result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2278 result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2279 result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2280 result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2281
2282 if (result->fbc_val > max->fbc) {
2283 result->fbc_enable = false;
2284 result->fbc_val = 0;
2285 } else {
2286 result->fbc_enable = true;
2287 }
2288
2289 result->enable = result->pri_val <= max->pri &&
2290 result->spr_val <= max->spr &&
2291 result->cur_val <= max->cur;
2292 return result->enable;
2293 }
2294
2295 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2296 uint32_t mem_value, enum pipe pipe,
2297 struct hsw_pipe_wm_parameters *params)
2298 {
2299 uint32_t pri_val, cur_val, spr_val;
2300
2301 pri_val = hsw_compute_pri_wm(params, mem_value, false);
2302 spr_val = hsw_compute_spr_wm(params, mem_value);
2303 cur_val = hsw_compute_cur_wm(params, mem_value);
2304
2305 WARN(pri_val > 127,
2306 "Primary WM error, mode not supported for pipe %c\n",
2307 pipe_name(pipe));
2308 WARN(spr_val > 127,
2309 "Sprite WM error, mode not supported for pipe %c\n",
2310 pipe_name(pipe));
2311 WARN(cur_val > 63,
2312 "Cursor WM error, mode not supported for pipe %c\n",
2313 pipe_name(pipe));
2314
2315 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2316 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2317 cur_val;
2318 }
2319
2320 static uint32_t
2321 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2322 {
2323 struct drm_i915_private *dev_priv = dev->dev_private;
2324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2325 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2326 u32 linetime, ips_linetime;
2327
2328 if (!intel_crtc_active(crtc))
2329 return 0;
2330
2331 /* The WM are computed with base on how long it takes to fill a single
2332 * row at the given clock rate, multiplied by 8.
2333 * */
2334 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2335 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2336 intel_ddi_get_cdclk_freq(dev_priv));
2337
2338 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2339 PIPE_WM_LINETIME_TIME(linetime);
2340 }
2341
2342 static void hsw_compute_wm_parameters(struct drm_device *dev,
2343 struct hsw_pipe_wm_parameters *params,
2344 uint32_t *wm,
2345 struct hsw_wm_maximums *lp_max_1_2,
2346 struct hsw_wm_maximums *lp_max_5_6)
2347 {
2348 struct drm_i915_private *dev_priv = dev->dev_private;
2349 struct drm_crtc *crtc;
2350 struct drm_plane *plane;
2351 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2352 enum pipe pipe;
2353 int pipes_active = 0, sprites_enabled = 0;
2354
2355 if ((sskpd >> 56) & 0xFF)
2356 wm[0] = (sskpd >> 56) & 0xFF;
2357 else
2358 wm[0] = sskpd & 0xF;
2359 wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2360 wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2361 wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2362 wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2363
2364 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366 struct hsw_pipe_wm_parameters *p;
2367
2368 pipe = intel_crtc->pipe;
2369 p = &params[pipe];
2370
2371 p->active = intel_crtc_active(crtc);
2372 if (!p->active)
2373 continue;
2374
2375 pipes_active++;
2376
2377 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2378 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2379 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2380 p->cur_bytes_per_pixel = 4;
2381 p->pri_horiz_pixels =
2382 intel_crtc->config.requested_mode.hdisplay;
2383 p->cur_horiz_pixels = 64;
2384 }
2385
2386 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2387 struct intel_plane *intel_plane = to_intel_plane(plane);
2388 struct hsw_pipe_wm_parameters *p;
2389
2390 pipe = intel_plane->pipe;
2391 p = &params[pipe];
2392
2393 p->sprite_enabled = intel_plane->wm.enable;
2394 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2395 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2396
2397 if (p->sprite_enabled)
2398 sprites_enabled++;
2399 }
2400
2401 if (pipes_active > 1) {
2402 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2403 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2404 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2405 } else {
2406 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2407 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2408 lp_max_1_2->spr = 384;
2409 lp_max_5_6->spr = 640;
2410 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2411 }
2412 lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2413 }
2414
2415 static void hsw_compute_wm_results(struct drm_device *dev,
2416 struct hsw_pipe_wm_parameters *params,
2417 uint32_t *wm,
2418 struct hsw_wm_maximums *lp_maximums,
2419 struct hsw_wm_values *results)
2420 {
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct drm_crtc *crtc;
2423 struct hsw_lp_wm_result lp_results[4] = {};
2424 enum pipe pipe;
2425 int level, max_level, wm_lp;
2426
2427 for (level = 1; level <= 4; level++)
2428 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2429 &lp_results[level - 1]))
2430 break;
2431 max_level = level - 1;
2432
2433 /* The spec says it is preferred to disable FBC WMs instead of disabling
2434 * a WM level. */
2435 results->enable_fbc_wm = true;
2436 for (level = 1; level <= max_level; level++) {
2437 if (!lp_results[level - 1].fbc_enable) {
2438 results->enable_fbc_wm = false;
2439 break;
2440 }
2441 }
2442
2443 memset(results, 0, sizeof(*results));
2444 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2445 const struct hsw_lp_wm_result *r;
2446
2447 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2448 if (level > max_level)
2449 break;
2450
2451 r = &lp_results[level - 1];
2452 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2453 r->fbc_val,
2454 r->pri_val,
2455 r->cur_val);
2456 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2457 }
2458
2459 for_each_pipe(pipe)
2460 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2461 pipe,
2462 &params[pipe]);
2463
2464 for_each_pipe(pipe) {
2465 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2466 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2467 }
2468 }
2469
2470 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2471 * case both are at the same level. Prefer r1 in case they're the same. */
2472 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2473 struct hsw_wm_values *r2)
2474 {
2475 int i, val_r1 = 0, val_r2 = 0;
2476
2477 for (i = 0; i < 3; i++) {
2478 if (r1->wm_lp[i] & WM3_LP_EN)
2479 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2480 if (r2->wm_lp[i] & WM3_LP_EN)
2481 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2482 }
2483
2484 if (val_r1 == val_r2) {
2485 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2486 return r2;
2487 else
2488 return r1;
2489 } else if (val_r1 > val_r2) {
2490 return r1;
2491 } else {
2492 return r2;
2493 }
2494 }
2495
2496 /*
2497 * The spec says we shouldn't write when we don't need, because every write
2498 * causes WMs to be re-evaluated, expending some power.
2499 */
2500 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2501 struct hsw_wm_values *results,
2502 enum hsw_data_buf_partitioning partitioning)
2503 {
2504 struct hsw_wm_values previous;
2505 uint32_t val;
2506 enum hsw_data_buf_partitioning prev_partitioning;
2507 bool prev_enable_fbc_wm;
2508
2509 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2510 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2511 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2512 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2513 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2514 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2515 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2516 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2517 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2518 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2519 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2520 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2521
2522 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2523 HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2524
2525 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2526
2527 if (memcmp(results->wm_pipe, previous.wm_pipe,
2528 sizeof(results->wm_pipe)) == 0 &&
2529 memcmp(results->wm_lp, previous.wm_lp,
2530 sizeof(results->wm_lp)) == 0 &&
2531 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2532 sizeof(results->wm_lp_spr)) == 0 &&
2533 memcmp(results->wm_linetime, previous.wm_linetime,
2534 sizeof(results->wm_linetime)) == 0 &&
2535 partitioning == prev_partitioning &&
2536 results->enable_fbc_wm == prev_enable_fbc_wm)
2537 return;
2538
2539 if (previous.wm_lp[2] != 0)
2540 I915_WRITE(WM3_LP_ILK, 0);
2541 if (previous.wm_lp[1] != 0)
2542 I915_WRITE(WM2_LP_ILK, 0);
2543 if (previous.wm_lp[0] != 0)
2544 I915_WRITE(WM1_LP_ILK, 0);
2545
2546 if (previous.wm_pipe[0] != results->wm_pipe[0])
2547 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2548 if (previous.wm_pipe[1] != results->wm_pipe[1])
2549 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2550 if (previous.wm_pipe[2] != results->wm_pipe[2])
2551 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2552
2553 if (previous.wm_linetime[0] != results->wm_linetime[0])
2554 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2555 if (previous.wm_linetime[1] != results->wm_linetime[1])
2556 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2557 if (previous.wm_linetime[2] != results->wm_linetime[2])
2558 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2559
2560 if (prev_partitioning != partitioning) {
2561 val = I915_READ(WM_MISC);
2562 if (partitioning == HSW_DATA_BUF_PART_1_2)
2563 val &= ~WM_MISC_DATA_PARTITION_5_6;
2564 else
2565 val |= WM_MISC_DATA_PARTITION_5_6;
2566 I915_WRITE(WM_MISC, val);
2567 }
2568
2569 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2570 val = I915_READ(DISP_ARB_CTL);
2571 if (results->enable_fbc_wm)
2572 val &= ~DISP_FBC_WM_DIS;
2573 else
2574 val |= DISP_FBC_WM_DIS;
2575 I915_WRITE(DISP_ARB_CTL, val);
2576 }
2577
2578 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2579 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2580 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2581 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2582 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2583 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2584
2585 if (results->wm_lp[0] != 0)
2586 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2587 if (results->wm_lp[1] != 0)
2588 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2589 if (results->wm_lp[2] != 0)
2590 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2591 }
2592
2593 static void haswell_update_wm(struct drm_device *dev)
2594 {
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2597 struct hsw_pipe_wm_parameters params[3];
2598 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2599 uint32_t wm[5];
2600 enum hsw_data_buf_partitioning partitioning;
2601
2602 hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2603
2604 hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2605 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2606 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2607 &results_5_6);
2608 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2609 } else {
2610 best_results = &results_1_2;
2611 }
2612
2613 partitioning = (best_results == &results_1_2) ?
2614 HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2615
2616 hsw_write_wm_values(dev_priv, best_results, partitioning);
2617 }
2618
2619 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2620 uint32_t sprite_width, int pixel_size,
2621 bool enable)
2622 {
2623 struct drm_plane *plane;
2624
2625 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2626 struct intel_plane *intel_plane = to_intel_plane(plane);
2627
2628 if (intel_plane->pipe == pipe) {
2629 intel_plane->wm.enable = enable;
2630 intel_plane->wm.horiz_pixels = sprite_width + 1;
2631 intel_plane->wm.bytes_per_pixel = pixel_size;
2632 break;
2633 }
2634 }
2635
2636 haswell_update_wm(dev);
2637 }
2638
2639 static bool
2640 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2641 uint32_t sprite_width, int pixel_size,
2642 const struct intel_watermark_params *display,
2643 int display_latency_ns, int *sprite_wm)
2644 {
2645 struct drm_crtc *crtc;
2646 int clock;
2647 int entries, tlb_miss;
2648
2649 crtc = intel_get_crtc_for_plane(dev, plane);
2650 if (!intel_crtc_active(crtc)) {
2651 *sprite_wm = display->guard_size;
2652 return false;
2653 }
2654
2655 clock = crtc->mode.clock;
2656
2657 /* Use the small buffer method to calculate the sprite watermark */
2658 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2659 tlb_miss = display->fifo_size*display->cacheline_size -
2660 sprite_width * 8;
2661 if (tlb_miss > 0)
2662 entries += tlb_miss;
2663 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2664 *sprite_wm = entries + display->guard_size;
2665 if (*sprite_wm > (int)display->max_wm)
2666 *sprite_wm = display->max_wm;
2667
2668 return true;
2669 }
2670
2671 static bool
2672 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2673 uint32_t sprite_width, int pixel_size,
2674 const struct intel_watermark_params *display,
2675 int latency_ns, int *sprite_wm)
2676 {
2677 struct drm_crtc *crtc;
2678 unsigned long line_time_us;
2679 int clock;
2680 int line_count, line_size;
2681 int small, large;
2682 int entries;
2683
2684 if (!latency_ns) {
2685 *sprite_wm = 0;
2686 return false;
2687 }
2688
2689 crtc = intel_get_crtc_for_plane(dev, plane);
2690 clock = crtc->mode.clock;
2691 if (!clock) {
2692 *sprite_wm = 0;
2693 return false;
2694 }
2695
2696 line_time_us = (sprite_width * 1000) / clock;
2697 if (!line_time_us) {
2698 *sprite_wm = 0;
2699 return false;
2700 }
2701
2702 line_count = (latency_ns / line_time_us + 1000) / 1000;
2703 line_size = sprite_width * pixel_size;
2704
2705 /* Use the minimum of the small and large buffer method for primary */
2706 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2707 large = line_count * line_size;
2708
2709 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2710 *sprite_wm = entries + display->guard_size;
2711
2712 return *sprite_wm > 0x3ff ? false : true;
2713 }
2714
2715 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2716 uint32_t sprite_width, int pixel_size,
2717 bool enable)
2718 {
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2721 u32 val;
2722 int sprite_wm, reg;
2723 int ret;
2724
2725 if (!enable)
2726 return;
2727
2728 switch (pipe) {
2729 case 0:
2730 reg = WM0_PIPEA_ILK;
2731 break;
2732 case 1:
2733 reg = WM0_PIPEB_ILK;
2734 break;
2735 case 2:
2736 reg = WM0_PIPEC_IVB;
2737 break;
2738 default:
2739 return; /* bad pipe */
2740 }
2741
2742 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2743 &sandybridge_display_wm_info,
2744 latency, &sprite_wm);
2745 if (!ret) {
2746 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2747 pipe_name(pipe));
2748 return;
2749 }
2750
2751 val = I915_READ(reg);
2752 val &= ~WM0_PIPE_SPRITE_MASK;
2753 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2754 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2755
2756
2757 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2758 pixel_size,
2759 &sandybridge_display_srwm_info,
2760 SNB_READ_WM1_LATENCY() * 500,
2761 &sprite_wm);
2762 if (!ret) {
2763 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2764 pipe_name(pipe));
2765 return;
2766 }
2767 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2768
2769 /* Only IVB has two more LP watermarks for sprite */
2770 if (!IS_IVYBRIDGE(dev))
2771 return;
2772
2773 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2774 pixel_size,
2775 &sandybridge_display_srwm_info,
2776 SNB_READ_WM2_LATENCY() * 500,
2777 &sprite_wm);
2778 if (!ret) {
2779 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2780 pipe_name(pipe));
2781 return;
2782 }
2783 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2784
2785 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2786 pixel_size,
2787 &sandybridge_display_srwm_info,
2788 SNB_READ_WM3_LATENCY() * 500,
2789 &sprite_wm);
2790 if (!ret) {
2791 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2792 pipe_name(pipe));
2793 return;
2794 }
2795 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2796 }
2797
2798 /**
2799 * intel_update_watermarks - update FIFO watermark values based on current modes
2800 *
2801 * Calculate watermark values for the various WM regs based on current mode
2802 * and plane configuration.
