]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 if (HAS_LLC(dev_priv)) {
62 /*
63 * WaCompressedResourceDisplayNewHashMode:skl,kbl
64 * Display WA#0390: skl,kbl
65 *
66 * Must match Sampler, Pixel Back End, and Media. See
67 * WaCompressedResourceSamplerPbeMediaNewHashMode.
68 */
69 I915_WRITE(CHICKEN_PAR1_1,
70 I915_READ(CHICKEN_PAR1_1) |
71 SKL_DE_COMPRESSED_HASH_MODE);
72 }
73
74 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75 I915_WRITE(CHICKEN_PAR1_1,
76 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
77
78 I915_WRITE(GEN8_CONFIG0,
79 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
80
81 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
82 I915_WRITE(GEN8_CHICKEN_DCPR_1,
83 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
84
85 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
86 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
87 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
88 DISP_FBC_WM_DIS |
89 DISP_FBC_MEMORY_WAKE);
90
91 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
92 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
93 ILK_DPFC_DISABLE_DUMMY0);
94
95 if (IS_SKYLAKE(dev_priv)) {
96 /* WaDisableDopClockGating */
97 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
98 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
99 }
100 }
101
102 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
103 {
104 gen9_init_clock_gating(dev_priv);
105
106 /* WaDisableSDEUnitClockGating:bxt */
107 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
108 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
109
110 /*
111 * FIXME:
112 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
113 */
114 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
115 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
116
117 /*
118 * Wa: Backlight PWM may stop in the asserted state, causing backlight
119 * to stay fully on.
120 */
121 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
122 PWM1_GATING_DIS | PWM2_GATING_DIS);
123 }
124
125 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
126 {
127 gen9_init_clock_gating(dev_priv);
128
129 /*
130 * WaDisablePWMClockGating:glk
131 * Backlight PWM may stop in the asserted state, causing backlight
132 * to stay fully on.
133 */
134 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
135 PWM1_GATING_DIS | PWM2_GATING_DIS);
136
137 /* WaDDIIOTimeout:glk */
138 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
139 u32 val = I915_READ(CHICKEN_MISC_2);
140 val &= ~(GLK_CL0_PWR_DOWN |
141 GLK_CL1_PWR_DOWN |
142 GLK_CL2_PWR_DOWN);
143 I915_WRITE(CHICKEN_MISC_2, val);
144 }
145
146 }
147
148 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
149 {
150 u32 tmp;
151
152 tmp = I915_READ(CLKCFG);
153
154 switch (tmp & CLKCFG_FSB_MASK) {
155 case CLKCFG_FSB_533:
156 dev_priv->fsb_freq = 533; /* 133*4 */
157 break;
158 case CLKCFG_FSB_800:
159 dev_priv->fsb_freq = 800; /* 200*4 */
160 break;
161 case CLKCFG_FSB_667:
162 dev_priv->fsb_freq = 667; /* 167*4 */
163 break;
164 case CLKCFG_FSB_400:
165 dev_priv->fsb_freq = 400; /* 100*4 */
166 break;
167 }
168
169 switch (tmp & CLKCFG_MEM_MASK) {
170 case CLKCFG_MEM_533:
171 dev_priv->mem_freq = 533;
172 break;
173 case CLKCFG_MEM_667:
174 dev_priv->mem_freq = 667;
175 break;
176 case CLKCFG_MEM_800:
177 dev_priv->mem_freq = 800;
178 break;
179 }
180
181 /* detect pineview DDR3 setting */
182 tmp = I915_READ(CSHRDDR3CTL);
183 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
184 }
185
186 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
187 {
188 u16 ddrpll, csipll;
189
190 ddrpll = I915_READ16(DDRMPLL1);
191 csipll = I915_READ16(CSIPLL0);
192
193 switch (ddrpll & 0xff) {
194 case 0xc:
195 dev_priv->mem_freq = 800;
196 break;
197 case 0x10:
198 dev_priv->mem_freq = 1066;
199 break;
200 case 0x14:
201 dev_priv->mem_freq = 1333;
202 break;
203 case 0x18:
204 dev_priv->mem_freq = 1600;
205 break;
206 default:
207 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
208 ddrpll & 0xff);
209 dev_priv->mem_freq = 0;
210 break;
211 }
212
213 dev_priv->ips.r_t = dev_priv->mem_freq;
214
215 switch (csipll & 0x3ff) {
216 case 0x00c:
217 dev_priv->fsb_freq = 3200;
218 break;
219 case 0x00e:
220 dev_priv->fsb_freq = 3733;
221 break;
222 case 0x010:
223 dev_priv->fsb_freq = 4266;
224 break;
225 case 0x012:
226 dev_priv->fsb_freq = 4800;
227 break;
228 case 0x014:
229 dev_priv->fsb_freq = 5333;
230 break;
231 case 0x016:
232 dev_priv->fsb_freq = 5866;
233 break;
234 case 0x018:
235 dev_priv->fsb_freq = 6400;
236 break;
237 default:
238 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
239 csipll & 0x3ff);
240 dev_priv->fsb_freq = 0;
241 break;
242 }
243
244 if (dev_priv->fsb_freq == 3200) {
245 dev_priv->ips.c_m = 0;
246 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
247 dev_priv->ips.c_m = 1;
248 } else {
249 dev_priv->ips.c_m = 2;
250 }
251 }
252
253 static const struct cxsr_latency cxsr_latency_table[] = {
254 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
255 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
256 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
257 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
258 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
259
260 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
261 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
262 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
263 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
264 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
265
266 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
267 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
268 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
269 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
270 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
271
272 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
273 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
274 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
275 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
276 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
277
278 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
279 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
280 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
281 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
282 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
283
284 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
285 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
286 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
287 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
288 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
289 };
290
291 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
292 bool is_ddr3,
293 int fsb,
294 int mem)
295 {
296 const struct cxsr_latency *latency;
297 int i;
298
299 if (fsb == 0 || mem == 0)
300 return NULL;
301
302 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
303 latency = &cxsr_latency_table[i];
304 if (is_desktop == latency->is_desktop &&
305 is_ddr3 == latency->is_ddr3 &&
306 fsb == latency->fsb_freq && mem == latency->mem_freq)
307 return latency;
308 }
309
310 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
311
312 return NULL;
313 }
314
315 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
316 {
317 u32 val;
318
319 mutex_lock(&dev_priv->pcu_lock);
320
321 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
322 if (enable)
323 val &= ~FORCE_DDR_HIGH_FREQ;
324 else
325 val |= FORCE_DDR_HIGH_FREQ;
326 val &= ~FORCE_DDR_LOW_FREQ;
327 val |= FORCE_DDR_FREQ_REQ_ACK;
328 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
329
330 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
331 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
333
334 mutex_unlock(&dev_priv->pcu_lock);
335 }
336
337 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
338 {
339 u32 val;
340
341 mutex_lock(&dev_priv->pcu_lock);
342
343 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
344 if (enable)
345 val |= DSP_MAXFIFO_PM5_ENABLE;
346 else
347 val &= ~DSP_MAXFIFO_PM5_ENABLE;
348 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
349
350 mutex_unlock(&dev_priv->pcu_lock);
351 }
352
353 #define FW_WM(value, plane) \
354 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
355
356 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357 {
358 bool was_enabled;
359 u32 val;
360
361 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364 POSTING_READ(FW_BLC_SELF_VLV);
365 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368 POSTING_READ(FW_BLC_SELF);
369 } else if (IS_PINEVIEW(dev_priv)) {
370 val = I915_READ(DSPFW3);
371 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
372 if (enable)
373 val |= PINEVIEW_SELF_REFRESH_EN;
374 else
375 val &= ~PINEVIEW_SELF_REFRESH_EN;
376 I915_WRITE(DSPFW3, val);
377 POSTING_READ(DSPFW3);
378 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
381 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
382 I915_WRITE(FW_BLC_SELF, val);
383 POSTING_READ(FW_BLC_SELF);
384 } else if (IS_I915GM(dev_priv)) {
385 /*
386 * FIXME can't find a bit like this for 915G, and
387 * and yet it does have the related watermark in
388 * FW_BLC_SELF. What's going on?
389 */
390 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
392 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
393 I915_WRITE(INSTPM, val);
394 POSTING_READ(INSTPM);
395 } else {
396 return false;
397 }
398
399 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
400
401 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
402 enableddisabled(enable),
403 enableddisabled(was_enabled));
404
405 return was_enabled;
406 }
407
408 /**
409 * intel_set_memory_cxsr - Configure CxSR state
410 * @dev_priv: i915 device
411 * @enable: Allow vs. disallow CxSR
412 *
413 * Allow or disallow the system to enter a special CxSR
414 * (C-state self refresh) state. What typically happens in CxSR mode
415 * is that several display FIFOs may get combined into a single larger
416 * FIFO for a particular plane (so called max FIFO mode) to allow the
417 * system to defer memory fetches longer, and the memory will enter
418 * self refresh.
419 *
420 * Note that enabling CxSR does not guarantee that the system enter
421 * this special mode, nor does it guarantee that the system stays
422 * in that mode once entered. So this just allows/disallows the system
423 * to autonomously utilize the CxSR mode. Other factors such as core
424 * C-states will affect when/if the system actually enters/exits the
425 * CxSR mode.
426 *
427 * Note that on VLV/CHV this actually only controls the max FIFO mode,
428 * and the system is free to enter/exit memory self refresh at any time
429 * even when the use of CxSR has been disallowed.
430 *
431 * While the system is actually in the CxSR/max FIFO mode, some plane
432 * control registers will not get latched on vblank. Thus in order to
433 * guarantee the system will respond to changes in the plane registers
434 * we must always disallow CxSR prior to making changes to those registers.
435 * Unfortunately the system will re-evaluate the CxSR conditions at
436 * frame start which happens after vblank start (which is when the plane
437 * registers would get latched), so we can't proceed with the plane update
438 * during the same frame where we disallowed CxSR.
439 *
440 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
441 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
442 * the hardware w.r.t. HPLL SR when writing to plane registers.
443 * Disallowing just CxSR is sufficient.
444 */
445 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446 {
447 bool ret;
448
449 mutex_lock(&dev_priv->wm.wm_mutex);
450 ret = _intel_set_memory_cxsr(dev_priv, enable);
451 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
452 dev_priv->wm.vlv.cxsr = enable;
453 else if (IS_G4X(dev_priv))
454 dev_priv->wm.g4x.cxsr = enable;
455 mutex_unlock(&dev_priv->wm.wm_mutex);
456
457 return ret;
458 }
459
460 /*
461 * Latency for FIFO fetches is dependent on several factors:
462 * - memory configuration (speed, channels)
463 * - chipset
464 * - current MCH state
465 * It can be fairly high in some situations, so here we assume a fairly
466 * pessimal value. It's a tradeoff between extra memory fetches (if we
467 * set this value too high, the FIFO will fetch frequently to stay full)
468 * and power consumption (set it too low to save power and we might see
469 * FIFO underruns and display "flicker").
470 *
471 * A value of 5us seems to be a good balance; safe for very low end
472 * platforms but not overly aggressive on lower latency configs.
473 */
474 static const int pessimal_latency_ns = 5000;
475
476 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
477 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
478
479 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480 {
481 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484 enum pipe pipe = crtc->pipe;
485 int sprite0_start, sprite1_start;
486
487 switch (pipe) {
488 uint32_t dsparb, dsparb2, dsparb3;
489 case PIPE_A:
490 dsparb = I915_READ(DSPARB);
491 dsparb2 = I915_READ(DSPARB2);
492 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
493 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
494 break;
495 case PIPE_B:
496 dsparb = I915_READ(DSPARB);
497 dsparb2 = I915_READ(DSPARB2);
498 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
499 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
500 break;
501 case PIPE_C:
502 dsparb2 = I915_READ(DSPARB2);
503 dsparb3 = I915_READ(DSPARB3);
504 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
505 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
506 break;
507 default:
508 MISSING_CASE(pipe);
509 return;
510 }
511
512 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
513 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
514 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
515 fifo_state->plane[PLANE_CURSOR] = 63;
516 }
517
518 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
519 {
520 uint32_t dsparb = I915_READ(DSPARB);
521 int size;
522
523 size = dsparb & 0x7f;
524 if (plane)
525 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
526
527 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
528 plane ? "B" : "A", size);
529
530 return size;
531 }
532
533 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
534 {
535 uint32_t dsparb = I915_READ(DSPARB);
536 int size;
537
538 size = dsparb & 0x1ff;
539 if (plane)
540 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
541 size >>= 1; /* Convert to cachelines */
542
543 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
544 plane ? "B" : "A", size);
545
546 return size;
547 }
548
549 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
550 {
551 uint32_t dsparb = I915_READ(DSPARB);
552 int size;
553
554 size = dsparb & 0x7f;
555 size >>= 2; /* Convert to cachelines */
556
557 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
558 plane ? "B" : "A",
559 size);
560
561 return size;
562 }
563
564 /* Pineview has different values for various configs */
565 static const struct intel_watermark_params pineview_display_wm = {
566 .fifo_size = PINEVIEW_DISPLAY_FIFO,
567 .max_wm = PINEVIEW_MAX_WM,
568 .default_wm = PINEVIEW_DFT_WM,
569 .guard_size = PINEVIEW_GUARD_WM,
570 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
571 };
572 static const struct intel_watermark_params pineview_display_hplloff_wm = {
573 .fifo_size = PINEVIEW_DISPLAY_FIFO,
574 .max_wm = PINEVIEW_MAX_WM,
575 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
576 .guard_size = PINEVIEW_GUARD_WM,
577 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params pineview_cursor_wm = {
580 .fifo_size = PINEVIEW_CURSOR_FIFO,
581 .max_wm = PINEVIEW_CURSOR_MAX_WM,
582 .default_wm = PINEVIEW_CURSOR_DFT_WM,
583 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
584 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
585 };
586 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
587 .fifo_size = PINEVIEW_CURSOR_FIFO,
588 .max_wm = PINEVIEW_CURSOR_MAX_WM,
589 .default_wm = PINEVIEW_CURSOR_DFT_WM,
590 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
591 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 };
593 static const struct intel_watermark_params i965_cursor_wm_info = {
594 .fifo_size = I965_CURSOR_FIFO,
595 .max_wm = I965_CURSOR_MAX_WM,
596 .default_wm = I965_CURSOR_DFT_WM,
597 .guard_size = 2,
598 .cacheline_size = I915_FIFO_LINE_SIZE,
599 };
600 static const struct intel_watermark_params i945_wm_info = {
601 .fifo_size = I945_FIFO_SIZE,
602 .max_wm = I915_MAX_WM,
603 .default_wm = 1,
604 .guard_size = 2,
605 .cacheline_size = I915_FIFO_LINE_SIZE,
606 };
607 static const struct intel_watermark_params i915_wm_info = {
608 .fifo_size = I915_FIFO_SIZE,
609 .max_wm = I915_MAX_WM,
610 .default_wm = 1,
611 .guard_size = 2,
612 .cacheline_size = I915_FIFO_LINE_SIZE,
613 };
614 static const struct intel_watermark_params i830_a_wm_info = {
615 .fifo_size = I855GM_FIFO_SIZE,
616 .max_wm = I915_MAX_WM,
617 .default_wm = 1,
618 .guard_size = 2,
619 .cacheline_size = I830_FIFO_LINE_SIZE,
620 };
621 static const struct intel_watermark_params i830_bc_wm_info = {
622 .fifo_size = I855GM_FIFO_SIZE,
623 .max_wm = I915_MAX_WM/2,
624 .default_wm = 1,
625 .guard_size = 2,
626 .cacheline_size = I830_FIFO_LINE_SIZE,
627 };
628 static const struct intel_watermark_params i845_wm_info = {
629 .fifo_size = I830_FIFO_SIZE,
630 .max_wm = I915_MAX_WM,
631 .default_wm = 1,
632 .guard_size = 2,
633 .cacheline_size = I830_FIFO_LINE_SIZE,
634 };
635
636 /**
637 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
638 * @pixel_rate: Pipe pixel rate in kHz
639 * @cpp: Plane bytes per pixel
640 * @latency: Memory wakeup latency in 0.1us units
641 *
642 * Compute the watermark using the method 1 or "small buffer"
643 * formula. The caller may additonally add extra cachelines
644 * to account for TLB misses and clock crossings.
645 *
646 * This method is concerned with the short term drain rate
647 * of the FIFO, ie. it does not account for blanking periods
648 * which would effectively reduce the average drain rate across
649 * a longer period. The name "small" refers to the fact the
650 * FIFO is relatively small compared to the amount of data
651 * fetched.
652 *
653 * The FIFO level vs. time graph might look something like:
654 *
655 * |\ |\
656 * | \ | \
657 * __---__---__ (- plane active, _ blanking)
658 * -> time
659 *
660 * or perhaps like this:
661 *
662 * |\|\ |\|\
663 * __----__----__ (- plane active, _ blanking)
664 * -> time
665 *
666 * Returns:
667 * The watermark in bytes
668 */
669 static unsigned int intel_wm_method1(unsigned int pixel_rate,
670 unsigned int cpp,
671 unsigned int latency)
672 {
673 uint64_t ret;
674
675 ret = (uint64_t) pixel_rate * cpp * latency;
676 ret = DIV_ROUND_UP_ULL(ret, 10000);
677
678 return ret;
679 }
680
681 /**
682 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
683 * @pixel_rate: Pipe pixel rate in kHz
684 * @htotal: Pipe horizontal total
685 * @width: Plane width in pixels
686 * @cpp: Plane bytes per pixel
687 * @latency: Memory wakeup latency in 0.1us units
688 *
689 * Compute the watermark using the method 2 or "large buffer"
690 * formula. The caller may additonally add extra cachelines
691 * to account for TLB misses and clock crossings.
692 *
693 * This method is concerned with the long term drain rate
694 * of the FIFO, ie. it does account for blanking periods
695 * which effectively reduce the average drain rate across
696 * a longer period. The name "large" refers to the fact the
697 * FIFO is relatively large compared to the amount of data
698 * fetched.
699 *
700 * The FIFO level vs. time graph might look something like:
701 *
702 * |\___ |\___
703 * | \___ | \___
704 * | \ | \
705 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
706 * -> time
707 *
708 * Returns:
709 * The watermark in bytes
710 */
711 static unsigned int intel_wm_method2(unsigned int pixel_rate,
712 unsigned int htotal,
713 unsigned int width,
714 unsigned int cpp,
715 unsigned int latency)
716 {
717 unsigned int ret;
718
719 /*
720 * FIXME remove once all users are computing
721 * watermarks in the correct place.
722 */
723 if (WARN_ON_ONCE(htotal == 0))
724 htotal = 1;
725
726 ret = (latency * pixel_rate) / (htotal * 10000);
727 ret = (ret + 1) * width * cpp;
728
729 return ret;
730 }
731
732 /**
733 * intel_calculate_wm - calculate watermark level
734 * @pixel_rate: pixel clock
735 * @wm: chip FIFO params
736 * @cpp: bytes per pixel
737 * @latency_ns: memory latency for the platform
738 *
739 * Calculate the watermark level (the level at which the display plane will
740 * start fetching from memory again). Each chip has a different display
741 * FIFO size and allocation, so the caller needs to figure that out and pass
742 * in the correct intel_watermark_params structure.
743 *
744 * As the pixel clock runs, the FIFO will be drained at a rate that depends
745 * on the pixel size. When it reaches the watermark level, it'll start
746 * fetching FIFO line sized based chunks from memory until the FIFO fills
747 * past the watermark point. If the FIFO drains completely, a FIFO underrun
748 * will occur, and a display engine hang could result.
749 */
750 static unsigned int intel_calculate_wm(int pixel_rate,
751 const struct intel_watermark_params *wm,
752 int fifo_size, int cpp,
753 unsigned int latency_ns)
754 {
755 int entries, wm_size;
756
757 /*
758 * Note: we need to make sure we don't overflow for various clock &
759 * latency values.
760 * clocks go from a few thousand to several hundred thousand.
761 * latency is usually a few thousand
762 */
763 entries = intel_wm_method1(pixel_rate, cpp,
764 latency_ns / 100);
765 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
766 wm->guard_size;
767 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
768
769 wm_size = fifo_size - entries;
770 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
771
772 /* Don't promote wm_size to unsigned... */
773 if (wm_size > wm->max_wm)
774 wm_size = wm->max_wm;
775 if (wm_size <= 0)
776 wm_size = wm->default_wm;
777
778 /*
779 * Bspec seems to indicate that the value shouldn't be lower than
780 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
781 * Lets go for 8 which is the burst size since certain platforms
782 * already use a hardcoded 8 (which is what the spec says should be
783 * done).
784 */
785 if (wm_size <= 8)
786 wm_size = 8;
787
788 return wm_size;
789 }
790
791 static bool is_disabling(int old, int new, int threshold)
792 {
793 return old >= threshold && new < threshold;
794 }
795
796 static bool is_enabling(int old, int new, int threshold)
797 {
798 return old < threshold && new >= threshold;
799 }
800
801 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
802 {
803 return dev_priv->wm.max_level + 1;
804 }
805
806 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
807 const struct intel_plane_state *plane_state)
808 {
809 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
810
811 /* FIXME check the 'enable' instead */
812 if (!crtc_state->base.active)
813 return false;
814
815 /*
816 * Treat cursor with fb as always visible since cursor updates
817 * can happen faster than the vrefresh rate, and the current
818 * watermark code doesn't handle that correctly. Cursor updates
819 * which set/clear the fb or change the cursor size are going
820 * to get throttled by intel_legacy_cursor_update() to work
821 * around this problem with the watermark code.
822 */
823 if (plane->id == PLANE_CURSOR)
824 return plane_state->base.fb != NULL;
825 else
826 return plane_state->base.visible;
827 }
828
829 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
830 {
831 struct intel_crtc *crtc, *enabled = NULL;
832
833 for_each_intel_crtc(&dev_priv->drm, crtc) {
834 if (intel_crtc_active(crtc)) {
835 if (enabled)
836 return NULL;
837 enabled = crtc;
838 }
839 }
840
841 return enabled;
842 }
843
844 static void pineview_update_wm(struct intel_crtc *unused_crtc)
845 {
846 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
847 struct intel_crtc *crtc;
848 const struct cxsr_latency *latency;
849 u32 reg;
850 unsigned int wm;
851
852 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
853 dev_priv->is_ddr3,
854 dev_priv->fsb_freq,
855 dev_priv->mem_freq);
856 if (!latency) {
857 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
858 intel_set_memory_cxsr(dev_priv, false);
859 return;
860 }
861
862 crtc = single_enabled_crtc(dev_priv);
863 if (crtc) {
864 const struct drm_display_mode *adjusted_mode =
865 &crtc->config->base.adjusted_mode;
866 const struct drm_framebuffer *fb =
867 crtc->base.primary->state->fb;
868 int cpp = fb->format->cpp[0];
869 int clock = adjusted_mode->crtc_clock;
870
871 /* Display SR */
872 wm = intel_calculate_wm(clock, &pineview_display_wm,
873 pineview_display_wm.fifo_size,
874 cpp, latency->display_sr);
875 reg = I915_READ(DSPFW1);
876 reg &= ~DSPFW_SR_MASK;
877 reg |= FW_WM(wm, SR);
878 I915_WRITE(DSPFW1, reg);
879 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
880
881 /* cursor SR */
882 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
883 pineview_display_wm.fifo_size,
884 4, latency->cursor_sr);
885 reg = I915_READ(DSPFW3);
886 reg &= ~DSPFW_CURSOR_SR_MASK;
887 reg |= FW_WM(wm, CURSOR_SR);
888 I915_WRITE(DSPFW3, reg);
889
890 /* Display HPLL off SR */
891 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
892 pineview_display_hplloff_wm.fifo_size,
893 cpp, latency->display_hpll_disable);
894 reg = I915_READ(DSPFW3);
895 reg &= ~DSPFW_HPLL_SR_MASK;
896 reg |= FW_WM(wm, HPLL_SR);
897 I915_WRITE(DSPFW3, reg);
898
899 /* cursor HPLL off SR */
900 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
901 pineview_display_hplloff_wm.fifo_size,
902 4, latency->cursor_hpll_disable);
903 reg = I915_READ(DSPFW3);
904 reg &= ~DSPFW_HPLL_CURSOR_MASK;
905 reg |= FW_WM(wm, HPLL_CURSOR);
906 I915_WRITE(DSPFW3, reg);
907 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
908
909 intel_set_memory_cxsr(dev_priv, true);
910 } else {
911 intel_set_memory_cxsr(dev_priv, false);
912 }
913 }
914
915 /*
916 * Documentation says:
917 * "If the line size is small, the TLB fetches can get in the way of the
918 * data fetches, causing some lag in the pixel data return which is not
919 * accounted for in the above formulas. The following adjustment only
920 * needs to be applied if eight whole lines fit in the buffer at once.
921 * The WM is adjusted upwards by the difference between the FIFO size
922 * and the size of 8 whole lines. This adjustment is always performed
923 * in the actual pixel depth regardless of whether FBC is enabled or not."
924 */
925 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
926 {
927 int tlb_miss = fifo_size * 64 - width * cpp * 8;
928
929 return max(0, tlb_miss);
930 }
931
932 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
933 const struct g4x_wm_values *wm)
934 {
935 enum pipe pipe;
936
937 for_each_pipe(dev_priv, pipe)
938 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
939
940 I915_WRITE(DSPFW1,
941 FW_WM(wm->sr.plane, SR) |
942 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
943 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
944 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
945 I915_WRITE(DSPFW2,
946 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
947 FW_WM(wm->sr.fbc, FBC_SR) |
948 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
949 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
950 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
951 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
952 I915_WRITE(DSPFW3,
953 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
954 FW_WM(wm->sr.cursor, CURSOR_SR) |
955 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
956 FW_WM(wm->hpll.plane, HPLL_SR));
957
958 POSTING_READ(DSPFW1);
959 }
960
961 #define FW_WM_VLV(value, plane) \
962 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
963
964 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
965 const struct vlv_wm_values *wm)
966 {
967 enum pipe pipe;
968
969 for_each_pipe(dev_priv, pipe) {
970 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
971
972 I915_WRITE(VLV_DDL(pipe),
973 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
974 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
975 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
976 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
977 }
978
979 /*
980 * Zero the (unused) WM1 watermarks, and also clear all the
981 * high order bits so that there are no out of bounds values
982 * present in the registers during the reprogramming.
983 */
984 I915_WRITE(DSPHOWM, 0);
985 I915_WRITE(DSPHOWM1, 0);
986 I915_WRITE(DSPFW4, 0);
987 I915_WRITE(DSPFW5, 0);
988 I915_WRITE(DSPFW6, 0);
989
990 I915_WRITE(DSPFW1,
991 FW_WM(wm->sr.plane, SR) |
992 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
993 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
994 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
995 I915_WRITE(DSPFW2,
996 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
997 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
998 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
999 I915_WRITE(DSPFW3,
1000 FW_WM(wm->sr.cursor, CURSOR_SR));
1001
1002 if (IS_CHERRYVIEW(dev_priv)) {
1003 I915_WRITE(DSPFW7_CHV,
1004 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1005 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1006 I915_WRITE(DSPFW8_CHV,
1007 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1009 I915_WRITE(DSPFW9_CHV,
1010 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1011 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1012 I915_WRITE(DSPHOWM,
1013 FW_WM(wm->sr.plane >> 9, SR_HI) |
1014 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1015 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1016 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1017 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1018 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1019 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1021 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1022 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 } else {
1024 I915_WRITE(DSPFW7,
1025 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1026 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1027 I915_WRITE(DSPHOWM,
1028 FW_WM(wm->sr.plane >> 9, SR_HI) |
1029 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1030 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1031 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1032 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1033 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1034 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1035 }
1036
1037 POSTING_READ(DSPFW1);
1038 }
1039
1040 #undef FW_WM_VLV
1041
1042 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1043 {
1044 /* all latencies in usec */
1045 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1046 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1047 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1048
1049 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1050 }
1051
1052 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1053 {
1054 /*
1055 * DSPCNTR[13] supposedly controls whether the
1056 * primary plane can use the FIFO space otherwise
1057 * reserved for the sprite plane. It's not 100% clear
1058 * what the actual FIFO size is, but it looks like we
1059 * can happily set both primary and sprite watermarks
1060 * up to 127 cachelines. So that would seem to mean
1061 * that either DSPCNTR[13] doesn't do anything, or that
1062 * the total FIFO is >= 256 cachelines in size. Either
1063 * way, we don't seem to have to worry about this
1064 * repartitioning as the maximum watermark value the
1065 * register can hold for each plane is lower than the
1066 * minimum FIFO size.
1067 */
1068 switch (plane_id) {
1069 case PLANE_CURSOR:
1070 return 63;
1071 case PLANE_PRIMARY:
1072 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1073 case PLANE_SPRITE0:
1074 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1075 default:
1076 MISSING_CASE(plane_id);
1077 return 0;
1078 }
1079 }
1080
1081 static int g4x_fbc_fifo_size(int level)
1082 {
1083 switch (level) {
1084 case G4X_WM_LEVEL_SR:
1085 return 7;
1086 case G4X_WM_LEVEL_HPLL:
1087 return 15;
1088 default:
1089 MISSING_CASE(level);
1090 return 0;
1091 }
1092 }
1093
1094 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1095 const struct intel_plane_state *plane_state,
1096 int level)
1097 {
1098 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1099 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1100 const struct drm_display_mode *adjusted_mode =
1101 &crtc_state->base.adjusted_mode;
1102 int clock, htotal, cpp, width, wm;
1103 int latency = dev_priv->wm.pri_latency[level] * 10;
1104
1105 if (latency == 0)
1106 return USHRT_MAX;
1107
1108 if (!intel_wm_plane_visible(crtc_state, plane_state))
1109 return 0;
1110
1111 /*
1112 * Not 100% sure which way ELK should go here as the
1113 * spec only says CL/CTG should assume 32bpp and BW
1114 * doesn't need to. But as these things followed the
1115 * mobile vs. desktop lines on gen3 as well, let's
1116 * assume ELK doesn't need this.
1117 *
1118 * The spec also fails to list such a restriction for
1119 * the HPLL watermark, which seems a little strange.
1120 * Let's use 32bpp for the HPLL watermark as well.
1121 */
1122 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1123 level != G4X_WM_LEVEL_NORMAL)
1124 cpp = 4;
1125 else
1126 cpp = plane_state->base.fb->format->cpp[0];
1127
1128 clock = adjusted_mode->crtc_clock;
1129 htotal = adjusted_mode->crtc_htotal;
1130
1131 if (plane->id == PLANE_CURSOR)
1132 width = plane_state->base.crtc_w;
1133 else
1134 width = drm_rect_width(&plane_state->base.dst);
1135
1136 if (plane->id == PLANE_CURSOR) {
1137 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1138 } else if (plane->id == PLANE_PRIMARY &&
1139 level == G4X_WM_LEVEL_NORMAL) {
1140 wm = intel_wm_method1(clock, cpp, latency);
1141 } else {
1142 int small, large;
1143
1144 small = intel_wm_method1(clock, cpp, latency);
1145 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1146
1147 wm = min(small, large);
1148 }
1149
1150 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1151 width, cpp);
1152
1153 wm = DIV_ROUND_UP(wm, 64) + 2;
1154
1155 return min_t(int, wm, USHRT_MAX);
1156 }
1157
1158 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1159 int level, enum plane_id plane_id, u16 value)
1160 {
1161 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1162 bool dirty = false;
1163
1164 for (; level < intel_wm_num_levels(dev_priv); level++) {
1165 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1166
1167 dirty |= raw->plane[plane_id] != value;
1168 raw->plane[plane_id] = value;
1169 }
1170
1171 return dirty;
1172 }
1173
1174 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1175 int level, u16 value)
1176 {
1177 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1178 bool dirty = false;
1179
1180 /* NORMAL level doesn't have an FBC watermark */
1181 level = max(level, G4X_WM_LEVEL_SR);
1182
1183 for (; level < intel_wm_num_levels(dev_priv); level++) {
1184 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1185
1186 dirty |= raw->fbc != value;
1187 raw->fbc = value;
1188 }
1189
1190 return dirty;
1191 }
1192
1193 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1194 const struct intel_plane_state *pstate,
1195 uint32_t pri_val);
1196
1197 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1198 const struct intel_plane_state *plane_state)
1199 {
1200 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1201 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1202 enum plane_id plane_id = plane->id;
1203 bool dirty = false;
1204 int level;
1205
1206 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1207 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1208 if (plane_id == PLANE_PRIMARY)
1209 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1210 goto out;
1211 }
1212
1213 for (level = 0; level < num_levels; level++) {
1214 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1215 int wm, max_wm;
1216
1217 wm = g4x_compute_wm(crtc_state, plane_state, level);
1218 max_wm = g4x_plane_fifo_size(plane_id, level);
1219
1220 if (wm > max_wm)
1221 break;
1222
1223 dirty |= raw->plane[plane_id] != wm;
1224 raw->plane[plane_id] = wm;
1225
1226 if (plane_id != PLANE_PRIMARY ||
1227 level == G4X_WM_LEVEL_NORMAL)
1228 continue;
1229
1230 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1231 raw->plane[plane_id]);
1232 max_wm = g4x_fbc_fifo_size(level);
1233
1234 /*
1235 * FBC wm is not mandatory as we
1236 * can always just disable its use.
