]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 if (HAS_LLC(dev_priv)) {
62 /*
63 * WaCompressedResourceDisplayNewHashMode:skl,kbl
64 * Display WA#0390: skl,kbl
65 *
66 * Must match Sampler, Pixel Back End, and Media. See
67 * WaCompressedResourceSamplerPbeMediaNewHashMode.
68 */
69 I915_WRITE(CHICKEN_PAR1_1,
70 I915_READ(CHICKEN_PAR1_1) |
71 SKL_DE_COMPRESSED_HASH_MODE);
72 }
73
74 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75 I915_WRITE(CHICKEN_PAR1_1,
76 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
77
78 I915_WRITE(GEN8_CONFIG0,
79 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
80
81 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
82 I915_WRITE(GEN8_CHICKEN_DCPR_1,
83 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
84
85 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
86 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
87 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
88 DISP_FBC_WM_DIS |
89 DISP_FBC_MEMORY_WAKE);
90
91 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
92 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
93 ILK_DPFC_DISABLE_DUMMY0);
94
95 if (IS_SKYLAKE(dev_priv)) {
96 /* WaDisableDopClockGating */
97 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
98 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
99 }
100 }
101
102 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
103 {
104 gen9_init_clock_gating(dev_priv);
105
106 /* WaDisableSDEUnitClockGating:bxt */
107 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
108 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
109
110 /*
111 * FIXME:
112 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
113 */
114 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
115 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
116
117 /*
118 * Wa: Backlight PWM may stop in the asserted state, causing backlight
119 * to stay fully on.
120 */
121 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
122 PWM1_GATING_DIS | PWM2_GATING_DIS);
123 }
124
125 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
126 {
127 u32 val;
128 gen9_init_clock_gating(dev_priv);
129
130 /*
131 * WaDisablePWMClockGating:glk
132 * Backlight PWM may stop in the asserted state, causing backlight
133 * to stay fully on.
134 */
135 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
136 PWM1_GATING_DIS | PWM2_GATING_DIS);
137
138 /* WaDDIIOTimeout:glk */
139 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
140 u32 val = I915_READ(CHICKEN_MISC_2);
141 val &= ~(GLK_CL0_PWR_DOWN |
142 GLK_CL1_PWR_DOWN |
143 GLK_CL2_PWR_DOWN);
144 I915_WRITE(CHICKEN_MISC_2, val);
145 }
146
147 /* Display WA #1133: WaFbcSkipSegments:glk */
148 val = I915_READ(ILK_DPFC_CHICKEN);
149 val &= ~GLK_SKIP_SEG_COUNT_MASK;
150 val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
151 I915_WRITE(ILK_DPFC_CHICKEN, val);
152 }
153
154 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
155 {
156 u32 tmp;
157
158 tmp = I915_READ(CLKCFG);
159
160 switch (tmp & CLKCFG_FSB_MASK) {
161 case CLKCFG_FSB_533:
162 dev_priv->fsb_freq = 533; /* 133*4 */
163 break;
164 case CLKCFG_FSB_800:
165 dev_priv->fsb_freq = 800; /* 200*4 */
166 break;
167 case CLKCFG_FSB_667:
168 dev_priv->fsb_freq = 667; /* 167*4 */
169 break;
170 case CLKCFG_FSB_400:
171 dev_priv->fsb_freq = 400; /* 100*4 */
172 break;
173 }
174
175 switch (tmp & CLKCFG_MEM_MASK) {
176 case CLKCFG_MEM_533:
177 dev_priv->mem_freq = 533;
178 break;
179 case CLKCFG_MEM_667:
180 dev_priv->mem_freq = 667;
181 break;
182 case CLKCFG_MEM_800:
183 dev_priv->mem_freq = 800;
184 break;
185 }
186
187 /* detect pineview DDR3 setting */
188 tmp = I915_READ(CSHRDDR3CTL);
189 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
190 }
191
192 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
193 {
194 u16 ddrpll, csipll;
195
196 ddrpll = I915_READ16(DDRMPLL1);
197 csipll = I915_READ16(CSIPLL0);
198
199 switch (ddrpll & 0xff) {
200 case 0xc:
201 dev_priv->mem_freq = 800;
202 break;
203 case 0x10:
204 dev_priv->mem_freq = 1066;
205 break;
206 case 0x14:
207 dev_priv->mem_freq = 1333;
208 break;
209 case 0x18:
210 dev_priv->mem_freq = 1600;
211 break;
212 default:
213 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
214 ddrpll & 0xff);
215 dev_priv->mem_freq = 0;
216 break;
217 }
218
219 dev_priv->ips.r_t = dev_priv->mem_freq;
220
221 switch (csipll & 0x3ff) {
222 case 0x00c:
223 dev_priv->fsb_freq = 3200;
224 break;
225 case 0x00e:
226 dev_priv->fsb_freq = 3733;
227 break;
228 case 0x010:
229 dev_priv->fsb_freq = 4266;
230 break;
231 case 0x012:
232 dev_priv->fsb_freq = 4800;
233 break;
234 case 0x014:
235 dev_priv->fsb_freq = 5333;
236 break;
237 case 0x016:
238 dev_priv->fsb_freq = 5866;
239 break;
240 case 0x018:
241 dev_priv->fsb_freq = 6400;
242 break;
243 default:
244 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
245 csipll & 0x3ff);
246 dev_priv->fsb_freq = 0;
247 break;
248 }
249
250 if (dev_priv->fsb_freq == 3200) {
251 dev_priv->ips.c_m = 0;
252 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
253 dev_priv->ips.c_m = 1;
254 } else {
255 dev_priv->ips.c_m = 2;
256 }
257 }
258
259 static const struct cxsr_latency cxsr_latency_table[] = {
260 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
261 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
262 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
263 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
264 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
265
266 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
267 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
268 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
269 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
270 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
271
272 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
273 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
274 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
275 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
276 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
277
278 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
279 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
280 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
281 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
282 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
283
284 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