2803 *
2804 * There are several cases to deal with here:
2805 * - normal (i.e. non-self-refresh)
2806 * - self-refresh (SR) mode
2807 * - lines are large relative to FIFO size (buffer can hold up to 2)
2808 * - lines are small relative to FIFO size (buffer can hold more than 2
2809 * lines), so need to account for TLB latency
2810 *
2811 * The normal calculation is:
2812 * watermark = dotclock * bytes per pixel * latency
2813 * where latency is platform & configuration dependent (we assume pessimal
2814 * values here).
2815 *
2816 * The SR calculation is:
2817 * watermark = (trunc(latency/line time)+1) * surface width *
2818 * bytes per pixel
2819 * where
2820 * line time = htotal / dotclock
2821 * surface width = hdisplay for normal plane and 64 for cursor
2822 * and latency is assumed to be high, as above.
2823 *
2824 * The final value programmed to the register should always be rounded up,
2825 * and include an extra 2 entries to account for clock crossings.
2826 *
2827 * We don't use the sprite, so we can ignore that. And on Crestline we have
2828 * to set the non-SR watermarks to 8.
2829 */
2830 void intel_update_watermarks(struct drm_device *dev)
2831 {
2832 struct drm_i915_private *dev_priv = dev->dev_private;
2833
2834 if (dev_priv->display.update_wm)
2835 dev_priv->display.update_wm(dev);
2836 }
2837
2838 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2839 uint32_t sprite_width, int pixel_size,
2840 bool enable)
2841 {
2842 struct drm_i915_private *dev_priv = dev->dev_private;
2843
2844 if (dev_priv->display.update_sprite_wm)
2845 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2846 pixel_size, enable);
2847 }
2848
2849 static struct drm_i915_gem_object *
2850 intel_alloc_context_page(struct drm_device *dev)
2851 {
2852 struct drm_i915_gem_object *ctx;
2853 int ret;
2854
2855 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2856
2857 ctx = i915_gem_alloc_object(dev, 4096);
2858 if (!ctx) {
2859 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2860 return NULL;
2861 }
2862
2863 ret = i915_gem_object_pin(ctx, 4096, true, false);
2864 if (ret) {
2865 DRM_ERROR("failed to pin power context: %d\n", ret);
2866 goto err_unref;
2867 }
2868
2869 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2870 if (ret) {
2871 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2872 goto err_unpin;
2873 }
2874
2875 return ctx;
2876
2877 err_unpin:
2878 i915_gem_object_unpin(ctx);
2879 err_unref:
2880 drm_gem_object_unreference(&ctx->base);
2881 return NULL;
2882 }
2883
2884 /**
2885 * Lock protecting IPS related data structures
2886 */
2887 DEFINE_SPINLOCK(mchdev_lock);
2888
2889 /* Global for IPS driver to get at the current i915 device. Protected by
2890 * mchdev_lock. */
2891 static struct drm_i915_private *i915_mch_dev;
2892
2893 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2894 {
2895 struct drm_i915_private *dev_priv = dev->dev_private;
2896 u16 rgvswctl;
2897
2898 assert_spin_locked(&mchdev_lock);
2899
2900 rgvswctl = I915_READ16(MEMSWCTL);
2901 if (rgvswctl & MEMCTL_CMD_STS) {
2902 DRM_DEBUG("gpu busy, RCS change rejected\n");
2903 return false; /* still busy with another command */
2904 }
2905
2906 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2907 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2908 I915_WRITE16(MEMSWCTL, rgvswctl);
2909 POSTING_READ16(MEMSWCTL);
2910
2911 rgvswctl |= MEMCTL_CMD_STS;
2912 I915_WRITE16(MEMSWCTL, rgvswctl);
2913
2914 return true;
2915 }
2916
2917 static void ironlake_enable_drps(struct drm_device *dev)
2918 {
2919 struct drm_i915_private *dev_priv = dev->dev_private;
2920 u32 rgvmodectl = I915_READ(MEMMODECTL);
2921 u8 fmax, fmin, fstart, vstart;
2922
2923 spin_lock_irq(&mchdev_lock);
2924
2925 /* Enable temp reporting */
2926 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2927 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2928
2929 /* 100ms RC evaluation intervals */
2930 I915_WRITE(RCUPEI, 100000);
2931 I915_WRITE(RCDNEI, 100000);
2932
2933 /* Set max/min thresholds to 90ms and 80ms respectively */
2934 I915_WRITE(RCBMAXAVG, 90000);
2935 I915_WRITE(RCBMINAVG, 80000);
2936
2937 I915_WRITE(MEMIHYST, 1);
2938
2939 /* Set up min, max, and cur for interrupt handling */
2940 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2941 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2942 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2943 MEMMODE_FSTART_SHIFT;
2944
2945 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2946 PXVFREQ_PX_SHIFT;
2947
2948 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2949 dev_priv->ips.fstart = fstart;
2950
2951 dev_priv->ips.max_delay = fstart;
2952 dev_priv->ips.min_delay = fmin;
2953 dev_priv->ips.cur_delay = fstart;
2954
2955 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2956 fmax, fmin, fstart);
2957
2958 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2959
2960 /*
2961 * Interrupts will be enabled in ironlake_irq_postinstall
2962 */
2963
2964 I915_WRITE(VIDSTART, vstart);
2965 POSTING_READ(VIDSTART);
2966
2967 rgvmodectl |= MEMMODE_SWMODE_EN;
2968 I915_WRITE(MEMMODECTL, rgvmodectl);
2969
2970 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2971 DRM_ERROR("stuck trying to change perf mode\n");
2972 mdelay(1);
2973
2974 ironlake_set_drps(dev, fstart);
2975
2976 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2977 I915_READ(0x112e0);
2978 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2979 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2980 getrawmonotonic(&dev_priv->ips.last_time2);
2981
2982 spin_unlock_irq(&mchdev_lock);
2983 }
2984
2985 static void ironlake_disable_drps(struct drm_device *dev)
2986 {
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988 u16 rgvswctl;
2989
2990 spin_lock_irq(&mchdev_lock);
2991
2992 rgvswctl = I915_READ16(MEMSWCTL);
2993
2994 /* Ack interrupts, disable EFC interrupt */
2995 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2996 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2997 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2998 I915_WRITE(DEIIR, DE_PCU_EVENT);
2999 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3000
3001 /* Go back to the starting frequency */
3002 ironlake_set_drps(dev, dev_priv->ips.fstart);
3003 mdelay(1);
3004 rgvswctl |= MEMCTL_CMD_STS;
3005 I915_WRITE(MEMSWCTL, rgvswctl);
3006 mdelay(1);
3007
3008 spin_unlock_irq(&mchdev_lock);
3009 }
3010
3011 /* There's a funny hw issue where the hw returns all 0 when reading from
3012 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3013 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3014 * all limits and the gpu stuck at whatever frequency it is at atm).
3015 */
3016 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3017 {
3018 u32 limits;
3019
3020 limits = 0;
3021
3022 if (*val >= dev_priv->rps.max_delay)
3023 *val = dev_priv->rps.max_delay;
3024 limits |= dev_priv->rps.max_delay << 24;
3025
3026 /* Only set the down limit when we've reached the lowest level to avoid
3027 * getting more interrupts, otherwise leave this clear. This prevents a
3028 * race in the hw when coming out of rc6: There's a tiny window where
3029 * the hw runs at the minimal clock before selecting the desired
3030 * frequency, if the down threshold expires in that window we will not
3031 * receive a down interrupt. */
3032 if (*val <= dev_priv->rps.min_delay) {
3033 *val = dev_priv->rps.min_delay;
3034 limits |= dev_priv->rps.min_delay << 16;
3035 }
3036
3037 return limits;
3038 }
3039
3040 void gen6_set_rps(struct drm_device *dev, u8 val)
3041 {
3042 struct drm_i915_private *dev_priv = dev->dev_private;
3043 u32 limits = gen6_rps_limits(dev_priv, &val);
3044
3045 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3046 WARN_ON(val > dev_priv->rps.max_delay);
3047 WARN_ON(val < dev_priv->rps.min_delay);
3048
3049 if (val == dev_priv->rps.cur_delay)
3050 return;
3051
3052 if (IS_HASWELL(dev))
3053 I915_WRITE(GEN6_RPNSWREQ,
3054 HSW_FREQUENCY(val));
3055 else
3056 I915_WRITE(GEN6_RPNSWREQ,
3057 GEN6_FREQUENCY(val) |
3058 GEN6_OFFSET(0) |
3059 GEN6_AGGRESSIVE_TURBO);
3060
3061 /* Make sure we continue to get interrupts
3062 * until we hit the minimum or maximum frequencies.
3063 */
3064 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3065
3066 POSTING_READ(GEN6_RPNSWREQ);
3067
3068 dev_priv->rps.cur_delay = val;
3069
3070 trace_intel_gpu_freq_change(val * 50);
3071 }
3072
3073 /*
3074 * Wait until the previous freq change has completed,
3075 * or the timeout elapsed, and then update our notion
3076 * of the current GPU frequency.