1237 */
1238 if (wm > max_wm)
1239 wm = USHRT_MAX;
1240
1241 dirty |= raw->fbc != wm;
1242 raw->fbc = wm;
1243 }
1244
1245 /* mark watermarks as invalid */
1246 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1247
1248 if (plane_id == PLANE_PRIMARY)
1249 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1250
1251 out:
1252 if (dirty) {
1253 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1254 plane->base.name,
1255 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1256 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1257 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1258
1259 if (plane_id == PLANE_PRIMARY)
1260 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1261 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1262 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1263 }
1264
1265 return dirty;
1266 }
1267
1268 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1269 enum plane_id plane_id, int level)
1270 {
1271 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1272
1273 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1274 }
1275
1276 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1277 int level)
1278 {
1279 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1280
1281 if (level > dev_priv->wm.max_level)
1282 return false;
1283
1284 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1285 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1286 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1287 }
1288
1289 /* mark all levels starting from 'level' as invalid */
1290 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1291 struct g4x_wm_state *wm_state, int level)
1292 {
1293 if (level <= G4X_WM_LEVEL_NORMAL) {
1294 enum plane_id plane_id;
1295
1296 for_each_plane_id_on_crtc(crtc, plane_id)
1297 wm_state->wm.plane[plane_id] = USHRT_MAX;
1298 }
1299
1300 if (level <= G4X_WM_LEVEL_SR) {
1301 wm_state->cxsr = false;
1302 wm_state->sr.cursor = USHRT_MAX;
1303 wm_state->sr.plane = USHRT_MAX;
1304 wm_state->sr.fbc = USHRT_MAX;
1305 }
1306
1307 if (level <= G4X_WM_LEVEL_HPLL) {
1308 wm_state->hpll_en = false;
1309 wm_state->hpll.cursor = USHRT_MAX;
1310 wm_state->hpll.plane = USHRT_MAX;
1311 wm_state->hpll.fbc = USHRT_MAX;
1312 }
1313 }
1314
1315 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1316 {
1317 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1318 struct intel_atomic_state *state =
1319 to_intel_atomic_state(crtc_state->base.state);
1320 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1321 int num_active_planes = hweight32(crtc_state->active_planes &
1322 ~BIT(PLANE_CURSOR));
1323 const struct g4x_pipe_wm *raw;
1324 const struct intel_plane_state *old_plane_state;
1325 const struct intel_plane_state *new_plane_state;
1326 struct intel_plane *plane;
1327 enum plane_id plane_id;
1328 int i, level;
1329 unsigned int dirty = 0;
1330
1331 for_each_oldnew_intel_plane_in_state(state, plane,
1332 old_plane_state,
1333 new_plane_state, i) {
1334 if (new_plane_state->base.crtc != &crtc->base &&
1335 old_plane_state->base.crtc != &crtc->base)
1336 continue;
1337
1338 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1339 dirty |= BIT(plane->id);
1340 }
1341
1342 if (!dirty)
1343 return 0;
1344
1345 level = G4X_WM_LEVEL_NORMAL;
1346 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1347 goto out;
1348
1349 raw = &crtc_state->wm.g4x.raw[level];
1350 for_each_plane_id_on_crtc(crtc, plane_id)
1351 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1352
1353 level = G4X_WM_LEVEL_SR;
1354
1355 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1356 goto out;
1357
1358 raw = &crtc_state->wm.g4x.raw[level];
1359 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1360 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1361 wm_state->sr.fbc = raw->fbc;
1362
1363 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1364
1365 level = G4X_WM_LEVEL_HPLL;
1366
1367 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1368 goto out;
1369
1370 raw = &crtc_state->wm.g4x.raw[level];
1371 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1372 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1373 wm_state->hpll.fbc = raw->fbc;
1374
1375 wm_state->hpll_en = wm_state->cxsr;
1376
1377 level++;
1378
1379 out:
1380 if (level == G4X_WM_LEVEL_NORMAL)
1381 return -EINVAL;
1382
1383 /* invalidate the higher levels */
1384 g4x_invalidate_wms(crtc, wm_state, level);
1385
1386 /*
1387 * Determine if the FBC watermark(s) can be used. IF
1388 * this isn't the case we prefer to disable the FBC
1389 ( watermark(s) rather than disable the SR/HPLL
1390 * level(s) entirely.
1391 */
1392 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1393
1394 if (level >= G4X_WM_LEVEL_SR &&
1395 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1396 wm_state->fbc_en = false;
1397 else if (level >= G4X_WM_LEVEL_HPLL &&
1398 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1399 wm_state->fbc_en = false;
1400
1401 return 0;
1402 }
1403
1404 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1405 struct intel_crtc *crtc,
1406 struct intel_crtc_state *crtc_state)
1407 {
1408 struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1409 const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1410 const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1411 enum plane_id plane_id;
1412
1413 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1414 !crtc_state->disable_cxsr;
1415 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1416 !crtc_state->disable_cxsr;
1417 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1418
1419 for_each_plane_id_on_crtc(crtc, plane_id) {
1420 intermediate->wm.plane[plane_id] =
1421 max(optimal->wm.plane[plane_id],
1422 active->wm.plane[plane_id]);
1423
1424 WARN_ON(intermediate->wm.plane[plane_id] >
1425 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1426 }
1427
1428 intermediate->sr.plane = max(optimal->sr.plane,
1429 active->sr.plane);
1430 intermediate->sr.cursor = max(optimal->sr.cursor,
1431 active->sr.cursor);
1432 intermediate->sr.fbc = max(optimal->sr.fbc,
1433 active->sr.fbc);
1434
1435 intermediate->hpll.plane = max(optimal->hpll.plane,
1436 active->hpll.plane);
1437 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1438 active->hpll.cursor);
1439 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1440 active->hpll.fbc);
1441
1442 WARN_ON((intermediate->sr.plane >
1443 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1444 intermediate->sr.cursor >
1445 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1446 intermediate->cxsr);
1447 WARN_ON((intermediate->sr.plane >
1448 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1449 intermediate->sr.cursor >
1450 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1451 intermediate->hpll_en);
1452
1453 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1454 intermediate->fbc_en && intermediate->cxsr);
1455 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1456 intermediate->fbc_en && intermediate->hpll_en);
1457
1458 /*
1459 * If our intermediate WM are identical to the final WM, then we can
1460 * omit the post-vblank programming; only update if it's different.
1461 */
1462 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1463 crtc_state->wm.need_postvbl_update = true;
1464
1465 return 0;
1466 }
1467
1468 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1469 struct g4x_wm_values *wm)
1470 {
1471 struct intel_crtc *crtc;
1472 int num_active_crtcs = 0;
1473
1474 wm->cxsr = true;
1475 wm->hpll_en = true;
1476 wm->fbc_en = true;
1477
1478 for_each_intel_crtc(&dev_priv->drm, crtc) {
1479 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1480
1481 if (!crtc->active)
1482 continue;
1483
1484 if (!wm_state->cxsr)
1485 wm->cxsr = false;
1486 if (!wm_state->hpll_en)
1487 wm->hpll_en = false;
1488 if (!wm_state->fbc_en)
1489 wm->fbc_en = false;
1490
1491 num_active_crtcs++;
1492 }
1493
1494 if (num_active_crtcs != 1) {
1495 wm->cxsr = false;
1496 wm->hpll_en = false;
1497 wm->fbc_en = false;
1498 }
1499
1500 for_each_intel_crtc(&dev_priv->drm, crtc) {
1501 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1502 enum pipe pipe = crtc->pipe;
1503
1504 wm->pipe[pipe] = wm_state->wm;
1505 if (crtc->active && wm->cxsr)
1506 wm->sr = wm_state->sr;
1507 if (crtc->active && wm->hpll_en)
1508 wm->hpll = wm_state->hpll;
1509 }
1510 }
1511
1512 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1513 {
1514 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1515 struct g4x_wm_values new_wm = {};
1516
1517 g4x_merge_wm(dev_priv, &new_wm);
1518
1519 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1520 return;
1521
1522 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1523 _intel_set_memory_cxsr(dev_priv, false);
1524
1525 g4x_write_wm_values(dev_priv, &new_wm);
1526
1527 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1528 _intel_set_memory_cxsr(dev_priv, true);
1529
1530 *old_wm = new_wm;
1531 }
1532
1533 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1534 struct intel_crtc_state *crtc_state)
1535 {
1536 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1537 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1538
1539 mutex_lock(&dev_priv->wm.wm_mutex);
1540 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1541 g4x_program_watermarks(dev_priv);
1542 mutex_unlock(&dev_priv->wm.wm_mutex);
1543 }
1544
1545 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1546 struct intel_crtc_state *crtc_state)
1547 {
1548 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1549 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1550
1551 if (!crtc_state->wm.need_postvbl_update)
1552 return;
1553
1554 mutex_lock(&dev_priv->wm.wm_mutex);
1555 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1556 g4x_program_watermarks(dev_priv);
1557 mutex_unlock(&dev_priv->wm.wm_mutex);
1558 }
1559
1560 /* latency must be in 0.1us units. */
1561 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1562 unsigned int htotal,
1563 unsigned int width,
1564 unsigned int cpp,
1565 unsigned int latency)
1566 {
1567 unsigned int ret;
1568
1569 ret = intel_wm_method2(pixel_rate, htotal,
1570 width, cpp, latency);
1571 ret = DIV_ROUND_UP(ret, 64);
1572
1573 return ret;
1574 }
1575
1576 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1577 {
1578 /* all latencies in usec */
1579 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1580
1581 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1582
1583 if (IS_CHERRYVIEW(dev_priv)) {
1584 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1585 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1586
1587 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1588 }
1589 }
1590
1591 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1592 const struct intel_plane_state *plane_state,
1593 int level)
1594 {
1595 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1596 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1597 const struct drm_display_mode *adjusted_mode =
1598 &crtc_state->base.adjusted_mode;
1599 int clock, htotal, cpp, width, wm;
1600
1601 if (dev_priv->wm.pri_latency[level] == 0)
1602 return USHRT_MAX;
1603
1604 if (!intel_wm_plane_visible(crtc_state, plane_state))
1605 return 0;
1606
1607 cpp = plane_state->base.fb->format->cpp[0];
1608 clock = adjusted_mode->crtc_clock;
1609 htotal = adjusted_mode->crtc_htotal;
1610 width = crtc_state->pipe_src_w;
1611
1612 if (plane->id == PLANE_CURSOR) {
1613 /*
1614 * FIXME the formula gives values that are
1615 * too big for the cursor FIFO, and hence we
1616 * would never be able to use cursors. For
1617 * now just hardcode the watermark.
1618 */
1619 wm = 63;
1620 } else {
1621 wm = vlv_wm_method2(clock, htotal, width, cpp,
1622 dev_priv->wm.pri_latency[level] * 10);
1623 }
1624
1625 return min_t(int, wm, USHRT_MAX);
1626 }
1627
1628 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1629 {
1630 return (active_planes & (BIT(PLANE_SPRITE0) |
1631 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1632 }
1633
1634 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1635 {
1636 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1637 const struct g4x_pipe_wm *raw =
1638 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1639 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1640 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1641 int num_active_planes = hweight32(active_planes);
1642 const int fifo_size = 511;
1643 int fifo_extra, fifo_left = fifo_size;
1644 int sprite0_fifo_extra = 0;
1645 unsigned int total_rate;
1646 enum plane_id plane_id;
1647
1648 /*
1649 * When enabling sprite0 after sprite1 has already been enabled
1650 * we tend to get an underrun unless sprite0 already has some
1651 * FIFO space allcoated. Hence we always allocate at least one
1652 * cacheline for sprite0 whenever sprite1 is enabled.
1653 *
1654 * All other plane enable sequences appear immune to this problem.
1655 */
1656 if (vlv_need_sprite0_fifo_workaround(active_planes))
1657 sprite0_fifo_extra = 1;
1658
1659 total_rate = raw->plane[PLANE_PRIMARY] +
1660 raw->plane[PLANE_SPRITE0] +
1661 raw->plane[PLANE_SPRITE1] +
1662 sprite0_fifo_extra;
1663
1664 if (total_rate > fifo_size)
1665 return -EINVAL;
1666
1667 if (total_rate == 0)
1668 total_rate = 1;
1669
1670 for_each_plane_id_on_crtc(crtc, plane_id) {
1671 unsigned int rate;
1672
1673 if ((active_planes & BIT(plane_id)) == 0) {
1674 fifo_state->plane[plane_id] = 0;
1675 continue;
1676 }
1677
1678 rate = raw->plane[plane_id];
1679 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1680 fifo_left -= fifo_state->plane[plane_id];
1681 }
1682
1683 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1684 fifo_left -= sprite0_fifo_extra;
1685
1686 fifo_state->plane[PLANE_CURSOR] = 63;
1687
1688 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1689
1690 /* spread the remainder evenly */
1691 for_each_plane_id_on_crtc(crtc, plane_id) {
1692 int plane_extra;
1693
1694 if (fifo_left == 0)
1695 break;
1696
1697 if ((active_planes & BIT(plane_id)) == 0)
1698 continue;
1699
1700 plane_extra = min(fifo_extra, fifo_left);
1701 fifo_state->plane[plane_id] += plane_extra;
1702 fifo_left -= plane_extra;
1703 }
1704
1705 WARN_ON(active_planes != 0 && fifo_left != 0);
1706
1707 /* give it all to the first plane if none are active */
1708 if (active_planes == 0) {
1709 WARN_ON(fifo_left != fifo_size);
1710 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1711 }
1712
1713 return 0;
1714 }
1715
1716 /* mark all levels starting from 'level' as invalid */
1717 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1718 struct vlv_wm_state *wm_state, int level)
1719 {
1720 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1721
1722 for (; level < intel_wm_num_levels(dev_priv); level++) {
1723 enum plane_id plane_id;
1724
1725 for_each_plane_id_on_crtc(crtc, plane_id)
1726 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1727
1728 wm_state->sr[level].cursor = USHRT_MAX;
1729 wm_state->sr[level].plane = USHRT_MAX;
1730 }
1731 }
1732
1733 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1734 {
1735 if (wm > fifo_size)
1736 return USHRT_MAX;
1737 else
1738 return fifo_size - wm;
1739 }
1740
1741 /*
1742 * Starting from 'level' set all higher
1743 * levels to 'value' in the "raw" watermarks.
1744 */
1745 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1746 int level, enum plane_id plane_id, u16 value)
1747 {
1748 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1749 int num_levels = intel_wm_num_levels(dev_priv);
1750 bool dirty = false;
1751
1752 for (; level < num_levels; level++) {
1753 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1754
1755 dirty |= raw->plane[plane_id] != value;
1756 raw->plane[plane_id] = value;
1757 }
1758
1759 return dirty;
1760 }
1761
1762 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1763 const struct intel_plane_state *plane_state)
1764 {
1765 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1766 enum plane_id plane_id = plane->id;
1767 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1768 int level;
1769 bool dirty = false;
1770
1771 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1772 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1773 goto out;
1774 }
1775
1776 for (level = 0; level < num_levels; level++) {
1777 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1778 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1779 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1780
1781 if (wm > max_wm)
1782 break;
1783
1784 dirty |= raw->plane[plane_id] != wm;
1785 raw->plane[plane_id] = wm;
1786 }
1787
1788 /* mark all higher levels as invalid */
1789 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1790
1791 out:
1792 if (dirty)
1793 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1794 plane->base.name,
1795 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1796 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1797 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1798
1799 return dirty;
1800 }
1801
1802 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1803 enum plane_id plane_id, int level)
1804 {
1805 const struct g4x_pipe_wm *raw =
1806 &crtc_state->wm.vlv.raw[level];
1807 const struct vlv_fifo_state *fifo_state =
1808 &crtc_state->wm.vlv.fifo_state;
1809
1810 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1811 }
1812
1813 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1814 {
1815 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1816 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1817 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1818 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1819 }
1820
1821 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1822 {
1823 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1824 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1825 struct intel_atomic_state *state =
1826 to_intel_atomic_state(crtc_state->base.state);
1827 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1828 const struct vlv_fifo_state *fifo_state =
1829 &crtc_state->wm.vlv.fifo_state;
1830 int num_active_planes = hweight32(crtc_state->active_planes &
1831 ~BIT(PLANE_CURSOR));
1832 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1833 const struct intel_plane_state *old_plane_state;
1834 const struct intel_plane_state *new_plane_state;
1835 struct intel_plane *plane;
1836 enum plane_id plane_id;
1837 int level, ret, i;
1838 unsigned int dirty = 0;
1839
1840 for_each_oldnew_intel_plane_in_state(state, plane,
1841 old_plane_state,
1842 new_plane_state, i) {
1843 if (new_plane_state->base.crtc != &crtc->base &&
1844 old_plane_state->base.crtc != &crtc->base)
1845 continue;
1846
1847 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1848 dirty |= BIT(plane->id);
1849 }
1850
1851 /*
1852 * DSPARB registers may have been reset due to the
1853 * power well being turned off. Make sure we restore
1854 * them to a consistent state even if no primary/sprite
1855 * planes are initially active.
1856 */
1857 if (needs_modeset)
1858 crtc_state->fifo_changed = true;
1859
1860 if (!dirty)
1861 return 0;
1862
1863 /* cursor changes don't warrant a FIFO recompute */
1864 if (dirty & ~BIT(PLANE_CURSOR)) {
1865 const struct intel_crtc_state *old_crtc_state =
1866 intel_atomic_get_old_crtc_state(state, crtc);
1867 const struct vlv_fifo_state *old_fifo_state =
1868 &old_crtc_state->wm.vlv.fifo_state;
1869
1870 ret = vlv_compute_fifo(crtc_state);
1871 if (ret)
1872 return ret;
1873
1874 if (needs_modeset ||
1875 memcmp(old_fifo_state, fifo_state,
1876 sizeof(*fifo_state)) != 0)
1877 crtc_state->fifo_changed = true;
1878 }
1879
1880 /* initially allow all levels */
1881 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1882 /*
1883 * Note that enabling cxsr with no primary/sprite planes
1884 * enabled can wedge the pipe. Hence we only allow cxsr
1885 * with exactly one enabled primary/sprite plane.
1886 */
1887 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1888
1889 for (level = 0; level < wm_state->num_levels; level++) {
1890 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1891 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1892
1893 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1894 break;
1895
1896 for_each_plane_id_on_crtc(crtc, plane_id) {
1897 wm_state->wm[level].plane[plane_id] =
1898 vlv_invert_wm_value(raw->plane[plane_id],
1899 fifo_state->plane[plane_id]);
1900 }
1901
1902 wm_state->sr[level].plane =
1903 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1904 raw->plane[PLANE_SPRITE0],
1905 raw->plane[PLANE_SPRITE1]),
1906 sr_fifo_size);
1907
1908 wm_state->sr[level].cursor =
1909 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1910 63);
1911 }
1912
1913 if (level == 0)
1914 return -EINVAL;
1915
1916 /* limit to only levels we can actually handle */
1917 wm_state->num_levels = level;
1918
1919 /* invalidate the higher levels */
1920 vlv_invalidate_wms(crtc, wm_state, level);
1921
1922 return 0;
1923 }
1924
1925 #define VLV_FIFO(plane, value) \
1926 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1927
1928 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1929 struct intel_crtc_state *crtc_state)
1930 {
1931 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1932 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1933 const struct vlv_fifo_state *fifo_state =
1934 &crtc_state->wm.vlv.fifo_state;
1935 int sprite0_start, sprite1_start, fifo_size;
1936
1937 if (!crtc_state->fifo_changed)
1938 return;
1939
1940 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1941 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1942 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1943
1944 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1945 WARN_ON(fifo_size != 511);
1946
1947 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1948
1949 /*
1950 * uncore.lock serves a double purpose here. It allows us to
1951 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1952 * it protects the DSPARB registers from getting clobbered by
1953 * parallel updates from multiple pipes.
1954 *
1955 * intel_pipe_update_start() has already disabled interrupts
1956 * for us, so a plain spin_lock() is sufficient here.
1957 */
1958 spin_lock(&dev_priv->uncore.lock);
1959
1960 switch (crtc->pipe) {
1961 uint32_t dsparb, dsparb2, dsparb3;
1962 case PIPE_A:
1963 dsparb = I915_READ_FW(DSPARB);
1964 dsparb2 = I915_READ_FW(DSPARB2);
1965
1966 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1967 VLV_FIFO(SPRITEB, 0xff));
1968 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1969 VLV_FIFO(SPRITEB, sprite1_start));
1970
1971 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1972 VLV_FIFO(SPRITEB_HI, 0x1));
1973 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1974 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1975
1976 I915_WRITE_FW(DSPARB, dsparb);
1977 I915_WRITE_FW(DSPARB2, dsparb2);
1978 break;
1979 case PIPE_B:
1980 dsparb = I915_READ_FW(DSPARB);
1981 dsparb2 = I915_READ_FW(DSPARB2);
1982
1983 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1984 VLV_FIFO(SPRITED, 0xff));
1985 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1986 VLV_FIFO(SPRITED, sprite1_start));
1987
1988 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1989 VLV_FIFO(SPRITED_HI, 0xff));
1990 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1991 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1992
1993 I915_WRITE_FW(DSPARB, dsparb);
1994 I915_WRITE_FW(DSPARB2, dsparb2);
1995 break;
1996 case PIPE_C:
1997 dsparb3 = I915_READ_FW(DSPARB3);
1998 dsparb2 = I915_READ_FW(DSPARB2);
1999
2000 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2001 VLV_FIFO(SPRITEF, 0xff));
2002 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2003 VLV_FIFO(SPRITEF, sprite1_start));
2004
2005 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2006 VLV_FIFO(SPRITEF_HI, 0xff));
2007 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2008 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2009
2010 I915_WRITE_FW(DSPARB3, dsparb3);
2011 I915_WRITE_FW(DSPARB2, dsparb2);
2012 break;
2013 default:
2014 break;
2015 }
2016
2017 POSTING_READ_FW(DSPARB);
2018
2019 spin_unlock(&dev_priv->uncore.lock);
2020 }
2021
2022 #undef VLV_FIFO
2023
2024 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2025 struct intel_crtc *crtc,
2026 struct intel_crtc_state *crtc_state)
2027 {
2028 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2029 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2030 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2031 int level;
2032
2033 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2034 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2035 !crtc_state->disable_cxsr;
2036
2037 for (level = 0; level < intermediate->num_levels; level++) {
2038 enum plane_id plane_id;
2039
2040 for_each_plane_id_on_crtc(crtc, plane_id) {
2041 intermediate->wm[level].plane[plane_id] =
2042 min(optimal->wm[level].plane[plane_id],
2043 active->wm[level].plane[plane_id]);
2044 }
2045
2046 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2047 active->sr[level].plane);
2048 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2049 active->sr[level].cursor);
2050 }
2051
2052 vlv_invalidate_wms(crtc, intermediate, level);
2053
2054 /*
2055 * If our intermediate WM are identical to the final WM, then we can
2056 * omit the post-vblank programming; only update if it's different.
2057 */
2058 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2059 crtc_state->wm.need_postvbl_update = true;
2060
2061 return 0;
2062 }
2063
2064 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2065 struct vlv_wm_values *wm)
2066 {
2067 struct intel_crtc *crtc;
2068 int num_active_crtcs = 0;
2069
2070 wm->level = dev_priv->wm.max_level;
2071 wm->cxsr = true;
2072
2073 for_each_intel_crtc(&dev_priv->drm, crtc) {
2074 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075
2076 if (!crtc->active)
2077 continue;
2078
2079 if (!wm_state->cxsr)
2080 wm->cxsr = false;
2081
2082 num_active_crtcs++;
2083 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2084 }
2085
2086 if (num_active_crtcs != 1)
2087 wm->cxsr = false;
2088
2089 if (num_active_crtcs > 1)
2090 wm->level = VLV_WM_LEVEL_PM2;
2091
2092 for_each_intel_crtc(&dev_priv->drm, crtc) {
2093 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2094 enum pipe pipe = crtc->pipe;
2095
2096 wm->pipe[pipe] = wm_state->wm[wm->level];
2097 if (crtc->active && wm->cxsr)
2098 wm->sr = wm_state->sr[wm->level];
2099
2100 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2101 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2102 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2103 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2104 }
2105 }
2106
2107 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2108 {
2109 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2110 struct vlv_wm_values new_wm = {};
2111
2112 vlv_merge_wm(dev_priv, &new_wm);
2113
2114 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2115 return;
2116
2117 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2118 chv_set_memory_dvfs(dev_priv, false);
2119
2120 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2121 chv_set_memory_pm5(dev_priv, false);
2122
2123 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2124 _intel_set_memory_cxsr(dev_priv, false);
2125
2126 vlv_write_wm_values(dev_priv, &new_wm);
2127
2128 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2129 _intel_set_memory_cxsr(dev_priv, true);
2130
2131 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2132 chv_set_memory_pm5(dev_priv, true);
2133
2134 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2135 chv_set_memory_dvfs(dev_priv, true);
2136
2137 *old_wm = new_wm;
2138 }
2139
2140 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2141 struct intel_crtc_state *crtc_state)
2142 {
2143 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2144 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2145
2146 mutex_lock(&dev_priv->wm.wm_mutex);
2147 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2148 vlv_program_watermarks(dev_priv);
2149 mutex_unlock(&dev_priv->wm.wm_mutex);
2150 }
2151
2152 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2153 struct intel_crtc_state *crtc_state)
2154 {
2155 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2157
2158 if (!crtc_state->wm.need_postvbl_update)
2159 return;
2160
2161 mutex_lock(&dev_priv->wm.wm_mutex);
2162 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2163 vlv_program_watermarks(dev_priv);
2164 mutex_unlock(&dev_priv->wm.wm_mutex);
2165 }
2166
2167 static void i965_update_wm(struct intel_crtc *unused_crtc)
2168 {
2169 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2170 struct intel_crtc *crtc;
2171 int srwm = 1;
2172 int cursor_sr = 16;
2173 bool cxsr_enabled;
2174
2175 /* Calc sr entries for one plane configs */
2176 crtc = single_enabled_crtc(dev_priv);
2177 if (crtc) {
2178 /* self-refresh has much higher latency */
2179 static const int sr_latency_ns = 12000;
2180 const struct drm_display_mode *adjusted_mode =
2181 &crtc->config->base.adjusted_mode;
2182 const struct drm_framebuffer *fb =
2183 crtc->base.primary->state->fb;
2184 int clock = adjusted_mode->crtc_clock;
2185 int htotal = adjusted_mode->crtc_htotal;
2186 int hdisplay = crtc->config->pipe_src_w;
2187 int cpp = fb->format->cpp[0];
2188 int entries;
2189
2190 entries = intel_wm_method2(clock, htotal,
2191 hdisplay, cpp, sr_latency_ns / 100);
2192 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2193 srwm = I965_FIFO_SIZE - entries;
2194 if (srwm < 0)
2195 srwm = 1;
2196 srwm &= 0x1ff;
2197 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2198 entries, srwm);
2199
2200 entries = intel_wm_method2(clock, htotal,
2201 crtc->base.cursor->state->crtc_w, 4,
2202 sr_latency_ns / 100);
2203 entries = DIV_ROUND_UP(entries,
2204 i965_cursor_wm_info.cacheline_size) +
2205 i965_cursor_wm_info.guard_size;
2206
2207 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2208 if (cursor_sr > i965_cursor_wm_info.max_wm)
2209 cursor_sr = i965_cursor_wm_info.max_wm;
2210
2211 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2212 "cursor %d\n", srwm, cursor_sr);
2213
2214 cxsr_enabled = true;
2215 } else {
2216 cxsr_enabled = false;
2217 /* Turn off self refresh if both pipes are enabled */
2218 intel_set_memory_cxsr(dev_priv, false);
2219 }
2220
2221 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2222 srwm);
2223
2224 /* 965 has limitations... */
2225 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2226 FW_WM(8, CURSORB) |
2227 FW_WM(8, PLANEB) |
2228 FW_WM(8, PLANEA));
2229 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2230 FW_WM(8, PLANEC_OLD));
2231 /* update cursor SR watermark */
2232 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2233
2234 if (cxsr_enabled)
2235 intel_set_memory_cxsr(dev_priv, true);
2236 }
2237
2238 #undef FW_WM
2239
2240 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2241 {
2242 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2243 const struct intel_watermark_params *wm_info;
2244 uint32_t fwater_lo;
2245 uint32_t fwater_hi;
2246 int cwm, srwm = 1;
2247 int fifo_size;
2248 int planea_wm, planeb_wm;
2249 struct intel_crtc *crtc, *enabled = NULL;
2250
2251 if (IS_I945GM(dev_priv))
2252 wm_info = &i945_wm_info;
2253 else if (!IS_GEN2(dev_priv))
2254 wm_info = &i915_wm_info;
2255 else
2256 wm_info = &i830_a_wm_info;
2257
2258 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2259 crtc = intel_get_crtc_for_plane(dev_priv, 0);
2260 if (intel_crtc_active(crtc)) {
2261 const struct drm_display_mode *adjusted_mode =
2262 &crtc->config->base.adjusted_mode;
2263 const struct drm_framebuffer *fb =
2264 crtc->base.primary->state->fb;
2265 int cpp;
2266
2267 if (IS_GEN2(dev_priv))
2268 cpp = 4;
2269 else
2270 cpp = fb->format->cpp[0];
2271
2272 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2273 wm_info, fifo_size, cpp,
2274 pessimal_latency_ns);
2275 enabled = crtc;
2276 } else {
2277 planea_wm = fifo_size - wm_info->guard_size;
2278 if (planea_wm > (long)wm_info->max_wm)
2279 planea_wm = wm_info->max_wm;
2280 }
2281
2282 if (IS_GEN2(dev_priv))
2283 wm_info = &i830_bc_wm_info;
2284
2285 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2286 crtc = intel_get_crtc_for_plane(dev_priv, 1);
2287 if (intel_crtc_active(crtc)) {
2288 const struct drm_display_mode *adjusted_mode =
2289 &crtc->config->base.adjusted_mode;
2290 const struct drm_framebuffer *fb =
2291 crtc->base.primary->state->fb;
2292 int cpp;
2293
2294 if (IS_GEN2(dev_priv))
2295 cpp = 4;
2296 else
2297 cpp = fb->format->cpp[0];
2298
2299 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2300 wm_info, fifo_size, cpp,
2301 pessimal_latency_ns);
2302 if (enabled == NULL)
2303 enabled = crtc;
2304 else
2305 enabled = NULL;
2306 } else {
2307 planeb_wm = fifo_size - wm_info->guard_size;
2308 if (planeb_wm > (long)wm_info->max_wm)
2309 planeb_wm = wm_info->max_wm;
2310 }
2311
2312 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2313
2314 if (IS_I915GM(dev_priv) && enabled) {
2315 struct drm_i915_gem_object *obj;
2316
2317 obj = intel_fb_obj(enabled->base.primary->state->fb);
2318
2319 /* self-refresh seems busted with untiled */
2320 if (!i915_gem_object_is_tiled(obj))
2321 enabled = NULL;
2322 }
2323
2324 /*
2325 * Overlay gets an aggressive default since video jitter is bad.
2326 */
2327 cwm = 2;
2328
2329 /* Play safe and disable self-refresh before adjusting watermarks. */
2330 intel_set_memory_cxsr(dev_priv, false);
2331
2332 /* Calc sr entries for one plane configs */
2333 if (HAS_FW_BLC(dev_priv) && enabled) {
2334 /* self-refresh has much higher latency */
2335 static const int sr_latency_ns = 6000;
2336 const struct drm_display_mode *adjusted_mode =
2337 &enabled->config->base.adjusted_mode;
2338 const struct drm_framebuffer *fb =
2339 enabled->base.primary->state->fb;
2340 int clock = adjusted_mode->crtc_clock;
2341 int htotal = adjusted_mode->crtc_htotal;
2342 int hdisplay = enabled->config->pipe_src_w;
2343 int cpp;
2344 int entries;
2345
2346 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2347 cpp = 4;
2348 else
2349 cpp = fb->format->cpp[0];
2350
2351 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2352 sr_latency_ns / 100);
2353 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2354 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2355 srwm = wm_info->fifo_size - entries;
2356 if (srwm < 0)
2357 srwm = 1;
2358
2359 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2360 I915_WRITE(FW_BLC_SELF,
2361 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2362 else
2363 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2364 }
2365
2366 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2367 planea_wm, planeb_wm, cwm, srwm);
2368
2369 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2370 fwater_hi = (cwm & 0x1f);
2371
2372 /* Set request length to 8 cachelines per fetch */
2373 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2374 fwater_hi = fwater_hi | (1 << 8);
2375
2376 I915_WRITE(FW_BLC, fwater_lo);
2377 I915_WRITE(FW_BLC2, fwater_hi);
2378
2379 if (enabled)
2380 intel_set_memory_cxsr(dev_priv, true);
2381 }
2382
2383 static void i845_update_wm(struct intel_crtc *unused_crtc)
2384 {
2385 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2386 struct intel_crtc *crtc;
2387 const struct drm_display_mode *adjusted_mode;
2388 uint32_t fwater_lo;
2389 int planea_wm;
2390
2391 crtc = single_enabled_crtc(dev_priv);
2392 if (crtc == NULL)
2393 return;
2394
2395 adjusted_mode = &crtc->config->base.adjusted_mode;
2396 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2397 &i845_wm_info,
2398 dev_priv->display.get_fifo_size(dev_priv, 0),
2399 4, pessimal_latency_ns);
2400 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2401 fwater_lo |= (3<<8) | planea_wm;
2402
2403 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2404
2405 I915_WRITE(FW_BLC, fwater_lo);
2406 }
2407
2408 /* latency must be in 0.1us units. */
2409 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2410 unsigned int cpp,
2411 unsigned int latency)
2412 {
2413 unsigned int ret;
2414
2415 ret = intel_wm_method1(pixel_rate, cpp, latency);
2416 ret = DIV_ROUND_UP(ret, 64) + 2;
2417
2418 return ret;
2419 }
2420
2421 /* latency must be in 0.1us units. */
2422 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2423 unsigned int htotal,
2424 unsigned int width,
2425 unsigned int cpp,
2426 unsigned int latency)
2427 {
2428 unsigned int ret;
2429
2430 ret = intel_wm_method2(pixel_rate, htotal,
2431 width, cpp, latency);
2432 ret = DIV_ROUND_UP(ret, 64) + 2;
2433
2434 return ret;
2435 }
2436
2437 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2438 uint8_t cpp)
2439 {
2440 /*
2441 * Neither of these should be possible since this function shouldn't be
2442 * called if the CRTC is off or the plane is invisible. But let's be
2443 * extra paranoid to avoid a potential divide-by-zero if we screw up
2444 * elsewhere in the driver.
2445 */
2446 if (WARN_ON(!cpp))
2447 return 0;
2448 if (WARN_ON(!horiz_pixels))
2449 return 0;
2450
2451 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2452 }
2453
2454 struct ilk_wm_maximums {
2455 uint16_t pri;
2456 uint16_t spr;
2457 uint16_t cur;
2458 uint16_t fbc;
2459 };
2460
2461 /*
2462 * For both WM_PIPE and WM_LP.
2463 * mem_value must be in 0.1us units.
2464 */
2465 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2466 const struct intel_plane_state *pstate,
2467 uint32_t mem_value,
2468 bool is_lp)
2469 {
2470 uint32_t method1, method2;
2471 int cpp;
2472
2473 if (!intel_wm_plane_visible(cstate, pstate))
2474 return 0;
2475
2476 cpp = pstate->base.fb->format->cpp[0];
2477
2478 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2479
2480 if (!is_lp)
2481 return method1;
2482
2483 method2 = ilk_wm_method2(cstate->pixel_rate,
2484 cstate->base.adjusted_mode.crtc_htotal,
2485 drm_rect_width(&pstate->base.dst),
2486 cpp, mem_value);
2487
2488 return min(method1, method2);
2489 }
2490
2491 /*
2492 * For both WM_PIPE and WM_LP.
2493 * mem_value must be in 0.1us units.
2494 */
2495 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2496 const struct intel_plane_state *pstate,
2497 uint32_t mem_value)
2498 {
2499 uint32_t method1, method2;
2500 int cpp;
2501
2502 if (!intel_wm_plane_visible(cstate, pstate))
2503 return 0;
2504
2505 cpp = pstate->base.fb->format->cpp[0];
2506
2507 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2508 method2 = ilk_wm_method2(cstate->pixel_rate,
2509 cstate->base.adjusted_mode.crtc_htotal,
2510 drm_rect_width(&pstate->base.dst),
2511 cpp, mem_value);
2512 return min(method1, method2);
2513 }
2514
2515 /*
2516 * For both WM_PIPE and WM_LP.
2517 * mem_value must be in 0.1us units.
2518 */
2519 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2520 const struct intel_plane_state *pstate,
2521 uint32_t mem_value)
2522 {
2523 int cpp;
2524
2525 if (!intel_wm_plane_visible(cstate, pstate))
2526 return 0;
2527
2528 cpp = pstate->base.fb->format->cpp[0];
2529
2530 return ilk_wm_method2(cstate->pixel_rate,
2531 cstate->base.adjusted_mode.crtc_htotal,
2532 pstate->base.crtc_w, cpp, mem_value);
2533 }
2534
2535 /* Only for WM_LP. */
2536 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2537 const struct intel_plane_state *pstate,
2538 uint32_t pri_val)
2539 {
2540 int cpp;
2541
2542 if (!intel_wm_plane_visible(cstate, pstate))
2543 return 0;
2544
2545 cpp = pstate->base.fb->format->cpp[0];
2546
2547 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2548 }
2549
2550 static unsigned int
2551 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2552 {
2553 if (INTEL_GEN(dev_priv) >= 8)
2554 return 3072;
2555 else if (INTEL_GEN(dev_priv) >= 7)
2556 return 768;
2557 else
2558 return 512;
2559 }
2560
2561 static unsigned int
2562 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2563 int level, bool is_sprite)
2564 {
2565 if (INTEL_GEN(dev_priv) >= 8)
2566 /* BDW primary/sprite plane watermarks */
2567 return level == 0 ? 255 : 2047;
2568 else if (INTEL_GEN(dev_priv) >= 7)
2569 /* IVB/HSW primary/sprite plane watermarks */
2570 return level == 0 ? 127 : 1023;
2571 else if (!is_sprite)
2572 /* ILK/SNB primary plane watermarks */
2573 return level == 0 ? 127 : 511;
2574 else
2575 /* ILK/SNB sprite plane watermarks */
2576 return level == 0 ? 63 : 255;
2577 }
2578
2579 static unsigned int
2580 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2581 {
2582 if (INTEL_GEN(dev_priv) >= 7)
2583 return level == 0 ? 63 : 255;
2584 else
2585 return level == 0 ? 31 : 63;
2586 }
2587
2588 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2589 {
2590 if (INTEL_GEN(dev_priv) >= 8)
2591 return 31;
2592 else
2593 return 15;
2594 }
2595
2596 /* Calculate the maximum primary/sprite plane watermark */
2597 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2598 int level,
2599 const struct intel_wm_config *config,
2600 enum intel_ddb_partitioning ddb_partitioning,
2601 bool is_sprite)
2602 {
2603 struct drm_i915_private *dev_priv = to_i915(dev);
2604 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2605
2606 /* if sprites aren't enabled, sprites get nothing */
2607 if (is_sprite && !config->sprites_enabled)
2608 return 0;
2609
2610 /* HSW allows LP1+ watermarks even with multiple pipes */
2611 if (level == 0 || config->num_pipes_active > 1) {
2612 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2613
2614 /*
2615 * For some reason the non self refresh
2616 * FIFO size is only half of the self
2617 * refresh FIFO size on ILK/SNB.
2618 */
2619 if (INTEL_GEN(dev_priv) <= 6)
2620 fifo_size /= 2;
2621 }
2622
2623 if (config->sprites_enabled) {
2624 /* level 0 is always calculated with 1:1 split */
2625 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2626 if (is_sprite)
2627 fifo_size *= 5;
2628 fifo_size /= 6;
2629 } else {
2630 fifo_size /= 2;
2631 }
2632 }
2633
2634 /* clamp to max that the registers can hold */
2635 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2636 }
2637
2638 /* Calculate the maximum cursor plane watermark */
2639 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2640 int level,
2641 const struct intel_wm_config *config)
2642 {
2643 /* HSW LP1+ watermarks w/ multiple pipes */
2644 if (level > 0 && config->num_pipes_active > 1)
2645 return 64;
2646
2647 /* otherwise just report max that registers can hold */
2648 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2649 }
2650
2651 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2652 int level,
2653 const struct intel_wm_config *config,
2654 enum intel_ddb_partitioning ddb_partitioning,
2655 struct ilk_wm_maximums *max)
2656 {
2657 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2658 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2659 max->cur = ilk_cursor_wm_max(dev, level, config);
2660 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2661 }
2662
2663 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2664 int level,
2665 struct ilk_wm_maximums *max)
2666 {
2667 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2668 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2669 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2670 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2671 }
2672
2673 static bool ilk_validate_wm_level(int level,
2674 const struct ilk_wm_maximums *max,
2675 struct intel_wm_level *result)
2676 {
2677 bool ret;
2678
2679 /* already determined to be invalid? */
2680 if (!result->enable)
2681 return false;
2682
2683 result->enable = result->pri_val <= max->pri &&
2684 result->spr_val <= max->spr &&
2685 result->cur_val <= max->cur;
2686
2687 ret = result->enable;
2688
2689 /*
2690 * HACK until we can pre-compute everything,
2691 * and thus fail gracefully if LP0 watermarks
2692 * are exceeded...
2693 */
2694 if (level == 0 && !result->enable) {
2695 if (result->pri_val > max->pri)
2696 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2697 level, result->pri_val, max->pri);
2698 if (result->spr_val > max->spr)
2699 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2700 level, result->spr_val, max->spr);
2701 if (result->cur_val > max->cur)
2702 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2703 level, result->cur_val, max->cur);
2704
2705 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2706 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2707 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2708 result->enable = true;
2709 }
2710
2711 return ret;
2712 }
2713
2714 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2715 const struct intel_crtc *intel_crtc,
2716 int level,
2717 struct intel_crtc_state *cstate,
2718 const struct intel_plane_state *pristate,
2719 const struct intel_plane_state *sprstate,
2720 const struct intel_plane_state *curstate,
2721 struct intel_wm_level *result)
2722 {
2723 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2724 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2725 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2726
2727 /* WM1+ latency values stored in 0.5us units */
2728 if (level > 0) {
2729 pri_latency *= 5;
2730 spr_latency *= 5;
2731 cur_latency *= 5;
2732 }
2733
2734 if (pristate) {
2735 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2736 pri_latency, level);
2737 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2738 }
2739
2740 if (sprstate)
2741 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2742
2743 if (curstate)
2744 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2745
2746 result->enable = true;
2747 }
2748
2749 static uint32_t
2750 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2751 {
2752 const struct intel_atomic_state *intel_state =
2753 to_intel_atomic_state(cstate->base.state);
2754 const struct drm_display_mode *adjusted_mode =
2755 &cstate->base.adjusted_mode;
2756 u32 linetime, ips_linetime;
2757
2758 if (!cstate->base.active)
2759 return 0;
2760 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2761 return 0;
2762 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2763 return 0;
2764
2765 /* The WM are computed with base on how long it takes to fill a single
2766 * row at the given clock rate, multiplied by 8.
2767 * */
2768 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2769 adjusted_mode->crtc_clock);
2770 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2771 intel_state->cdclk.logical.cdclk);
2772
2773 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2774 PIPE_WM_LINETIME_TIME(linetime);
2775 }
2776
2777 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2778 uint16_t wm[8])
2779 {
2780 if (INTEL_GEN(dev_priv) >= 9) {
2781 uint32_t val;
2782 int ret, i;
2783 int level, max_level = ilk_wm_max_level(dev_priv);
2784
2785 /* read the first set of memory latencies[0:3] */
2786 val = 0; /* data0 to be programmed to 0 for first set */
2787 mutex_lock(&dev_priv->pcu_lock);
2788 ret = sandybridge_pcode_read(dev_priv,
2789 GEN9_PCODE_READ_MEM_LATENCY,
2790 &val);
2791 mutex_unlock(&dev_priv->pcu_lock);
2792
2793 if (ret) {
2794 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2795 return;
2796 }
2797
2798 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2799 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2800 GEN9_MEM_LATENCY_LEVEL_MASK;
2801 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2802 GEN9_MEM_LATENCY_LEVEL_MASK;
2803 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2804 GEN9_MEM_LATENCY_LEVEL_MASK;
2805
2806 /* read the second set of memory latencies[4:7] */
2807 val = 1; /* data0 to be programmed to 1 for second set */
2808 mutex_lock(&dev_priv->pcu_lock);
2809 ret = sandybridge_pcode_read(dev_priv,
2810 GEN9_PCODE_READ_MEM_LATENCY,
2811 &val);
2812 mutex_unlock(&dev_priv->pcu_lock);
2813 if (ret) {
2814 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2815 return;
2816 }
2817
2818 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2819 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2820 GEN9_MEM_LATENCY_LEVEL_MASK;
2821 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2822 GEN9_MEM_LATENCY_LEVEL_MASK;
2823 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2824 GEN9_MEM_LATENCY_LEVEL_MASK;
2825
2826 /*
2827 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2828 * need to be disabled. We make sure to sanitize the values out
2829 * of the punit to satisfy this requirement.
2830 */
2831 for (level = 1; level <= max_level; level++) {
2832 if (wm[level] == 0) {
2833 for (i = level + 1; i <= max_level; i++)
2834 wm[i] = 0;
2835 break;
2836 }
2837 }
2838
2839 /*
2840 * WaWmMemoryReadLatency:skl+,glk
2841 *
2842 * punit doesn't take into account the read latency so we need
2843 * to add 2us to the various latency levels we retrieve from the
2844 * punit when level 0 response data us 0us.
2845 */
2846 if (wm[0] == 0) {
2847 wm[0] += 2;
2848 for (level = 1; level <= max_level; level++) {
2849 if (wm[level] == 0)
2850 break;
2851 wm[level] += 2;
2852 }
2853 }
2854
2855 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2856 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2857
2858 wm[0] = (sskpd >> 56) & 0xFF;
2859 if (wm[0] == 0)
2860 wm[0] = sskpd & 0xF;
2861 wm[1] = (sskpd >> 4) & 0xFF;
2862 wm[2] = (sskpd >> 12) & 0xFF;
2863 wm[3] = (sskpd >> 20) & 0x1FF;
2864 wm[4] = (sskpd >> 32) & 0x1FF;
2865 } else if (INTEL_GEN(dev_priv) >= 6) {
2866 uint32_t sskpd = I915_READ(MCH_SSKPD);
2867
2868 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2869 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2870 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2871 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2872 } else if (INTEL_GEN(dev_priv) >= 5) {
2873 uint32_t mltr = I915_READ(MLTR_ILK);
2874
2875 /* ILK primary LP0 latency is 700 ns */
2876 wm[0] = 7;
2877 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2878 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2879 } else {
2880 MISSING_CASE(INTEL_DEVID(dev_priv));
2881 }
2882 }
2883
2884 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2885 uint16_t wm[5])
2886 {
2887 /* ILK sprite LP0 latency is 1300 ns */
2888 if (IS_GEN5(dev_priv))
2889 wm[0] = 13;
2890 }
2891
2892 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2893 uint16_t wm[5])
2894 {
2895 /* ILK cursor LP0 latency is 1300 ns */
2896 if (IS_GEN5(dev_priv))
2897 wm[0] = 13;
2898
2899 /* WaDoubleCursorLP3Latency:ivb */
2900 if (IS_IVYBRIDGE(dev_priv))
2901 wm[3] *= 2;
2902 }
2903
2904 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2905 {
2906 /* how many WM levels are we expecting */
2907 if (INTEL_GEN(dev_priv) >= 9)
2908 return 7;
2909 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2910 return 4;
2911 else if (INTEL_GEN(dev_priv) >= 6)
2912 return 3;
2913 else
2914 return 2;
2915 }
2916
2917 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2918 const char *name,
2919 const uint16_t wm[8])
2920 {
2921 int level, max_level = ilk_wm_max_level(dev_priv);
2922
2923 for (level = 0; level <= max_level; level++) {
2924 unsigned int latency = wm[level];
2925
2926 if (latency == 0) {
2927 DRM_ERROR("%s WM%d latency not provided\n",
2928 name, level);
2929 continue;
2930 }
2931
2932 /*
2933 * - latencies are in us on gen9.
2934 * - before then, WM1+ latency values are in 0.5us units
2935 */
2936 if (INTEL_GEN(dev_priv) >= 9)
2937 latency *= 10;
2938 else if (level > 0)
2939 latency *= 5;
2940
2941 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2942 name, level, wm[level],
2943 latency / 10, latency % 10);
2944 }
2945 }
2946
2947 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2948 uint16_t wm[5], uint16_t min)
2949 {
2950 int level, max_level = ilk_wm_max_level(dev_priv);
2951
2952 if (wm[0] >= min)
2953 return false;
2954
2955 wm[0] = max(wm[0], min);
2956 for (level = 1; level <= max_level; level++)
2957 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2958
2959 return true;
2960 }
2961
2962 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2963 {
2964 bool changed;
2965
2966 /*
2967 * The BIOS provided WM memory latency values are often
2968 * inadequate for high resolution displays. Adjust them.
2969 */
2970 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2971 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2972 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2973
2974 if (!changed)
2975 return;
2976
2977 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2978 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2979 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2980 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2981 }
2982
2983 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2984 {
2985 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2986
2987 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2988 sizeof(dev_priv->wm.pri_latency));
2989 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2990 sizeof(dev_priv->wm.pri_latency));
2991
2992 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2993 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2994
2995 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2996 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2997 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2998
2999 if (IS_GEN6(dev_priv))
3000 snb_wm_latency_quirk(dev_priv);
3001 }
3002
3003 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3004 {
3005 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3006 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3007 }
3008
3009 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3010 struct intel_pipe_wm *pipe_wm)
3011 {
3012 /* LP0 watermark maximums depend on this pipe alone */
3013 const struct intel_wm_config config = {
3014 .num_pipes_active = 1,
3015 .sprites_enabled = pipe_wm->sprites_enabled,
3016 .sprites_scaled = pipe_wm->sprites_scaled,
3017 };
3018 struct ilk_wm_maximums max;
3019
3020 /* LP0 watermarks always use 1/2 DDB partitioning */
3021 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3022
3023 /* At least LP0 must be valid */
3024 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3025 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3026 return false;
3027 }
3028
3029 return true;
3030 }
3031
3032 /* Compute new watermarks for the pipe */
3033 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3034 {
3035 struct drm_atomic_state *state = cstate->base.state;
3036 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3037 struct intel_pipe_wm *pipe_wm;
3038 struct drm_device *dev = state->dev;
3039 const struct drm_i915_private *dev_priv = to_i915(dev);
3040 struct drm_plane *plane;
3041 const struct drm_plane_state *plane_state;
3042 const struct intel_plane_state *pristate = NULL;
3043 const struct intel_plane_state *sprstate = NULL;
3044 const struct intel_plane_state *curstate = NULL;
3045 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3046 struct ilk_wm_maximums max;
3047
3048 pipe_wm = &cstate->wm.ilk.optimal;
3049
3050 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3051 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3052
3053 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3054 pristate = ps;
3055 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3056 sprstate = ps;
3057 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3058 curstate = ps;
3059 }
3060
3061 pipe_wm->pipe_enabled = cstate->base.active;
3062 if (sprstate) {
3063 pipe_wm->sprites_enabled = sprstate->base.visible;
3064 pipe_wm->sprites_scaled = sprstate->base.visible &&
3065 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3066 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3067 }
3068
3069 usable_level = max_level;
3070
3071 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3072 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3073 usable_level = 1;
3074
3075 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3076 if (pipe_wm->sprites_scaled)
3077 usable_level = 0;
3078
3079 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3080 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3081 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3082
3083 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3084 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3085
3086 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3087 return -EINVAL;
3088
3089 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3090
3091 for (level = 1; level <= usable_level; level++) {
3092 struct intel_wm_level *wm = &pipe_wm->wm[level];
3093
3094 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3095 pristate, sprstate, curstate, wm);
3096
3097 /*
3098 * Disable any watermark level that exceeds the
3099 * register maximums since such watermarks are
3100 * always invalid.
3101 */
3102 if (!ilk_validate_wm_level(level, &max, wm)) {
3103 memset(wm, 0, sizeof(*wm));
3104 break;
3105 }
3106 }
3107
3108 return 0;
3109 }
3110
3111 /*
3112 * Build a set of 'intermediate' watermark values that satisfy both the old
3113 * state and the new state. These can be programmed to the hardware
3114 * immediately.
3115 */
3116 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3117 struct intel_crtc *intel_crtc,
3118 struct intel_crtc_state *newstate)
3119 {
3120 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3121 struct intel_atomic_state *intel_state =
3122 to_intel_atomic_state(newstate->base.state);
3123 const struct intel_crtc_state *oldstate =
3124 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3125 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3126 int level, max_level = ilk_wm_max_level(to_i915(dev));
3127
3128 /*
3129 * Start with the final, target watermarks, then combine with the
3130 * currently active watermarks to get values that are safe both before
3131 * and after the vblank.
3132 */
3133 *a = newstate->wm.ilk.optimal;
3134 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3135 return 0;
3136
3137 a->pipe_enabled |= b->pipe_enabled;
3138 a->sprites_enabled |= b->sprites_enabled;
3139 a->sprites_scaled |= b->sprites_scaled;
3140
3141 for (level = 0; level <= max_level; level++) {
3142 struct intel_wm_level *a_wm = &a->wm[level];
3143 const struct intel_wm_level *b_wm = &b->wm[level];
3144
3145 a_wm->enable &= b_wm->enable;
3146 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3147 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3148 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3149 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3150 }
3151
3152 /*
3153 * We need to make sure that these merged watermark values are
3154 * actually a valid configuration themselves. If they're not,
3155 * there's no safe way to transition from the old state to
3156 * the new state, so we need to fail the atomic transaction.
3157 */
3158 if (!ilk_validate_pipe_wm(dev, a))
3159 return -EINVAL;
3160
3161 /*
3162 * If our intermediate WM are identical to the final WM, then we can
3163 * omit the post-vblank programming; only update if it's different.
3164 */
3165 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3166 newstate->wm.need_postvbl_update = true;
3167
3168 return 0;
3169 }
3170
3171 /*
3172 * Merge the watermarks from all active pipes for a specific level.
3173 */
3174 static void ilk_merge_wm_level(struct drm_device *dev,
3175 int level,
3176 struct intel_wm_level *ret_wm)
3177 {
3178 const struct intel_crtc *intel_crtc;
3179
3180 ret_wm->enable = true;
3181
3182 for_each_intel_crtc(dev, intel_crtc) {
3183 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3184 const struct intel_wm_level *wm = &active->wm[level];
3185
3186 if (!active->pipe_enabled)
3187 continue;
3188
3189 /*
3190 * The watermark values may have been used in the past,
3191 * so we must maintain them in the registers for some
3192 * time even if the level is now disabled.
3193 */
3194 if (!wm->enable)
3195 ret_wm->enable = false;
3196
3197 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3198 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3199 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3200 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3201 }
3202 }
3203
3204 /*
3205 * Merge all low power watermarks for all active pipes.
3206 */
3207 static void ilk_wm_merge(struct drm_device *dev,
3208 const struct intel_wm_config *config,
3209 const struct ilk_wm_maximums *max,
3210 struct intel_pipe_wm *merged)
3211 {
3212 struct drm_i915_private *dev_priv = to_i915(dev);
3213 int level, max_level = ilk_wm_max_level(dev_priv);
3214 int last_enabled_level = max_level;
3215
3216 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3217 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3218 config->num_pipes_active > 1)
3219 last_enabled_level = 0;
3220
3221 /* ILK: FBC WM must be disabled always */
3222 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3223
3224 /* merge each WM1+ level */
3225 for (level = 1; level <= max_level; level++) {
3226 struct intel_wm_level *wm = &merged->wm[level];
3227
3228 ilk_merge_wm_level(dev, level, wm);
3229
3230 if (level > last_enabled_level)
3231 wm->enable = false;
3232 else if (!ilk_validate_wm_level(level, max, wm))
3233 /* make sure all following levels get disabled */
3234 last_enabled_level = level - 1;
3235
3236 /*
3237 * The spec says it is preferred to disable
3238 * FBC WMs instead of disabling a WM level.
3239 */
3240 if (wm->fbc_val > max->fbc) {
3241 if (wm->enable)
3242 merged->fbc_wm_enabled = false;
3243 wm->fbc_val = 0;
3244 }
3245 }
3246
3247 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3248 /*
3249 * FIXME this is racy. FBC might get enabled later.
3250 * What we should check here is whether FBC can be
3251 * enabled sometime later.
3252 */
3253 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3254 intel_fbc_is_active(dev_priv)) {
3255 for (level = 2; level <= max_level; level++) {
3256 struct intel_wm_level *wm = &merged->wm[level];
3257
3258 wm->enable = false;
3259 }
3260 }
3261 }
3262
3263 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3264 {
3265 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3266 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3267 }
3268
3269 /* The value we need to program into the WM_LPx latency field */
3270 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3271 {
3272 struct drm_i915_private *dev_priv = to_i915(dev);
3273
3274 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3275 return 2 * level;
3276 else
3277 return dev_priv->wm.pri_latency[level];
3278 }
3279
3280 static void ilk_compute_wm_results(struct drm_device *dev,
3281 const struct intel_pipe_wm *merged,
3282 enum intel_ddb_partitioning partitioning,
3283 struct ilk_wm_values *results)
3284 {
3285 struct drm_i915_private *dev_priv = to_i915(dev);
3286 struct intel_crtc *intel_crtc;
3287 int level, wm_lp;
3288
3289 results->enable_fbc_wm = merged->fbc_wm_enabled;
3290 results->partitioning = partitioning;
3291
3292 /* LP1+ register values */
3293 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3294 const struct intel_wm_level *r;
3295
3296 level = ilk_wm_lp_to_level(wm_lp, merged);
3297
3298 r = &merged->wm[level];
3299
3300 /*
3301 * Maintain the watermark values even if the level is
3302 * disabled. Doing otherwise could cause underruns.
3303 */
3304 results->wm_lp[wm_lp - 1] =
3305 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3306 (r->pri_val << WM1_LP_SR_SHIFT) |
3307 r->cur_val;
3308
3309 if (r->enable)
3310 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3311
3312 if (INTEL_GEN(dev_priv) >= 8)
3313 results->wm_lp[wm_lp - 1] |=
3314 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3315 else
3316 results->wm_lp[wm_lp - 1] |=
3317 r->fbc_val << WM1_LP_FBC_SHIFT;
3318
3319 /*
3320 * Always set WM1S_LP_EN when spr_val != 0, even if the
3321 * level is disabled. Doing otherwise could cause underruns.
3322 */
3323 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3324 WARN_ON(wm_lp != 1);
3325 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3326 } else
3327 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3328 }
3329
3330 /* LP0 register values */
3331 for_each_intel_crtc(dev, intel_crtc) {
3332 enum pipe pipe = intel_crtc->pipe;
3333 const struct intel_wm_level *r =
3334 &intel_crtc->wm.active.ilk.wm[0];
3335
3336 if (WARN_ON(!r->enable))
3337 continue;
3338
3339 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3340
3341 results->wm_pipe[pipe] =
3342 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3343 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3344 r->cur_val;
3345 }
3346 }
3347
3348 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3349 * case both are at the same level. Prefer r1 in case they're the same. */
3350 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3351 struct intel_pipe_wm *r1,
3352 struct intel_pipe_wm *r2)
3353 {
3354 int level, max_level = ilk_wm_max_level(to_i915(dev));
3355 int level1 = 0, level2 = 0;
3356
3357 for (level = 1; level <= max_level; level++) {
3358 if (r1->wm[level].enable)
3359 level1 = level;
3360 if (r2->wm[level].enable)
3361 level2 = level;
3362 }
3363
3364 if (level1 == level2) {
3365 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3366 return r2;
3367 else
3368 return r1;
3369 } else if (level1 > level2) {
3370 return r1;
3371 } else {
3372 return r2;
3373 }
3374 }
3375
3376 /* dirty bits used to track which watermarks need changes */
3377 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3378 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3379 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3380 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3381 #define WM_DIRTY_FBC (1 << 24)
3382 #define WM_DIRTY_DDB (1 << 25)
3383
3384 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3385 const struct ilk_wm_values *old,
3386 const struct ilk_wm_values *new)
3387 {
3388 unsigned int dirty = 0;
3389 enum pipe pipe;
3390 int wm_lp;
3391
3392 for_each_pipe(dev_priv, pipe) {
3393 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3394 dirty |= WM_DIRTY_LINETIME(pipe);
3395 /* Must disable LP1+ watermarks too */
3396 dirty |= WM_DIRTY_LP_ALL;
3397 }
3398
3399 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3400 dirty |= WM_DIRTY_PIPE(pipe);
3401 /* Must disable LP1+ watermarks too */
3402 dirty |= WM_DIRTY_LP_ALL;
3403 }
3404 }
3405
3406 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3407 dirty |= WM_DIRTY_FBC;
3408 /* Must disable LP1+ watermarks too */
3409 dirty |= WM_DIRTY_LP_ALL;
3410 }
3411
3412 if (old->partitioning != new->partitioning) {
3413 dirty |= WM_DIRTY_DDB;
3414 /* Must disable LP1+ watermarks too */
3415 dirty |= WM_DIRTY_LP_ALL;
3416 }
3417
3418 /* LP1+ watermarks already deemed dirty, no need to continue */
3419 if (dirty & WM_DIRTY_LP_ALL)
3420 return dirty;
3421
3422 /* Find the lowest numbered LP1+ watermark in need of an update... */
3423 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3424 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3425 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3426 break;
3427 }
3428
3429 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3430 for (; wm_lp <= 3; wm_lp++)
3431 dirty |= WM_DIRTY_LP(wm_lp);
3432
3433 return dirty;
3434 }
3435
3436 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3437 unsigned int dirty)
3438 {
3439 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3440 bool changed = false;
3441
3442 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3443 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3444 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3445 changed = true;
3446 }
3447 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3448 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3449 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3450 changed = true;
3451 }
3452 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3453 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3454 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3455 changed = true;
3456 }
3457
3458 /*
3459 * Don't touch WM1S_LP_EN here.
3460 * Doing so could cause underruns.
3461 */
3462
3463 return changed;
3464 }
3465
3466 /*
3467 * The spec says we shouldn't write when we don't need, because every write
3468 * causes WMs to be re-evaluated, expending some power.
3469 */
3470 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3471 struct ilk_wm_values *results)
3472 {
3473 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3474 unsigned int dirty;
3475 uint32_t val;
3476
3477 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3478 if (!dirty)
3479 return;
3480
3481 _ilk_disable_lp_wm(dev_priv, dirty);
3482
3483 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3484 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3485 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3486 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3487 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3488 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3489
3490 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3491 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3492 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3493 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3494 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3495 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3496
3497 if (dirty & WM_DIRTY_DDB) {
3498 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3499 val = I915_READ(WM_MISC);
3500 if (results->partitioning == INTEL_DDB_PART_1_2)
3501 val &= ~WM_MISC_DATA_PARTITION_5_6;
3502 else
3503 val |= WM_MISC_DATA_PARTITION_5_6;
3504 I915_WRITE(WM_MISC, val);
3505 } else {
3506 val = I915_READ(DISP_ARB_CTL2);
3507 if (results->partitioning == INTEL_DDB_PART_1_2)
3508 val &= ~DISP_DATA_PARTITION_5_6;
3509 else
3510 val |= DISP_DATA_PARTITION_5_6;
3511 I915_WRITE(DISP_ARB_CTL2, val);
3512 }
3513 }
3514
3515 if (dirty & WM_DIRTY_FBC) {
3516 val = I915_READ(DISP_ARB_CTL);
3517 if (results->enable_fbc_wm)
3518 val &= ~DISP_FBC_WM_DIS;
3519 else
3520 val |= DISP_FBC_WM_DIS;
3521 I915_WRITE(DISP_ARB_CTL, val);
3522 }
3523
3524 if (dirty & WM_DIRTY_LP(1) &&
3525 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3526 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3527
3528 if (INTEL_GEN(dev_priv) >= 7) {
3529 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3530 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3531 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3532 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3533 }
3534
3535 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3536 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3537 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3538 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3539 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3540 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3541
3542 dev_priv->wm.hw = *results;
3543 }
3544
3545 bool ilk_disable_lp_wm(struct drm_device *dev)
3546 {
3547 struct drm_i915_private *dev_priv = to_i915(dev);
3548
3549 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3550 }
3551
3552 /*
3553 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3554 * so assume we'll always need it in order to avoid underruns.
3555 */
3556 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3557 {
3558 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3559
3560 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3561 return true;
3562
3563 return false;
3564 }
3565
3566 static bool
3567 intel_has_sagv(struct drm_i915_private *dev_priv)
3568 {
3569 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3570 IS_CANNONLAKE(dev_priv))
3571 return true;
3572
3573 if (IS_SKYLAKE(dev_priv) &&
3574 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3575 return true;
3576
3577 return false;
3578 }
3579
3580 /*
3581 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3582 * depending on power and performance requirements. The display engine access
3583 * to system memory is blocked during the adjustment time. Because of the
3584 * blocking time, having this enabled can cause full system hangs and/or pipe
3585 * underruns if we don't meet all of the following requirements:
3586 *
3587 * - <= 1 pipe enabled
3588 * - All planes can enable watermarks for latencies >= SAGV engine block time
3589 * - We're not using an interlaced display configuration
3590 */
3591 int
3592 intel_enable_sagv(struct drm_i915_private *dev_priv)
3593 {
3594 int ret;
3595
3596 if (!intel_has_sagv(dev_priv))
3597 return 0;
3598
3599 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3600 return 0;
3601
3602 DRM_DEBUG_KMS("Enabling the SAGV\n");
3603 mutex_lock(&dev_priv->pcu_lock);
3604
3605 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3606 GEN9_SAGV_ENABLE);
3607
3608 /* We don't need to wait for the SAGV when enabling */
3609 mutex_unlock(&dev_priv->pcu_lock);
3610
3611 /*
3612 * Some skl systems, pre-release machines in particular,
3613 * don't actually have an SAGV.