3077 */
3078 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3079 {
3080 u32 pval;
3081
3082 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3083
3084 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3085 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3086
3087 pval >>= 8;
3088
3089 if (pval != dev_priv->rps.cur_delay)
3090 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3091 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3092 dev_priv->rps.cur_delay,
3093 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3094
3095 dev_priv->rps.cur_delay = pval;
3096 }
3097
3098 void valleyview_set_rps(struct drm_device *dev, u8 val)
3099 {
3100 struct drm_i915_private *dev_priv = dev->dev_private;
3101
3102 gen6_rps_limits(dev_priv, &val);
3103
3104 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3105 WARN_ON(val > dev_priv->rps.max_delay);
3106 WARN_ON(val < dev_priv->rps.min_delay);
3107
3108 vlv_update_rps_cur_delay(dev_priv);
3109
3110 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3111 vlv_gpu_freq(dev_priv->mem_freq,
3112 dev_priv->rps.cur_delay),
3113 dev_priv->rps.cur_delay,
3114 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3115
3116 if (val == dev_priv->rps.cur_delay)
3117 return;
3118
3119 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3120
3121 dev_priv->rps.cur_delay = val;
3122
3123 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3124 }
3125
3126 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3127 {
3128 struct drm_i915_private *dev_priv = dev->dev_private;
3129
3130 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3131 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3132 /* Complete PM interrupt masking here doesn't race with the rps work
3133 * item again unmasking PM interrupts because that is using a different
3134 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3135 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3136
3137 spin_lock_irq(&dev_priv->irq_lock);
3138 dev_priv->rps.pm_iir = 0;
3139 spin_unlock_irq(&dev_priv->irq_lock);
3140
3141 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3142 }
3143
3144 static void gen6_disable_rps(struct drm_device *dev)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147
3148 I915_WRITE(GEN6_RC_CONTROL, 0);
3149 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3150
3151 gen6_disable_rps_interrupts(dev);
3152 }
3153
3154 static void valleyview_disable_rps(struct drm_device *dev)
3155 {
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157
3158 I915_WRITE(GEN6_RC_CONTROL, 0);
3159
3160 gen6_disable_rps_interrupts(dev);
3161
3162 if (dev_priv->vlv_pctx) {
3163 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3164 dev_priv->vlv_pctx = NULL;
3165 }
3166 }
3167
3168 int intel_enable_rc6(const struct drm_device *dev)
3169 {
3170 /* No RC6 before Ironlake */
3171 if (INTEL_INFO(dev)->gen < 5)
3172 return 0;
3173
3174 /* Respect the kernel parameter if it is set */
3175 if (i915_enable_rc6 >= 0)
3176 return i915_enable_rc6;
3177
3178 /* Disable RC6 on Ironlake */
3179 if (INTEL_INFO(dev)->gen == 5)
3180 return 0;
3181
3182 if (IS_HASWELL(dev)) {
3183 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3184 return INTEL_RC6_ENABLE;
3185 }
3186
3187 /* snb/ivb have more than one rc6 state. */
3188 if (INTEL_INFO(dev)->gen == 6) {
3189 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3190 return INTEL_RC6_ENABLE;
3191 }
3192
3193 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3194 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3195 }
3196
3197 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200
3201 spin_lock_irq(&dev_priv->irq_lock);
3202 WARN_ON(dev_priv->rps.pm_iir);
3203 I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3204 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3205 spin_unlock_irq(&dev_priv->irq_lock);
3206 /* unmask all PM interrupts */
3207 I915_WRITE(GEN6_PMINTRMSK, 0);
3208 }
3209
3210 static void gen6_enable_rps(struct drm_device *dev)
3211 {
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 struct intel_ring_buffer *ring;
3214 u32 rp_state_cap;
3215 u32 gt_perf_status;
3216 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3217 u32 gtfifodbg;
3218 int rc6_mode;
3219 int i, ret;
3220
3221 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3222
3223 /* Here begins a magic sequence of register writes to enable
3224 * auto-downclocking.
3225 *
3226 * Perhaps there might be some value in exposing these to
3227 * userspace...
3228 */
3229 I915_WRITE(GEN6_RC_STATE, 0);
3230
3231 /* Clear the DBG now so we don't confuse earlier errors */
3232 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3233 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3234 I915_WRITE(GTFIFODBG, gtfifodbg);
3235 }
3236
3237 gen6_gt_force_wake_get(dev_priv);
3238
3239 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3240 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3241
3242 /* In units of 50MHz */
3243 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3244 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3245 dev_priv->rps.cur_delay = 0;
3246
3247 /* disable the counters and set deterministic thresholds */
3248 I915_WRITE(GEN6_RC_CONTROL, 0);
3249
3250 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3251 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3252 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3253 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3254 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3255
3256 for_each_ring(ring, dev_priv, i)
3257 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3258
3259 I915_WRITE(GEN6_RC_SLEEP, 0);
3260 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3261 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3262 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3263 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3264
3265 /* Check if we are enabling RC6 */
3266 rc6_mode = intel_enable_rc6(dev_priv->dev);
3267 if (rc6_mode & INTEL_RC6_ENABLE)
3268 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3269
3270 /* We don't use those on Haswell */
3271 if (!IS_HASWELL(dev)) {
3272 if (rc6_mode & INTEL_RC6p_ENABLE)
3273 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3274
3275 if (rc6_mode & INTEL_RC6pp_ENABLE)
3276 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3277 }
3278
3279 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3280 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3281 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3282 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3283
3284 I915_WRITE(GEN6_RC_CONTROL,
3285 rc6_mask |
3286 GEN6_RC_CTL_EI_MODE(1) |
3287 GEN6_RC_CTL_HW_ENABLE);
3288
3289 if (IS_HASWELL(dev)) {
3290 I915_WRITE(GEN6_RPNSWREQ,
3291 HSW_FREQUENCY(10));
3292 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3293 HSW_FREQUENCY(12));
3294 } else {
3295 I915_WRITE(GEN6_RPNSWREQ,
3296 GEN6_FREQUENCY(10) |
3297 GEN6_OFFSET(0) |
3298 GEN6_AGGRESSIVE_TURBO);
3299 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3300 GEN6_FREQUENCY(12));
3301 }
3302
3303 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3304 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3305 dev_priv->rps.max_delay << 24 |
3306 dev_priv->rps.min_delay << 16);
3307
3308 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3309 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3310 I915_WRITE(GEN6_RP_UP_EI, 66000);
3311 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3312
3313 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3314 I915_WRITE(GEN6_RP_CONTROL,
3315 GEN6_RP_MEDIA_TURBO |
3316 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3317 GEN6_RP_MEDIA_IS_GFX |
3318 GEN6_RP_ENABLE |
3319 GEN6_RP_UP_BUSY_AVG |
3320 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3321
3322 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3323 if (!ret) {
3324 pcu_mbox = 0;
3325 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3326 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3327 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3328 (dev_priv->rps.max_delay & 0xff) * 50,
3329 (pcu_mbox & 0xff) * 50);
3330 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3331 }
3332 } else {
3333 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3334 }
3335
3336 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3337
3338 gen6_enable_rps_interrupts(dev);
3339
3340 rc6vids = 0;
3341 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3342 if (IS_GEN6(dev) && ret) {
3343 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3344 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3345 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3346 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3347 rc6vids &= 0xffff00;
3348 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3349 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3350 if (ret)
3351 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3352 }
3353
3354 gen6_gt_force_wake_put(dev_priv);
3355 }
3356
3357 static void gen6_update_ring_freq(struct drm_device *dev)
3358 {
3359 struct drm_i915_private *dev_priv = dev->dev_private;
3360 int min_freq = 15;
3361 unsigned int gpu_freq;
3362 unsigned int max_ia_freq, min_ring_freq;
3363 int scaling_factor = 180;
3364
3365 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3366
3367 max_ia_freq = cpufreq_quick_get_max(0);
3368 /*
3369 * Default to measured freq if none found, PCU will ensure we don't go
3370 * over
3371 */
3372 if (!max_ia_freq)
3373 max_ia_freq = tsc_khz;
3374
3375 /* Convert from kHz to MHz */
3376 max_ia_freq /= 1000;
3377
3378 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3379 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3380 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3381
3382 /*
3383 * For each potential GPU frequency, load a ring frequency we'd like
3384 * to use for memory access. We do this by specifying the IA frequency
3385 * the PCU should use as a reference to determine the ring frequency.
3386 */
3387 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3388 gpu_freq--) {
3389 int diff = dev_priv->rps.max_delay - gpu_freq;
3390 unsigned int ia_freq = 0, ring_freq = 0;
3391
3392 if (IS_HASWELL(dev)) {
3393 ring_freq = (gpu_freq * 5 + 3) / 4;
3394 ring_freq = max(min_ring_freq, ring_freq);
3395 /* leave ia_freq as the default, chosen by cpufreq */
3396 } else {
3397 /* On older processors, there is no separate ring
3398 * clock domain, so in order to boost the bandwidth
3399 * of the ring, we need to upclock the CPU (ia_freq).
3400 *
3401 * For GPU frequencies less than 750MHz,
3402 * just use the lowest ring freq.
3403 */
3404 if (gpu_freq < min_freq)
3405 ia_freq = 800;
3406 else
3407 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3408 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3409 }
3410
3411 sandybridge_pcode_write(dev_priv,
3412 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3413 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3414 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3415 gpu_freq);
3416 }
3417 }
3418
3419 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3420 {
3421 u32 val, rp0;
3422
3423 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3424
3425 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3426 /* Clamp to max */
3427 rp0 = min_t(u32, rp0, 0xea);
3428
3429 return rp0;
3430 }
3431
3432 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3433 {
3434 u32 val, rpe;
3435
3436 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3437 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3438 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3439 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3440
3441 return rpe;
3442 }
3443
3444 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3445 {
3446 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3447 }
3448
3449 static void vlv_rps_timer_work(struct work_struct *work)
3450 {
3451 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3452 rps.vlv_work.work);
3453
3454 /*
3455 * Timer fired, we must be idle. Drop to min voltage state.
3456 * Note: we use RPe here since it should match the
3457 * Vmin we were shooting for. That should give us better
3458 * perf when we come back out of RC6 than if we used the
3459 * min freq available.
3460 */
3461 mutex_lock(&dev_priv->rps.hw_lock);
3462 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3463 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3464 mutex_unlock(&dev_priv->rps.hw_lock);
3465 }
3466
3467 static void valleyview_setup_pctx(struct drm_device *dev)
3468 {
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 struct drm_i915_gem_object *pctx;
3471 unsigned long pctx_paddr;
3472 u32 pcbr;
3473 int pctx_size = 24*1024;
3474
3475 pcbr = I915_READ(VLV_PCBR);
3476 if (pcbr) {
3477 /* BIOS set it up already, grab the pre-alloc'd space */
3478 int pcbr_offset;
3479
3480 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3481 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3482 pcbr_offset,
3483 I915_GTT_OFFSET_NONE,
3484 pctx_size);
3485 goto out;
3486 }
3487
3488 /*
3489 * From the Gunit register HAS:
3490 * The Gfx driver is expected to program this register and ensure
3491 * proper allocation within Gfx stolen memory. For example, this
3492 * register should be programmed such than the PCBR range does not
3493 * overlap with other ranges, such as the frame buffer, protected
3494 * memory, or any other relevant ranges.