3614 */
3615 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3616 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3617 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3618 return 0;
3619 } else if (ret < 0) {
3620 DRM_ERROR("Failed to enable the SAGV\n");
3621 return ret;
3622 }
3623
3624 dev_priv->sagv_status = I915_SAGV_ENABLED;
3625 return 0;
3626 }
3627
3628 int
3629 intel_disable_sagv(struct drm_i915_private *dev_priv)
3630 {
3631 int ret;
3632
3633 if (!intel_has_sagv(dev_priv))
3634 return 0;
3635
3636 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3637 return 0;
3638
3639 DRM_DEBUG_KMS("Disabling the SAGV\n");
3640 mutex_lock(&dev_priv->pcu_lock);
3641
3642 /* bspec says to keep retrying for at least 1 ms */
3643 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3644 GEN9_SAGV_DISABLE,
3645 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3646 1);
3647 mutex_unlock(&dev_priv->pcu_lock);
3648
3649 /*
3650 * Some skl systems, pre-release machines in particular,
3651 * don't actually have an SAGV.
3652 */
3653 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3654 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3655 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3656 return 0;
3657 } else if (ret < 0) {
3658 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3659 return ret;
3660 }
3661
3662 dev_priv->sagv_status = I915_SAGV_DISABLED;
3663 return 0;
3664 }
3665
3666 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3667 {
3668 struct drm_device *dev = state->dev;
3669 struct drm_i915_private *dev_priv = to_i915(dev);
3670 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3671 struct intel_crtc *crtc;
3672 struct intel_plane *plane;
3673 struct intel_crtc_state *cstate;
3674 enum pipe pipe;
3675 int level, latency;
3676 int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3677
3678 if (!intel_has_sagv(dev_priv))
3679 return false;
3680
3681 /*
3682 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3683 * more then one pipe enabled
3684 *
3685 * If there are no active CRTCs, no additional checks need be performed
3686 */
3687 if (hweight32(intel_state->active_crtcs) == 0)
3688 return true;
3689 else if (hweight32(intel_state->active_crtcs) > 1)
3690 return false;
3691
3692 /* Since we're now guaranteed to only have one active CRTC... */
3693 pipe = ffs(intel_state->active_crtcs) - 1;
3694 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3695 cstate = to_intel_crtc_state(crtc->base.state);
3696
3697 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3698 return false;
3699
3700 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3701 struct skl_plane_wm *wm =
3702 &cstate->wm.skl.optimal.planes[plane->id];
3703
3704 /* Skip this plane if it's not enabled */
3705 if (!wm->wm[0].plane_en)
3706 continue;
3707
3708 /* Find the highest enabled wm level for this plane */
3709 for (level = ilk_wm_max_level(dev_priv);
3710 !wm->wm[level].plane_en; --level)
3711 { }
3712
3713 latency = dev_priv->wm.skl_latency[level];
3714
3715 if (skl_needs_memory_bw_wa(intel_state) &&
3716 plane->base.state->fb->modifier ==
3717 I915_FORMAT_MOD_X_TILED)
3718 latency += 15;
3719
3720 /*
3721 * If any of the planes on this pipe don't enable wm levels that
3722 * incur memory latencies higher than sagv_block_time_us we
3723 * can't enable the SAGV.
3724 */
3725 if (latency < sagv_block_time_us)
3726 return false;
3727 }
3728
3729 return true;
3730 }
3731
3732 static void
3733 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3734 const struct intel_crtc_state *cstate,
3735 struct skl_ddb_entry *alloc, /* out */
3736 int *num_active /* out */)
3737 {
3738 struct drm_atomic_state *state = cstate->base.state;
3739 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3740 struct drm_i915_private *dev_priv = to_i915(dev);
3741 struct drm_crtc *for_crtc = cstate->base.crtc;
3742 unsigned int pipe_size, ddb_size;
3743 int nth_active_pipe;
3744
3745 if (WARN_ON(!state) || !cstate->base.active) {
3746 alloc->start = 0;
3747 alloc->end = 0;
3748 *num_active = hweight32(dev_priv->active_crtcs);
3749 return;
3750 }
3751
3752 if (intel_state->active_pipe_changes)
3753 *num_active = hweight32(intel_state->active_crtcs);
3754 else
3755 *num_active = hweight32(dev_priv->active_crtcs);
3756
3757 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3758 WARN_ON(ddb_size == 0);
3759
3760 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3761
3762 /*
3763 * If the state doesn't change the active CRTC's, then there's
3764 * no need to recalculate; the existing pipe allocation limits
3765 * should remain unchanged. Note that we're safe from racing
3766 * commits since any racing commit that changes the active CRTC
3767 * list would need to grab _all_ crtc locks, including the one
3768 * we currently hold.
3769 */
3770 if (!intel_state->active_pipe_changes) {
3771 /*
3772 * alloc may be cleared by clear_intel_crtc_state,
3773 * copy from old state to be sure
3774 */
3775 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3776 return;
3777 }
3778
3779 nth_active_pipe = hweight32(intel_state->active_crtcs &
3780 (drm_crtc_mask(for_crtc) - 1));
3781 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3782 alloc->start = nth_active_pipe * ddb_size / *num_active;
3783 alloc->end = alloc->start + pipe_size;
3784 }
3785
3786 static unsigned int skl_cursor_allocation(int num_active)
3787 {
3788 if (num_active == 1)
3789 return 32;
3790
3791 return 8;
3792 }
3793
3794 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3795 {
3796 entry->start = reg & 0x3ff;
3797 entry->end = (reg >> 16) & 0x3ff;
3798 if (entry->end)
3799 entry->end += 1;
3800 }
3801
3802 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3803 struct skl_ddb_allocation *ddb /* out */)
3804 {
3805 struct intel_crtc *crtc;
3806
3807 memset(ddb, 0, sizeof(*ddb));
3808
3809 for_each_intel_crtc(&dev_priv->drm, crtc) {
3810 enum intel_display_power_domain power_domain;
3811 enum plane_id plane_id;
3812 enum pipe pipe = crtc->pipe;
3813
3814 power_domain = POWER_DOMAIN_PIPE(pipe);
3815 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3816 continue;
3817
3818 for_each_plane_id_on_crtc(crtc, plane_id) {
3819 u32 val;
3820
3821 if (plane_id != PLANE_CURSOR)
3822 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3823 else
3824 val = I915_READ(CUR_BUF_CFG(pipe));
3825
3826 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3827 }
3828
3829 intel_display_power_put(dev_priv, power_domain);
3830 }
3831 }
3832
3833 /*
3834 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3835 * The bspec defines downscale amount as:
3836 *
3837 * """
3838 * Horizontal down scale amount = maximum[1, Horizontal source size /
3839 * Horizontal destination size]
3840 * Vertical down scale amount = maximum[1, Vertical source size /
3841 * Vertical destination size]
3842 * Total down scale amount = Horizontal down scale amount *
3843 * Vertical down scale amount
3844 * """
3845 *
3846 * Return value is provided in 16.16 fixed point form to retain fractional part.
3847 * Caller should take care of dividing & rounding off the value.
3848 */
3849 static uint_fixed_16_16_t
3850 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3851 const struct intel_plane_state *pstate)
3852 {
3853 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3854 uint32_t src_w, src_h, dst_w, dst_h;
3855 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3856 uint_fixed_16_16_t downscale_h, downscale_w;
3857
3858 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3859 return u32_to_fixed16(0);
3860
3861 /* n.b., src is 16.16 fixed point, dst is whole integer */
3862 if (plane->id == PLANE_CURSOR) {
3863 /*
3864 * Cursors only support 0/180 degree rotation,
3865 * hence no need to account for rotation here.
3866 */
3867 src_w = pstate->base.src_w >> 16;
3868 src_h = pstate->base.src_h >> 16;
3869 dst_w = pstate->base.crtc_w;
3870 dst_h = pstate->base.crtc_h;
3871 } else {
3872 /*
3873 * Src coordinates are already rotated by 270 degrees for
3874 * the 90/270 degree plane rotation cases (to match the
3875 * GTT mapping), hence no need to account for rotation here.
3876 */
3877 src_w = drm_rect_width(&pstate->base.src) >> 16;
3878 src_h = drm_rect_height(&pstate->base.src) >> 16;
3879 dst_w = drm_rect_width(&pstate->base.dst);
3880 dst_h = drm_rect_height(&pstate->base.dst);
3881 }
3882
3883 fp_w_ratio = div_fixed16(src_w, dst_w);
3884 fp_h_ratio = div_fixed16(src_h, dst_h);
3885 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3886 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3887
3888 return mul_fixed16(downscale_w, downscale_h);
3889 }
3890
3891 static uint_fixed_16_16_t
3892 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3893 {
3894 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3895
3896 if (!crtc_state->base.enable)
3897 return pipe_downscale;
3898
3899 if (crtc_state->pch_pfit.enabled) {
3900 uint32_t src_w, src_h, dst_w, dst_h;
3901 uint32_t pfit_size = crtc_state->pch_pfit.size;
3902 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3903 uint_fixed_16_16_t downscale_h, downscale_w;
3904
3905 src_w = crtc_state->pipe_src_w;
3906 src_h = crtc_state->pipe_src_h;
3907 dst_w = pfit_size >> 16;
3908 dst_h = pfit_size & 0xffff;
3909
3910 if (!dst_w || !dst_h)
3911 return pipe_downscale;
3912
3913 fp_w_ratio = div_fixed16(src_w, dst_w);
3914 fp_h_ratio = div_fixed16(src_h, dst_h);
3915 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3916 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3917
3918 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3919 }
3920
3921 return pipe_downscale;
3922 }
3923
3924 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3925 struct intel_crtc_state *cstate)
3926 {
3927 struct drm_crtc_state *crtc_state = &cstate->base;
3928 struct drm_atomic_state *state = crtc_state->state;
3929 struct drm_plane *plane;
3930 const struct drm_plane_state *pstate;
3931 struct intel_plane_state *intel_pstate;
3932 int crtc_clock, dotclk;
3933 uint32_t pipe_max_pixel_rate;
3934 uint_fixed_16_16_t pipe_downscale;
3935 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3936
3937 if (!cstate->base.enable)
3938 return 0;
3939
3940 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3941 uint_fixed_16_16_t plane_downscale;
3942 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3943 int bpp;
3944
3945 if (!intel_wm_plane_visible(cstate,
3946 to_intel_plane_state(pstate)))
3947 continue;
3948
3949 if (WARN_ON(!pstate->fb))
3950 return -EINVAL;
3951
3952 intel_pstate = to_intel_plane_state(pstate);
3953 plane_downscale = skl_plane_downscale_amount(cstate,
3954 intel_pstate);
3955 bpp = pstate->fb->format->cpp[0] * 8;
3956 if (bpp == 64)
3957 plane_downscale = mul_fixed16(plane_downscale,
3958 fp_9_div_8);
3959
3960 max_downscale = max_fixed16(plane_downscale, max_downscale);
3961 }
3962 pipe_downscale = skl_pipe_downscale_amount(cstate);
3963
3964 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3965
3966 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3967 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3968
3969 if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3970 dotclk *= 2;
3971
3972 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3973
3974 if (pipe_max_pixel_rate < crtc_clock) {
3975 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3976 return -EINVAL;
3977 }
3978
3979 return 0;
3980 }
3981
3982 static unsigned int
3983 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3984 const struct drm_plane_state *pstate,
3985 int y)
3986 {
3987 struct intel_plane *plane = to_intel_plane(pstate->plane);
3988 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3989 uint32_t data_rate;
3990 uint32_t width = 0, height = 0;
3991 struct drm_framebuffer *fb;
3992 u32 format;
3993 uint_fixed_16_16_t down_scale_amount;
3994
3995 if (!intel_pstate->base.visible)
3996 return 0;
3997
3998 fb = pstate->fb;
3999 format = fb->format->format;
4000
4001 if (plane->id == PLANE_CURSOR)
4002 return 0;
4003 if (y && format != DRM_FORMAT_NV12)
4004 return 0;
4005
4006 /*
4007 * Src coordinates are already rotated by 270 degrees for
4008 * the 90/270 degree plane rotation cases (to match the
4009 * GTT mapping), hence no need to account for rotation here.
4010 */
4011 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4012 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4013
4014 /* for planar format */
4015 if (format == DRM_FORMAT_NV12) {
4016 if (y) /* y-plane data rate */
4017 data_rate = width * height *
4018 fb->format->cpp[0];
4019 else /* uv-plane data rate */
4020 data_rate = (width / 2) * (height / 2) *
4021 fb->format->cpp[1];
4022 } else {
4023 /* for packed formats */
4024 data_rate = width * height * fb->format->cpp[0];
4025 }
4026
4027 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4028
4029 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4030 }
4031
4032 /*
4033 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4034 * a 8192x4096@32bpp framebuffer:
4035 * 3 * 4096 * 8192 * 4 < 2^32
4036 */
4037 static unsigned int
4038 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4039 unsigned *plane_data_rate,
4040 unsigned *plane_y_data_rate)
4041 {
4042 struct drm_crtc_state *cstate = &intel_cstate->base;
4043 struct drm_atomic_state *state = cstate->state;
4044 struct drm_plane *plane;
4045 const struct drm_plane_state *pstate;
4046 unsigned int total_data_rate = 0;
4047
4048 if (WARN_ON(!state))
4049 return 0;
4050
4051 /* Calculate and cache data rate for each plane */
4052 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4053 enum plane_id plane_id = to_intel_plane(plane)->id;
4054 unsigned int rate;
4055
4056 /* packed/uv */
4057 rate = skl_plane_relative_data_rate(intel_cstate,
4058 pstate, 0);
4059 plane_data_rate[plane_id] = rate;
4060
4061 total_data_rate += rate;
4062
4063 /* y-plane */
4064 rate = skl_plane_relative_data_rate(intel_cstate,
4065 pstate, 1);
4066 plane_y_data_rate[plane_id] = rate;
4067
4068 total_data_rate += rate;
4069 }
4070
4071 return total_data_rate;
4072 }
4073
4074 static uint16_t
4075 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4076 const int y)
4077 {
4078 struct drm_framebuffer *fb = pstate->fb;
4079 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4080 uint32_t src_w, src_h;
4081 uint32_t min_scanlines = 8;
4082 uint8_t plane_bpp;
4083
4084 if (WARN_ON(!fb))
4085 return 0;
4086
4087 /* For packed formats, no y-plane, return 0 */
4088 if (y && fb->format->format != DRM_FORMAT_NV12)
4089 return 0;
4090
4091 /* For Non Y-tile return 8-blocks */
4092 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4093 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4094 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4095 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4096 return 8;
4097
4098 /*
4099 * Src coordinates are already rotated by 270 degrees for
4100 * the 90/270 degree plane rotation cases (to match the
4101 * GTT mapping), hence no need to account for rotation here.
4102 */
4103 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4104 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4105
4106 /* Halve UV plane width and height for NV12 */
4107 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4108 src_w /= 2;
4109 src_h /= 2;
4110 }
4111
4112 if (fb->format->format == DRM_FORMAT_NV12 && !y)
4113 plane_bpp = fb->format->cpp[1];
4114 else
4115 plane_bpp = fb->format->cpp[0];
4116
4117 if (drm_rotation_90_or_270(pstate->rotation)) {
4118 switch (plane_bpp) {
4119 case 1:
4120 min_scanlines = 32;
4121 break;
4122 case 2:
4123 min_scanlines = 16;
4124 break;
4125 case 4:
4126 min_scanlines = 8;
4127 break;
4128 case 8:
4129 min_scanlines = 4;
4130 break;
4131 default:
4132 WARN(1, "Unsupported pixel depth %u for rotation",
4133 plane_bpp);
4134 min_scanlines = 32;
4135 }
4136 }
4137
4138 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4139 }
4140
4141 static void
4142 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4143 uint16_t *minimum, uint16_t *y_minimum)
4144 {
4145 const struct drm_plane_state *pstate;
4146 struct drm_plane *plane;
4147
4148 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4149 enum plane_id plane_id = to_intel_plane(plane)->id;
4150
4151 if (plane_id == PLANE_CURSOR)
4152 continue;
4153
4154 if (!pstate->visible)
4155 continue;
4156
4157 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4158 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4159 }
4160
4161 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4162 }
4163
4164 static int
4165 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4166 struct skl_ddb_allocation *ddb /* out */)
4167 {
4168 struct drm_atomic_state *state = cstate->base.state;
4169 struct drm_crtc *crtc = cstate->base.crtc;
4170 struct drm_device *dev = crtc->dev;
4171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172 enum pipe pipe = intel_crtc->pipe;
4173 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4174 uint16_t alloc_size, start;
4175 uint16_t minimum[I915_MAX_PLANES] = {};
4176 uint16_t y_minimum[I915_MAX_PLANES] = {};
4177 unsigned int total_data_rate;
4178 enum plane_id plane_id;
4179 int num_active;
4180 unsigned plane_data_rate[I915_MAX_PLANES] = {};
4181 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4182 uint16_t total_min_blocks = 0;
4183
4184 /* Clear the partitioning for disabled planes. */
4185 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4186 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4187
4188 if (WARN_ON(!state))
4189 return 0;
4190
4191 if (!cstate->base.active) {
4192 alloc->start = alloc->end = 0;
4193 return 0;
4194 }
4195
4196 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4197 alloc_size = skl_ddb_entry_size(alloc);
4198 if (alloc_size == 0)
4199 return 0;
4200
4201 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4202
4203 /*
4204 * 1. Allocate the mininum required blocks for each active plane
4205 * and allocate the cursor, it doesn't require extra allocation
4206 * proportional to the data rate.
4207 */
4208
4209 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4210 total_min_blocks += minimum[plane_id];
4211 total_min_blocks += y_minimum[plane_id];
4212 }
4213
4214 if (total_min_blocks > alloc_size) {
4215 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4216 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4217 alloc_size);
4218 return -EINVAL;
4219 }
4220
4221 alloc_size -= total_min_blocks;
4222 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4223 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4224
4225 /*
4226 * 2. Distribute the remaining space in proportion to the amount of
4227 * data each plane needs to fetch from memory.
4228 *
4229 * FIXME: we may not allocate every single block here.
4230 */
4231 total_data_rate = skl_get_total_relative_data_rate(cstate,
4232 plane_data_rate,
4233 plane_y_data_rate);
4234 if (total_data_rate == 0)
4235 return 0;
4236
4237 start = alloc->start;
4238 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4239 unsigned int data_rate, y_data_rate;
4240 uint16_t plane_blocks, y_plane_blocks = 0;
4241
4242 if (plane_id == PLANE_CURSOR)
4243 continue;
4244
4245 data_rate = plane_data_rate[plane_id];
4246
4247 /*
4248 * allocation for (packed formats) or (uv-plane part of planar format):
4249 * promote the expression to 64 bits to avoid overflowing, the
4250 * result is < available as data_rate / total_data_rate < 1
4251 */
4252 plane_blocks = minimum[plane_id];
4253 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4254 total_data_rate);
4255
4256 /* Leave disabled planes at (0,0) */
4257 if (data_rate) {
4258 ddb->plane[pipe][plane_id].start = start;
4259 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4260 }
4261
4262 start += plane_blocks;
4263
4264 /*
4265 * allocation for y_plane part of planar format:
4266 */
4267 y_data_rate = plane_y_data_rate[plane_id];
4268
4269 y_plane_blocks = y_minimum[plane_id];
4270 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4271 total_data_rate);
4272
4273 if (y_data_rate) {
4274 ddb->y_plane[pipe][plane_id].start = start;
4275 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4276 }
4277
4278 start += y_plane_blocks;
4279 }
4280
4281 return 0;
4282 }
4283
4284 /*
4285 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4286 * for the read latency) and cpp should always be <= 8, so that
4287 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4288 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4289 */
4290 static uint_fixed_16_16_t
4291 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4292 uint8_t cpp, uint32_t latency)
4293 {
4294 uint32_t wm_intermediate_val;
4295 uint_fixed_16_16_t ret;
4296
4297 if (latency == 0)
4298 return FP_16_16_MAX;
4299
4300 wm_intermediate_val = latency * pixel_rate * cpp;
4301 ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4302
4303 if (INTEL_GEN(dev_priv) >= 10)
4304 ret = add_fixed16_u32(ret, 1);
4305
4306 return ret;
4307 }
4308
4309 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4310 uint32_t pipe_htotal,
4311 uint32_t latency,
4312 uint_fixed_16_16_t plane_blocks_per_line)
4313 {
4314 uint32_t wm_intermediate_val;
4315 uint_fixed_16_16_t ret;
4316
4317 if (latency == 0)
4318 return FP_16_16_MAX;
4319
4320 wm_intermediate_val = latency * pixel_rate;
4321 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4322 pipe_htotal * 1000);
4323 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4324 return ret;
4325 }
4326
4327 static uint_fixed_16_16_t
4328 intel_get_linetime_us(struct intel_crtc_state *cstate)
4329 {
4330 uint32_t pixel_rate;
4331 uint32_t crtc_htotal;
4332 uint_fixed_16_16_t linetime_us;
4333
4334 if (!cstate->base.active)
4335 return u32_to_fixed16(0);
4336
4337 pixel_rate = cstate->pixel_rate;
4338
4339 if (WARN_ON(pixel_rate == 0))
4340 return u32_to_fixed16(0);
4341
4342 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4343 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4344
4345 return linetime_us;
4346 }
4347
4348 static uint32_t
4349 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4350 const struct intel_plane_state *pstate)
4351 {
4352 uint64_t adjusted_pixel_rate;
4353 uint_fixed_16_16_t downscale_amount;
4354
4355 /* Shouldn't reach here on disabled planes... */
4356 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4357 return 0;
4358
4359 /*
4360 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4361 * with additional adjustments for plane-specific scaling.
4362 */
4363 adjusted_pixel_rate = cstate->pixel_rate;
4364 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4365
4366 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4367 downscale_amount);
4368 }
4369
4370 static int
4371 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4372 struct intel_crtc_state *cstate,
4373 const struct intel_plane_state *intel_pstate,
4374 struct skl_wm_params *wp)
4375 {
4376 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4377 const struct drm_plane_state *pstate = &intel_pstate->base;
4378 const struct drm_framebuffer *fb = pstate->fb;
4379 uint32_t interm_pbpl;
4380 struct intel_atomic_state *state =
4381 to_intel_atomic_state(cstate->base.state);
4382 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4383
4384 if (!intel_wm_plane_visible(cstate, intel_pstate))
4385 return 0;
4386
4387 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4388 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4389 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4390 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4391 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4392 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4393 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4394
4395 if (plane->id == PLANE_CURSOR) {
4396 wp->width = intel_pstate->base.crtc_w;
4397 } else {
4398 /*
4399 * Src coordinates are already rotated by 270 degrees for
4400 * the 90/270 degree plane rotation cases (to match the
4401 * GTT mapping), hence no need to account for rotation here.
4402 */
4403 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4404 }
4405
4406 wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4407 fb->format->cpp[0];
4408 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4409 intel_pstate);
4410
4411 if (drm_rotation_90_or_270(pstate->rotation)) {
4412
4413 switch (wp->cpp) {
4414 case 1:
4415 wp->y_min_scanlines = 16;
4416 break;
4417 case 2:
4418 wp->y_min_scanlines = 8;
4419 break;
4420 case 4:
4421 wp->y_min_scanlines = 4;
4422 break;
4423 default:
4424 MISSING_CASE(wp->cpp);
4425 return -EINVAL;
4426 }
4427 } else {
4428 wp->y_min_scanlines = 4;
4429 }
4430
4431 if (apply_memory_bw_wa)
4432 wp->y_min_scanlines *= 2;
4433
4434 wp->plane_bytes_per_line = wp->width * wp->cpp;
4435 if (wp->y_tiled) {
4436 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4437 wp->y_min_scanlines, 512);
4438
4439 if (INTEL_GEN(dev_priv) >= 10)
4440 interm_pbpl++;
4441
4442 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4443 wp->y_min_scanlines);
4444 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4445 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
4446 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4447 } else {
4448 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
4449 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4450 }
4451
4452 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4453 wp->plane_blocks_per_line);
4454 wp->linetime_us = fixed16_to_u32_round_up(
4455 intel_get_linetime_us(cstate));
4456
4457 return 0;
4458 }
4459
4460 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4461 struct intel_crtc_state *cstate,
4462 const struct intel_plane_state *intel_pstate,
4463 uint16_t ddb_allocation,
4464 int level,
4465 const struct skl_wm_params *wp,
4466 uint16_t *out_blocks, /* out */
4467 uint8_t *out_lines, /* out */
4468 bool *enabled /* out */)
4469 {
4470 const struct drm_plane_state *pstate = &intel_pstate->base;
4471 uint32_t latency = dev_priv->wm.skl_latency[level];
4472 uint_fixed_16_16_t method1, method2;
4473 uint_fixed_16_16_t selected_result;
4474 uint32_t res_blocks, res_lines;
4475 struct intel_atomic_state *state =
4476 to_intel_atomic_state(cstate->base.state);
4477 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4478
4479 if (latency == 0 ||
4480 !intel_wm_plane_visible(cstate, intel_pstate)) {
4481 *enabled = false;
4482 return 0;
4483 }
4484
4485 /* Display WA #1141: kbl,cfl */
4486 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4487 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4488 dev_priv->ipc_enabled)
4489 latency += 4;
4490
4491 if (apply_memory_bw_wa && wp->x_tiled)
4492 latency += 15;
4493
4494 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4495 wp->cpp, latency);
4496 method2 = skl_wm_method2(wp->plane_pixel_rate,
4497 cstate->base.adjusted_mode.crtc_htotal,
4498 latency,
4499 wp->plane_blocks_per_line);
4500
4501 if (wp->y_tiled) {
4502 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4503 } else {
4504 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4505 512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4506 selected_result = method2;
4507 else if (ddb_allocation >=
4508 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4509 selected_result = min_fixed16(method1, method2);
4510 else if (latency >= wp->linetime_us)
4511 selected_result = min_fixed16(method1, method2);
4512 else
4513 selected_result = method1;
4514 }
4515
4516 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4517 res_lines = div_round_up_fixed16(selected_result,
4518 wp->plane_blocks_per_line);
4519
4520 /* Display WA #1125: skl,bxt,kbl,glk */
4521 if (level == 0 && wp->rc_surface)
4522 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4523
4524 /* Display WA #1126: skl,bxt,kbl,glk */
4525 if (level >= 1 && level <= 7) {
4526 if (wp->y_tiled) {
4527 res_blocks += fixed16_to_u32_round_up(
4528 wp->y_tile_minimum);
4529 res_lines += wp->y_min_scanlines;
4530 } else {
4531 res_blocks++;
4532 }
4533 }
4534
4535 if (res_blocks >= ddb_allocation || res_lines > 31) {
4536 *enabled = false;
4537
4538 /*
4539 * If there are no valid level 0 watermarks, then we can't
4540 * support this display configuration.
4541 */
4542 if (level) {
4543 return 0;
4544 } else {
4545 struct drm_plane *plane = pstate->plane;
4546
4547 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4548 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4549 plane->base.id, plane->name,
4550 res_blocks, ddb_allocation, res_lines);
4551 return -EINVAL;
4552 }
4553 }
4554
4555 *out_blocks = res_blocks;
4556 *out_lines = res_lines;
4557 *enabled = true;
4558
4559 return 0;
4560 }
4561
4562 static int
4563 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4564 struct skl_ddb_allocation *ddb,
4565 struct intel_crtc_state *cstate,
4566 const struct intel_plane_state *intel_pstate,
4567 const struct skl_wm_params *wm_params,
4568 struct skl_plane_wm *wm)
4569 {
4570 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4571 struct drm_plane *plane = intel_pstate->base.plane;
4572 struct intel_plane *intel_plane = to_intel_plane(plane);
4573 uint16_t ddb_blocks;
4574 enum pipe pipe = intel_crtc->pipe;
4575 int level, max_level = ilk_wm_max_level(dev_priv);
4576 int ret;
4577
4578 if (WARN_ON(!intel_pstate->base.fb))
4579 return -EINVAL;
4580
4581 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4582
4583 for (level = 0; level <= max_level; level++) {
4584 struct skl_wm_level *result = &wm->wm[level];
4585
4586 ret = skl_compute_plane_wm(dev_priv,
4587 cstate,
4588 intel_pstate,
4589 ddb_blocks,
4590 level,
4591 wm_params,
4592 &result->plane_res_b,
4593 &result->plane_res_l,
4594 &result->plane_en);
4595 if (ret)
4596 return ret;
4597 }
4598
4599 return 0;
4600 }
4601
4602 static uint32_t
4603 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4604 {
4605 struct drm_atomic_state *state = cstate->base.state;
4606 struct drm_i915_private *dev_priv = to_i915(state->dev);
4607 uint_fixed_16_16_t linetime_us;
4608 uint32_t linetime_wm;
4609
4610 linetime_us = intel_get_linetime_us(cstate);
4611
4612 if (is_fixed16_zero(linetime_us))
4613 return 0;
4614
4615 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4616
4617 /* Display WA #1135: bxt:ALL GLK:ALL */
4618 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4619 dev_priv->ipc_enabled)
4620 linetime_wm /= 2;
4621
4622 return linetime_wm;
4623 }
4624
4625 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4626 struct skl_wm_params *wp,
4627 struct skl_wm_level *wm_l0,
4628 uint16_t ddb_allocation,
4629 struct skl_wm_level *trans_wm /* out */)
4630 {
4631 struct drm_device *dev = cstate->base.crtc->dev;
4632 const struct drm_i915_private *dev_priv = to_i915(dev);
4633 uint16_t trans_min, trans_y_tile_min;
4634 const uint16_t trans_amount = 10; /* This is configurable amount */
4635 uint16_t trans_offset_b, res_blocks;
4636
4637 if (!cstate->base.active)
4638 goto exit;
4639
4640 /* Transition WM are not recommended by HW team for GEN9 */
4641 if (INTEL_GEN(dev_priv) <= 9)
4642 goto exit;
4643
4644 /* Transition WM don't make any sense if ipc is disabled */
4645 if (!dev_priv->ipc_enabled)
4646 goto exit;
4647
4648 if (INTEL_GEN(dev_priv) >= 10)
4649 trans_min = 4;
4650
4651 trans_offset_b = trans_min + trans_amount;
4652
4653 if (wp->y_tiled) {
4654 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4655 wp->y_tile_minimum);
4656 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4657 trans_offset_b;
4658 } else {
4659 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4660
4661 /* WA BUG:1938466 add one block for non y-tile planes */
4662 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4663 res_blocks += 1;
4664
4665 }
4666
4667 res_blocks += 1;
4668
4669 if (res_blocks < ddb_allocation) {
4670 trans_wm->plane_res_b = res_blocks;
4671 trans_wm->plane_en = true;
4672 return;
4673 }
4674
4675 exit:
4676 trans_wm->plane_en = false;
4677 }
4678
4679 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4680 struct skl_ddb_allocation *ddb,
4681 struct skl_pipe_wm *pipe_wm)
4682 {
4683 struct drm_device *dev = cstate->base.crtc->dev;
4684 struct drm_crtc_state *crtc_state = &cstate->base;
4685 const struct drm_i915_private *dev_priv = to_i915(dev);
4686 struct drm_plane *plane;
4687 const struct drm_plane_state *pstate;
4688 struct skl_plane_wm *wm;
4689 int ret;
4690
4691 /*
4692 * We'll only calculate watermarks for planes that are actually
4693 * enabled, so make sure all other planes are set as disabled.
4694 */
4695 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4696
4697 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4698 const struct intel_plane_state *intel_pstate =
4699 to_intel_plane_state(pstate);
4700 enum plane_id plane_id = to_intel_plane(plane)->id;
4701 struct skl_wm_params wm_params;
4702 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4703 uint16_t ddb_blocks;
4704
4705 wm = &pipe_wm->planes[plane_id];
4706 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4707 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4708
4709 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4710 intel_pstate, &wm_params);
4711 if (ret)
4712 return ret;
4713
4714 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4715 intel_pstate, &wm_params, wm);
4716 if (ret)
4717 return ret;
4718 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4719 ddb_blocks, &wm->trans_wm);
4720 }
4721 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4722
4723 return 0;
4724 }
4725
4726 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4727 i915_reg_t reg,
4728 const struct skl_ddb_entry *entry)
4729 {
4730 if (entry->end)
4731 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4732 else
4733 I915_WRITE(reg, 0);
4734 }
4735
4736 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4737 i915_reg_t reg,
4738 const struct skl_wm_level *level)
4739 {
4740 uint32_t val = 0;
4741
4742 if (level->plane_en) {
4743 val |= PLANE_WM_EN;
4744 val |= level->plane_res_b;
4745 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4746 }
4747
4748 I915_WRITE(reg, val);
4749 }
4750
4751 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4752 const struct skl_plane_wm *wm,
4753 const struct skl_ddb_allocation *ddb,
4754 enum plane_id plane_id)
4755 {
4756 struct drm_crtc *crtc = &intel_crtc->base;
4757 struct drm_device *dev = crtc->dev;
4758 struct drm_i915_private *dev_priv = to_i915(dev);
4759 int level, max_level = ilk_wm_max_level(dev_priv);
4760 enum pipe pipe = intel_crtc->pipe;
4761
4762 for (level = 0; level <= max_level; level++) {
4763 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4764 &wm->wm[level]);
4765 }
4766 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4767 &wm->trans_wm);
4768
4769 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4770 &ddb->plane[pipe][plane_id]);
4771 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4772 &ddb->y_plane[pipe][plane_id]);
4773 }
4774
4775 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4776 const struct skl_plane_wm *wm,
4777 const struct skl_ddb_allocation *ddb)
4778 {
4779 struct drm_crtc *crtc = &intel_crtc->base;
4780 struct drm_device *dev = crtc->dev;
4781 struct drm_i915_private *dev_priv = to_i915(dev);
4782 int level, max_level = ilk_wm_max_level(dev_priv);
4783 enum pipe pipe = intel_crtc->pipe;
4784
4785 for (level = 0; level <= max_level; level++) {
4786 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4787 &wm->wm[level]);
4788 }
4789 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4790
4791 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4792 &ddb->plane[pipe][PLANE_CURSOR]);
4793 }
4794
4795 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4796 const struct skl_wm_level *l2)
4797 {
4798 if (l1->plane_en != l2->plane_en)
4799 return false;
4800
4801 /* If both planes aren't enabled, the rest shouldn't matter */
4802 if (!l1->plane_en)
4803 return true;
4804
4805 return (l1->plane_res_l == l2->plane_res_l &&
4806 l1->plane_res_b == l2->plane_res_b);
4807 }
4808
4809 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4810 const struct skl_ddb_entry *b)
4811 {
4812 return a->start < b->end && b->start < a->end;
4813 }
4814
4815 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
4816 const struct skl_ddb_entry **entries,
4817 const struct skl_ddb_entry *ddb,
4818 int ignore)
4819 {
4820 enum pipe pipe;
4821
4822 for_each_pipe(dev_priv, pipe) {
4823 if (pipe != ignore && entries[pipe] &&
4824 skl_ddb_entries_overlap(ddb, entries[pipe]))
4825 return true;
4826 }
4827
4828 return false;
4829 }
4830
4831 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4832 const struct skl_pipe_wm *old_pipe_wm,
4833 struct skl_pipe_wm *pipe_wm, /* out */
4834 struct skl_ddb_allocation *ddb, /* out */
4835 bool *changed /* out */)
4836 {
4837 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4838 int ret;
4839
4840 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4841 if (ret)
4842 return ret;
4843
4844 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4845 *changed = false;
4846 else
4847 *changed = true;
4848
4849 return 0;
4850 }
4851
4852 static uint32_t
4853 pipes_modified(struct drm_atomic_state *state)
4854 {
4855 struct drm_crtc *crtc;
4856 struct drm_crtc_state *cstate;
4857 uint32_t i, ret = 0;
4858
4859 for_each_new_crtc_in_state(state, crtc, cstate, i)
4860 ret |= drm_crtc_mask(crtc);
4861
4862 return ret;
4863 }
4864
4865 static int
4866 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4867 {
4868 struct drm_atomic_state *state = cstate->base.state;
4869 struct drm_device *dev = state->dev;
4870 struct drm_crtc *crtc = cstate->base.crtc;
4871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4872 struct drm_i915_private *dev_priv = to_i915(dev);
4873 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4874 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4875 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4876 struct drm_plane_state *plane_state;
4877 struct drm_plane *plane;
4878 enum pipe pipe = intel_crtc->pipe;
4879
4880 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4881
4882 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4883 enum plane_id plane_id = to_intel_plane(plane)->id;
4884
4885 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4886 &new_ddb->plane[pipe][plane_id]) &&
4887 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4888 &new_ddb->y_plane[pipe][plane_id]))
4889 continue;
4890
4891 plane_state = drm_atomic_get_plane_state(state, plane);
4892 if (IS_ERR(plane_state))
4893 return PTR_ERR(plane_state);
4894 }
4895
4896 return 0;
4897 }
4898
4899 static int
4900 skl_compute_ddb(struct drm_atomic_state *state)
4901 {
4902 struct drm_device *dev = state->dev;
4903 struct drm_i915_private *dev_priv = to_i915(dev);
4904 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4905 struct intel_crtc *intel_crtc;
4906 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4907 uint32_t realloc_pipes = pipes_modified(state);
4908 int ret;
4909
4910 /*
4911 * If this is our first atomic update following hardware readout,
4912 * we can't trust the DDB that the BIOS programmed for us. Let's
4913 * pretend that all pipes switched active status so that we'll
4914 * ensure a full DDB recompute.
4915 */
4916 if (dev_priv->wm.distrust_bios_wm) {
4917 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4918 state->acquire_ctx);
4919 if (ret)
4920 return ret;
4921
4922 intel_state->active_pipe_changes = ~0;
4923
4924 /*
4925 * We usually only initialize intel_state->active_crtcs if we
4926 * we're doing a modeset; make sure this field is always
4927 * initialized during the sanitization process that happens
4928 * on the first commit too.
4929 */
4930 if (!intel_state->modeset)
4931 intel_state->active_crtcs = dev_priv->active_crtcs;
4932 }
4933
4934 /*
4935 * If the modeset changes which CRTC's are active, we need to
4936 * recompute the DDB allocation for *all* active pipes, even
4937 * those that weren't otherwise being modified in any way by this
4938 * atomic commit. Due to the shrinking of the per-pipe allocations
4939 * when new active CRTC's are added, it's possible for a pipe that
4940 * we were already using and aren't changing at all here to suddenly
4941 * become invalid if its DDB needs exceeds its new allocation.
4942 *
4943 * Note that if we wind up doing a full DDB recompute, we can't let
4944 * any other display updates race with this transaction, so we need
4945 * to grab the lock on *all* CRTC's.
4946 */
4947 if (intel_state->active_pipe_changes) {
4948 realloc_pipes = ~0;
4949 intel_state->wm_results.dirty_pipes = ~0;
4950 }
4951
4952 /*
4953 * We're not recomputing for the pipes not included in the commit, so
4954 * make sure we start with the current state.
4955 */
4956 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4957
4958 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4959 struct intel_crtc_state *cstate;
4960
4961 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4962 if (IS_ERR(cstate))
4963 return PTR_ERR(cstate);
4964
4965 ret = skl_allocate_pipe_ddb(cstate, ddb);
4966 if (ret)
4967 return ret;
4968
4969 ret = skl_ddb_add_affected_planes(cstate);
4970 if (ret)
4971 return ret;
4972 }
4973
4974 return 0;
4975 }
4976
4977 static void
4978 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4979 struct skl_wm_values *src,
4980 enum pipe pipe)
4981 {
4982 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4983 sizeof(dst->ddb.y_plane[pipe]));
4984 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4985 sizeof(dst->ddb.plane[pipe]));
4986 }
4987
4988 static void
4989 skl_print_wm_changes(const struct drm_atomic_state *state)
4990 {
4991 const struct drm_device *dev = state->dev;
4992 const struct drm_i915_private *dev_priv = to_i915(dev);
4993 const struct intel_atomic_state *intel_state =
4994 to_intel_atomic_state(state);
4995 const struct drm_crtc *crtc;
4996 const struct drm_crtc_state *cstate;
4997 const struct intel_plane *intel_plane;
4998 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4999 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5000 int i;
5001
5002 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5003 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5004 enum pipe pipe = intel_crtc->pipe;
5005
5006 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5007 enum plane_id plane_id = intel_plane->id;
5008 const struct skl_ddb_entry *old, *new;
5009
5010 old = &old_ddb->plane[pipe][plane_id];
5011 new = &new_ddb->plane[pipe][plane_id];
5012
5013 if (skl_ddb_entry_equal(old, new))
5014 continue;
5015
5016 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5017 intel_plane->base.base.id,
5018 intel_plane->base.name,
5019 old->start, old->end,
5020 new->start, new->end);
5021 }
5022 }
5023 }
5024
5025 static int
5026 skl_compute_wm(struct drm_atomic_state *state)
5027 {
5028 struct drm_crtc *crtc;
5029 struct drm_crtc_state *cstate;
5030 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5031 struct skl_wm_values *results = &intel_state->wm_results;
5032 struct drm_device *dev = state->dev;
5033 struct skl_pipe_wm *pipe_wm;
5034 bool changed = false;
5035 int ret, i;
5036
5037 /*
5038 * When we distrust bios wm we always need to recompute to set the
5039 * expected DDB allocations for each CRTC.
5040 */
5041 if (to_i915(dev)->wm.distrust_bios_wm)
5042 changed = true;
5043
5044 /*
5045 * If this transaction isn't actually touching any CRTC's, don't
5046 * bother with watermark calculation. Note that if we pass this
5047 * test, we're guaranteed to hold at least one CRTC state mutex,
5048 * which means we can safely use values like dev_priv->active_crtcs
5049 * since any racing commits that want to update them would need to
5050 * hold _all_ CRTC state mutexes.
5051 */
5052 for_each_new_crtc_in_state(state, crtc, cstate, i)
5053 changed = true;
5054
5055 if (!changed)
5056 return 0;
5057
5058 /* Clear all dirty flags */
5059 results->dirty_pipes = 0;
5060
5061 ret = skl_compute_ddb(state);
5062 if (ret)
5063 return ret;
5064
5065 /*
5066 * Calculate WM's for all pipes that are part of this transaction.
5067 * Note that the DDB allocation above may have added more CRTC's that
5068 * weren't otherwise being modified (and set bits in dirty_pipes) if
5069 * pipe allocations had to change.
5070 *
5071 * FIXME: Now that we're doing this in the atomic check phase, we
5072 * should allow skl_update_pipe_wm() to return failure in cases where
5073 * no suitable watermark values can be found.
5074 */
5075 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5076 struct intel_crtc_state *intel_cstate =
5077 to_intel_crtc_state(cstate);
5078 const struct skl_pipe_wm *old_pipe_wm =
5079 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5080
5081 pipe_wm = &intel_cstate->wm.skl.optimal;
5082 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5083 &results->ddb, &changed);
5084 if (ret)
5085 return ret;
5086
5087 if (changed)
5088 results->dirty_pipes |= drm_crtc_mask(crtc);
5089
5090 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5091 /* This pipe's WM's did not change */
5092 continue;
5093
5094 intel_cstate->update_wm_pre = true;
5095 }
5096
5097 skl_print_wm_changes(state);
5098
5099 return 0;
5100 }
5101
5102 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5103 struct intel_crtc_state *cstate)
5104 {
5105 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5106 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5107 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5108 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5109 enum pipe pipe = crtc->pipe;
5110 enum plane_id plane_id;
5111
5112 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5113 return;
5114
5115 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5116
5117 for_each_plane_id_on_crtc(crtc, plane_id) {
5118 if (plane_id != PLANE_CURSOR)
5119 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5120 ddb, plane_id);
5121 else
5122 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5123 ddb);
5124 }
5125 }
5126
5127 static void skl_initial_wm(struct intel_atomic_state *state,
5128 struct intel_crtc_state *cstate)
5129 {
5130 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5131 struct drm_device *dev = intel_crtc->base.dev;
5132 struct drm_i915_private *dev_priv = to_i915(dev);
5133 struct skl_wm_values *results = &state->wm_results;
5134 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5135 enum pipe pipe = intel_crtc->pipe;
5136
5137 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5138 return;
5139
5140 mutex_lock(&dev_priv->wm.wm_mutex);
5141
5142 if (cstate->base.active_changed)
5143 skl_atomic_update_crtc_wm(state, cstate);
5144
5145 skl_copy_wm_for_pipe(hw_vals, results, pipe);
5146
5147 mutex_unlock(&dev_priv->wm.wm_mutex);
5148 }
5149
5150 static void ilk_compute_wm_config(struct drm_device *dev,
5151 struct intel_wm_config *config)
5152 {
5153 struct intel_crtc *crtc;
5154
5155 /* Compute the currently _active_ config */
5156 for_each_intel_crtc(dev, crtc) {
5157 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5158
5159 if (!wm->pipe_enabled)
5160 continue;
5161
5162 config->sprites_enabled |= wm->sprites_enabled;
5163 config->sprites_scaled |= wm->sprites_scaled;
5164 config->num_pipes_active++;
5165 }
5166 }
5167
5168 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5169 {
5170 struct drm_device *dev = &dev_priv->drm;
5171 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5172 struct ilk_wm_maximums max;
5173 struct intel_wm_config config = {};
5174 struct ilk_wm_values results = {};
5175 enum intel_ddb_partitioning partitioning;
5176
5177 ilk_compute_wm_config(dev, &config);
5178
5179 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5180 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5181
5182 /* 5/6 split only in single pipe config on IVB+ */
5183 if (INTEL_GEN(dev_priv) >= 7 &&
5184 config.num_pipes_active == 1 && config.sprites_enabled) {
5185 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5186 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5187
5188 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5189 } else {
5190 best_lp_wm = &lp_wm_1_2;
5191 }
5192
5193 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5194 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5195
5196 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5197
5198 ilk_write_wm_values(dev_priv, &results);
5199 }
5200
5201 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5202 struct intel_crtc_state *cstate)
5203 {
5204 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5205 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5206
5207 mutex_lock(&dev_priv->wm.wm_mutex);
5208 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5209 ilk_program_watermarks(dev_priv);
5210 mutex_unlock(&dev_priv->wm.wm_mutex);
5211 }
5212
5213 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5214 struct intel_crtc_state *cstate)
5215 {
5216 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5217 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5218
5219 mutex_lock(&dev_priv->wm.wm_mutex);
5220 if (cstate->wm.need_postvbl_update) {
5221 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5222 ilk_program_watermarks(dev_priv);
5223 }
5224 mutex_unlock(&dev_priv->wm.wm_mutex);
5225 }
5226
5227 static inline void skl_wm_level_from_reg_val(uint32_t val,
5228 struct skl_wm_level *level)
5229 {
5230 level->plane_en = val & PLANE_WM_EN;
5231 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5232 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5233 PLANE_WM_LINES_MASK;
5234 }
5235
5236 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5237 struct skl_pipe_wm *out)
5238 {
5239 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5241 enum pipe pipe = intel_crtc->pipe;
5242 int level, max_level;
5243 enum plane_id plane_id;
5244 uint32_t val;
5245
5246 max_level = ilk_wm_max_level(dev_priv);
5247
5248 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5249 struct skl_plane_wm *wm = &out->planes[plane_id];
5250
5251 for (level = 0; level <= max_level; level++) {
5252 if (plane_id != PLANE_CURSOR)
5253 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5254 else
5255 val = I915_READ(CUR_WM(pipe, level));
5256
5257 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5258 }
5259
5260 if (plane_id != PLANE_CURSOR)
5261 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5262 else
5263 val = I915_READ(CUR_WM_TRANS(pipe));
5264
5265 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5266 }
5267
5268 if (!intel_crtc->active)
5269 return;
5270
5271 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5272 }
5273
5274 void skl_wm_get_hw_state(struct drm_device *dev)
5275 {
5276 struct drm_i915_private *dev_priv = to_i915(dev);
5277 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5278 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5279 struct drm_crtc *crtc;
5280 struct intel_crtc *intel_crtc;
5281 struct intel_crtc_state *cstate;
5282
5283 skl_ddb_get_hw_state(dev_priv, ddb);
5284 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5285 intel_crtc = to_intel_crtc(crtc);
5286 cstate = to_intel_crtc_state(crtc->state);
5287
5288 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5289
5290 if (intel_crtc->active)
5291 hw->dirty_pipes |= drm_crtc_mask(crtc);
5292 }
5293
5294 if (dev_priv->active_crtcs) {
5295 /* Fully recompute DDB on first atomic commit */
5296 dev_priv->wm.distrust_bios_wm = true;
5297 } else {
5298 /* Easy/common case; just sanitize DDB now if everything off */
5299 memset(ddb, 0, sizeof(*ddb));
5300 }
5301 }
5302
5303 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5304 {
5305 struct drm_device *dev = crtc->dev;
5306 struct drm_i915_private *dev_priv = to_i915(dev);
5307 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5310 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5311 enum pipe pipe = intel_crtc->pipe;
5312 static const i915_reg_t wm0_pipe_reg[] = {
5313 [PIPE_A] = WM0_PIPEA_ILK,
5314 [PIPE_B] = WM0_PIPEB_ILK,
5315 [PIPE_C] = WM0_PIPEC_IVB,
5316 };
5317
5318 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5319 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5320 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5321
5322 memset(active, 0, sizeof(*active));
5323
5324 active->pipe_enabled = intel_crtc->active;
5325
5326 if (active->pipe_enabled) {
5327 u32 tmp = hw->wm_pipe[pipe];
5328
5329 /*
5330 * For active pipes LP0 watermark is marked as
5331 * enabled, and LP1+ watermaks as disabled since
5332 * we can't really reverse compute them in case
5333 * multiple pipes are active.
5334 */
5335 active->wm[0].enable = true;
5336 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5337 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5338 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5339 active->linetime = hw->wm_linetime[pipe];
5340 } else {
5341 int level, max_level = ilk_wm_max_level(dev_priv);
5342
5343 /*
5344 * For inactive pipes, all watermark levels
5345 * should be marked as enabled but zeroed,
5346 * which is what we'd compute them to.
5347 */
5348 for (level = 0; level <= max_level; level++)
5349 active->wm[level].enable = true;
5350 }
5351
5352 intel_crtc->wm.active.ilk = *active;
5353 }
5354
5355 #define _FW_WM(value, plane) \
5356 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5357 #define _FW_WM_VLV(value, plane) \
5358 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5359
5360 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5361 struct g4x_wm_values *wm)
5362 {
5363 uint32_t tmp;
5364
5365 tmp = I915_READ(DSPFW1);
5366 wm->sr.plane = _FW_WM(tmp, SR);
5367 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5368 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5369 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5370
5371 tmp = I915_READ(DSPFW2);
5372 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5373 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5374 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5375 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5376 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5377 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5378
5379 tmp = I915_READ(DSPFW3);
5380 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5381 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5382 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5383 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5384 }
5385
5386 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5387 struct vlv_wm_values *wm)
5388 {
5389 enum pipe pipe;
5390 uint32_t tmp;
5391
5392 for_each_pipe(dev_priv, pipe) {
5393 tmp = I915_READ(VLV_DDL(pipe));
5394
5395 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5396 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5397 wm->ddl[pipe].plane[PLANE_CURSOR] =
5398 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5399 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5400 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5401 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5402 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5403 }
5404
5405 tmp = I915_READ(DSPFW1);
5406 wm->sr.plane = _FW_WM(tmp, SR);
5407 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5408 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5409 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5410
5411 tmp = I915_READ(DSPFW2);
5412 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5413 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5414 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5415
5416 tmp = I915_READ(DSPFW3);
5417 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5418
5419 if (IS_CHERRYVIEW(dev_priv)) {
5420 tmp = I915_READ(DSPFW7_CHV);
5421 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5422 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5423
5424 tmp = I915_READ(DSPFW8_CHV);
5425 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5426 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5427
5428 tmp = I915_READ(DSPFW9_CHV);
5429 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5430 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5431
5432 tmp = I915_READ(DSPHOWM);
5433 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5434 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5435 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5436 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5437 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5438 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5439 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5440 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5441 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5442 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5443 } else {
5444 tmp = I915_READ(DSPFW7);
5445 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5446 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5447
5448 tmp = I915_READ(DSPHOWM);
5449 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5450 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5451 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5452 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5453 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5454 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5455 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5456 }
5457 }
5458
5459 #undef _FW_WM
5460 #undef _FW_WM_VLV
5461
5462 void g4x_wm_get_hw_state(struct drm_device *dev)
5463 {
5464 struct drm_i915_private *dev_priv = to_i915(dev);
5465 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5466 struct intel_crtc *crtc;
5467
5468 g4x_read_wm_values(dev_priv, wm);
5469
5470 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5471
5472 for_each_intel_crtc(dev, crtc) {
5473 struct intel_crtc_state *crtc_state =
5474 to_intel_crtc_state(crtc->base.state);
5475 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5476 struct g4x_pipe_wm *raw;
5477 enum pipe pipe = crtc->pipe;
5478 enum plane_id plane_id;
5479 int level, max_level;
5480
5481 active->cxsr = wm->cxsr;
5482 active->hpll_en = wm->hpll_en;
5483 active->fbc_en = wm->fbc_en;
5484
5485 active->sr = wm->sr;
5486 active->hpll = wm->hpll;
5487
5488 for_each_plane_id_on_crtc(crtc, plane_id) {
5489 active->wm.plane[plane_id] =
5490 wm->pipe[pipe].plane[plane_id];
5491 }
5492
5493 if (wm->cxsr && wm->hpll_en)
5494 max_level = G4X_WM_LEVEL_HPLL;
5495 else if (wm->cxsr)
5496 max_level = G4X_WM_LEVEL_SR;
5497 else
5498 max_level = G4X_WM_LEVEL_NORMAL;
5499
5500 level = G4X_WM_LEVEL_NORMAL;
5501 raw = &crtc_state->wm.g4x.raw[level];
5502 for_each_plane_id_on_crtc(crtc, plane_id)
5503 raw->plane[plane_id] = active->wm.plane[plane_id];
5504
5505 if (++level > max_level)
5506 goto out;
5507
5508 raw = &crtc_state->wm.g4x.raw[level];
5509 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5510 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5511 raw->plane[PLANE_SPRITE0] = 0;
5512 raw->fbc = active->sr.fbc;
5513
5514 if (++level > max_level)
5515 goto out;
5516
5517 raw = &crtc_state->wm.g4x.raw[level];
5518 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5519 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5520 raw->plane[PLANE_SPRITE0] = 0;
5521 raw->fbc = active->hpll.fbc;
5522
5523 out:
5524 for_each_plane_id_on_crtc(crtc, plane_id)
5525 g4x_raw_plane_wm_set(crtc_state, level,
5526 plane_id, USHRT_MAX);
5527 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5528
5529 crtc_state->wm.g4x.optimal = *active;
5530 crtc_state->wm.g4x.intermediate = *active;
5531
5532 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5533 pipe_name(pipe),
5534 wm->pipe[pipe].plane[PLANE_PRIMARY],
5535 wm->pipe[pipe].plane[PLANE_CURSOR],
5536 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5537 }
5538
5539 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5540 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5541 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5542 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5543 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5544 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5545 }
5546
5547 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5548 {
5549 struct intel_plane *plane;
5550 struct intel_crtc *crtc;
5551
5552 mutex_lock(&dev_priv->wm.wm_mutex);
5553
5554 for_each_intel_plane(&dev_priv->drm, plane) {
5555 struct intel_crtc *crtc =
5556 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5557 struct intel_crtc_state *crtc_state =
5558 to_intel_crtc_state(crtc->base.state);
5559 struct intel_plane_state *plane_state =
5560 to_intel_plane_state(plane->base.state);
5561 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5562 enum plane_id plane_id = plane->id;
5563 int level;
5564
5565 if (plane_state->base.visible)
5566 continue;
5567
5568 for (level = 0; level < 3; level++) {
5569 struct g4x_pipe_wm *raw =
5570 &crtc_state->wm.g4x.raw[level];
5571
5572 raw->plane[plane_id] = 0;
5573 wm_state->wm.plane[plane_id] = 0;
5574 }
5575
5576 if (plane_id == PLANE_PRIMARY) {
5577 for (level = 0; level < 3; level++) {
5578 struct g4x_pipe_wm *raw =
5579 &crtc_state->wm.g4x.raw[level];
5580 raw->fbc = 0;
5581 }
5582
5583 wm_state->sr.fbc = 0;
5584 wm_state->hpll.fbc = 0;
5585 wm_state->fbc_en = false;
5586 }
5587 }
5588
5589 for_each_intel_crtc(&dev_priv->drm, crtc) {
5590 struct intel_crtc_state *crtc_state =
5591 to_intel_crtc_state(crtc->base.state);
5592
5593 crtc_state->wm.g4x.intermediate =
5594 crtc_state->wm.g4x.optimal;
5595 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5596 }
5597
5598 g4x_program_watermarks(dev_priv);
5599
5600 mutex_unlock(&dev_priv->wm.wm_mutex);
5601 }
5602
5603 void vlv_wm_get_hw_state(struct drm_device *dev)
5604 {
5605 struct drm_i915_private *dev_priv = to_i915(dev);
5606 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5607 struct intel_crtc *crtc;
5608 u32 val;
5609
5610 vlv_read_wm_values(dev_priv, wm);
5611
5612 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5613 wm->level = VLV_WM_LEVEL_PM2;
5614
5615 if (IS_CHERRYVIEW(dev_priv)) {
5616 mutex_lock(&dev_priv->pcu_lock);
5617
5618 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5619 if (val & DSP_MAXFIFO_PM5_ENABLE)
5620 wm->level = VLV_WM_LEVEL_PM5;
5621
5622 /*
5623 * If DDR DVFS is disabled in the BIOS, Punit
5624 * will never ack the request. So if that happens
5625 * assume we don't have to enable/disable DDR DVFS
5626 * dynamically. To test that just set the REQ_ACK
5627 * bit to poke the Punit, but don't change the
5628 * HIGH/LOW bits so that we don't actually change
5629 * the current state.
5630 */
5631 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5632 val |= FORCE_DDR_FREQ_REQ_ACK;
5633 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5634
5635 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5636 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5637 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5638 "assuming DDR DVFS is disabled\n");
5639 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5640 } else {
5641 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5642 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5643 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5644 }
5645
5646 mutex_unlock(&dev_priv->pcu_lock);
5647 }
5648
5649 for_each_intel_crtc(dev, crtc) {
5650 struct intel_crtc_state *crtc_state =
5651 to_intel_crtc_state(crtc->base.state);
5652 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5653 const struct vlv_fifo_state *fifo_state =
5654 &crtc_state->wm.vlv.fifo_state;
5655 enum pipe pipe = crtc->pipe;
5656 enum plane_id plane_id;
5657 int level;
5658
5659 vlv_get_fifo_size(crtc_state);
5660
5661 active->num_levels = wm->level + 1;
5662 active->cxsr = wm->cxsr;
5663
5664 for (level = 0; level < active->num_levels; level++) {
5665 struct g4x_pipe_wm *raw =
5666 &crtc_state->wm.vlv.raw[level];
5667
5668 active->sr[level].plane = wm->sr.plane;
5669 active->sr[level].cursor = wm->sr.cursor;
5670
5671 for_each_plane_id_on_crtc(crtc, plane_id) {
5672 active->wm[level].plane[plane_id] =
5673 wm->pipe[pipe].plane[plane_id];
5674
5675 raw->plane[plane_id] =
5676 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5677 fifo_state->plane[plane_id]);
5678 }
5679 }
5680
5681 for_each_plane_id_on_crtc(crtc, plane_id)
5682 vlv_raw_plane_wm_set(crtc_state, level,
5683 plane_id, USHRT_MAX);
5684 vlv_invalidate_wms(crtc, active, level);
5685
5686 crtc_state->wm.vlv.optimal = *active;
5687 crtc_state->wm.vlv.intermediate = *active;
5688
5689 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5690 pipe_name(pipe),
5691 wm->pipe[pipe].plane[PLANE_PRIMARY],
5692 wm->pipe[pipe].plane[PLANE_CURSOR],
5693 wm->pipe[pipe].plane[PLANE_SPRITE0],
5694 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5695 }
5696
5697 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5698 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5699 }
5700
5701 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5702 {
5703 struct intel_plane *plane;
5704 struct intel_crtc *crtc;
5705
5706 mutex_lock(&dev_priv->wm.wm_mutex);
5707
5708 for_each_intel_plane(&dev_priv->drm, plane) {
5709 struct intel_crtc *crtc =
5710 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5711 struct intel_crtc_state *crtc_state =
5712 to_intel_crtc_state(crtc->base.state);
5713 struct intel_plane_state *plane_state =
5714 to_intel_plane_state(plane->base.state);
5715 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5716 const struct vlv_fifo_state *fifo_state =
5717 &crtc_state->wm.vlv.fifo_state;
5718 enum plane_id plane_id = plane->id;
5719 int level;
5720
5721 if (plane_state->base.visible)
5722 continue;
5723
5724 for (level = 0; level < wm_state->num_levels; level++) {
5725 struct g4x_pipe_wm *raw =
5726 &crtc_state->wm.vlv.raw[level];
5727
5728 raw->plane[plane_id] = 0;
5729
5730 wm_state->wm[level].plane[plane_id] =
5731 vlv_invert_wm_value(raw->plane[plane_id],
5732 fifo_state->plane[plane_id]);
5733 }
5734 }
5735
5736 for_each_intel_crtc(&dev_priv->drm, crtc) {
5737 struct intel_crtc_state *crtc_state =
5738 to_intel_crtc_state(crtc->base.state);
5739
5740 crtc_state->wm.vlv.intermediate =
5741 crtc_state->wm.vlv.optimal;
5742 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5743 }
5744
5745 vlv_program_watermarks(dev_priv);
5746
5747 mutex_unlock(&dev_priv->wm.wm_mutex);
5748 }
5749
5750 /*
5751 * FIXME should probably kill this and improve
5752 * the real watermark readout/sanitation instead
5753 */
5754 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5755 {
5756 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5757 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5758 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5759
5760 /*
5761 * Don't touch WM1S_LP_EN here.
5762 * Doing so could cause underruns.
5763 */
5764 }
5765
5766 void ilk_wm_get_hw_state(struct drm_device *dev)
5767 {
5768 struct drm_i915_private *dev_priv = to_i915(dev);
5769 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5770 struct drm_crtc *crtc;
5771
5772 ilk_init_lp_watermarks(dev_priv);
5773
5774 for_each_crtc(dev, crtc)
5775 ilk_pipe_wm_get_hw_state(crtc);
5776
5777 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5778 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5779 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5780
5781 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5782 if (INTEL_GEN(dev_priv) >= 7) {
5783 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5784 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5785 }
5786
5787 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5788 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5789 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5790 else if (IS_IVYBRIDGE(dev_priv))
5791 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5792 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5793
5794 hw->enable_fbc_wm =
5795 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5796 }
5797
5798 /**
5799 * intel_update_watermarks - update FIFO watermark values based on current modes
5800 *
5801 * Calculate watermark values for the various WM regs based on current mode
5802 * and plane configuration.
5803 *
5804 * There are several cases to deal with here:
5805 * - normal (i.e. non-self-refresh)
5806 * - self-refresh (SR) mode
5807 * - lines are large relative to FIFO size (buffer can hold up to 2)
5808 * - lines are small relative to FIFO size (buffer can hold more than 2
5809 * lines), so need to account for TLB latency
5810 *
5811 * The normal calculation is:
5812 * watermark = dotclock * bytes per pixel * latency
5813 * where latency is platform & configuration dependent (we assume pessimal
5814 * values here).
5815 *
5816 * The SR calculation is:
5817 * watermark = (trunc(latency/line time)+1) * surface width *
5818 * bytes per pixel
5819 * where
5820 * line time = htotal / dotclock
5821 * surface width = hdisplay for normal plane and 64 for cursor
5822 * and latency is assumed to be high, as above.
5823 *
5824 * The final value programmed to the register should always be rounded up,
5825 * and include an extra 2 entries to account for clock crossings.
5826 *
5827 * We don't use the sprite, so we can ignore that. And on Crestline we have
5828 * to set the non-SR watermarks to 8.