3495 */
3496 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3497 if (!pctx) {
3498 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3499 return;
3500 }
3501
3502 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3503 I915_WRITE(VLV_PCBR, pctx_paddr);
3504
3505 out:
3506 dev_priv->vlv_pctx = pctx;
3507 }
3508
3509 static void valleyview_enable_rps(struct drm_device *dev)
3510 {
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 struct intel_ring_buffer *ring;
3513 u32 gtfifodbg, val;
3514 int i;
3515
3516 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3517
3518 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3519 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3520 I915_WRITE(GTFIFODBG, gtfifodbg);
3521 }
3522
3523 valleyview_setup_pctx(dev);
3524
3525 gen6_gt_force_wake_get(dev_priv);
3526
3527 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3528 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3529 I915_WRITE(GEN6_RP_UP_EI, 66000);
3530 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3531
3532 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3533
3534 I915_WRITE(GEN6_RP_CONTROL,
3535 GEN6_RP_MEDIA_TURBO |
3536 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3537 GEN6_RP_MEDIA_IS_GFX |
3538 GEN6_RP_ENABLE |
3539 GEN6_RP_UP_BUSY_AVG |
3540 GEN6_RP_DOWN_IDLE_CONT);
3541
3542 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3543 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3544 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3545
3546 for_each_ring(ring, dev_priv, i)
3547 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3548
3549 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3550
3551 /* allows RC6 residency counter to work */
3552 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3553 I915_WRITE(GEN6_RC_CONTROL,
3554 GEN7_RC_CTL_TO_MODE);
3555
3556 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3557 switch ((val >> 6) & 3) {
3558 case 0:
3559 case 1:
3560 dev_priv->mem_freq = 800;
3561 break;
3562 case 2:
3563 dev_priv->mem_freq = 1066;
3564 break;
3565 case 3:
3566 dev_priv->mem_freq = 1333;
3567 break;
3568 }
3569 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3570
3571 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3572 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3573
3574 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3575 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3576 vlv_gpu_freq(dev_priv->mem_freq,
3577 dev_priv->rps.cur_delay),
3578 dev_priv->rps.cur_delay);
3579
3580 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3581 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3582 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3583 vlv_gpu_freq(dev_priv->mem_freq,
3584 dev_priv->rps.max_delay),
3585 dev_priv->rps.max_delay);
3586
3587 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3588 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3589 vlv_gpu_freq(dev_priv->mem_freq,
3590 dev_priv->rps.rpe_delay),
3591 dev_priv->rps.rpe_delay);
3592
3593 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3594 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3595 vlv_gpu_freq(dev_priv->mem_freq,
3596 dev_priv->rps.min_delay),
3597 dev_priv->rps.min_delay);
3598
3599 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3600 vlv_gpu_freq(dev_priv->mem_freq,
3601 dev_priv->rps.rpe_delay),
3602 dev_priv->rps.rpe_delay);
3603
3604 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3605
3606 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3607
3608 gen6_enable_rps_interrupts(dev);
3609
3610 gen6_gt_force_wake_put(dev_priv);
3611 }
3612
3613 void ironlake_teardown_rc6(struct drm_device *dev)
3614 {
3615 struct drm_i915_private *dev_priv = dev->dev_private;
3616
3617 if (dev_priv->ips.renderctx) {
3618 i915_gem_object_unpin(dev_priv->ips.renderctx);
3619 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3620 dev_priv->ips.renderctx = NULL;
3621 }
3622
3623 if (dev_priv->ips.pwrctx) {
3624 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3625 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3626 dev_priv->ips.pwrctx = NULL;
3627 }
3628 }
3629
3630 static void ironlake_disable_rc6(struct drm_device *dev)
3631 {
3632 struct drm_i915_private *dev_priv = dev->dev_private;
3633
3634 if (I915_READ(PWRCTXA)) {
3635 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3636 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3637 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3638 50);
3639
3640 I915_WRITE(PWRCTXA, 0);
3641 POSTING_READ(PWRCTXA);
3642
3643 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3644 POSTING_READ(RSTDBYCTL);
3645 }
3646 }
3647
3648 static int ironlake_setup_rc6(struct drm_device *dev)
3649 {
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652 if (dev_priv->ips.renderctx == NULL)
3653 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3654 if (!dev_priv->ips.renderctx)
3655 return -ENOMEM;
3656
3657 if (dev_priv->ips.pwrctx == NULL)
3658 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3659 if (!dev_priv->ips.pwrctx) {
3660 ironlake_teardown_rc6(dev);
3661 return -ENOMEM;
3662 }
3663
3664 return 0;
3665 }
3666
3667 static void ironlake_enable_rc6(struct drm_device *dev)
3668 {
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3671 bool was_interruptible;
3672 int ret;
3673
3674 /* rc6 disabled by default due to repeated reports of hanging during
3675 * boot and resume.
3676 */
3677 if (!intel_enable_rc6(dev))
3678 return;
3679
3680 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3681
3682 ret = ironlake_setup_rc6(dev);
3683 if (ret)
3684 return;
3685
3686 was_interruptible = dev_priv->mm.interruptible;
3687 dev_priv->mm.interruptible = false;
3688
3689 /*
3690 * GPU can automatically power down the render unit if given a page
3691 * to save state.
3692 */
3693 ret = intel_ring_begin(ring, 6);
3694 if (ret) {
3695 ironlake_teardown_rc6(dev);
3696 dev_priv->mm.interruptible = was_interruptible;
3697 return;
3698 }
3699
3700 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3701 intel_ring_emit(ring, MI_SET_CONTEXT);
3702 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3703 MI_MM_SPACE_GTT |
3704 MI_SAVE_EXT_STATE_EN |
3705 MI_RESTORE_EXT_STATE_EN |
3706 MI_RESTORE_INHIBIT);
3707 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3708 intel_ring_emit(ring, MI_NOOP);
3709 intel_ring_emit(ring, MI_FLUSH);
3710 intel_ring_advance(ring);
3711
3712 /*
3713 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3714 * does an implicit flush, combined with MI_FLUSH above, it should be
3715 * safe to assume that renderctx is valid
3716 */
3717 ret = intel_ring_idle(ring);
3718 dev_priv->mm.interruptible = was_interruptible;
3719 if (ret) {
3720 DRM_ERROR("failed to enable ironlake power savings\n");
3721 ironlake_teardown_rc6(dev);
3722 return;
3723 }
3724
3725 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3726 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3727 }
3728
3729 static unsigned long intel_pxfreq(u32 vidfreq)
3730 {
3731 unsigned long freq;
3732 int div = (vidfreq & 0x3f0000) >> 16;
3733 int post = (vidfreq & 0x3000) >> 12;
3734 int pre = (vidfreq & 0x7);
3735
3736 if (!pre)
3737 return 0;
3738
3739 freq = ((div * 133333) / ((1<<post) * pre));
3740
3741 return freq;
3742 }
3743
3744 static const struct cparams {
3745 u16 i;
3746 u16 t;
3747 u16 m;
3748 u16 c;
3749 } cparams[] = {
3750 { 1, 1333, 301, 28664 },
3751 { 1, 1066, 294, 24460 },
3752 { 1, 800, 294, 25192 },
3753 { 0, 1333, 276, 27605 },
3754 { 0, 1066, 276, 27605 },
3755 { 0, 800, 231, 23784 },
3756 };
3757
3758 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3759 {
3760 u64 total_count, diff, ret;
3761 u32 count1, count2, count3, m = 0, c = 0;
3762 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3763 int i;
3764
3765 assert_spin_locked(&mchdev_lock);
3766
3767 diff1 = now - dev_priv->ips.last_time1;
3768
3769 /* Prevent division-by-zero if we are asking too fast.
3770 * Also, we don't get interesting results if we are polling
3771 * faster than once in 10ms, so just return the saved value
3772 * in such cases.
3773 */
3774 if (diff1 <= 10)
3775 return dev_priv->ips.chipset_power;
3776
3777 count1 = I915_READ(DMIEC);
3778 count2 = I915_READ(DDREC);
3779 count3 = I915_READ(CSIEC);
3780
3781 total_count = count1 + count2 + count3;
3782
3783 /* FIXME: handle per-counter overflow */
3784 if (total_count < dev_priv->ips.last_count1) {
3785 diff = ~0UL - dev_priv->ips.last_count1;
3786 diff += total_count;
3787 } else {
3788 diff = total_count - dev_priv->ips.last_count1;
3789 }
3790
3791 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3792 if (cparams[i].i == dev_priv->ips.c_m &&
3793 cparams[i].t == dev_priv->ips.r_t) {
3794 m = cparams[i].m;
3795 c = cparams[i].c;
3796 break;
3797 }
3798 }
3799
3800 diff = div_u64(diff, diff1);
3801 ret = ((m * diff) + c);
3802 ret = div_u64(ret, 10);
3803
3804 dev_priv->ips.last_count1 = total_count;
3805 dev_priv->ips.last_time1 = now;
3806
3807 dev_priv->ips.chipset_power = ret;
3808
3809 return ret;
3810 }
3811
3812 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3813 {
3814 unsigned long val;
3815
3816 if (dev_priv->info->gen != 5)
3817 return 0;
3818
3819 spin_lock_irq(&mchdev_lock);
3820
3821 val = __i915_chipset_val(dev_priv);
3822
3823 spin_unlock_irq(&mchdev_lock);
3824
3825 return val;
3826 }
3827
3828 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3829 {
3830 unsigned long m, x, b;
3831 u32 tsfs;
3832
3833 tsfs = I915_READ(TSFS);
3834
3835 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3836 x = I915_READ8(TR1);
3837
3838 b = tsfs & TSFS_INTR_MASK;
3839
3840 return ((m * x) / 127) - b;
3841 }
3842
3843 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3844 {
3845 static const struct v_table {
3846 u16 vd; /* in .1 mil */
3847 u16 vm; /* in .1 mil */
3848 } v_table[] = {
3849 { 0, 0, },
3850 { 375, 0, },
3851 { 500, 0, },
3852 { 625, 0, },
3853 { 750, 0, },
3854 { 875, 0, },
3855 { 1000, 0, },
3856 { 1125, 0, },
3857 { 4125, 3000, },
3858 { 4125, 3000, },
3859 { 4125, 3000, },
3860 { 4125, 3000, },
3861 { 4125, 3000, },
3862 { 4125, 3000, },
3863 { 4125, 3000, },
3864 { 4125, 3000, },
3865 { 4125, 3000, },
3866 { 4125, 3000, },
3867 { 4125, 3000, },
3868 { 4125, 3000, },
3869 { 4125, 3000, },
3870 { 4125, 3000, },
3871 { 4125, 3000, },
3872 { 4125, 3000, },
3873 { 4125, 3000, },
3874 { 4125, 3000, },
3875 { 4125, 3000, },
3876 { 4125, 3000, },
3877 { 4125, 3000, },
3878 { 4125, 3000, },
3879 { 4125, 3000, },
3880 { 4125, 3000, },
3881 { 4250, 3125, },
3882 { 4375, 3250, },
3883 { 4500, 3375, },
3884 { 4625, 3500, },
3885 { 4750, 3625, },
3886 { 4875, 3750, },
3887 { 5000, 3875, },
3888 { 5125, 4000, },
3889 { 5250, 4125, },
3890 { 5375, 4250, },
3891 { 5500, 4375, },
3892 { 5625, 4500, },
3893 { 5750, 4625, },
3894 { 5875, 4750, },
3895 { 6000, 4875, },
3896 { 6125, 5000, },
3897 { 6250, 5125, },
3898 { 6375, 5250, },
3899 { 6500, 5375, },
3900 { 6625, 5500, },
3901 { 6750, 5625, },
3902 { 6875, 5750, },
3903 { 7000, 5875, },
3904 { 7125, 6000, },
3905 { 7250, 6125, },
3906 { 7375, 6250, },
3907 { 7500, 6375, },
3908 { 7625, 6500, },
3909 { 7750, 6625, },
3910 { 7875, 6750, },
3911 { 8000, 6875, },
3912 { 8125, 7000, },
3913 { 8250, 7125, },
3914 { 8375, 7250, },
3915 { 8500, 7375, },
3916 { 8625, 7500, },
3917 { 8750, 7625, },
3918 { 8875, 7750, },
3919 { 9000, 7875, },
3920 { 9125, 8000, },
3921 { 9250, 8125, },
3922 { 9375, 8250, },
3923 { 9500, 8375, },
3924 { 9625, 8500, },
3925 { 9750, 8625, },
3926 { 9875, 8750, },
3927 { 10000, 8875, },
3928 { 10125, 9000, },
3929 { 10250, 9125, },
3930 { 10375, 9250, },
3931 { 10500, 9375, },
3932 { 10625, 9500, },
3933 { 10750, 9625, },
3934 { 10875, 9750, },
3935 { 11000, 9875, },
3936 { 11125, 10000, },
3937 { 11250, 10125, },
3938 { 11375, 10250, },
3939 { 11500, 10375, },
3940 { 11625, 10500, },
3941 { 11750, 10625, },
3942 { 11875, 10750, },
3943 { 12000, 10875, },
3944 { 12125, 11000, },
3945 { 12250, 11125, },
3946 { 12375, 11250, },
3947 { 12500, 11375, },
3948 { 12625, 11500, },
3949 { 12750, 11625, },
3950 { 12875, 11750, },
3951 { 13000, 11875, },
3952 { 13125, 12000, },
3953 { 13250, 12125, },
3954 { 13375, 12250, },
3955 { 13500, 12375, },
3956 { 13625, 12500, },
3957 { 13750, 12625, },
3958 { 13875, 12750, },
3959 { 14000, 12875, },
3960 { 14125, 13000, },
3961 { 14250, 13125, },
3962 { 14375, 13250, },
3963 { 14500, 13375, },
3964 { 14625, 13500, },
3965 { 14750, 13625, },
3966 { 14875, 13750, },
3967 { 15000, 13875, },
3968 { 15125, 14000, },
3969 { 15250, 14125, },
3970 { 15375, 14250, },
3971 { 15500, 14375, },
3972 { 15625, 14500, },
3973 { 15750, 14625, },
3974 { 15875, 14750, },
3975 { 16000, 14875, },
3976 { 16125, 15000, },
3977 };
3978 if (dev_priv->info->is_mobile)
3979 return v_table[pxvid].vm;
3980 else
3981 return v_table[pxvid].vd;
3982 }
3983
3984 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3985 {
3986 struct timespec now, diff1;
3987 u64 diff;
3988 unsigned long diffms;
3989 u32 count;
3990
3991 assert_spin_locked(&mchdev_lock);
3992
3993 getrawmonotonic(&now);
3994 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3995
3996 /* Don't divide by 0 */
3997 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3998 if (!diffms)
3999 return;
4000
4001 count = I915_READ(GFXEC);
4002
4003 if (count < dev_priv->ips.last_count2) {
4004 diff = ~0UL - dev_priv->ips.last_count2;
4005 diff += count;
4006 } else {
4007 diff = count - dev_priv->ips.last_count2;
4008 }
4009
4010 dev_priv->ips.last_count2 = count;
4011 dev_priv->ips.last_time2 = now;
4012
4013 /* More magic constants... */
4014 diff = diff * 1181;
4015 diff = div_u64(diff, diffms * 10);
4016 dev_priv->ips.gfx_power = diff;
4017 }
4018
4019 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4020 {
4021 if (dev_priv->info->gen != 5)
4022 return;
4023
4024 spin_lock_irq(&mchdev_lock);
4025
4026 __i915_update_gfx_val(dev_priv);
4027
4028 spin_unlock_irq(&mchdev_lock);
4029 }
4030
4031 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4032 {
4033 unsigned long t, corr, state1, corr2, state2;
4034 u32 pxvid, ext_v;
4035
4036 assert_spin_locked(&mchdev_lock);
4037
4038 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4039 pxvid = (pxvid >> 24) & 0x7f;
4040 ext_v = pvid_to_extvid(dev_priv, pxvid);
4041
4042 state1 = ext_v;
4043
4044 t = i915_mch_val(dev_priv);
4045
4046 /* Revel in the empirically derived constants */
4047
4048 /* Correction factor in 1/100000 units */
4049 if (t > 80)
4050 corr = ((t * 2349) + 135940);
4051 else if (t >= 50)
4052 corr = ((t * 964) + 29317);
4053 else /* < 50 */
4054 corr = ((t * 301) + 1004);
4055
4056 corr = corr * ((150142 * state1) / 10000 - 78642);
4057 corr /= 100000;
4058 corr2 = (corr * dev_priv->ips.corr);
4059
4060 state2 = (corr2 * state1) / 10000;
4061 state2 /= 100; /* convert to mW */
4062
4063 __i915_update_gfx_val(dev_priv);
4064
4065 return dev_priv->ips.gfx_power + state2;
4066 }
4067
4068 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4069 {
4070 unsigned long val;
4071
4072 if (dev_priv->info->gen != 5)
4073 return 0;
4074
4075 spin_lock_irq(&mchdev_lock);
4076
4077 val = __i915_gfx_val(dev_priv);
4078
4079 spin_unlock_irq(&mchdev_lock);
4080
4081 return val;
4082 }
4083
4084 /**
4085 * i915_read_mch_val - return value for IPS use
4086 *
4087 * Calculate and return a value for the IPS driver to use when deciding whether
4088 * we have thermal and power headroom to increase CPU or GPU power budget.