5829 */
5830 void intel_update_watermarks(struct intel_crtc *crtc)
5831 {
5832 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5833
5834 if (dev_priv->display.update_wm)
5835 dev_priv->display.update_wm(crtc);
5836 }
5837
5838 void intel_enable_ipc(struct drm_i915_private *dev_priv)
5839 {
5840 u32 val;
5841
5842 /* Display WA #0477 WaDisableIPC: skl */
5843 if (IS_SKYLAKE(dev_priv)) {
5844 dev_priv->ipc_enabled = false;
5845 return;
5846 }
5847
5848 val = I915_READ(DISP_ARB_CTL2);
5849
5850 if (dev_priv->ipc_enabled)
5851 val |= DISP_IPC_ENABLE;
5852 else
5853 val &= ~DISP_IPC_ENABLE;
5854
5855 I915_WRITE(DISP_ARB_CTL2, val);
5856 }
5857
5858 void intel_init_ipc(struct drm_i915_private *dev_priv)
5859 {
5860 dev_priv->ipc_enabled = false;
5861 if (!HAS_IPC(dev_priv))
5862 return;
5863
5864 dev_priv->ipc_enabled = true;
5865 intel_enable_ipc(dev_priv);
5866 }
5867
5868 /*
5869 * Lock protecting IPS related data structures
5870 */
5871 DEFINE_SPINLOCK(mchdev_lock);
5872
5873 /* Global for IPS driver to get at the current i915 device. Protected by
5874 * mchdev_lock. */
5875 static struct drm_i915_private *i915_mch_dev;
5876
5877 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5878 {
5879 u16 rgvswctl;
5880
5881 lockdep_assert_held(&mchdev_lock);
5882
5883 rgvswctl = I915_READ16(MEMSWCTL);
5884 if (rgvswctl & MEMCTL_CMD_STS) {
5885 DRM_DEBUG("gpu busy, RCS change rejected\n");
5886 return false; /* still busy with another command */
5887 }
5888
5889 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5890 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5891 I915_WRITE16(MEMSWCTL, rgvswctl);
5892 POSTING_READ16(MEMSWCTL);
5893
5894 rgvswctl |= MEMCTL_CMD_STS;
5895 I915_WRITE16(MEMSWCTL, rgvswctl);
5896
5897 return true;
5898 }
5899
5900 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5901 {
5902 u32 rgvmodectl;
5903 u8 fmax, fmin, fstart, vstart;
5904
5905 spin_lock_irq(&mchdev_lock);
5906
5907 rgvmodectl = I915_READ(MEMMODECTL);
5908
5909 /* Enable temp reporting */
5910 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5911 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5912
5913 /* 100ms RC evaluation intervals */
5914 I915_WRITE(RCUPEI, 100000);
5915 I915_WRITE(RCDNEI, 100000);
5916
5917 /* Set max/min thresholds to 90ms and 80ms respectively */
5918 I915_WRITE(RCBMAXAVG, 90000);
5919 I915_WRITE(RCBMINAVG, 80000);
5920
5921 I915_WRITE(MEMIHYST, 1);
5922
5923 /* Set up min, max, and cur for interrupt handling */
5924 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5925 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5926 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5927 MEMMODE_FSTART_SHIFT;
5928
5929 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5930 PXVFREQ_PX_SHIFT;
5931
5932 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5933 dev_priv->ips.fstart = fstart;
5934
5935 dev_priv->ips.max_delay = fstart;
5936 dev_priv->ips.min_delay = fmin;
5937 dev_priv->ips.cur_delay = fstart;
5938
5939 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5940 fmax, fmin, fstart);
5941
5942 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5943
5944 /*
5945 * Interrupts will be enabled in ironlake_irq_postinstall
5946 */
5947
5948 I915_WRITE(VIDSTART, vstart);
5949 POSTING_READ(VIDSTART);
5950
5951 rgvmodectl |= MEMMODE_SWMODE_EN;
5952 I915_WRITE(MEMMODECTL, rgvmodectl);
5953
5954 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5955 DRM_ERROR("stuck trying to change perf mode\n");
5956 mdelay(1);
5957
5958 ironlake_set_drps(dev_priv, fstart);
5959
5960 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5961 I915_READ(DDREC) + I915_READ(CSIEC);
5962 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5963 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5964 dev_priv->ips.last_time2 = ktime_get_raw_ns();
5965
5966 spin_unlock_irq(&mchdev_lock);
5967 }
5968
5969 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5970 {
5971 u16 rgvswctl;
5972
5973 spin_lock_irq(&mchdev_lock);
5974
5975 rgvswctl = I915_READ16(MEMSWCTL);
5976
5977 /* Ack interrupts, disable EFC interrupt */
5978 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5979 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5980 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5981 I915_WRITE(DEIIR, DE_PCU_EVENT);
5982 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5983
5984 /* Go back to the starting frequency */
5985 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5986 mdelay(1);
5987 rgvswctl |= MEMCTL_CMD_STS;
5988 I915_WRITE(MEMSWCTL, rgvswctl);
5989 mdelay(1);
5990
5991 spin_unlock_irq(&mchdev_lock);
5992 }
5993
5994 /* There's a funny hw issue where the hw returns all 0 when reading from
5995 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5996 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5997 * all limits and the gpu stuck at whatever frequency it is at atm).
5998 */
5999 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6000 {
6001 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6002 u32 limits;
6003
6004 /* Only set the down limit when we've reached the lowest level to avoid
6005 * getting more interrupts, otherwise leave this clear. This prevents a
6006 * race in the hw when coming out of rc6: There's a tiny window where
6007 * the hw runs at the minimal clock before selecting the desired
6008 * frequency, if the down threshold expires in that window we will not
6009 * receive a down interrupt. */
6010 if (INTEL_GEN(dev_priv) >= 9) {
6011 limits = (rps->max_freq_softlimit) << 23;
6012 if (val <= rps->min_freq_softlimit)
6013 limits |= (rps->min_freq_softlimit) << 14;
6014 } else {
6015 limits = rps->max_freq_softlimit << 24;
6016 if (val <= rps->min_freq_softlimit)
6017 limits |= rps->min_freq_softlimit << 16;
6018 }
6019
6020 return limits;
6021 }
6022
6023 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6024 {
6025 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6026 int new_power;
6027 u32 threshold_up = 0, threshold_down = 0; /* in % */
6028 u32 ei_up = 0, ei_down = 0;
6029
6030 new_power = rps->power;
6031 switch (rps->power) {
6032 case LOW_POWER:
6033 if (val > rps->efficient_freq + 1 &&
6034 val > rps->cur_freq)
6035 new_power = BETWEEN;
6036 break;
6037
6038 case BETWEEN:
6039 if (val <= rps->efficient_freq &&
6040 val < rps->cur_freq)
6041 new_power = LOW_POWER;
6042 else if (val >= rps->rp0_freq &&
6043 val > rps->cur_freq)
6044 new_power = HIGH_POWER;
6045 break;
6046
6047 case HIGH_POWER:
6048 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6049 val < rps->cur_freq)
6050 new_power = BETWEEN;
6051 break;
6052 }
6053 /* Max/min bins are special */
6054 if (val <= rps->min_freq_softlimit)
6055 new_power = LOW_POWER;
6056 if (val >= rps->max_freq_softlimit)
6057 new_power = HIGH_POWER;
6058 if (new_power == rps->power)
6059 return;
6060
6061 /* Note the units here are not exactly 1us, but 1280ns. */
6062 switch (new_power) {
6063 case LOW_POWER:
6064 /* Upclock if more than 95% busy over 16ms */
6065 ei_up = 16000;
6066 threshold_up = 95;
6067
6068 /* Downclock if less than 85% busy over 32ms */
6069 ei_down = 32000;
6070 threshold_down = 85;
6071 break;
6072
6073 case BETWEEN:
6074 /* Upclock if more than 90% busy over 13ms */
6075 ei_up = 13000;
6076 threshold_up = 90;
6077
6078 /* Downclock if less than 75% busy over 32ms */
6079 ei_down = 32000;
6080 threshold_down = 75;
6081 break;
6082
6083 case HIGH_POWER:
6084 /* Upclock if more than 85% busy over 10ms */
6085 ei_up = 10000;
6086 threshold_up = 85;
6087
6088 /* Downclock if less than 60% busy over 32ms */
6089 ei_down = 32000;
6090 threshold_down = 60;
6091 break;
6092 }
6093
6094 /* When byt can survive without system hang with dynamic
6095 * sw freq adjustments, this restriction can be lifted.
6096 */
6097 if (IS_VALLEYVIEW(dev_priv))
6098 goto skip_hw_write;
6099
6100 I915_WRITE(GEN6_RP_UP_EI,
6101 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6102 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6103 GT_INTERVAL_FROM_US(dev_priv,
6104 ei_up * threshold_up / 100));
6105
6106 I915_WRITE(GEN6_RP_DOWN_EI,
6107 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6108 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6109 GT_INTERVAL_FROM_US(dev_priv,
6110 ei_down * threshold_down / 100));
6111
6112 I915_WRITE(GEN6_RP_CONTROL,
6113 GEN6_RP_MEDIA_TURBO |
6114 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6115 GEN6_RP_MEDIA_IS_GFX |
6116 GEN6_RP_ENABLE |
6117 GEN6_RP_UP_BUSY_AVG |
6118 GEN6_RP_DOWN_IDLE_AVG);
6119
6120 skip_hw_write:
6121 rps->power = new_power;
6122 rps->up_threshold = threshold_up;
6123 rps->down_threshold = threshold_down;
6124 rps->last_adj = 0;
6125 }
6126
6127 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6128 {
6129 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6130 u32 mask = 0;
6131
6132 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6133 if (val > rps->min_freq_softlimit)
6134 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6135 if (val < rps->max_freq_softlimit)
6136 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6137
6138 mask &= dev_priv->pm_rps_events;
6139
6140 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6141 }
6142
6143 /* gen6_set_rps is called to update the frequency request, but should also be
6144 * called when the range (min_delay and max_delay) is modified so that we can
6145 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6146 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6147 {
6148 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6149
6150 /* min/max delay may still have been modified so be sure to
6151 * write the limits value.
6152 */
6153 if (val != rps->cur_freq) {
6154 gen6_set_rps_thresholds(dev_priv, val);
6155
6156 if (INTEL_GEN(dev_priv) >= 9)
6157 I915_WRITE(GEN6_RPNSWREQ,
6158 GEN9_FREQUENCY(val));
6159 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6160 I915_WRITE(GEN6_RPNSWREQ,
6161 HSW_FREQUENCY(val));
6162 else
6163 I915_WRITE(GEN6_RPNSWREQ,
6164 GEN6_FREQUENCY(val) |
6165 GEN6_OFFSET(0) |
6166 GEN6_AGGRESSIVE_TURBO);
6167 }
6168
6169 /* Make sure we continue to get interrupts
6170 * until we hit the minimum or maximum frequencies.
6171 */
6172 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6173 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6174
6175 rps->cur_freq = val;
6176 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6177
6178 return 0;
6179 }
6180
6181 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6182 {
6183 int err;
6184
6185 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6186 "Odd GPU freq value\n"))
6187 val &= ~1;
6188
6189 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6190
6191 if (val != dev_priv->gt_pm.rps.cur_freq) {
6192 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6193 if (err)
6194 return err;
6195
6196 gen6_set_rps_thresholds(dev_priv, val);
6197 }
6198
6199 dev_priv->gt_pm.rps.cur_freq = val;
6200 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6201
6202 return 0;
6203 }
6204
6205 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6206 *
6207 * * If Gfx is Idle, then
6208 * 1. Forcewake Media well.
6209 * 2. Request idle freq.
6210 * 3. Release Forcewake of Media well.
6211 */
6212 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6213 {
6214 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6215 u32 val = rps->idle_freq;
6216 int err;
6217
6218 if (rps->cur_freq <= val)
6219 return;
6220
6221 /* The punit delays the write of the frequency and voltage until it
6222 * determines the GPU is awake. During normal usage we don't want to
6223 * waste power changing the frequency if the GPU is sleeping (rc6).
6224 * However, the GPU and driver is now idle and we do not want to delay
6225 * switching to minimum voltage (reducing power whilst idle) as we do
6226 * not expect to be woken in the near future and so must flush the
6227 * change by waking the device.
6228 *
6229 * We choose to take the media powerwell (either would do to trick the
6230 * punit into committing the voltage change) as that takes a lot less
6231 * power than the render powerwell.
6232 */
6233 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6234 err = valleyview_set_rps(dev_priv, val);
6235 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6236
6237 if (err)
6238 DRM_ERROR("Failed to set RPS for idle\n");
6239 }
6240
6241 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6242 {
6243 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6244
6245 mutex_lock(&dev_priv->pcu_lock);
6246 if (rps->enabled) {
6247 u8 freq;
6248
6249 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6250 gen6_rps_reset_ei(dev_priv);
6251 I915_WRITE(GEN6_PMINTRMSK,
6252 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6253
6254 gen6_enable_rps_interrupts(dev_priv);
6255
6256 /* Use the user's desired frequency as a guide, but for better
6257 * performance, jump directly to RPe as our starting frequency.
6258 */
6259 freq = max(rps->cur_freq,
6260 rps->efficient_freq);
6261
6262 if (intel_set_rps(dev_priv,
6263 clamp(freq,
6264 rps->min_freq_softlimit,
6265 rps->max_freq_softlimit)))
6266 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6267 }
6268 mutex_unlock(&dev_priv->pcu_lock);
6269 }
6270
6271 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6272 {
6273 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6274
6275 /* Flush our bottom-half so that it does not race with us
6276 * setting the idle frequency and so that it is bounded by
6277 * our rpm wakeref. And then disable the interrupts to stop any
6278 * futher RPS reclocking whilst we are asleep.
6279 */
6280 gen6_disable_rps_interrupts(dev_priv);
6281
6282 mutex_lock(&dev_priv->pcu_lock);
6283 if (rps->enabled) {
6284 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6285 vlv_set_rps_idle(dev_priv);
6286 else
6287 gen6_set_rps(dev_priv, rps->idle_freq);
6288 rps->last_adj = 0;
6289 I915_WRITE(GEN6_PMINTRMSK,
6290 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6291 }
6292 mutex_unlock(&dev_priv->pcu_lock);
6293 }
6294
6295 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6296 struct intel_rps_client *rps_client)
6297 {
6298 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6299 unsigned long flags;
6300 bool boost;
6301
6302 /* This is intentionally racy! We peek at the state here, then
6303 * validate inside the RPS worker.
6304 */
6305 if (!rps->enabled)
6306 return;
6307
6308 boost = false;
6309 spin_lock_irqsave(&rq->lock, flags);
6310 if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6311 atomic_inc(&rps->num_waiters);
6312 rq->waitboost = true;
6313 boost = true;
6314 }
6315 spin_unlock_irqrestore(&rq->lock, flags);
6316 if (!boost)
6317 return;
6318
6319 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6320 schedule_work(&rps->work);
6321
6322 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6323 }
6324
6325 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6326 {
6327 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6328 int err;
6329
6330 lockdep_assert_held(&dev_priv->pcu_lock);
6331 GEM_BUG_ON(val > rps->max_freq);
6332 GEM_BUG_ON(val < rps->min_freq);
6333
6334 if (!rps->enabled) {
6335 rps->cur_freq = val;
6336 return 0;
6337 }
6338
6339 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6340 err = valleyview_set_rps(dev_priv, val);
6341 else
6342 err = gen6_set_rps(dev_priv, val);
6343
6344 return err;
6345 }
6346
6347 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6348 {
6349 I915_WRITE(GEN6_RC_CONTROL, 0);
6350 I915_WRITE(GEN9_PG_ENABLE, 0);
6351 }
6352
6353 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6354 {
6355 I915_WRITE(GEN6_RP_CONTROL, 0);
6356 }
6357
6358 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6359 {
6360 I915_WRITE(GEN6_RC_CONTROL, 0);
6361 }
6362
6363 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6364 {
6365 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6366 I915_WRITE(GEN6_RP_CONTROL, 0);
6367 }
6368
6369 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6370 {
6371 I915_WRITE(GEN6_RC_CONTROL, 0);
6372 }
6373
6374 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6375 {
6376 I915_WRITE(GEN6_RP_CONTROL, 0);
6377 }
6378
6379 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6380 {
6381 /* We're doing forcewake before Disabling RC6,
6382 * This what the BIOS expects when going into suspend */
6383 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6384
6385 I915_WRITE(GEN6_RC_CONTROL, 0);
6386
6387 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6388 }
6389
6390 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6391 {
6392 I915_WRITE(GEN6_RP_CONTROL, 0);
6393 }
6394
6395 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6396 {
6397 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6398 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6399 mode = GEN6_RC_CTL_RC6_ENABLE;
6400 else
6401 mode = 0;
6402 }
6403 if (HAS_RC6p(dev_priv))
6404 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6405 "RC6 %s RC6p %s RC6pp %s\n",
6406 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6407 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6408 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6409
6410 else
6411 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6412 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6413 }
6414
6415 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6416 {
6417 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6418 bool enable_rc6 = true;
6419 unsigned long rc6_ctx_base;
6420 u32 rc_ctl;
6421 int rc_sw_target;
6422
6423 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6424 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6425 RC_SW_TARGET_STATE_SHIFT;
6426 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6427 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6428 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6429 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6430 rc_sw_target);
6431
6432 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6433 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6434 enable_rc6 = false;
6435 }
6436
6437 /*
6438 * The exact context size is not known for BXT, so assume a page size
6439 * for this check.
6440 */
6441 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6442 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6443 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6444 ggtt->stolen_reserved_size))) {
6445 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6446 enable_rc6 = false;
6447 }
6448
6449 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6450 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6451 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6452 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6453 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6454 enable_rc6 = false;
6455 }
6456
6457 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6458 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6459 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6460 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6461 enable_rc6 = false;
6462 }
6463
6464 if (!I915_READ(GEN6_GFXPAUSE)) {
6465 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6466 enable_rc6 = false;
6467 }
6468
6469 if (!I915_READ(GEN8_MISC_CTRL0)) {
6470 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6471 enable_rc6 = false;
6472 }
6473
6474 return enable_rc6;
6475 }
6476
6477 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6478 {
6479 /* No RC6 before Ironlake and code is gone for ilk. */
6480 if (INTEL_INFO(dev_priv)->gen < 6)
6481 return 0;
6482
6483 if (!enable_rc6)
6484 return 0;
6485
6486 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6487 DRM_INFO("RC6 disabled by BIOS\n");
6488 return 0;
6489 }
6490
6491 /* Respect the kernel parameter if it is set */
6492 if (enable_rc6 >= 0) {
6493 int mask;
6494
6495 if (HAS_RC6p(dev_priv))
6496 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6497 INTEL_RC6pp_ENABLE;
6498 else
6499 mask = INTEL_RC6_ENABLE;
6500
6501 if ((enable_rc6 & mask) != enable_rc6)
6502 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6503 "(requested %d, valid %d)\n",
6504 enable_rc6 & mask, enable_rc6, mask);
6505
6506 return enable_rc6 & mask;
6507 }
6508
6509 if (IS_IVYBRIDGE(dev_priv))
6510 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6511
6512 return INTEL_RC6_ENABLE;
6513 }
6514
6515 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6516 {
6517 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6518
6519 /* All of these values are in units of 50MHz */
6520
6521 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6522 if (IS_GEN9_LP(dev_priv)) {
6523 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6524 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6525 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6526 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6527 } else {
6528 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6529 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6530 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6531 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6532 }
6533 /* hw_max = RP0 until we check for overclocking */
6534 rps->max_freq = rps->rp0_freq;
6535
6536 rps->efficient_freq = rps->rp1_freq;
6537 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6538 IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6539 u32 ddcc_status = 0;
6540
6541 if (sandybridge_pcode_read(dev_priv,
6542 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6543 &ddcc_status) == 0)
6544 rps->efficient_freq =
6545 clamp_t(u8,
6546 ((ddcc_status >> 8) & 0xff),
6547 rps->min_freq,
6548 rps->max_freq);
6549 }
6550
6551 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6552 /* Store the frequency values in 16.66 MHZ units, which is
6553 * the natural hardware unit for SKL
6554 */
6555 rps->rp0_freq *= GEN9_FREQ_SCALER;
6556 rps->rp1_freq *= GEN9_FREQ_SCALER;
6557 rps->min_freq *= GEN9_FREQ_SCALER;
6558 rps->max_freq *= GEN9_FREQ_SCALER;
6559 rps->efficient_freq *= GEN9_FREQ_SCALER;
6560 }
6561 }
6562
6563 static void reset_rps(struct drm_i915_private *dev_priv,
6564 int (*set)(struct drm_i915_private *, u8))
6565 {
6566 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6567 u8 freq = rps->cur_freq;
6568
6569 /* force a reset */
6570 rps->power = -1;
6571 rps->cur_freq = -1;
6572
6573 if (set(dev_priv, freq))
6574 DRM_ERROR("Failed to reset RPS to initial values\n");
6575 }
6576
6577 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6578 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6579 {
6580 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6581
6582 /* Program defaults and thresholds for RPS*/
6583 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6584 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6585
6586 /* 1 second timeout*/
6587 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6588 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6589
6590 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6591
6592 /* Leaning on the below call to gen6_set_rps to program/setup the
6593 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6594 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6595 reset_rps(dev_priv, gen6_set_rps);
6596
6597 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6598 }
6599
6600 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6601 {
6602 struct intel_engine_cs *engine;
6603 enum intel_engine_id id;
6604 u32 rc6_mode, rc6_mask = 0;
6605
6606 /* 1a: Software RC state - RC0 */
6607 I915_WRITE(GEN6_RC_STATE, 0);
6608
6609 /* 1b: Get forcewake during program sequence. Although the driver
6610 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6611 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6612
6613 /* 2a: Disable RC states. */
6614 I915_WRITE(GEN6_RC_CONTROL, 0);
6615
6616 /* 2b: Program RC6 thresholds.*/
6617
6618 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6619 if (IS_SKYLAKE(dev_priv))
6620 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6621 else
6622 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6623 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6624 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6625 for_each_engine(engine, dev_priv, id)
6626 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6627
6628 if (HAS_GUC(dev_priv))
6629 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6630
6631 I915_WRITE(GEN6_RC_SLEEP, 0);
6632
6633 /* 2c: Program Coarse Power Gating Policies. */
6634 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6635 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6636
6637 /* 3a: Enable RC6 */
6638 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6639 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6640 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6641 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6642
6643 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6644 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6645 rc6_mode = GEN7_RC_CTL_TO_MODE;
6646 else
6647 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6648
6649 I915_WRITE(GEN6_RC_CONTROL,
6650 GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
6651
6652 /*
6653 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6654 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6655 */
6656 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6657 I915_WRITE(GEN9_PG_ENABLE, 0);
6658 else
6659 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6660 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6661
6662 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6663 }
6664
6665 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6666 {
6667 struct intel_engine_cs *engine;
6668 enum intel_engine_id id;
6669 uint32_t rc6_mask = 0;
6670
6671 /* 1a: Software RC state - RC0 */
6672 I915_WRITE(GEN6_RC_STATE, 0);
6673
6674 /* 1b: Get forcewake during program sequence. Although the driver
6675 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6676 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6677
6678 /* 2a: Disable RC states. */
6679 I915_WRITE(GEN6_RC_CONTROL, 0);
6680
6681 /* 2b: Program RC6 thresholds.*/
6682 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6683 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6684 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6685 for_each_engine(engine, dev_priv, id)
6686 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6687 I915_WRITE(GEN6_RC_SLEEP, 0);
6688 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6689
6690 /* 3: Enable RC6 */
6691 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6692 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6693 intel_print_rc6_info(dev_priv, rc6_mask);
6694
6695 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6696 GEN7_RC_CTL_TO_MODE |
6697 rc6_mask);
6698
6699 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6700 }
6701
6702 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6703 {
6704 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6705
6706 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6707
6708 /* 1 Program defaults and thresholds for RPS*/
6709 I915_WRITE(GEN6_RPNSWREQ,
6710 HSW_FREQUENCY(rps->rp1_freq));
6711 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6712 HSW_FREQUENCY(rps->rp1_freq));
6713 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6714 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6715
6716 /* Docs recommend 900MHz, and 300 MHz respectively */
6717 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6718 rps->max_freq_softlimit << 24 |
6719 rps->min_freq_softlimit << 16);
6720
6721 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6722 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6723 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6724 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6725
6726 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6727
6728 /* 2: Enable RPS */
6729 I915_WRITE(GEN6_RP_CONTROL,
6730 GEN6_RP_MEDIA_TURBO |
6731 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6732 GEN6_RP_MEDIA_IS_GFX |
6733 GEN6_RP_ENABLE |
6734 GEN6_RP_UP_BUSY_AVG |
6735 GEN6_RP_DOWN_IDLE_AVG);
6736
6737 reset_rps(dev_priv, gen6_set_rps);
6738
6739 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6740 }
6741
6742 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6743 {
6744 struct intel_engine_cs *engine;
6745 enum intel_engine_id id;
6746 u32 rc6vids, rc6_mask = 0;
6747 u32 gtfifodbg;
6748 int rc6_mode;
6749 int ret;
6750
6751 I915_WRITE(GEN6_RC_STATE, 0);
6752
6753 /* Clear the DBG now so we don't confuse earlier errors */
6754 gtfifodbg = I915_READ(GTFIFODBG);
6755 if (gtfifodbg) {
6756 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6757 I915_WRITE(GTFIFODBG, gtfifodbg);
6758 }
6759
6760 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6761
6762 /* disable the counters and set deterministic thresholds */
6763 I915_WRITE(GEN6_RC_CONTROL, 0);
6764
6765 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6766 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6767 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6768 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6769 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6770
6771 for_each_engine(engine, dev_priv, id)
6772 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6773
6774 I915_WRITE(GEN6_RC_SLEEP, 0);
6775 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6776 if (IS_IVYBRIDGE(dev_priv))
6777 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6778 else
6779 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6780 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6781 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6782
6783 /* Check if we are enabling RC6 */
6784 rc6_mode = intel_rc6_enabled();
6785 if (rc6_mode & INTEL_RC6_ENABLE)
6786 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6787
6788 /* We don't use those on Haswell */
6789 if (!IS_HASWELL(dev_priv)) {
6790 if (rc6_mode & INTEL_RC6p_ENABLE)
6791 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6792
6793 if (rc6_mode & INTEL_RC6pp_ENABLE)
6794 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6795 }
6796
6797 intel_print_rc6_info(dev_priv, rc6_mask);
6798
6799 I915_WRITE(GEN6_RC_CONTROL,
6800 rc6_mask |
6801 GEN6_RC_CTL_EI_MODE(1) |
6802 GEN6_RC_CTL_HW_ENABLE);
6803
6804 rc6vids = 0;
6805 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6806 if (IS_GEN6(dev_priv) && ret) {
6807 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6808 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6809 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6810 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6811 rc6vids &= 0xffff00;
6812 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6813 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6814 if (ret)
6815 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6816 }
6817
6818 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6819 }
6820
6821 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6822 {
6823 /* Here begins a magic sequence of register writes to enable
6824 * auto-downclocking.
6825 *
6826 * Perhaps there might be some value in exposing these to
6827 * userspace...
6828 */
6829 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6830
6831 /* Power down if completely idle for over 50ms */
6832 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6833 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6834
6835 reset_rps(dev_priv, gen6_set_rps);
6836
6837 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6838 }
6839
6840 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6841 {
6842 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6843 int min_freq = 15;
6844 unsigned int gpu_freq;
6845 unsigned int max_ia_freq, min_ring_freq;
6846 unsigned int max_gpu_freq, min_gpu_freq;
6847 int scaling_factor = 180;
6848 struct cpufreq_policy *policy;
6849
6850 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6851
6852 policy = cpufreq_cpu_get(0);
6853 if (policy) {
6854 max_ia_freq = policy->cpuinfo.max_freq;
6855 cpufreq_cpu_put(policy);
6856 } else {
6857 /*
6858 * Default to measured freq if none found, PCU will ensure we
6859 * don't go over
6860 */
6861 max_ia_freq = tsc_khz;
6862 }
6863
6864 /* Convert from kHz to MHz */
6865 max_ia_freq /= 1000;
6866
6867 min_ring_freq = I915_READ(DCLK) & 0xf;
6868 /* convert DDR frequency from units of 266.6MHz to bandwidth */
6869 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6870
6871 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6872 /* Convert GT frequency to 50 HZ units */
6873 min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
6874 max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6875 } else {
6876 min_gpu_freq = rps->min_freq;
6877 max_gpu_freq = rps->max_freq;
6878 }
6879
6880 /*
6881 * For each potential GPU frequency, load a ring frequency we'd like
6882 * to use for memory access. We do this by specifying the IA frequency
6883 * the PCU should use as a reference to determine the ring frequency.
6884 */
6885 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6886 int diff = max_gpu_freq - gpu_freq;
6887 unsigned int ia_freq = 0, ring_freq = 0;
6888
6889 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6890 /*
6891 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6892 * No floor required for ring frequency on SKL.
6893 */
6894 ring_freq = gpu_freq;
6895 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6896 /* max(2 * GT, DDR). NB: GT is 50MHz units */
6897 ring_freq = max(min_ring_freq, gpu_freq);
6898 } else if (IS_HASWELL(dev_priv)) {
6899 ring_freq = mult_frac(gpu_freq, 5, 4);
6900 ring_freq = max(min_ring_freq, ring_freq);
6901 /* leave ia_freq as the default, chosen by cpufreq */
6902 } else {
6903 /* On older processors, there is no separate ring
6904 * clock domain, so in order to boost the bandwidth
6905 * of the ring, we need to upclock the CPU (ia_freq).
6906 *
6907 * For GPU frequencies less than 750MHz,
6908 * just use the lowest ring freq.
6909 */
6910 if (gpu_freq < min_freq)
6911 ia_freq = 800;
6912 else
6913 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6914 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6915 }
6916
6917 sandybridge_pcode_write(dev_priv,
6918 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6919 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6920 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6921 gpu_freq);
6922 }
6923 }
6924
6925 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6926 {
6927 u32 val, rp0;
6928
6929 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6930
6931 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6932 case 8:
6933 /* (2 * 4) config */
6934 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6935 break;
6936 case 12:
6937 /* (2 * 6) config */
6938 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6939 break;
6940 case 16:
6941 /* (2 * 8) config */
6942 default:
6943 /* Setting (2 * 8) Min RP0 for any other combination */
6944 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6945 break;
6946 }
6947
6948 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6949
6950 return rp0;
6951 }
6952
6953 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6954 {
6955 u32 val, rpe;
6956
6957 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6958 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6959
6960 return rpe;
6961 }
6962
6963 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6964 {
6965 u32 val, rp1;
6966
6967 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6968 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6969
6970 return rp1;
6971 }
6972
6973 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6974 {
6975 u32 val, rpn;
6976
6977 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6978 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6979 FB_GFX_FREQ_FUSE_MASK);
6980
6981 return rpn;
6982 }
6983
6984 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6985 {
6986 u32 val, rp1;
6987
6988 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6989
6990 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6991
6992 return rp1;
6993 }
6994
6995 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6996 {
6997 u32 val, rp0;
6998
6999 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7000
7001 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7002 /* Clamp to max */
7003 rp0 = min_t(u32, rp0, 0xea);
7004
7005 return rp0;
7006 }
7007
7008 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7009 {
7010 u32 val, rpe;
7011
7012 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7013 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7014 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7015 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7016
7017 return rpe;
7018 }
7019
7020 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7021 {
7022 u32 val;
7023
7024 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7025 /*
7026 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7027 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7028 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7029 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7030 * to make sure it matches what Punit accepts.
7031 */
7032 return max_t(u32, val, 0xc0);
7033 }
7034
7035 /* Check that the pctx buffer wasn't move under us. */
7036 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7037 {
7038 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7039
7040 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
7041 dev_priv->vlv_pctx->stolen->start);
7042 }
7043
7044
7045 /* Check that the pcbr address is not empty. */
7046 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7047 {
7048 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7049
7050 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7051 }
7052
7053 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7054 {
7055 struct i915_ggtt *ggtt = &dev_priv->ggtt;
7056 unsigned long pctx_paddr, paddr;
7057 u32 pcbr;
7058 int pctx_size = 32*1024;
7059
7060 pcbr = I915_READ(VLV_PCBR);
7061 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7062 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7063 paddr = (dev_priv->mm.stolen_base +
7064 (ggtt->stolen_size - pctx_size));
7065
7066 pctx_paddr = (paddr & (~4095));
7067 I915_WRITE(VLV_PCBR, pctx_paddr);
7068 }
7069
7070 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7071 }
7072
7073 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7074 {
7075 struct drm_i915_gem_object *pctx;
7076 unsigned long pctx_paddr;
7077 u32 pcbr;
7078 int pctx_size = 24*1024;
7079
7080 pcbr = I915_READ(VLV_PCBR);
7081 if (pcbr) {
7082 /* BIOS set it up already, grab the pre-alloc'd space */
7083 int pcbr_offset;
7084
7085 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7086 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7087 pcbr_offset,
7088 I915_GTT_OFFSET_NONE,
7089 pctx_size);
7090 goto out;
7091 }
7092
7093 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7094
7095 /*
7096 * From the Gunit register HAS:
7097 * The Gfx driver is expected to program this register and ensure
7098 * proper allocation within Gfx stolen memory. For example, this
7099 * register should be programmed such than the PCBR range does not
7100 * overlap with other ranges, such as the frame buffer, protected
7101 * memory, or any other relevant ranges.