4089 */
4090 unsigned long i915_read_mch_val(void)
4091 {
4092 struct drm_i915_private *dev_priv;
4093 unsigned long chipset_val, graphics_val, ret = 0;
4094
4095 spin_lock_irq(&mchdev_lock);
4096 if (!i915_mch_dev)
4097 goto out_unlock;
4098 dev_priv = i915_mch_dev;
4099
4100 chipset_val = __i915_chipset_val(dev_priv);
4101 graphics_val = __i915_gfx_val(dev_priv);
4102
4103 ret = chipset_val + graphics_val;
4104
4105 out_unlock:
4106 spin_unlock_irq(&mchdev_lock);
4107
4108 return ret;
4109 }
4110 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4111
4112 /**
4113 * i915_gpu_raise - raise GPU frequency limit
4114 *
4115 * Raise the limit; IPS indicates we have thermal headroom.
4116 */
4117 bool i915_gpu_raise(void)
4118 {
4119 struct drm_i915_private *dev_priv;
4120 bool ret = true;
4121
4122 spin_lock_irq(&mchdev_lock);
4123 if (!i915_mch_dev) {
4124 ret = false;
4125 goto out_unlock;
4126 }
4127 dev_priv = i915_mch_dev;
4128
4129 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4130 dev_priv->ips.max_delay--;
4131
4132 out_unlock:
4133 spin_unlock_irq(&mchdev_lock);
4134
4135 return ret;
4136 }
4137 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4138
4139 /**
4140 * i915_gpu_lower - lower GPU frequency limit
4141 *
4142 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4143 * frequency maximum.
4144 */
4145 bool i915_gpu_lower(void)
4146 {
4147 struct drm_i915_private *dev_priv;
4148 bool ret = true;
4149
4150 spin_lock_irq(&mchdev_lock);
4151 if (!i915_mch_dev) {
4152 ret = false;
4153 goto out_unlock;
4154 }
4155 dev_priv = i915_mch_dev;
4156
4157 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4158 dev_priv->ips.max_delay++;
4159
4160 out_unlock:
4161 spin_unlock_irq(&mchdev_lock);
4162
4163 return ret;
4164 }
4165 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4166
4167 /**
4168 * i915_gpu_busy - indicate GPU business to IPS
4169 *
4170 * Tell the IPS driver whether or not the GPU is busy.
4171 */
4172 bool i915_gpu_busy(void)
4173 {
4174 struct drm_i915_private *dev_priv;
4175 struct intel_ring_buffer *ring;
4176 bool ret = false;
4177 int i;
4178
4179 spin_lock_irq(&mchdev_lock);
4180 if (!i915_mch_dev)
4181 goto out_unlock;
4182 dev_priv = i915_mch_dev;
4183
4184 for_each_ring(ring, dev_priv, i)
4185 ret |= !list_empty(&ring->request_list);
4186
4187 out_unlock:
4188 spin_unlock_irq(&mchdev_lock);
4189
4190 return ret;
4191 }
4192 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4193
4194 /**
4195 * i915_gpu_turbo_disable - disable graphics turbo
4196 *
4197 * Disable graphics turbo by resetting the max frequency and setting the
4198 * current frequency to the default.
4199 */
4200 bool i915_gpu_turbo_disable(void)
4201 {
4202 struct drm_i915_private *dev_priv;
4203 bool ret = true;
4204
4205 spin_lock_irq(&mchdev_lock);
4206 if (!i915_mch_dev) {
4207 ret = false;
4208 goto out_unlock;
4209 }
4210 dev_priv = i915_mch_dev;
4211
4212 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4213
4214 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4215 ret = false;
4216
4217 out_unlock:
4218 spin_unlock_irq(&mchdev_lock);
4219
4220 return ret;
4221 }
4222 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4223
4224 /**
4225 * Tells the intel_ips driver that the i915 driver is now loaded, if
4226 * IPS got loaded first.
4227 *
4228 * This awkward dance is so that neither module has to depend on the
4229 * other in order for IPS to do the appropriate communication of
4230 * GPU turbo limits to i915.
4231 */
4232 static void
4233 ips_ping_for_i915_load(void)
4234 {
4235 void (*link)(void);
4236
4237 link = symbol_get(ips_link_to_i915_driver);
4238 if (link) {
4239 link();
4240 symbol_put(ips_link_to_i915_driver);
4241 }
4242 }
4243
4244 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4245 {
4246 /* We only register the i915 ips part with intel-ips once everything is
4247 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4248 spin_lock_irq(&mchdev_lock);
4249 i915_mch_dev = dev_priv;
4250 spin_unlock_irq(&mchdev_lock);
4251
4252 ips_ping_for_i915_load();
4253 }
4254
4255 void intel_gpu_ips_teardown(void)
4256 {
4257 spin_lock_irq(&mchdev_lock);
4258 i915_mch_dev = NULL;
4259 spin_unlock_irq(&mchdev_lock);
4260 }
4261 static void intel_init_emon(struct drm_device *dev)
4262 {
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 u32 lcfuse;
4265 u8 pxw[16];
4266 int i;
4267
4268 /* Disable to program */
4269 I915_WRITE(ECR, 0);
4270 POSTING_READ(ECR);
4271
4272 /* Program energy weights for various events */
4273 I915_WRITE(SDEW, 0x15040d00);
4274 I915_WRITE(CSIEW0, 0x007f0000);
4275 I915_WRITE(CSIEW1, 0x1e220004);
4276 I915_WRITE(CSIEW2, 0x04000004);
4277
4278 for (i = 0; i < 5; i++)
4279 I915_WRITE(PEW + (i * 4), 0);
4280 for (i = 0; i < 3; i++)
4281 I915_WRITE(DEW + (i * 4), 0);
4282
4283 /* Program P-state weights to account for frequency power adjustment */
4284 for (i = 0; i < 16; i++) {
4285 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4286 unsigned long freq = intel_pxfreq(pxvidfreq);
4287 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4288 PXVFREQ_PX_SHIFT;
4289 unsigned long val;
4290
4291 val = vid * vid;
4292 val *= (freq / 1000);
4293 val *= 255;
4294 val /= (127*127*900);
4295 if (val > 0xff)
4296 DRM_ERROR("bad pxval: %ld\n", val);
4297 pxw[i] = val;
4298 }
4299 /* Render standby states get 0 weight */
4300 pxw[14] = 0;
4301 pxw[15] = 0;
4302
4303 for (i = 0; i < 4; i++) {
4304 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4305 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4306 I915_WRITE(PXW + (i * 4), val);
4307 }
4308
4309 /* Adjust magic regs to magic values (more experimental results) */
4310 I915_WRITE(OGW0, 0);
4311 I915_WRITE(OGW1, 0);
4312 I915_WRITE(EG0, 0x00007f00);
4313 I915_WRITE(EG1, 0x0000000e);
4314 I915_WRITE(EG2, 0x000e0000);
4315 I915_WRITE(EG3, 0x68000300);
4316 I915_WRITE(EG4, 0x42000000);
4317 I915_WRITE(EG5, 0x00140031);
4318 I915_WRITE(EG6, 0);
4319 I915_WRITE(EG7, 0);
4320
4321 for (i = 0; i < 8; i++)
4322 I915_WRITE(PXWL + (i * 4), 0);
4323
4324 /* Enable PMON + select events */
4325 I915_WRITE(ECR, 0x80000019);
4326
4327 lcfuse = I915_READ(LCFUSE02);
4328
4329 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4330 }
4331
4332 void intel_disable_gt_powersave(struct drm_device *dev)
4333 {
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335
4336 /* Interrupts should be disabled already to avoid re-arming. */
4337 WARN_ON(dev->irq_enabled);
4338
4339 if (IS_IRONLAKE_M(dev)) {
4340 ironlake_disable_drps(dev);
4341 ironlake_disable_rc6(dev);
4342 } else if (INTEL_INFO(dev)->gen >= 6) {
4343 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4344 cancel_work_sync(&dev_priv->rps.work);
4345 if (IS_VALLEYVIEW(dev))
4346 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4347 mutex_lock(&dev_priv->rps.hw_lock);
4348 if (IS_VALLEYVIEW(dev))
4349 valleyview_disable_rps(dev);
4350 else
4351 gen6_disable_rps(dev);
4352 mutex_unlock(&dev_priv->rps.hw_lock);
4353 }
4354 }
4355
4356 static void intel_gen6_powersave_work(struct work_struct *work)
4357 {
4358 struct drm_i915_private *dev_priv =
4359 container_of(work, struct drm_i915_private,
4360 rps.delayed_resume_work.work);
4361 struct drm_device *dev = dev_priv->dev;
4362
4363 mutex_lock(&dev_priv->rps.hw_lock);
4364
4365 if (IS_VALLEYVIEW(dev)) {
4366 valleyview_enable_rps(dev);
4367 } else {
4368 gen6_enable_rps(dev);
4369 gen6_update_ring_freq(dev);
4370 }
4371 mutex_unlock(&dev_priv->rps.hw_lock);
4372 }
4373
4374 void intel_enable_gt_powersave(struct drm_device *dev)
4375 {
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377
4378 if (IS_IRONLAKE_M(dev)) {
4379 ironlake_enable_drps(dev);
4380 ironlake_enable_rc6(dev);
4381 intel_init_emon(dev);
4382 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4383 /*
4384 * PCU communication is slow and this doesn't need to be
4385 * done at any specific time, so do this out of our fast path
4386 * to make resume and init faster.
4387 */
4388 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4389 round_jiffies_up_relative(HZ));
4390 }
4391 }
4392
4393 static void ibx_init_clock_gating(struct drm_device *dev)
4394 {
4395 struct drm_i915_private *dev_priv = dev->dev_private;
4396
4397 /*
4398 * On Ibex Peak and Cougar Point, we need to disable clock
4399 * gating for the panel power sequencer or it will fail to
4400 * start up when no ports are active.
4401 */
4402 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4403 }
4404
4405 static void g4x_disable_trickle_feed(struct drm_device *dev)
4406 {
4407 struct drm_i915_private *dev_priv = dev->dev_private;
4408 int pipe;
4409
4410 for_each_pipe(pipe) {
4411 I915_WRITE(DSPCNTR(pipe),
4412 I915_READ(DSPCNTR(pipe)) |
4413 DISPPLANE_TRICKLE_FEED_DISABLE);
4414 intel_flush_display_plane(dev_priv, pipe);
4415 }
4416 }
4417
4418 static void ironlake_init_clock_gating(struct drm_device *dev)
4419 {
4420 struct drm_i915_private *dev_priv = dev->dev_private;
4421 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4422
4423 /*
4424 * Required for FBC
4425 * WaFbcDisableDpfcClockGating:ilk
4426 */
4427 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4428 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4429 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4430
4431 I915_WRITE(PCH_3DCGDIS0,
4432 MARIUNIT_CLOCK_GATE_DISABLE |
4433 SVSMUNIT_CLOCK_GATE_DISABLE);
4434 I915_WRITE(PCH_3DCGDIS1,
4435 VFMUNIT_CLOCK_GATE_DISABLE);
4436
4437 /*
4438 * According to the spec the following bits should be set in
4439 * order to enable memory self-refresh
4440 * The bit 22/21 of 0x42004
4441 * The bit 5 of 0x42020
4442 * The bit 15 of 0x45000
4443 */
4444 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4445 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4446 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4447 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4448 I915_WRITE(DISP_ARB_CTL,
4449 (I915_READ(DISP_ARB_CTL) |
4450 DISP_FBC_WM_DIS));
4451 I915_WRITE(WM3_LP_ILK, 0);
4452 I915_WRITE(WM2_LP_ILK, 0);
4453 I915_WRITE(WM1_LP_ILK, 0);
4454
4455 /*
4456 * Based on the document from hardware guys the following bits
4457 * should be set unconditionally in order to enable FBC.
4458 * The bit 22 of 0x42000
4459 * The bit 22 of 0x42004
4460 * The bit 7,8,9 of 0x42020.
4461 */
4462 if (IS_IRONLAKE_M(dev)) {
4463 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4464 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4465 I915_READ(ILK_DISPLAY_CHICKEN1) |
4466 ILK_FBCQ_DIS);
4467 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4468 I915_READ(ILK_DISPLAY_CHICKEN2) |
4469 ILK_DPARB_GATE);
4470 }
4471
4472 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4473
4474 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4475 I915_READ(ILK_DISPLAY_CHICKEN2) |
4476 ILK_ELPIN_409_SELECT);
4477 I915_WRITE(_3D_CHICKEN2,
4478 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4479 _3D_CHICKEN2_WM_READ_PIPELINED);
4480
4481 /* WaDisableRenderCachePipelinedFlush:ilk */
4482 I915_WRITE(CACHE_MODE_0,
4483 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4484
4485 g4x_disable_trickle_feed(dev);
4486
4487 ibx_init_clock_gating(dev);
4488 }
4489
4490 static void cpt_init_clock_gating(struct drm_device *dev)
4491 {
4492 struct drm_i915_private *dev_priv = dev->dev_private;
4493 int pipe;
4494 uint32_t val;
4495
4496 /*
4497 * On Ibex Peak and Cougar Point, we need to disable clock
4498 * gating for the panel power sequencer or it will fail to
4499 * start up when no ports are active.
4500 */
4501 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4502 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4503 DPLS_EDP_PPS_FIX_DIS);
4504 /* The below fixes the weird display corruption, a few pixels shifted
4505 * downward, on (only) LVDS of some HP laptops with IVY.
4506 */
4507 for_each_pipe(pipe) {
4508 val = I915_READ(TRANS_CHICKEN2(pipe));
4509 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4510 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4511 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4512 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4513 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4514 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4515 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4516 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4517 }
4518 /* WADP0ClockGatingDisable */
4519 for_each_pipe(pipe) {
4520 I915_WRITE(TRANS_CHICKEN1(pipe),
4521 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4522 }
4523 }
4524
4525 static void gen6_check_mch_setup(struct drm_device *dev)
4526 {
4527 struct drm_i915_private *dev_priv = dev->dev_private;
4528 uint32_t tmp;
4529
4530 tmp = I915_READ(MCH_SSKPD);
4531 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4532 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4533 DRM_INFO("This can cause pipe underruns and display issues.\n");
4534 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4535 }
4536 }
4537
4538 static void gen6_init_clock_gating(struct drm_device *dev)
4539 {
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4542
4543 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4544
4545 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4546 I915_READ(ILK_DISPLAY_CHICKEN2) |
4547 ILK_ELPIN_409_SELECT);
4548
4549 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4550 I915_WRITE(_3D_CHICKEN,
4551 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4552
4553 /* WaSetupGtModeTdRowDispatch:snb */
4554 if (IS_SNB_GT1(dev))
4555 I915_WRITE(GEN6_GT_MODE,
4556 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4557
4558 I915_WRITE(WM3_LP_ILK, 0);
4559 I915_WRITE(WM2_LP_ILK, 0);
4560 I915_WRITE(WM1_LP_ILK, 0);
4561
4562 I915_WRITE(CACHE_MODE_0,
4563 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4564
4565 I915_WRITE(GEN6_UCGCTL1,
4566 I915_READ(GEN6_UCGCTL1) |
4567 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4568 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4569
4570 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4571 * gating disable must be set. Failure to set it results in
4572 * flickering pixels due to Z write ordering failures after
4573 * some amount of runtime in the Mesa "fire" demo, and Unigine
4574 * Sanctuary and Tropics, and apparently anything else with
4575 * alpha test or pixel discard.
4576 *
4577 * According to the spec, bit 11 (RCCUNIT) must also be set,
4578 * but we didn't debug actual testcases to find it out.
4579 *
4580 * Also apply WaDisableVDSUnitClockGating:snb and
4581 * WaDisableRCPBUnitClockGating:snb.
4582 */
4583 I915_WRITE(GEN6_UCGCTL2,
4584 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4585 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4586 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4587
4588 /* Bspec says we need to always set all mask bits. */
4589 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4590 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4591
4592 /*
4593 * According to the spec the following bits should be
4594 * set in order to enable memory self-refresh and fbc:
4595 * The bit21 and bit22 of 0x42000
4596 * The bit21 and bit22 of 0x42004
4597 * The bit5 and bit7 of 0x42020
4598 * The bit14 of 0x70180
4599 * The bit14 of 0x71180
4600 *
4601 * WaFbcAsynchFlipDisableFbcQueue:snb
4602 */
4603 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4604 I915_READ(ILK_DISPLAY_CHICKEN1) |
4605 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4606 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4607 I915_READ(ILK_DISPLAY_CHICKEN2) |
4608 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4609 I915_WRITE(ILK_DSPCLK_GATE_D,
4610 I915_READ(ILK_DSPCLK_GATE_D) |
4611 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4612 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4613
4614 /* WaMbcDriverBootEnable:snb */
4615 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4616 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4617
4618 g4x_disable_trickle_feed(dev);
4619
4620 /* The default value should be 0x200 according to docs, but the two
4621 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4622 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4623 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4624
4625 cpt_init_clock_gating(dev);
4626
4627 gen6_check_mch_setup(dev);
4628 }
4629
4630 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4631 {
4632 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4633
4634 reg &= ~GEN7_FF_SCHED_MASK;
4635 reg |= GEN7_FF_TS_SCHED_HW;
4636 reg |= GEN7_FF_VS_SCHED_HW;
4637 reg |= GEN7_FF_DS_SCHED_HW;
4638
4639 if (IS_HASWELL(dev_priv->dev))
4640 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4641
4642 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4643 }
4644
4645 static void lpt_init_clock_gating(struct drm_device *dev)
4646 {
4647 struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649 /*
4650 * TODO: this bit should only be enabled when really needed, then
4651 * disabled when not needed anymore in order to save power.
4652 */
4653 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4654 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4655 I915_READ(SOUTH_DSPCLK_GATE_D) |
4656 PCH_LP_PARTITION_LEVEL_DISABLE);
4657
4658 /* WADPOClockGatingDisable:hsw */
4659 I915_WRITE(_TRANSA_CHICKEN1,
4660 I915_READ(_TRANSA_CHICKEN1) |
4661 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4662 }
4663
4664 static void lpt_suspend_hw(struct drm_device *dev)
4665 {
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667
4668 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4669 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4670
4671 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4672 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4673 }
4674 }
4675
4676 static void haswell_init_clock_gating(struct drm_device *dev)
4677 {
4678 struct drm_i915_private *dev_priv = dev->dev_private;
4679
4680 I915_WRITE(WM3_LP_ILK, 0);
4681 I915_WRITE(WM2_LP_ILK, 0);
4682 I915_WRITE(WM1_LP_ILK, 0);
4683
4684 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4685 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4686 */
4687 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4688
4689 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4690 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4691 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4692
4693 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4694 I915_WRITE(GEN7_L3CNTLREG1,
4695 GEN7_WA_FOR_GEN7_L3_CONTROL);
4696 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4697 GEN7_WA_L3_CHICKEN_MODE);
4698
4699 /* This is required by WaCatErrorRejectionIssue:hsw */
4700 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4701 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4702 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4703
4704 g4x_disable_trickle_feed(dev);
4705
4706 /* WaVSRefCountFullforceMissDisable:hsw */
4707 gen7_setup_fixed_func_scheduler(dev_priv);
4708
4709 /* WaDisable4x2SubspanOptimization:hsw */
4710 I915_WRITE(CACHE_MODE_1,
4711 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4712
4713 /* WaMbcDriverBootEnable:hsw */
4714 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4715 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4716
4717 /* WaSwitchSolVfFArbitrationPriority:hsw */
4718 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4719
4720 /* WaRsPkgCStateDisplayPMReq:hsw */
4721 I915_WRITE(CHICKEN_PAR1_1,
4722 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4723
4724 lpt_init_clock_gating(dev);
4725 }
4726
4727 static void ivybridge_init_clock_gating(struct drm_device *dev)
4728 {
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 uint32_t snpcr;
4731
4732 I915_WRITE(WM3_LP_ILK, 0);
4733 I915_WRITE(WM2_LP_ILK, 0);
4734 I915_WRITE(WM1_LP_ILK, 0);
4735
4736 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4737
4738 /* WaDisableEarlyCull:ivb */
4739 I915_WRITE(_3D_CHICKEN3,
4740 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4741
4742 /* WaDisableBackToBackFlipFix:ivb */
4743 I915_WRITE(IVB_CHICKEN3,
4744 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4745 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4746
4747 /* WaDisablePSDDualDispatchEnable:ivb */
4748 if (IS_IVB_GT1(dev))
4749 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4750 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4751 else
4752 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4753 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4754
4755 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4756 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4757 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4758
4759 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4760 I915_WRITE(GEN7_L3CNTLREG1,
4761 GEN7_WA_FOR_GEN7_L3_CONTROL);
4762 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4763 GEN7_WA_L3_CHICKEN_MODE);
4764 if (IS_IVB_GT1(dev))
4765 I915_WRITE(GEN7_ROW_CHICKEN2,
4766 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4767 else
4768 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4769 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4770
4771
4772 /* WaForceL3Serialization:ivb */
4773 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4774 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4775
4776 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4777 * gating disable must be set. Failure to set it results in
4778 * flickering pixels due to Z write ordering failures after
4779 * some amount of runtime in the Mesa "fire" demo, and Unigine
4780 * Sanctuary and Tropics, and apparently anything else with
4781 * alpha test or pixel discard.