7102 */
7103 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7104 if (!pctx) {
7105 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7106 goto out;
7107 }
7108
7109 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
7110 I915_WRITE(VLV_PCBR, pctx_paddr);
7111
7112 out:
7113 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7114 dev_priv->vlv_pctx = pctx;
7115 }
7116
7117 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7118 {
7119 if (WARN_ON(!dev_priv->vlv_pctx))
7120 return;
7121
7122 i915_gem_object_put(dev_priv->vlv_pctx);
7123 dev_priv->vlv_pctx = NULL;
7124 }
7125
7126 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7127 {
7128 dev_priv->gt_pm.rps.gpll_ref_freq =
7129 vlv_get_cck_clock(dev_priv, "GPLL ref",
7130 CCK_GPLL_CLOCK_CONTROL,
7131 dev_priv->czclk_freq);
7132
7133 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7134 dev_priv->gt_pm.rps.gpll_ref_freq);
7135 }
7136
7137 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7138 {
7139 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7140 u32 val;
7141
7142 valleyview_setup_pctx(dev_priv);
7143
7144 vlv_init_gpll_ref_freq(dev_priv);
7145
7146 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7147 switch ((val >> 6) & 3) {
7148 case 0:
7149 case 1:
7150 dev_priv->mem_freq = 800;
7151 break;
7152 case 2:
7153 dev_priv->mem_freq = 1066;
7154 break;
7155 case 3:
7156 dev_priv->mem_freq = 1333;
7157 break;
7158 }
7159 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7160
7161 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7162 rps->rp0_freq = rps->max_freq;
7163 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7164 intel_gpu_freq(dev_priv, rps->max_freq),
7165 rps->max_freq);
7166
7167 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7168 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7169 intel_gpu_freq(dev_priv, rps->efficient_freq),
7170 rps->efficient_freq);
7171
7172 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7173 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7174 intel_gpu_freq(dev_priv, rps->rp1_freq),
7175 rps->rp1_freq);
7176
7177 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7178 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7179 intel_gpu_freq(dev_priv, rps->min_freq),
7180 rps->min_freq);
7181 }
7182
7183 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7184 {
7185 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7186 u32 val;
7187
7188 cherryview_setup_pctx(dev_priv);
7189
7190 vlv_init_gpll_ref_freq(dev_priv);
7191
7192 mutex_lock(&dev_priv->sb_lock);
7193 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7194 mutex_unlock(&dev_priv->sb_lock);
7195
7196 switch ((val >> 2) & 0x7) {
7197 case 3:
7198 dev_priv->mem_freq = 2000;
7199 break;
7200 default:
7201 dev_priv->mem_freq = 1600;
7202 break;
7203 }
7204 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7205
7206 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7207 rps->rp0_freq = rps->max_freq;
7208 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7209 intel_gpu_freq(dev_priv, rps->max_freq),
7210 rps->max_freq);
7211
7212 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7213 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7214 intel_gpu_freq(dev_priv, rps->efficient_freq),
7215 rps->efficient_freq);
7216
7217 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7218 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7219 intel_gpu_freq(dev_priv, rps->rp1_freq),
7220 rps->rp1_freq);
7221
7222 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7223 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7224 intel_gpu_freq(dev_priv, rps->min_freq),
7225 rps->min_freq);
7226
7227 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7228 rps->min_freq) & 1,
7229 "Odd GPU freq values\n");
7230 }
7231
7232 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7233 {
7234 valleyview_cleanup_pctx(dev_priv);
7235 }
7236
7237 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7238 {
7239 struct intel_engine_cs *engine;
7240 enum intel_engine_id id;
7241 u32 gtfifodbg, rc6_mode = 0, pcbr;
7242
7243 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7244 GT_FIFO_FREE_ENTRIES_CHV);
7245 if (gtfifodbg) {
7246 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7247 gtfifodbg);
7248 I915_WRITE(GTFIFODBG, gtfifodbg);
7249 }
7250
7251 cherryview_check_pctx(dev_priv);
7252
7253 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7254 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7255 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7256
7257 /* Disable RC states. */
7258 I915_WRITE(GEN6_RC_CONTROL, 0);
7259
7260 /* 2a: Program RC6 thresholds.*/
7261 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7262 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7263 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7264
7265 for_each_engine(engine, dev_priv, id)
7266 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7267 I915_WRITE(GEN6_RC_SLEEP, 0);
7268
7269 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7270 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7271
7272 /* Allows RC6 residency counter to work */
7273 I915_WRITE(VLV_COUNTER_CONTROL,
7274 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7275 VLV_MEDIA_RC6_COUNT_EN |
7276 VLV_RENDER_RC6_COUNT_EN));
7277
7278 /* For now we assume BIOS is allocating and populating the PCBR */
7279 pcbr = I915_READ(VLV_PCBR);
7280
7281 /* 3: Enable RC6 */
7282 if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7283 (pcbr >> VLV_PCBR_ADDR_SHIFT))
7284 rc6_mode = GEN7_RC_CTL_TO_MODE;
7285
7286 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7287
7288 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7289 }
7290
7291 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7292 {
7293 u32 val;
7294
7295 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7296
7297 /* 1: Program defaults and thresholds for RPS*/
7298 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7299 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7300 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7301 I915_WRITE(GEN6_RP_UP_EI, 66000);
7302 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7303
7304 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7305
7306 /* 2: Enable RPS */
7307 I915_WRITE(GEN6_RP_CONTROL,
7308 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7309 GEN6_RP_MEDIA_IS_GFX |
7310 GEN6_RP_ENABLE |
7311 GEN6_RP_UP_BUSY_AVG |
7312 GEN6_RP_DOWN_IDLE_AVG);
7313
7314 /* Setting Fixed Bias */
7315 val = VLV_OVERRIDE_EN |
7316 VLV_SOC_TDP_EN |
7317 CHV_BIAS_CPU_50_SOC_50;
7318 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7319
7320 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7321
7322 /* RPS code assumes GPLL is used */
7323 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7324
7325 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7326 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7327
7328 reset_rps(dev_priv, valleyview_set_rps);
7329
7330 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7331 }
7332
7333 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7334 {
7335 struct intel_engine_cs *engine;
7336 enum intel_engine_id id;
7337 u32 gtfifodbg, rc6_mode = 0;
7338
7339 valleyview_check_pctx(dev_priv);
7340
7341 gtfifodbg = I915_READ(GTFIFODBG);
7342 if (gtfifodbg) {
7343 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7344 gtfifodbg);
7345 I915_WRITE(GTFIFODBG, gtfifodbg);
7346 }
7347
7348 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7349
7350 /* Disable RC states. */
7351 I915_WRITE(GEN6_RC_CONTROL, 0);
7352
7353 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7354 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7355 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7356
7357 for_each_engine(engine, dev_priv, id)
7358 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7359
7360 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7361
7362 /* Allows RC6 residency counter to work */
7363 I915_WRITE(VLV_COUNTER_CONTROL,
7364 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7365 VLV_MEDIA_RC0_COUNT_EN |
7366 VLV_RENDER_RC0_COUNT_EN |
7367 VLV_MEDIA_RC6_COUNT_EN |
7368 VLV_RENDER_RC6_COUNT_EN));
7369
7370 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7371 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7372
7373 intel_print_rc6_info(dev_priv, rc6_mode);
7374
7375 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7376
7377 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7378 }
7379
7380 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7381 {
7382 u32 val;
7383
7384 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7385
7386 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7387 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7388 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7389 I915_WRITE(GEN6_RP_UP_EI, 66000);
7390 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7391
7392 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7393
7394 I915_WRITE(GEN6_RP_CONTROL,
7395 GEN6_RP_MEDIA_TURBO |
7396 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7397 GEN6_RP_MEDIA_IS_GFX |
7398 GEN6_RP_ENABLE |
7399 GEN6_RP_UP_BUSY_AVG |
7400 GEN6_RP_DOWN_IDLE_CONT);
7401
7402 /* Setting Fixed Bias */
7403 val = VLV_OVERRIDE_EN |
7404 VLV_SOC_TDP_EN |
7405 VLV_BIAS_CPU_125_SOC_875;
7406 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7407
7408 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7409
7410 /* RPS code assumes GPLL is used */
7411 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7412
7413 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7414 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7415
7416 reset_rps(dev_priv, valleyview_set_rps);
7417
7418 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7419 }
7420
7421 static unsigned long intel_pxfreq(u32 vidfreq)
7422 {
7423 unsigned long freq;
7424 int div = (vidfreq & 0x3f0000) >> 16;
7425 int post = (vidfreq & 0x3000) >> 12;
7426 int pre = (vidfreq & 0x7);
7427
7428 if (!pre)
7429 return 0;
7430
7431 freq = ((div * 133333) / ((1<<post) * pre));
7432
7433 return freq;
7434 }
7435
7436 static const struct cparams {
7437 u16 i;
7438 u16 t;
7439 u16 m;
7440 u16 c;
7441 } cparams[] = {
7442 { 1, 1333, 301, 28664 },
7443 { 1, 1066, 294, 24460 },
7444 { 1, 800, 294, 25192 },
7445 { 0, 1333, 276, 27605 },
7446 { 0, 1066, 276, 27605 },
7447 { 0, 800, 231, 23784 },
7448 };
7449
7450 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7451 {
7452 u64 total_count, diff, ret;
7453 u32 count1, count2, count3, m = 0, c = 0;
7454 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7455 int i;
7456
7457 lockdep_assert_held(&mchdev_lock);
7458
7459 diff1 = now - dev_priv->ips.last_time1;
7460
7461 /* Prevent division-by-zero if we are asking too fast.
7462 * Also, we don't get interesting results if we are polling
7463 * faster than once in 10ms, so just return the saved value
7464 * in such cases.
7465 */
7466 if (diff1 <= 10)
7467 return dev_priv->ips.chipset_power;
7468
7469 count1 = I915_READ(DMIEC);
7470 count2 = I915_READ(DDREC);
7471 count3 = I915_READ(CSIEC);
7472
7473 total_count = count1 + count2 + count3;
7474
7475 /* FIXME: handle per-counter overflow */
7476 if (total_count < dev_priv->ips.last_count1) {
7477 diff = ~0UL - dev_priv->ips.last_count1;
7478 diff += total_count;
7479 } else {
7480 diff = total_count - dev_priv->ips.last_count1;
7481 }
7482
7483 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7484 if (cparams[i].i == dev_priv->ips.c_m &&
7485 cparams[i].t == dev_priv->ips.r_t) {
7486 m = cparams[i].m;
7487 c = cparams[i].c;
7488 break;
7489 }
7490 }
7491
7492 diff = div_u64(diff, diff1);
7493 ret = ((m * diff) + c);
7494 ret = div_u64(ret, 10);
7495
7496 dev_priv->ips.last_count1 = total_count;
7497 dev_priv->ips.last_time1 = now;
7498
7499 dev_priv->ips.chipset_power = ret;
7500
7501 return ret;
7502 }
7503
7504 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7505 {
7506 unsigned long val;
7507
7508 if (INTEL_INFO(dev_priv)->gen != 5)
7509 return 0;
7510
7511 spin_lock_irq(&mchdev_lock);
7512
7513 val = __i915_chipset_val(dev_priv);
7514
7515 spin_unlock_irq(&mchdev_lock);
7516
7517 return val;
7518 }
7519
7520 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7521 {
7522 unsigned long m, x, b;
7523 u32 tsfs;
7524
7525 tsfs = I915_READ(TSFS);
7526
7527 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7528 x = I915_READ8(TR1);
7529
7530 b = tsfs & TSFS_INTR_MASK;
7531
7532 return ((m * x) / 127) - b;
7533 }
7534
7535 static int _pxvid_to_vd(u8 pxvid)
7536 {
7537 if (pxvid == 0)
7538 return 0;
7539
7540 if (pxvid >= 8 && pxvid < 31)
7541 pxvid = 31;
7542
7543 return (pxvid + 2) * 125;
7544 }
7545
7546 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7547 {
7548 const int vd = _pxvid_to_vd(pxvid);
7549 const int vm = vd - 1125;
7550
7551 if (INTEL_INFO(dev_priv)->is_mobile)
7552 return vm > 0 ? vm : 0;
7553
7554 return vd;
7555 }
7556
7557 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7558 {
7559 u64 now, diff, diffms;
7560 u32 count;
7561
7562 lockdep_assert_held(&mchdev_lock);
7563
7564 now = ktime_get_raw_ns();
7565 diffms = now - dev_priv->ips.last_time2;
7566 do_div(diffms, NSEC_PER_MSEC);
7567
7568 /* Don't divide by 0 */
7569 if (!diffms)
7570 return;
7571
7572 count = I915_READ(GFXEC);
7573
7574 if (count < dev_priv->ips.last_count2) {
7575 diff = ~0UL - dev_priv->ips.last_count2;
7576 diff += count;
7577 } else {
7578 diff = count - dev_priv->ips.last_count2;
7579 }
7580
7581 dev_priv->ips.last_count2 = count;
7582 dev_priv->ips.last_time2 = now;
7583
7584 /* More magic constants... */
7585 diff = diff * 1181;
7586 diff = div_u64(diff, diffms * 10);
7587 dev_priv->ips.gfx_power = diff;
7588 }
7589
7590 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7591 {
7592 if (INTEL_INFO(dev_priv)->gen != 5)
7593 return;
7594
7595 spin_lock_irq(&mchdev_lock);
7596
7597 __i915_update_gfx_val(dev_priv);
7598
7599 spin_unlock_irq(&mchdev_lock);
7600 }
7601
7602 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7603 {
7604 unsigned long t, corr, state1, corr2, state2;
7605 u32 pxvid, ext_v;
7606
7607 lockdep_assert_held(&mchdev_lock);
7608
7609 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7610 pxvid = (pxvid >> 24) & 0x7f;
7611 ext_v = pvid_to_extvid(dev_priv, pxvid);
7612
7613 state1 = ext_v;
7614
7615 t = i915_mch_val(dev_priv);
7616
7617 /* Revel in the empirically derived constants */
7618
7619 /* Correction factor in 1/100000 units */
7620 if (t > 80)
7621 corr = ((t * 2349) + 135940);
7622 else if (t >= 50)
7623 corr = ((t * 964) + 29317);
7624 else /* < 50 */
7625 corr = ((t * 301) + 1004);
7626
7627 corr = corr * ((150142 * state1) / 10000 - 78642);
7628 corr /= 100000;
7629 corr2 = (corr * dev_priv->ips.corr);
7630
7631 state2 = (corr2 * state1) / 10000;
7632 state2 /= 100; /* convert to mW */
7633
7634 __i915_update_gfx_val(dev_priv);
7635
7636 return dev_priv->ips.gfx_power + state2;
7637 }
7638
7639 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7640 {
7641 unsigned long val;
7642
7643 if (INTEL_INFO(dev_priv)->gen != 5)
7644 return 0;
7645
7646 spin_lock_irq(&mchdev_lock);
7647
7648 val = __i915_gfx_val(dev_priv);
7649
7650 spin_unlock_irq(&mchdev_lock);
7651
7652 return val;
7653 }
7654
7655 /**
7656 * i915_read_mch_val - return value for IPS use
7657 *
7658 * Calculate and return a value for the IPS driver to use when deciding whether
7659 * we have thermal and power headroom to increase CPU or GPU power budget.
7660 */
7661 unsigned long i915_read_mch_val(void)
7662 {
7663 struct drm_i915_private *dev_priv;
7664 unsigned long chipset_val, graphics_val, ret = 0;
7665
7666 spin_lock_irq(&mchdev_lock);
7667 if (!i915_mch_dev)
7668 goto out_unlock;
7669 dev_priv = i915_mch_dev;
7670
7671 chipset_val = __i915_chipset_val(dev_priv);
7672 graphics_val = __i915_gfx_val(dev_priv);
7673
7674 ret = chipset_val + graphics_val;
7675
7676 out_unlock:
7677 spin_unlock_irq(&mchdev_lock);
7678
7679 return ret;
7680 }
7681 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7682
7683 /**
7684 * i915_gpu_raise - raise GPU frequency limit
7685 *
7686 * Raise the limit; IPS indicates we have thermal headroom.
7687 */
7688 bool i915_gpu_raise(void)
7689 {
7690 struct drm_i915_private *dev_priv;
7691 bool ret = true;
7692
7693 spin_lock_irq(&mchdev_lock);
7694 if (!i915_mch_dev) {
7695 ret = false;
7696 goto out_unlock;
7697 }
7698 dev_priv = i915_mch_dev;
7699
7700 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7701 dev_priv->ips.max_delay--;
7702
7703 out_unlock:
7704 spin_unlock_irq(&mchdev_lock);
7705
7706 return ret;
7707 }
7708 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7709
7710 /**
7711 * i915_gpu_lower - lower GPU frequency limit
7712 *
7713 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7714 * frequency maximum.
7715 */
7716 bool i915_gpu_lower(void)
7717 {
7718 struct drm_i915_private *dev_priv;
7719 bool ret = true;
7720
7721 spin_lock_irq(&mchdev_lock);
7722 if (!i915_mch_dev) {
7723 ret = false;
7724 goto out_unlock;
7725 }
7726 dev_priv = i915_mch_dev;
7727
7728 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7729 dev_priv->ips.max_delay++;
7730
7731 out_unlock:
7732 spin_unlock_irq(&mchdev_lock);
7733
7734 return ret;
7735 }
7736 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7737
7738 /**
7739 * i915_gpu_busy - indicate GPU business to IPS
7740 *
7741 * Tell the IPS driver whether or not the GPU is busy.
7742 */
7743 bool i915_gpu_busy(void)
7744 {
7745 bool ret = false;
7746
7747 spin_lock_irq(&mchdev_lock);
7748 if (i915_mch_dev)
7749 ret = i915_mch_dev->gt.awake;
7750 spin_unlock_irq(&mchdev_lock);
7751
7752 return ret;
7753 }
7754 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7755
7756 /**
7757 * i915_gpu_turbo_disable - disable graphics turbo
7758 *
7759 * Disable graphics turbo by resetting the max frequency and setting the
7760 * current frequency to the default.
7761 */
7762 bool i915_gpu_turbo_disable(void)
7763 {
7764 struct drm_i915_private *dev_priv;
7765 bool ret = true;
7766
7767 spin_lock_irq(&mchdev_lock);
7768 if (!i915_mch_dev) {
7769 ret = false;
7770 goto out_unlock;
7771 }
7772 dev_priv = i915_mch_dev;
7773
7774 dev_priv->ips.max_delay = dev_priv->ips.fstart;
7775
7776 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7777 ret = false;
7778
7779 out_unlock:
7780 spin_unlock_irq(&mchdev_lock);
7781
7782 return ret;
7783 }
7784 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7785
7786 /**
7787 * Tells the intel_ips driver that the i915 driver is now loaded, if
7788 * IPS got loaded first.
7789 *
7790 * This awkward dance is so that neither module has to depend on the
7791 * other in order for IPS to do the appropriate communication of
7792 * GPU turbo limits to i915.
7793 */
7794 static void
7795 ips_ping_for_i915_load(void)
7796 {
7797 void (*link)(void);
7798
7799 link = symbol_get(ips_link_to_i915_driver);
7800 if (link) {
7801 link();
7802 symbol_put(ips_link_to_i915_driver);
7803 }
7804 }
7805
7806 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7807 {
7808 /* We only register the i915 ips part with intel-ips once everything is
7809 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7810 spin_lock_irq(&mchdev_lock);
7811 i915_mch_dev = dev_priv;
7812 spin_unlock_irq(&mchdev_lock);
7813
7814 ips_ping_for_i915_load();
7815 }
7816
7817 void intel_gpu_ips_teardown(void)
7818 {
7819 spin_lock_irq(&mchdev_lock);
7820 i915_mch_dev = NULL;
7821 spin_unlock_irq(&mchdev_lock);
7822 }
7823
7824 static void intel_init_emon(struct drm_i915_private *dev_priv)
7825 {
7826 u32 lcfuse;
7827 u8 pxw[16];
7828 int i;
7829
7830 /* Disable to program */
7831 I915_WRITE(ECR, 0);
7832 POSTING_READ(ECR);
7833
7834 /* Program energy weights for various events */
7835 I915_WRITE(SDEW, 0x15040d00);
7836 I915_WRITE(CSIEW0, 0x007f0000);
7837 I915_WRITE(CSIEW1, 0x1e220004);
7838 I915_WRITE(CSIEW2, 0x04000004);
7839
7840 for (i = 0; i < 5; i++)
7841 I915_WRITE(PEW(i), 0);
7842 for (i = 0; i < 3; i++)
7843 I915_WRITE(DEW(i), 0);
7844
7845 /* Program P-state weights to account for frequency power adjustment */
7846 for (i = 0; i < 16; i++) {
7847 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7848 unsigned long freq = intel_pxfreq(pxvidfreq);
7849 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7850 PXVFREQ_PX_SHIFT;
7851 unsigned long val;
7852
7853 val = vid * vid;
7854 val *= (freq / 1000);
7855 val *= 255;
7856 val /= (127*127*900);
7857 if (val > 0xff)
7858 DRM_ERROR("bad pxval: %ld\n", val);
7859 pxw[i] = val;
7860 }
7861 /* Render standby states get 0 weight */
7862 pxw[14] = 0;
7863 pxw[15] = 0;
7864
7865 for (i = 0; i < 4; i++) {
7866 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7867 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7868 I915_WRITE(PXW(i), val);
7869 }
7870
7871 /* Adjust magic regs to magic values (more experimental results) */
7872 I915_WRITE(OGW0, 0);
7873 I915_WRITE(OGW1, 0);
7874 I915_WRITE(EG0, 0x00007f00);
7875 I915_WRITE(EG1, 0x0000000e);
7876 I915_WRITE(EG2, 0x000e0000);
7877 I915_WRITE(EG3, 0x68000300);
7878 I915_WRITE(EG4, 0x42000000);
7879 I915_WRITE(EG5, 0x00140031);
7880 I915_WRITE(EG6, 0);
7881 I915_WRITE(EG7, 0);
7882
7883 for (i = 0; i < 8; i++)
7884 I915_WRITE(PXWL(i), 0);
7885
7886 /* Enable PMON + select events */
7887 I915_WRITE(ECR, 0x80000019);
7888
7889 lcfuse = I915_READ(LCFUSE02);
7890
7891 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7892 }
7893
7894 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7895 {
7896 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7897
7898 /*
7899 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7900 * requirement.
7901 */
7902 if (!i915_modparams.enable_rc6) {
7903 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7904 intel_runtime_pm_get(dev_priv);
7905 }
7906
7907 mutex_lock(&dev_priv->drm.struct_mutex);
7908 mutex_lock(&dev_priv->pcu_lock);
7909
7910 /* Initialize RPS limits (for userspace) */
7911 if (IS_CHERRYVIEW(dev_priv))
7912 cherryview_init_gt_powersave(dev_priv);
7913 else if (IS_VALLEYVIEW(dev_priv))
7914 valleyview_init_gt_powersave(dev_priv);
7915 else if (INTEL_GEN(dev_priv) >= 6)
7916 gen6_init_rps_frequencies(dev_priv);
7917
7918 /* Derive initial user preferences/limits from the hardware limits */
7919 rps->idle_freq = rps->min_freq;
7920 rps->cur_freq = rps->idle_freq;
7921
7922 rps->max_freq_softlimit = rps->max_freq;
7923 rps->min_freq_softlimit = rps->min_freq;
7924
7925 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7926 rps->min_freq_softlimit =
7927 max_t(int,
7928 rps->efficient_freq,
7929 intel_freq_opcode(dev_priv, 450));
7930
7931 /* After setting max-softlimit, find the overclock max freq */
7932 if (IS_GEN6(dev_priv) ||
7933 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7934 u32 params = 0;
7935
7936 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7937 if (params & BIT(31)) { /* OC supported */
7938 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7939 (rps->max_freq & 0xff) * 50,
7940 (params & 0xff) * 50);
7941 rps->max_freq = params & 0xff;
7942 }
7943 }
7944
7945 /* Finally allow us to boost to max by default */
7946 rps->boost_freq = rps->max_freq;
7947
7948 mutex_unlock(&dev_priv->pcu_lock);
7949 mutex_unlock(&dev_priv->drm.struct_mutex);
7950
7951 intel_autoenable_gt_powersave(dev_priv);
7952 }
7953
7954 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7955 {
7956 if (IS_VALLEYVIEW(dev_priv))
7957 valleyview_cleanup_gt_powersave(dev_priv);
7958
7959 if (!i915_modparams.enable_rc6)
7960 intel_runtime_pm_put(dev_priv);
7961 }
7962
7963 /**
7964 * intel_suspend_gt_powersave - suspend PM work and helper threads
7965 * @dev_priv: i915 device
7966 *
7967 * We don't want to disable RC6 or other features here, we just want
7968 * to make sure any work we've queued has finished and won't bother
7969 * us while we're suspended.
7970 */
7971 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7972 {
7973 if (INTEL_GEN(dev_priv) < 6)
7974 return;
7975
7976 if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
7977 intel_runtime_pm_put(dev_priv);
7978
7979 /* gen6_rps_idle() will be called later to disable interrupts */
7980 }
7981
7982 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7983 {
7984 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7985 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7986 intel_disable_gt_powersave(dev_priv);
7987
7988 gen6_reset_rps_interrupts(dev_priv);
7989 }
7990
7991 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
7992 {
7993 lockdep_assert_held(&i915->pcu_lock);
7994
7995 if (!i915->gt_pm.llc_pstate.enabled)
7996 return;
7997
7998 /* Currently there is no HW configuration to be done to disable. */
7999
8000 i915->gt_pm.llc_pstate.enabled = false;
8001 }
8002
8003 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8004 {
8005 lockdep_assert_held(&dev_priv->pcu_lock);
8006
8007 if (!dev_priv->gt_pm.rc6.enabled)
8008 return;
8009
8010 if (INTEL_GEN(dev_priv) >= 9)
8011 gen9_disable_rc6(dev_priv);
8012 else if (IS_CHERRYVIEW(dev_priv))
8013 cherryview_disable_rc6(dev_priv);
8014 else if (IS_VALLEYVIEW(dev_priv))
8015 valleyview_disable_rc6(dev_priv);
8016 else if (INTEL_GEN(dev_priv) >= 6)
8017 gen6_disable_rc6(dev_priv);
8018
8019 dev_priv->gt_pm.rc6.enabled = false;
8020 }
8021
8022 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8023 {
8024 lockdep_assert_held(&dev_priv->pcu_lock);
8025
8026 if (!dev_priv->gt_pm.rps.enabled)
8027 return;
8028
8029 if (INTEL_GEN(dev_priv) >= 9)
8030 gen9_disable_rps(dev_priv);
8031 else if (IS_CHERRYVIEW(dev_priv))
8032 cherryview_disable_rps(dev_priv);
8033 else if (IS_VALLEYVIEW(dev_priv))
8034 valleyview_disable_rps(dev_priv);
8035 else if (INTEL_GEN(dev_priv) >= 6)
8036 gen6_disable_rps(dev_priv);
8037 else if (IS_IRONLAKE_M(dev_priv))
8038 ironlake_disable_drps(dev_priv);
8039
8040 dev_priv->gt_pm.rps.enabled = false;
8041 }
8042
8043 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8044 {
8045 mutex_lock(&dev_priv->pcu_lock);
8046
8047 intel_disable_rc6(dev_priv);
8048 intel_disable_rps(dev_priv);
8049 if (HAS_LLC(dev_priv))
8050 intel_disable_llc_pstate(dev_priv);
8051
8052 mutex_unlock(&dev_priv->pcu_lock);
8053 }
8054
8055 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8056 {
8057 lockdep_assert_held(&i915->pcu_lock);
8058
8059 if (i915->gt_pm.llc_pstate.enabled)
8060 return;
8061
8062 gen6_update_ring_freq(i915);
8063
8064 i915->gt_pm.llc_pstate.enabled = true;
8065 }
8066
8067 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8068 {
8069 lockdep_assert_held(&dev_priv->pcu_lock);
8070
8071 if (dev_priv->gt_pm.rc6.enabled)
8072 return;
8073
8074 if (IS_CHERRYVIEW(dev_priv))
8075 cherryview_enable_rc6(dev_priv);
8076 else if (IS_VALLEYVIEW(dev_priv))
8077 valleyview_enable_rc6(dev_priv);
8078 else if (INTEL_GEN(dev_priv) >= 9)
8079 gen9_enable_rc6(dev_priv);
8080 else if (IS_BROADWELL(dev_priv))
8081 gen8_enable_rc6(dev_priv);
8082 else if (INTEL_GEN(dev_priv) >= 6)
8083 gen6_enable_rc6(dev_priv);
8084
8085 dev_priv->gt_pm.rc6.enabled = true;
8086 }
8087
8088 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8089 {
8090 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8091
8092 lockdep_assert_held(&dev_priv->pcu_lock);
8093
8094 if (rps->enabled)
8095 return;
8096
8097 if (IS_CHERRYVIEW(dev_priv)) {
8098 cherryview_enable_rps(dev_priv);
8099 } else if (IS_VALLEYVIEW(dev_priv)) {
8100 valleyview_enable_rps(dev_priv);
8101 } else if (INTEL_GEN(dev_priv) >= 9) {
8102 gen9_enable_rps(dev_priv);
8103 } else if (IS_BROADWELL(dev_priv)) {
8104 gen8_enable_rps(dev_priv);
8105 } else if (INTEL_GEN(dev_priv) >= 6) {
8106 gen6_enable_rps(dev_priv);
8107 } else if (IS_IRONLAKE_M(dev_priv)) {
8108 ironlake_enable_drps(dev_priv);
8109 intel_init_emon(dev_priv);
8110 }
8111
8112 WARN_ON(rps->max_freq < rps->min_freq);
8113 WARN_ON(rps->idle_freq > rps->max_freq);
8114
8115 WARN_ON(rps->efficient_freq < rps->min_freq);
8116 WARN_ON(rps->efficient_freq > rps->max_freq);
8117
8118 rps->enabled = true;
8119 }
8120
8121 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8122 {
8123 /* Powersaving is controlled by the host when inside a VM */
8124 if (intel_vgpu_active(dev_priv))
8125 return;
8126
8127 mutex_lock(&dev_priv->pcu_lock);
8128
8129 intel_enable_rc6(dev_priv);
8130 intel_enable_rps(dev_priv);
8131 if (HAS_LLC(dev_priv))
8132 intel_enable_llc_pstate(dev_priv);
8133
8134 mutex_unlock(&dev_priv->pcu_lock);
8135 }
8136
8137 static void __intel_autoenable_gt_powersave(struct work_struct *work)
8138 {
8139 struct drm_i915_private *dev_priv =
8140 container_of(work,
8141 typeof(*dev_priv),
8142 gt_pm.autoenable_work.work);
8143 struct intel_engine_cs *rcs;
8144 struct drm_i915_gem_request *req;
8145
8146 rcs = dev_priv->engine[RCS];
8147 if (rcs->last_retired_context)
8148 goto out;
8149
8150 if (!rcs->init_context)
8151 goto out;
8152
8153 mutex_lock(&dev_priv->drm.struct_mutex);
8154
8155 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
8156 if (IS_ERR(req))
8157 goto unlock;
8158
8159 if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8160 rcs->init_context(req);
8161
8162 /* Mark the device busy, calling intel_enable_gt_powersave() */
8163 i915_add_request(req);
8164
8165 unlock:
8166 mutex_unlock(&dev_priv->drm.struct_mutex);
8167 out:
8168 intel_runtime_pm_put(dev_priv);
8169 }
8170
8171 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
8172 {
8173 if (IS_IRONLAKE_M(dev_priv)) {
8174 ironlake_enable_drps(dev_priv);
8175 intel_init_emon(dev_priv);
8176 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
8177 /*
8178 * PCU communication is slow and this doesn't need to be
8179 * done at any specific time, so do this out of our fast path
8180 * to make resume and init faster.
8181 *
8182 * We depend on the HW RC6 power context save/restore
8183 * mechanism when entering D3 through runtime PM suspend. So
8184 * disable RPM until RPS/RC6 is properly setup. We can only
8185 * get here via the driver load/system resume/runtime resume
8186 * paths, so the _noresume version is enough (and in case of
8187 * runtime resume it's necessary).
8188 */
8189 if (queue_delayed_work(dev_priv->wq,
8190 &dev_priv->gt_pm.autoenable_work,
8191 round_jiffies_up_relative(HZ)))
8192 intel_runtime_pm_get_noresume(dev_priv);
8193 }
8194 }
8195
8196 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8197 {
8198 /*
8199 * On Ibex Peak and Cougar Point, we need to disable clock
8200 * gating for the panel power sequencer or it will fail to
8201 * start up when no ports are active.
8202 */
8203 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8204 }
8205
8206 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8207 {
8208 enum pipe pipe;
8209
8210 for_each_pipe(dev_priv, pipe) {
8211 I915_WRITE(DSPCNTR(pipe),
8212 I915_READ(DSPCNTR(pipe)) |
8213 DISPPLANE_TRICKLE_FEED_DISABLE);
8214
8215 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8216 POSTING_READ(DSPSURF(pipe));
8217 }
8218 }
8219
8220 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8221 {
8222 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8223
8224 /*
8225 * Required for FBC
8226 * WaFbcDisableDpfcClockGating:ilk
8227 */
8228 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8229 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8230 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8231
8232 I915_WRITE(PCH_3DCGDIS0,
8233 MARIUNIT_CLOCK_GATE_DISABLE |
8234 SVSMUNIT_CLOCK_GATE_DISABLE);
8235 I915_WRITE(PCH_3DCGDIS1,
8236 VFMUNIT_CLOCK_GATE_DISABLE);
8237
8238 /*
8239 * According to the spec the following bits should be set in
8240 * order to enable memory self-refresh
8241 * The bit 22/21 of 0x42004
8242 * The bit 5 of 0x42020
8243 * The bit 15 of 0x45000
8244 */
8245 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8246 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8247 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8248 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8249 I915_WRITE(DISP_ARB_CTL,
8250 (I915_READ(DISP_ARB_CTL) |
8251 DISP_FBC_WM_DIS));
8252
8253 /*
8254 * Based on the document from hardware guys the following bits
8255 * should be set unconditionally in order to enable FBC.
8256 * The bit 22 of 0x42000
8257 * The bit 22 of 0x42004
8258 * The bit 7,8,9 of 0x42020.
8259 */
8260 if (IS_IRONLAKE_M(dev_priv)) {
8261 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8262 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8263 I915_READ(ILK_DISPLAY_CHICKEN1) |
8264 ILK_FBCQ_DIS);
8265 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8266 I915_READ(ILK_DISPLAY_CHICKEN2) |
8267 ILK_DPARB_GATE);
8268 }
8269
8270 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8271
8272 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8273 I915_READ(ILK_DISPLAY_CHICKEN2) |
8274 ILK_ELPIN_409_SELECT);
8275 I915_WRITE(_3D_CHICKEN2,
8276 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8277 _3D_CHICKEN2_WM_READ_PIPELINED);
8278
8279 /* WaDisableRenderCachePipelinedFlush:ilk */
8280 I915_WRITE(CACHE_MODE_0,
8281 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8282
8283 /* WaDisable_RenderCache_OperationalFlush:ilk */
8284 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8285
8286 g4x_disable_trickle_feed(dev_priv);
8287
8288 ibx_init_clock_gating(dev_priv);
8289 }
8290
8291 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8292 {
8293 int pipe;
8294 uint32_t val;
8295
8296 /*
8297 * On Ibex Peak and Cougar Point, we need to disable clock
8298 * gating for the panel power sequencer or it will fail to
8299 * start up when no ports are active.