4782 *
4783 * According to the spec, bit 11 (RCCUNIT) must also be set,
4784 * but we didn't debug actual testcases to find it out.
4785 *
4786 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4787 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4788 */
4789 I915_WRITE(GEN6_UCGCTL2,
4790 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4791 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4792
4793 /* This is required by WaCatErrorRejectionIssue:ivb */
4794 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4795 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4796 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4797
4798 g4x_disable_trickle_feed(dev);
4799
4800 /* WaMbcDriverBootEnable:ivb */
4801 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4802 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4803
4804 /* WaVSRefCountFullforceMissDisable:ivb */
4805 gen7_setup_fixed_func_scheduler(dev_priv);
4806
4807 /* WaDisable4x2SubspanOptimization:ivb */
4808 I915_WRITE(CACHE_MODE_1,
4809 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4810
4811 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4812 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4813 snpcr |= GEN6_MBC_SNPCR_MED;
4814 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4815
4816 if (!HAS_PCH_NOP(dev))
4817 cpt_init_clock_gating(dev);
4818
4819 gen6_check_mch_setup(dev);
4820 }
4821
4822 static void valleyview_init_clock_gating(struct drm_device *dev)
4823 {
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825
4826 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4827
4828 /* WaDisableEarlyCull:vlv */
4829 I915_WRITE(_3D_CHICKEN3,
4830 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4831
4832 /* WaDisableBackToBackFlipFix:vlv */
4833 I915_WRITE(IVB_CHICKEN3,
4834 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4835 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4836
4837 /* WaDisablePSDDualDispatchEnable:vlv */
4838 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4839 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4840 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4841
4842 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4843 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4844 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4845
4846 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4847 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4848 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4849
4850 /* WaForceL3Serialization:vlv */
4851 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4852 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4853
4854 /* WaDisableDopClockGating:vlv */
4855 I915_WRITE(GEN7_ROW_CHICKEN2,
4856 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4857
4858 /* This is required by WaCatErrorRejectionIssue:vlv */
4859 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4860 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4861 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4862
4863 /* WaMbcDriverBootEnable:vlv */
4864 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4865 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4866
4867
4868 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4869 * gating disable must be set. Failure to set it results in
4870 * flickering pixels due to Z write ordering failures after
4871 * some amount of runtime in the Mesa "fire" demo, and Unigine
4872 * Sanctuary and Tropics, and apparently anything else with
4873 * alpha test or pixel discard.
4874 *
4875 * According to the spec, bit 11 (RCCUNIT) must also be set,
4876 * but we didn't debug actual testcases to find it out.
4877 *
4878 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4879 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4880 *
4881 * Also apply WaDisableVDSUnitClockGating:vlv and
4882 * WaDisableRCPBUnitClockGating:vlv.
4883 */
4884 I915_WRITE(GEN6_UCGCTL2,
4885 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4886 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4887 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4888 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4889 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4890
4891 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4892
4893 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4894
4895 I915_WRITE(CACHE_MODE_1,
4896 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4897
4898 /*
4899 * WaDisableVLVClockGating_VBIIssue:vlv
4900 * Disable clock gating on th GCFG unit to prevent a delay
4901 * in the reporting of vblank events.
4902 */
4903 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4904
4905 /* Conservative clock gating settings for now */
4906 I915_WRITE(0x9400, 0xffffffff);
4907 I915_WRITE(0x9404, 0xffffffff);
4908 I915_WRITE(0x9408, 0xffffffff);
4909 I915_WRITE(0x940c, 0xffffffff);
4910 I915_WRITE(0x9410, 0xffffffff);
4911 I915_WRITE(0x9414, 0xffffffff);
4912 I915_WRITE(0x9418, 0xffffffff);
4913 }
4914
4915 static void g4x_init_clock_gating(struct drm_device *dev)
4916 {
4917 struct drm_i915_private *dev_priv = dev->dev_private;
4918 uint32_t dspclk_gate;
4919
4920 I915_WRITE(RENCLK_GATE_D1, 0);
4921 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4922 GS_UNIT_CLOCK_GATE_DISABLE |
4923 CL_UNIT_CLOCK_GATE_DISABLE);
4924 I915_WRITE(RAMCLK_GATE_D, 0);
4925 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4926 OVRUNIT_CLOCK_GATE_DISABLE |
4927 OVCUNIT_CLOCK_GATE_DISABLE;
4928 if (IS_GM45(dev))
4929 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4930 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4931
4932 /* WaDisableRenderCachePipelinedFlush */
4933 I915_WRITE(CACHE_MODE_0,
4934 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4935
4936 g4x_disable_trickle_feed(dev);
4937 }
4938
4939 static void crestline_init_clock_gating(struct drm_device *dev)
4940 {
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942
4943 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4944 I915_WRITE(RENCLK_GATE_D2, 0);
4945 I915_WRITE(DSPCLK_GATE_D, 0);
4946 I915_WRITE(RAMCLK_GATE_D, 0);
4947 I915_WRITE16(DEUC, 0);
4948 I915_WRITE(MI_ARB_STATE,
4949 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4950 }
4951
4952 static void broadwater_init_clock_gating(struct drm_device *dev)
4953 {
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955
4956 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4957 I965_RCC_CLOCK_GATE_DISABLE |
4958 I965_RCPB_CLOCK_GATE_DISABLE |
4959 I965_ISC_CLOCK_GATE_DISABLE |
4960 I965_FBC_CLOCK_GATE_DISABLE);
4961 I915_WRITE(RENCLK_GATE_D2, 0);
4962 I915_WRITE(MI_ARB_STATE,
4963 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4964 }
4965
4966 static void gen3_init_clock_gating(struct drm_device *dev)
4967 {
4968 struct drm_i915_private *dev_priv = dev->dev_private;
4969 u32 dstate = I915_READ(D_STATE);
4970
4971 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4972 DSTATE_DOT_CLOCK_GATING;
4973 I915_WRITE(D_STATE, dstate);
4974
4975 if (IS_PINEVIEW(dev))
4976 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4977
4978 /* IIR "flip pending" means done if this bit is set */
4979 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4980 }
4981
4982 static void i85x_init_clock_gating(struct drm_device *dev)
4983 {
4984 struct drm_i915_private *dev_priv = dev->dev_private;
4985
4986 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4987 }
4988
4989 static void i830_init_clock_gating(struct drm_device *dev)
4990 {
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992
4993 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4994 }
4995
4996 void intel_init_clock_gating(struct drm_device *dev)
4997 {
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999
5000 dev_priv->display.init_clock_gating(dev);
5001 }
5002
5003 void intel_suspend_hw(struct drm_device *dev)
5004 {
5005 if (HAS_PCH_LPT(dev))
5006 lpt_suspend_hw(dev);
5007 }
5008
5009 /**
5010 * We should only use the power well if we explicitly asked the hardware to
5011 * enable it, so check if it's enabled and also check if we've requested it to
5012 * be enabled.
5013 */
5014 bool intel_display_power_enabled(struct drm_device *dev,
5015 enum intel_display_power_domain domain)
5016 {
5017 struct drm_i915_private *dev_priv = dev->dev_private;
5018
5019 if (!HAS_POWER_WELL(dev))
5020 return true;
5021
5022 switch (domain) {
5023 case POWER_DOMAIN_PIPE_A:
5024 case POWER_DOMAIN_TRANSCODER_EDP:
5025 return true;
5026 case POWER_DOMAIN_PIPE_B:
5027 case POWER_DOMAIN_PIPE_C:
5028 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5029 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5030 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5031 case POWER_DOMAIN_TRANSCODER_A:
5032 case POWER_DOMAIN_TRANSCODER_B:
5033 case POWER_DOMAIN_TRANSCODER_C:
5034 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5035 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5036 default:
5037 BUG();
5038 }
5039 }
5040
5041 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5042 {
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 bool is_enabled, enable_requested;
5045 uint32_t tmp;
5046
5047 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5048 is_enabled = tmp & HSW_PWR_WELL_STATE;
5049 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5050
5051 if (enable) {
5052 if (!enable_requested)
5053 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5054
5055 if (!is_enabled) {
5056 DRM_DEBUG_KMS("Enabling power well\n");
5057 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5058 HSW_PWR_WELL_STATE), 20))
5059 DRM_ERROR("Timeout enabling power well\n");
5060 }
5061 } else {
5062 if (enable_requested) {
5063 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5064 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5065 }
5066 }
5067 }
5068
5069 static struct i915_power_well *hsw_pwr;
5070
5071 /* Display audio driver power well request */
5072 void i915_request_power_well(void)
5073 {
5074 if (WARN_ON(!hsw_pwr))
5075 return;
5076
5077 spin_lock_irq(&hsw_pwr->lock);
5078 if (!hsw_pwr->count++ &&
5079 !hsw_pwr->i915_request)
5080 __intel_set_power_well(hsw_pwr->device, true);
5081 spin_unlock_irq(&hsw_pwr->lock);
5082 }
5083 EXPORT_SYMBOL_GPL(i915_request_power_well);
5084
5085 /* Display audio driver power well release */
5086 void i915_release_power_well(void)
5087 {
5088 if (WARN_ON(!hsw_pwr))
5089 return;
5090
5091 spin_lock_irq(&hsw_pwr->lock);
5092 WARN_ON(!hsw_pwr->count);
5093 if (!--hsw_pwr->count &&
5094 !hsw_pwr->i915_request)
5095 __intel_set_power_well(hsw_pwr->device, false);
5096 spin_unlock_irq(&hsw_pwr->lock);
5097 }
5098 EXPORT_SYMBOL_GPL(i915_release_power_well);
5099
5100 int i915_init_power_well(struct drm_device *dev)
5101 {
5102 struct drm_i915_private *dev_priv = dev->dev_private;
5103
5104 hsw_pwr = &dev_priv->power_well;
5105
5106 hsw_pwr->device = dev;
5107 spin_lock_init(&hsw_pwr->lock);
5108 hsw_pwr->count = 0;
5109
5110 return 0;
5111 }
5112
5113 void i915_remove_power_well(struct drm_device *dev)
5114 {
5115 hsw_pwr = NULL;
5116 }
5117
5118 void intel_set_power_well(struct drm_device *dev, bool enable)
5119 {
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 struct i915_power_well *power_well = &dev_priv->power_well;
5122
5123 if (!HAS_POWER_WELL(dev))
5124 return;
5125
5126 if (!i915_disable_power_well && !enable)
5127 return;
5128
5129 spin_lock_irq(&power_well->lock);
5130 power_well->i915_request = enable;
5131
5132 /* only reject "disable" power well request */
5133 if (power_well->count && !enable) {
5134 spin_unlock_irq(&power_well->lock);
5135 return;
5136 }
5137
5138 __intel_set_power_well(dev, enable);
5139 spin_unlock_irq(&power_well->lock);
5140 }
5141
5142 /*
5143 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5144 * when not needed anymore. We have 4 registers that can request the power well
5145 * to be enabled, and it will only be disabled if none of the registers is
5146 * requesting it to be enabled.