8300 */
8301 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8302 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8303 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8304 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8305 DPLS_EDP_PPS_FIX_DIS);
8306 /* The below fixes the weird display corruption, a few pixels shifted
8307 * downward, on (only) LVDS of some HP laptops with IVY.
8308 */
8309 for_each_pipe(dev_priv, pipe) {
8310 val = I915_READ(TRANS_CHICKEN2(pipe));
8311 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8312 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8313 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8314 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8315 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8316 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8317 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8318 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8319 }
8320 /* WADP0ClockGatingDisable */
8321 for_each_pipe(dev_priv, pipe) {
8322 I915_WRITE(TRANS_CHICKEN1(pipe),
8323 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8324 }
8325 }
8326
8327 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8328 {
8329 uint32_t tmp;
8330
8331 tmp = I915_READ(MCH_SSKPD);
8332 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8333 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8334 tmp);
8335 }
8336
8337 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8338 {
8339 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8340
8341 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8342
8343 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8344 I915_READ(ILK_DISPLAY_CHICKEN2) |
8345 ILK_ELPIN_409_SELECT);
8346
8347 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8348 I915_WRITE(_3D_CHICKEN,
8349 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8350
8351 /* WaDisable_RenderCache_OperationalFlush:snb */
8352 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8353
8354 /*
8355 * BSpec recoomends 8x4 when MSAA is used,
8356 * however in practice 16x4 seems fastest.
8357 *
8358 * Note that PS/WM thread counts depend on the WIZ hashing
8359 * disable bit, which we don't touch here, but it's good
8360 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8361 */
8362 I915_WRITE(GEN6_GT_MODE,
8363 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8364
8365 I915_WRITE(CACHE_MODE_0,
8366 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8367
8368 I915_WRITE(GEN6_UCGCTL1,
8369 I915_READ(GEN6_UCGCTL1) |
8370 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8371 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8372
8373 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8374 * gating disable must be set. Failure to set it results in
8375 * flickering pixels due to Z write ordering failures after
8376 * some amount of runtime in the Mesa "fire" demo, and Unigine
8377 * Sanctuary and Tropics, and apparently anything else with
8378 * alpha test or pixel discard.
8379 *
8380 * According to the spec, bit 11 (RCCUNIT) must also be set,
8381 * but we didn't debug actual testcases to find it out.
8382 *
8383 * WaDisableRCCUnitClockGating:snb
8384 * WaDisableRCPBUnitClockGating:snb
8385 */
8386 I915_WRITE(GEN6_UCGCTL2,
8387 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8388 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8389
8390 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8391 I915_WRITE(_3D_CHICKEN3,
8392 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8393
8394 /*
8395 * Bspec says:
8396 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8397 * 3DSTATE_SF number of SF output attributes is more than 16."
8398 */
8399 I915_WRITE(_3D_CHICKEN3,
8400 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8401
8402 /*
8403 * According to the spec the following bits should be
8404 * set in order to enable memory self-refresh and fbc:
8405 * The bit21 and bit22 of 0x42000
8406 * The bit21 and bit22 of 0x42004
8407 * The bit5 and bit7 of 0x42020
8408 * The bit14 of 0x70180
8409 * The bit14 of 0x71180
8410 *
8411 * WaFbcAsynchFlipDisableFbcQueue:snb
8412 */
8413 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8414 I915_READ(ILK_DISPLAY_CHICKEN1) |
8415 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8416 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8417 I915_READ(ILK_DISPLAY_CHICKEN2) |
8418 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8419 I915_WRITE(ILK_DSPCLK_GATE_D,
8420 I915_READ(ILK_DSPCLK_GATE_D) |
8421 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8422 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8423
8424 g4x_disable_trickle_feed(dev_priv);
8425
8426 cpt_init_clock_gating(dev_priv);
8427
8428 gen6_check_mch_setup(dev_priv);
8429 }
8430
8431 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8432 {
8433 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8434
8435 /*
8436 * WaVSThreadDispatchOverride:ivb,vlv
8437 *
8438 * This actually overrides the dispatch
8439 * mode for all thread types.
8440 */
8441 reg &= ~GEN7_FF_SCHED_MASK;
8442 reg |= GEN7_FF_TS_SCHED_HW;
8443 reg |= GEN7_FF_VS_SCHED_HW;
8444 reg |= GEN7_FF_DS_SCHED_HW;
8445
8446 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8447 }
8448
8449 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8450 {
8451 /*
8452 * TODO: this bit should only be enabled when really needed, then
8453 * disabled when not needed anymore in order to save power.
8454 */
8455 if (HAS_PCH_LPT_LP(dev_priv))
8456 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8457 I915_READ(SOUTH_DSPCLK_GATE_D) |
8458 PCH_LP_PARTITION_LEVEL_DISABLE);
8459
8460 /* WADPOClockGatingDisable:hsw */
8461 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8462 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8463 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8464 }
8465
8466 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8467 {
8468 if (HAS_PCH_LPT_LP(dev_priv)) {
8469 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8470
8471 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8472 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8473 }
8474 }
8475
8476 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8477 int general_prio_credits,
8478 int high_prio_credits)
8479 {
8480 u32 misccpctl;
8481 u32 val;
8482
8483 /* WaTempDisableDOPClkGating:bdw */
8484 misccpctl = I915_READ(GEN7_MISCCPCTL);
8485 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8486
8487 val = I915_READ(GEN8_L3SQCREG1);
8488 val &= ~L3_PRIO_CREDITS_MASK;
8489 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8490 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8491 I915_WRITE(GEN8_L3SQCREG1, val);
8492
8493 /*
8494 * Wait at least 100 clocks before re-enabling clock gating.
8495 * See the definition of L3SQCREG1 in BSpec.
8496 */
8497 POSTING_READ(GEN8_L3SQCREG1);
8498 udelay(1);
8499 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8500 }
8501
8502 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8503 {
8504 if (!HAS_PCH_CNP(dev_priv))
8505 return;
8506
8507 /* Wa #1181 */
8508 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8509 CNP_PWM_CGE_GATING_DISABLE);
8510 }
8511
8512 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8513 {
8514 cnp_init_clock_gating(dev_priv);
8515
8516 /* This is not an Wa. Enable for better image quality */
8517 I915_WRITE(_3D_CHICKEN3,
8518 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8519
8520 /* WaEnableChickenDCPR:cnl */
8521 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8522 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8523
8524 /* WaFbcWakeMemOn:cnl */
8525 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8526 DISP_FBC_MEMORY_WAKE);
8527
8528 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8529 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8530 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
8531 I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
8532 SARBUNIT_CLKGATE_DIS);
8533 }
8534
8535 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8536 {
8537 cnp_init_clock_gating(dev_priv);
8538 gen9_init_clock_gating(dev_priv);
8539
8540 /* WaFbcNukeOnHostModify:cfl */
8541 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8542 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8543 }
8544
8545 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8546 {
8547 gen9_init_clock_gating(dev_priv);
8548
8549 /* WaDisableSDEUnitClockGating:kbl */
8550 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8551 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8552 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8553
8554 /* WaDisableGamClockGating:kbl */
8555 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8556 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8557 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8558
8559 /* WaFbcNukeOnHostModify:kbl */
8560 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8561 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8562 }
8563
8564 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8565 {
8566 gen9_init_clock_gating(dev_priv);
8567
8568 /* WAC6entrylatency:skl */
8569 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8570 FBC_LLC_FULLY_OPEN);
8571
8572 /* WaFbcNukeOnHostModify:skl */
8573 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8574 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8575 }
8576
8577 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8578 {
8579 /* The GTT cache must be disabled if the system is using 2M pages. */
8580 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8581 I915_GTT_PAGE_SIZE_2M);
8582 enum pipe pipe;
8583
8584 /* WaSwitchSolVfFArbitrationPriority:bdw */
8585 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8586
8587 /* WaPsrDPAMaskVBlankInSRD:bdw */
8588 I915_WRITE(CHICKEN_PAR1_1,
8589 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8590
8591 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8592 for_each_pipe(dev_priv, pipe) {
8593 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8594 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8595 BDW_DPRS_MASK_VBLANK_SRD);
8596 }
8597
8598 /* WaVSRefCountFullforceMissDisable:bdw */
8599 /* WaDSRefCountFullforceMissDisable:bdw */
8600 I915_WRITE(GEN7_FF_THREAD_MODE,
8601 I915_READ(GEN7_FF_THREAD_MODE) &
8602 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8603
8604 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8605 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8606
8607 /* WaDisableSDEUnitClockGating:bdw */
8608 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8609 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8610
8611 /* WaProgramL3SqcReg1Default:bdw */
8612 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8613
8614 /* WaGttCachingOffByDefault:bdw */
8615 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8616
8617 /* WaKVMNotificationOnConfigChange:bdw */
8618 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8619 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8620
8621 lpt_init_clock_gating(dev_priv);
8622
8623 /* WaDisableDopClockGating:bdw
8624 *
8625 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8626 * clock gating.
8627 */
8628 I915_WRITE(GEN6_UCGCTL1,
8629 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8630 }
8631
8632 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8633 {
8634 /* L3 caching of data atomics doesn't work -- disable it. */
8635 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8636 I915_WRITE(HSW_ROW_CHICKEN3,
8637 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8638
8639 /* This is required by WaCatErrorRejectionIssue:hsw */
8640 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8641 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8642 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8643
8644 /* WaVSRefCountFullforceMissDisable:hsw */
8645 I915_WRITE(GEN7_FF_THREAD_MODE,
8646 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8647
8648 /* WaDisable_RenderCache_OperationalFlush:hsw */
8649 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8650
8651 /* enable HiZ Raw Stall Optimization */
8652 I915_WRITE(CACHE_MODE_0_GEN7,
8653 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8654
8655 /* WaDisable4x2SubspanOptimization:hsw */
8656 I915_WRITE(CACHE_MODE_1,
8657 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8658
8659 /*
8660 * BSpec recommends 8x4 when MSAA is used,
8661 * however in practice 16x4 seems fastest.
8662 *
8663 * Note that PS/WM thread counts depend on the WIZ hashing
8664 * disable bit, which we don't touch here, but it's good
8665 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8666 */
8667 I915_WRITE(GEN7_GT_MODE,
8668 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8669
8670 /* WaSampleCChickenBitEnable:hsw */
8671 I915_WRITE(HALF_SLICE_CHICKEN3,
8672 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8673
8674 /* WaSwitchSolVfFArbitrationPriority:hsw */
8675 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8676
8677 lpt_init_clock_gating(dev_priv);
8678 }
8679
8680 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8681 {
8682 uint32_t snpcr;
8683
8684 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8685
8686 /* WaDisableEarlyCull:ivb */
8687 I915_WRITE(_3D_CHICKEN3,
8688 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8689
8690 /* WaDisableBackToBackFlipFix:ivb */
8691 I915_WRITE(IVB_CHICKEN3,
8692 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8693 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8694
8695 /* WaDisablePSDDualDispatchEnable:ivb */
8696 if (IS_IVB_GT1(dev_priv))
8697 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8698 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8699
8700 /* WaDisable_RenderCache_OperationalFlush:ivb */
8701 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8702
8703 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8704 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8705 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8706
8707 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8708 I915_WRITE(GEN7_L3CNTLREG1,
8709 GEN7_WA_FOR_GEN7_L3_CONTROL);
8710 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8711 GEN7_WA_L3_CHICKEN_MODE);
8712 if (IS_IVB_GT1(dev_priv))
8713 I915_WRITE(GEN7_ROW_CHICKEN2,
8714 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8715 else {
8716 /* must write both registers */
8717 I915_WRITE(GEN7_ROW_CHICKEN2,
8718 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8719 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8720 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8721 }
8722
8723 /* WaForceL3Serialization:ivb */
8724 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8725 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8726
8727 /*
8728 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8729 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8730 */
8731 I915_WRITE(GEN6_UCGCTL2,
8732 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8733
8734 /* This is required by WaCatErrorRejectionIssue:ivb */
8735 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8736 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8737 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8738
8739 g4x_disable_trickle_feed(dev_priv);
8740
8741 gen7_setup_fixed_func_scheduler(dev_priv);
8742
8743 if (0) { /* causes HiZ corruption on ivb:gt1 */
8744 /* enable HiZ Raw Stall Optimization */
8745 I915_WRITE(CACHE_MODE_0_GEN7,
8746 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8747 }
8748
8749 /* WaDisable4x2SubspanOptimization:ivb */
8750 I915_WRITE(CACHE_MODE_1,
8751 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8752
8753 /*
8754 * BSpec recommends 8x4 when MSAA is used,
8755 * however in practice 16x4 seems fastest.
8756 *
8757 * Note that PS/WM thread counts depend on the WIZ hashing
8758 * disable bit, which we don't touch here, but it's good
8759 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8760 */
8761 I915_WRITE(GEN7_GT_MODE,
8762 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8763
8764 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8765 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8766 snpcr |= GEN6_MBC_SNPCR_MED;
8767 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8768
8769 if (!HAS_PCH_NOP(dev_priv))
8770 cpt_init_clock_gating(dev_priv);
8771
8772 gen6_check_mch_setup(dev_priv);
8773 }
8774
8775 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8776 {
8777 /* WaDisableEarlyCull:vlv */
8778 I915_WRITE(_3D_CHICKEN3,
8779 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8780
8781 /* WaDisableBackToBackFlipFix:vlv */
8782 I915_WRITE(IVB_CHICKEN3,
8783 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8784 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8785
8786 /* WaPsdDispatchEnable:vlv */
8787 /* WaDisablePSDDualDispatchEnable:vlv */
8788 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8789 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8790 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8791
8792 /* WaDisable_RenderCache_OperationalFlush:vlv */
8793 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8794
8795 /* WaForceL3Serialization:vlv */
8796 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8797 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8798
8799 /* WaDisableDopClockGating:vlv */
8800 I915_WRITE(GEN7_ROW_CHICKEN2,
8801 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8802
8803 /* This is required by WaCatErrorRejectionIssue:vlv */
8804 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8805 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8806 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8807
8808 gen7_setup_fixed_func_scheduler(dev_priv);
8809
8810 /*
8811 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8812 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8813 */
8814 I915_WRITE(GEN6_UCGCTL2,
8815 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8816
8817 /* WaDisableL3Bank2xClockGate:vlv
8818 * Disabling L3 clock gating- MMIO 940c[25] = 1
8819 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8820 I915_WRITE(GEN7_UCGCTL4,
8821 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8822
8823 /*
8824 * BSpec says this must be set, even though
8825 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8826 */
8827 I915_WRITE(CACHE_MODE_1,
8828 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8829
8830 /*
8831 * BSpec recommends 8x4 when MSAA is used,
8832 * however in practice 16x4 seems fastest.
8833 *
8834 * Note that PS/WM thread counts depend on the WIZ hashing
8835 * disable bit, which we don't touch here, but it's good
8836 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8837 */
8838 I915_WRITE(GEN7_GT_MODE,
8839 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8840
8841 /*
8842 * WaIncreaseL3CreditsForVLVB0:vlv
8843 * This is the hardware default actually.
8844 */
8845 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8846
8847 /*
8848 * WaDisableVLVClockGating_VBIIssue:vlv
8849 * Disable clock gating on th GCFG unit to prevent a delay
8850 * in the reporting of vblank events.
8851 */
8852 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8853 }
8854
8855 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8856 {
8857 /* WaVSRefCountFullforceMissDisable:chv */
8858 /* WaDSRefCountFullforceMissDisable:chv */
8859 I915_WRITE(GEN7_FF_THREAD_MODE,
8860 I915_READ(GEN7_FF_THREAD_MODE) &
8861 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8862
8863 /* WaDisableSemaphoreAndSyncFlipWait:chv */
8864 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8865 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8866
8867 /* WaDisableCSUnitClockGating:chv */
8868 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8869 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8870
8871 /* WaDisableSDEUnitClockGating:chv */
8872 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8873 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8874
8875 /*
8876 * WaProgramL3SqcReg1Default:chv
8877 * See gfxspecs/Related Documents/Performance Guide/
8878 * LSQC Setting Recommendations.
8879 */
8880 gen8_set_l3sqc_credits(dev_priv, 38, 2);
8881
8882 /*
8883 * GTT cache may not work with big pages, so if those
8884 * are ever enabled GTT cache may need to be disabled.
8885 */
8886 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8887 }
8888
8889 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8890 {
8891 uint32_t dspclk_gate;
8892
8893 I915_WRITE(RENCLK_GATE_D1, 0);
8894 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8895 GS_UNIT_CLOCK_GATE_DISABLE |
8896 CL_UNIT_CLOCK_GATE_DISABLE);
8897 I915_WRITE(RAMCLK_GATE_D, 0);
8898 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8899 OVRUNIT_CLOCK_GATE_DISABLE |
8900 OVCUNIT_CLOCK_GATE_DISABLE;
8901 if (IS_GM45(dev_priv))
8902 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8903 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8904
8905 /* WaDisableRenderCachePipelinedFlush */
8906 I915_WRITE(CACHE_MODE_0,
8907 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8908
8909 /* WaDisable_RenderCache_OperationalFlush:g4x */
8910 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8911
8912 g4x_disable_trickle_feed(dev_priv);
8913 }
8914
8915 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8916 {
8917 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8918 I915_WRITE(RENCLK_GATE_D2, 0);
8919 I915_WRITE(DSPCLK_GATE_D, 0);
8920 I915_WRITE(RAMCLK_GATE_D, 0);
8921 I915_WRITE16(DEUC, 0);
8922 I915_WRITE(MI_ARB_STATE,
8923 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8924
8925 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8926 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8927 }
8928
8929 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8930 {
8931 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8932 I965_RCC_CLOCK_GATE_DISABLE |
8933 I965_RCPB_CLOCK_GATE_DISABLE |
8934 I965_ISC_CLOCK_GATE_DISABLE |
8935 I965_FBC_CLOCK_GATE_DISABLE);
8936 I915_WRITE(RENCLK_GATE_D2, 0);
8937 I915_WRITE(MI_ARB_STATE,
8938 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8939
8940 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8941 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8942 }
8943
8944 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8945 {
8946 u32 dstate = I915_READ(D_STATE);
8947
8948 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8949 DSTATE_DOT_CLOCK_GATING;
8950 I915_WRITE(D_STATE, dstate);
8951
8952 if (IS_PINEVIEW(dev_priv))
8953 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8954
8955 /* IIR "flip pending" means done if this bit is set */
8956 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8957
8958 /* interrupts should cause a wake up from C3 */
8959 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8960
8961 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8962 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8963
8964 I915_WRITE(MI_ARB_STATE,
8965 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8966 }
8967
8968 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8969 {
8970 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8971
8972 /* interrupts should cause a wake up from C3 */
8973 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8974 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8975
8976 I915_WRITE(MEM_MODE,
8977 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8978 }
8979
8980 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8981 {
8982 I915_WRITE(MEM_MODE,
8983 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8984 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8985 }
8986
8987 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8988 {
8989 dev_priv->display.init_clock_gating(dev_priv);
8990 }
8991
8992 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8993 {
8994 if (HAS_PCH_LPT(dev_priv))
8995 lpt_suspend_hw(dev_priv);
8996 }
8997
8998 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8999 {
9000 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9001 }
9002
9003 /**
9004 * intel_init_clock_gating_hooks - setup the clock gating hooks
9005 * @dev_priv: device private
9006 *
9007 * Setup the hooks that configure which clocks of a given platform can be
9008 * gated and also apply various GT and display specific workarounds for these
9009 * platforms. Note that some GT specific workarounds are applied separately
9010 * when GPU contexts or batchbuffers start their execution.
9011 */
9012 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9013 {
9014 if (IS_CANNONLAKE(dev_priv))
9015 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9016 else if (IS_COFFEELAKE(dev_priv))
9017 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9018 else if (IS_SKYLAKE(dev_priv))
9019 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9020 else if (IS_KABYLAKE(dev_priv))
9021 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9022 else if (IS_BROXTON(dev_priv))
9023 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9024 else if (IS_GEMINILAKE(dev_priv))
9025 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9026 else if (IS_BROADWELL(dev_priv))
9027 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9028 else if (IS_CHERRYVIEW(dev_priv))
9029 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9030 else if (IS_HASWELL(dev_priv))
9031 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9032 else if (IS_IVYBRIDGE(dev_priv))
9033 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9034 else if (IS_VALLEYVIEW(dev_priv))
9035 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9036 else if (IS_GEN6(dev_priv))
9037 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9038 else if (IS_GEN5(dev_priv))
9039 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9040 else if (IS_G4X(dev_priv))
9041 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9042 else if (IS_I965GM(dev_priv))
9043 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9044 else if (IS_I965G(dev_priv))
9045 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9046 else if (IS_GEN3(dev_priv))
9047 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9048 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9049 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9050 else if (IS_GEN2(dev_priv))
9051 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9052 else {
9053 MISSING_CASE(INTEL_DEVID(dev_priv));
9054 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9055 }
9056 }
9057
9058 /* Set up chip specific power management-related functions */
9059 void intel_init_pm(struct drm_i915_private *dev_priv)
9060 {
9061 intel_fbc_init(dev_priv);
9062
9063 /* For cxsr */
9064 if (IS_PINEVIEW(dev_priv))
9065 i915_pineview_get_mem_freq(dev_priv);
9066 else if (IS_GEN5(dev_priv))
9067 i915_ironlake_get_mem_freq(dev_priv);
9068
9069 /* For FIFO watermark updates */
9070 if (INTEL_GEN(dev_priv) >= 9) {
9071 skl_setup_wm_latency(dev_priv);
9072 dev_priv->display.initial_watermarks = skl_initial_wm;
9073 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9074 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9075 } else if (HAS_PCH_SPLIT(dev_priv)) {
9076 ilk_setup_wm_latency(dev_priv);
9077
9078 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9079 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9080 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9081 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9082 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9083 dev_priv->display.compute_intermediate_wm =
9084 ilk_compute_intermediate_wm;
9085 dev_priv->display.initial_watermarks =
9086 ilk_initial_watermarks;
9087 dev_priv->display.optimize_watermarks =
9088 ilk_optimize_watermarks;
9089 } else {
9090 DRM_DEBUG_KMS("Failed to read display plane latency. "
9091 "Disable CxSR\n");
9092 }
9093 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9094 vlv_setup_wm_latency(dev_priv);
9095 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9096 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9097 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9098 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9099 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9100 } else if (IS_G4X(dev_priv)) {
9101 g4x_setup_wm_latency(dev_priv);
9102 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9103 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9104 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9105 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9106 } else if (IS_PINEVIEW(dev_priv)) {
9107 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9108 dev_priv->is_ddr3,
9109 dev_priv->fsb_freq,
9110 dev_priv->mem_freq)) {
9111 DRM_INFO("failed to find known CxSR latency "
9112 "(found ddr%s fsb freq %d, mem freq %d), "
9113 "disabling CxSR\n",
9114 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9115 dev_priv->fsb_freq, dev_priv->mem_freq);
9116 /* Disable CxSR and never update its watermark again */
9117 intel_set_memory_cxsr(dev_priv, false);
9118 dev_priv->display.update_wm = NULL;
9119 } else
9120 dev_priv->display.update_wm = pineview_update_wm;
9121 } else if (IS_GEN4(dev_priv)) {
9122 dev_priv->display.update_wm = i965_update_wm;
9123 } else if (IS_GEN3(dev_priv)) {
9124 dev_priv->display.update_wm = i9xx_update_wm;
9125 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9126 } else if (IS_GEN2(dev_priv)) {
9127 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9128 dev_priv->display.update_wm = i845_update_wm;
9129 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9130 } else {
9131 dev_priv->display.update_wm = i9xx_update_wm;
9132 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9133 }
9134 } else {
9135 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9136 }
9137 }
9138
9139 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9140 {
9141 uint32_t flags =
9142 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9143
9144 switch (flags) {
9145 case GEN6_PCODE_SUCCESS:
9146 return 0;
9147 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9148 return -ENODEV;
9149 case GEN6_PCODE_ILLEGAL_CMD:
9150 return -ENXIO;
9151 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9152 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9153 return -EOVERFLOW;
9154 case GEN6_PCODE_TIMEOUT:
9155 return -ETIMEDOUT;
9156 default:
9157 MISSING_CASE(flags);
9158 return 0;
9159 }
9160 }
9161
9162 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9163 {
9164 uint32_t flags =
9165 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9166
9167 switch (flags) {
9168 case GEN6_PCODE_SUCCESS:
9169 return 0;
9170 case GEN6_PCODE_ILLEGAL_CMD:
9171 return -ENXIO;
9172 case GEN7_PCODE_TIMEOUT:
9173 return -ETIMEDOUT;
9174 case GEN7_PCODE_ILLEGAL_DATA:
9175 return -EINVAL;
9176 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9177 return -EOVERFLOW;
9178 default:
9179 MISSING_CASE(flags);
9180 return 0;
9181 }
9182 }
9183
9184 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9185 {
9186 int status;
9187
9188 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9189
9190 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9191 * use te fw I915_READ variants to reduce the amount of work
9192 * required when reading/writing.
9193 */
9194
9195 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9196 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9197 mbox, __builtin_return_address(0));
9198 return -EAGAIN;
9199 }
9200
9201 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9202 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9203 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9204
9205 if (__intel_wait_for_register_fw(dev_priv,
9206 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9207 500, 0, NULL)) {
9208 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9209 mbox, __builtin_return_address(0));
9210 return -ETIMEDOUT;
9211 }
9212
9213 *val = I915_READ_FW(GEN6_PCODE_DATA);
9214 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9215
9216 if (INTEL_GEN(dev_priv) > 6)
9217 status = gen7_check_mailbox_status(dev_priv);
9218 else
9219 status = gen6_check_mailbox_status(dev_priv);
9220
9221 if (status) {
9222 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9223 mbox, __builtin_return_address(0), status);
9224 return status;
9225 }
9226
9227 return 0;
9228 }
9229
9230 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9231 u32 mbox, u32 val)
9232 {
9233 int status;
9234
9235 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9236
9237 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9238 * use te fw I915_READ variants to reduce the amount of work
9239 * required when reading/writing.
9240 */
9241
9242 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9243 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9244 val, mbox, __builtin_return_address(0));
9245 return -EAGAIN;
9246 }
9247
9248 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9249 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9250 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9251
9252 if (__intel_wait_for_register_fw(dev_priv,
9253 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9254 500, 0, NULL)) {
9255 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9256 val, mbox, __builtin_return_address(0));
9257 return -ETIMEDOUT;
9258 }
9259
9260 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9261
9262 if (INTEL_GEN(dev_priv) > 6)
9263 status = gen7_check_mailbox_status(dev_priv);
9264 else
9265 status = gen6_check_mailbox_status(dev_priv);
9266
9267 if (status) {
9268 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9269 val, mbox, __builtin_return_address(0), status);
9270 return status;
9271 }
9272
9273 return 0;
9274 }
9275
9276 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9277 u32 request, u32 reply_mask, u32 reply,
9278 u32 *status)
9279 {
9280 u32 val = request;
9281
9282 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9283
9284 return *status || ((val & reply_mask) == reply);
9285 }
9286
9287 /**
9288 * skl_pcode_request - send PCODE request until acknowledgment
9289 * @dev_priv: device private
9290 * @mbox: PCODE mailbox ID the request is targeted for
9291 * @request: request ID
9292 * @reply_mask: mask used to check for request acknowledgment
9293 * @reply: value used to check for request acknowledgment
9294 * @timeout_base_ms: timeout for polling with preemption enabled
9295 *
9296 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9297 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9298 * The request is acknowledged once the PCODE reply dword equals @reply after
9299 * applying @reply_mask. Polling is first attempted with preemption enabled
9300 * for @timeout_base_ms and if this times out for another 50 ms with
9301 * preemption disabled.
9302 *
9303 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9304 * other error as reported by PCODE.
9305 */
9306 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9307 u32 reply_mask, u32 reply, int timeout_base_ms)
9308 {
9309 u32 status;
9310 int ret;
9311
9312 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9313
9314 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9315 &status)
9316
9317 /*
9318 * Prime the PCODE by doing a request first. Normally it guarantees
9319 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9320 * _wait_for() doesn't guarantee when its passed condition is evaluated
9321 * first, so send the first request explicitly.
9322 */
9323 if (COND) {
9324 ret = 0;
9325 goto out;
9326 }
9327 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9328 if (!ret)
9329 goto out;
9330
9331 /*
9332 * The above can time out if the number of requests was low (2 in the
9333 * worst case) _and_ PCODE was busy for some reason even after a
9334 * (queued) request and @timeout_base_ms delay. As a workaround retry
9335 * the poll with preemption disabled to maximize the number of
9336 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9337 * account for interrupts that could reduce the number of these
9338 * requests, and for any quirks of the PCODE firmware that delays
9339 * the request completion.
9340 */
9341 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9342 WARN_ON_ONCE(timeout_base_ms > 3);
9343 preempt_disable();
9344 ret = wait_for_atomic(COND, 50);
9345 preempt_enable();
9346
9347 out:
9348 return ret ? ret : status;
9349 #undef COND
9350 }
9351
9352 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9353 {
9354 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9355
9356 /*
9357 * N = val - 0xb7
9358 * Slow = Fast = GPLL ref * N
9359 */
9360 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9361 }
9362
9363 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9364 {
9365 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9366
9367 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9368 }
9369
9370 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9371 {
9372 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9373
9374 /*
9375 * N = val / 2
9376 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9377 */
9378 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9379 }
9380
9381 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9382 {
9383 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9384
9385 /* CHV needs even values */
9386 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9387 }
9388
9389 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9390 {
9391 if (INTEL_GEN(dev_priv) >= 9)
9392 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9393 GEN9_FREQ_SCALER);
9394 else if (IS_CHERRYVIEW(dev_priv))
9395 return chv_gpu_freq(dev_priv, val);
9396 else if (IS_VALLEYVIEW(dev_priv))
9397 return byt_gpu_freq(dev_priv, val);
9398 else
9399 return val * GT_FREQUENCY_MULTIPLIER;
9400 }
9401
9402 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9403 {
9404 if (INTEL_GEN(dev_priv) >= 9)
9405 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9406 GT_FREQUENCY_MULTIPLIER);
9407 else if (IS_CHERRYVIEW(dev_priv))
9408 return chv_freq_opcode(dev_priv, val);
9409 else if (IS_VALLEYVIEW(dev_priv))
9410 return byt_freq_opcode(dev_priv, val);
9411 else
9412 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9413 }
9414
9415 void intel_pm_setup(struct drm_i915_private *dev_priv)
9416 {
9417 mutex_init(&dev_priv->pcu_lock);
9418
9419 INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
9420 __intel_autoenable_gt_powersave);
9421 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9422
9423 dev_priv->runtime_pm.suspended = false;
9424 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9425 }
9426
9427 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9428 const i915_reg_t reg)
9429 {
9430 u32 lower, upper, tmp;
9431 int loop = 2;
9432
9433 /* The register accessed do not need forcewake. We borrow
9434 * uncore lock to prevent concurrent access to range reg.
9435 */
9436 spin_lock_irq(&dev_priv->uncore.lock);
9437
9438 /* vlv and chv residency counters are 40 bits in width.
9439 * With a control bit, we can choose between upper or lower
9440 * 32bit window into this counter.
9441 *
9442 * Although we always use the counter in high-range mode elsewhere,
9443 * userspace may attempt to read the value before rc6 is initialised,
9444 * before we have set the default VLV_COUNTER_CONTROL value. So always
9445 * set the high bit to be safe.
9446 */
9447 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9448 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9449 upper = I915_READ_FW(reg);
9450 do {
9451 tmp = upper;
9452
9453 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9454 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9455 lower = I915_READ_FW(reg);
9456
9457 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9458 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9459 upper = I915_READ_FW(reg);
9460 } while (upper != tmp && --loop);
9461
9462 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9463 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9464 * now.
9465 */
9466
9467 spin_unlock_irq(&dev_priv->uncore.lock);
9468
9469 return lower | (u64)upper << 8;
9470 }
9471
9472 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9473 const i915_reg_t reg)
9474 {
9475 u64 time_hw, units, div;
9476
9477 if (!intel_rc6_enabled())
9478 return 0;
9479
9480 intel_runtime_pm_get(dev_priv);
9481
9482 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9483 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9484 units = 1000;
9485 div = dev_priv->czclk_freq;
9486
9487 time_hw = vlv_residency_raw(dev_priv, reg);
9488 } else if (IS_GEN9_LP(dev_priv)) {
9489 units = 1000;
9490 div = 1200; /* 833.33ns */
9491
9492 time_hw = I915_READ(reg);
9493 } else {
9494 units = 128000; /* 1.28us */
9495 div = 100000;
9496
9497 time_hw = I915_READ(reg);
9498 }
9499
9500 intel_runtime_pm_put(dev_priv);
9501 return DIV_ROUND_UP_ULL(time_hw * units, div);
9502 }