5147 */
5148 void intel_init_power_well(struct drm_device *dev)
5149 {
5150 struct drm_i915_private *dev_priv = dev->dev_private;
5151
5152 if (!HAS_POWER_WELL(dev))
5153 return;
5154
5155 /* For now, we need the power well to be always enabled. */
5156 intel_set_power_well(dev, true);
5157
5158 /* We're taking over the BIOS, so clear any requests made by it since
5159 * the driver is in charge now. */
5160 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5161 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5162 }
5163
5164 /* Set up chip specific power management-related functions */
5165 void intel_init_pm(struct drm_device *dev)
5166 {
5167 struct drm_i915_private *dev_priv = dev->dev_private;
5168
5169 if (I915_HAS_FBC(dev)) {
5170 if (HAS_PCH_SPLIT(dev)) {
5171 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5172 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5173 dev_priv->display.enable_fbc =
5174 gen7_enable_fbc;
5175 else
5176 dev_priv->display.enable_fbc =
5177 ironlake_enable_fbc;
5178 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5179 } else if (IS_GM45(dev)) {
5180 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5181 dev_priv->display.enable_fbc = g4x_enable_fbc;
5182 dev_priv->display.disable_fbc = g4x_disable_fbc;
5183 } else if (IS_CRESTLINE(dev)) {
5184 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5185 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5186 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5187 }
5188 /* 855GM needs testing */
5189 }
5190
5191 /* For cxsr */
5192 if (IS_PINEVIEW(dev))
5193 i915_pineview_get_mem_freq(dev);
5194 else if (IS_GEN5(dev))
5195 i915_ironlake_get_mem_freq(dev);
5196
5197 /* For FIFO watermark updates */
5198 if (HAS_PCH_SPLIT(dev)) {
5199 if (IS_GEN5(dev)) {
5200 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5201 dev_priv->display.update_wm = ironlake_update_wm;
5202 else {
5203 DRM_DEBUG_KMS("Failed to get proper latency. "
5204 "Disable CxSR\n");
5205 dev_priv->display.update_wm = NULL;
5206 }
5207 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5208 } else if (IS_GEN6(dev)) {
5209 if (SNB_READ_WM0_LATENCY()) {
5210 dev_priv->display.update_wm = sandybridge_update_wm;
5211 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5212 } else {
5213 DRM_DEBUG_KMS("Failed to read display plane latency. "
5214 "Disable CxSR\n");
5215 dev_priv->display.update_wm = NULL;
5216 }
5217 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5218 } else if (IS_IVYBRIDGE(dev)) {
5219 if (SNB_READ_WM0_LATENCY()) {
5220 dev_priv->display.update_wm = ivybridge_update_wm;
5221 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5222 } else {
5223 DRM_DEBUG_KMS("Failed to read display plane latency. "
5224 "Disable CxSR\n");
5225 dev_priv->display.update_wm = NULL;
5226 }
5227 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5228 } else if (IS_HASWELL(dev)) {
5229 if (I915_READ64(MCH_SSKPD)) {
5230 dev_priv->display.update_wm = haswell_update_wm;
5231 dev_priv->display.update_sprite_wm =
5232 haswell_update_sprite_wm;
5233 } else {
5234 DRM_DEBUG_KMS("Failed to read display plane latency. "
5235 "Disable CxSR\n");
5236 dev_priv->display.update_wm = NULL;
5237 }
5238 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5239 } else
5240 dev_priv->display.update_wm = NULL;
5241 } else if (IS_VALLEYVIEW(dev)) {
5242 dev_priv->display.update_wm = valleyview_update_wm;
5243 dev_priv->display.init_clock_gating =
5244 valleyview_init_clock_gating;
5245 } else if (IS_PINEVIEW(dev)) {
5246 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5247 dev_priv->is_ddr3,
5248 dev_priv->fsb_freq,
5249 dev_priv->mem_freq)) {
5250 DRM_INFO("failed to find known CxSR latency "
5251 "(found ddr%s fsb freq %d, mem freq %d), "
5252 "disabling CxSR\n",
5253 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5254 dev_priv->fsb_freq, dev_priv->mem_freq);
5255 /* Disable CxSR and never update its watermark again */
5256 pineview_disable_cxsr(dev);
5257 dev_priv->display.update_wm = NULL;
5258 } else
5259 dev_priv->display.update_wm = pineview_update_wm;
5260 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5261 } else if (IS_G4X(dev)) {
5262 dev_priv->display.update_wm = g4x_update_wm;
5263 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5264 } else if (IS_GEN4(dev)) {
5265 dev_priv->display.update_wm = i965_update_wm;
5266 if (IS_CRESTLINE(dev))
5267 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5268 else if (IS_BROADWATER(dev))
5269 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5270 } else if (IS_GEN3(dev)) {
5271 dev_priv->display.update_wm = i9xx_update_wm;
5272 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5273 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5274 } else if (IS_I865G(dev)) {
5275 dev_priv->display.update_wm = i830_update_wm;
5276 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5277 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5278 } else if (IS_I85X(dev)) {
5279 dev_priv->display.update_wm = i9xx_update_wm;
5280 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5281 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5282 } else {
5283 dev_priv->display.update_wm = i830_update_wm;
5284 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5285 if (IS_845G(dev))
5286 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5287 else
5288 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5289 }
5290 }
5291
5292 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5293 {
5294 u32 gt_thread_status_mask;
5295
5296 if (IS_HASWELL(dev_priv->dev))
5297 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5298 else
5299 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5300
5301 /* w/a for a sporadic read returning 0 by waiting for the GT
5302 * thread to wake up.
5303 */
5304 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5305 DRM_ERROR("GT thread status wait timed out\n");
5306 }
5307
5308 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5309 {
5310 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5311 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5312 }
5313
5314 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5315 {
5316 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5317 FORCEWAKE_ACK_TIMEOUT_MS))
5318 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5319
5320 I915_WRITE_NOTRACE(FORCEWAKE, 1);
5321 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5322
5323 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5324 FORCEWAKE_ACK_TIMEOUT_MS))
5325 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5326
5327 /* WaRsForcewakeWaitTC0:snb */
5328 __gen6_gt_wait_for_thread_c0(dev_priv);
5329 }
5330
5331 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5332 {
5333 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5334 /* something from same cacheline, but !FORCEWAKE_MT */
5335 POSTING_READ(ECOBUS);
5336 }
5337
5338 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5339 {
5340 u32 forcewake_ack;
5341
5342 if (IS_HASWELL(dev_priv->dev))
5343 forcewake_ack = FORCEWAKE_ACK_HSW;
5344 else
5345 forcewake_ack = FORCEWAKE_MT_ACK;
5346
5347 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5348 FORCEWAKE_ACK_TIMEOUT_MS))
5349 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5350
5351 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5352 /* something from same cacheline, but !FORCEWAKE_MT */
5353 POSTING_READ(ECOBUS);
5354
5355 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5356 FORCEWAKE_ACK_TIMEOUT_MS))
5357 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5358
5359 /* WaRsForcewakeWaitTC0:ivb,hsw */
5360 __gen6_gt_wait_for_thread_c0(dev_priv);
5361 }
5362
5363 /*
5364 * Generally this is called implicitly by the register read function. However,
5365 * if some sequence requires the GT to not power down then this function should
5366 * be called at the beginning of the sequence followed by a call to
5367 * gen6_gt_force_wake_put() at the end of the sequence.
5368 */
5369 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5370 {
5371 unsigned long irqflags;
5372
5373 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5374 if (dev_priv->forcewake_count++ == 0)
5375 dev_priv->gt.force_wake_get(dev_priv);
5376 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5377 }
5378
5379 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5380 {
5381 u32 gtfifodbg;
5382 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5383 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5384 "MMIO read or write has been dropped %x\n", gtfifodbg))
5385 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5386 }
5387
5388 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5389 {
5390 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5391 /* something from same cacheline, but !FORCEWAKE */
5392 POSTING_READ(ECOBUS);
5393 gen6_gt_check_fifodbg(dev_priv);
5394 }
5395
5396 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5397 {
5398 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5399 /* something from same cacheline, but !FORCEWAKE_MT */
5400 POSTING_READ(ECOBUS);
5401 gen6_gt_check_fifodbg(dev_priv);
5402 }
5403
5404 /*
5405 * see gen6_gt_force_wake_get()
5406 */
5407 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5408 {
5409 unsigned long irqflags;
5410
5411 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5412 if (--dev_priv->forcewake_count == 0)
5413 dev_priv->gt.force_wake_put(dev_priv);
5414 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5415 }
5416
5417 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5418 {
5419 int ret = 0;
5420
5421 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5422 int loop = 500;
5423 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5424 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5425 udelay(10);
5426 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5427 }
5428 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5429 ++ret;
5430 dev_priv->gt_fifo_count = fifo;
5431 }
5432 dev_priv->gt_fifo_count--;
5433
5434 return ret;
5435 }
5436
5437 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5438 {
5439 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5440 /* something from same cacheline, but !FORCEWAKE_VLV */
5441 POSTING_READ(FORCEWAKE_ACK_VLV);
5442 }
5443
5444 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5445 {
5446 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5447 FORCEWAKE_ACK_TIMEOUT_MS))
5448 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5449
5450 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5451 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5452 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5453
5454 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5455 FORCEWAKE_ACK_TIMEOUT_MS))
5456 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5457
5458 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5459 FORCEWAKE_KERNEL),
5460 FORCEWAKE_ACK_TIMEOUT_MS))
5461 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5462
5463 /* WaRsForcewakeWaitTC0:vlv */
5464 __gen6_gt_wait_for_thread_c0(dev_priv);
5465 }
5466
5467 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5468 {
5469 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5470 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5471 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5472 /* The below doubles as a POSTING_READ */
5473 gen6_gt_check_fifodbg(dev_priv);
5474 }
5475
5476 void intel_gt_reset(struct drm_device *dev)
5477 {
5478 struct drm_i915_private *dev_priv = dev->dev_private;
5479
5480 if (IS_VALLEYVIEW(dev)) {
5481 vlv_force_wake_reset(dev_priv);
5482 } else if (INTEL_INFO(dev)->gen >= 6) {
5483 __gen6_gt_force_wake_reset(dev_priv);
5484 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5485 __gen6_gt_force_wake_mt_reset(dev_priv);
5486 }
5487 }
5488
5489 void intel_gt_init(struct drm_device *dev)
5490 {
5491 struct drm_i915_private *dev_priv = dev->dev_private;
5492
5493 spin_lock_init(&dev_priv->gt_lock);
5494
5495 intel_gt_reset(dev);
5496
5497 if (IS_VALLEYVIEW(dev)) {
5498 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5499 dev_priv->gt.force_wake_put = vlv_force_wake_put;
5500 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5501 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5502 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5503 } else if (IS_GEN6(dev)) {
5504 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5505 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5506 }
5507 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5508 intel_gen6_powersave_work);
5509 }
5510
5511 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5512 {
5513 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5514
5515 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5516 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5517 return -EAGAIN;
5518 }
5519
5520 I915_WRITE(GEN6_PCODE_DATA, *val);
5521 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5522
5523 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5524 500)) {
5525 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5526 return -ETIMEDOUT;
5527 }
5528
5529 *val = I915_READ(GEN6_PCODE_DATA);
5530 I915_WRITE(GEN6_PCODE_DATA, 0);
5531
5532 return 0;
5533 }
5534
5535 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5536 {
5537 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5538
5539 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5540 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5541 return -EAGAIN;
5542 }
5543
5544 I915_WRITE(GEN6_PCODE_DATA, val);
5545 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5546
5547 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5548 500)) {
5549 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5550 return -ETIMEDOUT;
5551 }
5552
5553 I915_WRITE(GEN6_PCODE_DATA, 0);
5554
5555 return 0;
5556 }
5557
5558 int vlv_gpu_freq(int ddr_freq, int val)
5559 {
5560 int mult, base;
5561
5562 switch (ddr_freq) {
5563 case 800:
5564 mult = 20;
5565 base = 120;
5566 break;
5567 case 1066:
5568 mult = 22;
5569 base = 133;
5570 break;
5571 case 1333:
5572 mult = 21;
5573 base = 125;
5574 break;
5575 default:
5576 return -1;
5577 }
5578
5579 return ((val - 0xbd) * mult) + base;
5580 }
5581
5582 int vlv_freq_opcode(int ddr_freq, int val)
5583 {
5584 int mult, base;
5585
5586 switch (ddr_freq) {
5587 case 800:
5588 mult = 20;
5589 base = 120;
5590 break;
5591 case 1066:
5592 mult = 22;
5593 base = 133;
5594 break;
5595 case 1333:
5596 mult = 21;
5597 base = 125;
5598 break;
5599 default:
5600 return -1;
5601 }
5602
5603 val /= mult;
5604 val -= base / mult;
5605 val += 0xbd;
5606
5607 if (val > 0xea)
5608 val = 0xea;
5609
5610 return val;
5611 }
5612