285 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
286 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
287 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
288 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
289
290 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
291 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
292 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
293 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
294 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
295 };
296
297 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
298 bool is_ddr3,
299 int fsb,
300 int mem)
301 {
302 const struct cxsr_latency *latency;
303 int i;
304
305 if (fsb == 0 || mem == 0)
306 return NULL;
307
308 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
309 latency = &cxsr_latency_table[i];
310 if (is_desktop == latency->is_desktop &&
311 is_ddr3 == latency->is_ddr3 &&
312 fsb == latency->fsb_freq && mem == latency->mem_freq)
313 return latency;
314 }
315
316 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
317
318 return NULL;
319 }
320
321 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
322 {
323 u32 val;
324
325 mutex_lock(&dev_priv->pcu_lock);
326
327 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
328 if (enable)
329 val &= ~FORCE_DDR_HIGH_FREQ;
330 else
331 val |= FORCE_DDR_HIGH_FREQ;
332 val &= ~FORCE_DDR_LOW_FREQ;
333 val |= FORCE_DDR_FREQ_REQ_ACK;
334 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
335
336 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
337 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
338 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
339
340 mutex_unlock(&dev_priv->pcu_lock);
341 }
342
343 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
344 {
345 u32 val;
346
347 mutex_lock(&dev_priv->pcu_lock);
348
349 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
350 if (enable)
351 val |= DSP_MAXFIFO_PM5_ENABLE;
352 else
353 val &= ~DSP_MAXFIFO_PM5_ENABLE;
354 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
355
356 mutex_unlock(&dev_priv->pcu_lock);
357 }
358
359 #define FW_WM(value, plane) \
360 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
361
362 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363 {
364 bool was_enabled;
365 u32 val;
366
367 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370 POSTING_READ(FW_BLC_SELF_VLV);
371 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374 POSTING_READ(FW_BLC_SELF);
375 } else if (IS_PINEVIEW(dev_priv)) {
376 val = I915_READ(DSPFW3);
377 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
378 if (enable)
379 val |= PINEVIEW_SELF_REFRESH_EN;
380 else
381 val &= ~PINEVIEW_SELF_REFRESH_EN;
382 I915_WRITE(DSPFW3, val);
383 POSTING_READ(DSPFW3);
384 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
387 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
388 I915_WRITE(FW_BLC_SELF, val);
389 POSTING_READ(FW_BLC_SELF);
390 } else if (IS_I915GM(dev_priv)) {
391 /*
392 * FIXME can't find a bit like this for 915G, and
393 * and yet it does have the related watermark in
394 * FW_BLC_SELF. What's going on?
395 */
396 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
398 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
399 I915_WRITE(INSTPM, val);
400 POSTING_READ(INSTPM);
401 } else {
402 return false;
403 }
404
405 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
406
407 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
408 enableddisabled(enable),
409 enableddisabled(was_enabled));
410
411 return was_enabled;
412 }
413
414 /**
415 * intel_set_memory_cxsr - Configure CxSR state
416 * @dev_priv: i915 device
417 * @enable: Allow vs. disallow CxSR
418 *
419 * Allow or disallow the system to enter a special CxSR
420 * (C-state self refresh) state. What typically happens in CxSR mode
421 * is that several display FIFOs may get combined into a single larger
422 * FIFO for a particular plane (so called max FIFO mode) to allow the
423 * system to defer memory fetches longer, and the memory will enter
424 * self refresh.
425 *
426 * Note that enabling CxSR does not guarantee that the system enter
427 * this special mode, nor does it guarantee that the system stays
428 * in that mode once entered. So this just allows/disallows the system
429 * to autonomously utilize the CxSR mode. Other factors such as core
430 * C-states will affect when/if the system actually enters/exits the
431 * CxSR mode.
432 *
433 * Note that on VLV/CHV this actually only controls the max FIFO mode,
434 * and the system is free to enter/exit memory self refresh at any time
435 * even when the use of CxSR has been disallowed.
436 *
437 * While the system is actually in the CxSR/max FIFO mode, some plane
438 * control registers will not get latched on vblank. Thus in order to
439 * guarantee the system will respond to changes in the plane registers
440 * we must always disallow CxSR prior to making changes to those registers.
441 * Unfortunately the system will re-evaluate the CxSR conditions at
442 * frame start which happens after vblank start (which is when the plane
443 * registers would get latched), so we can't proceed with the plane update
444 * during the same frame where we disallowed CxSR.
445 *
446 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
447 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
448 * the hardware w.r.t. HPLL SR when writing to plane registers.
449 * Disallowing just CxSR is sufficient.
450 */
451 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452 {
453 bool ret;
454
455 mutex_lock(&dev_priv->wm.wm_mutex);
456 ret = _intel_set_memory_cxsr(dev_priv, enable);
457 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
458 dev_priv->wm.vlv.cxsr = enable;
459 else if (IS_G4X(dev_priv))
460 dev_priv->wm.g4x.cxsr = enable;
461 mutex_unlock(&dev_priv->wm.wm_mutex);
462
463 return ret;
464 }
465
466 /*
467 * Latency for FIFO fetches is dependent on several factors:
468 * - memory configuration (speed, channels)
469 * - chipset
470 * - current MCH state
471 * It can be fairly high in some situations, so here we assume a fairly
472 * pessimal value. It's a tradeoff between extra memory fetches (if we
473 * set this value too high, the FIFO will fetch frequently to stay full)
474 * and power consumption (set it too low to save power and we might see
475 * FIFO underruns and display "flicker").
476 *
477 * A value of 5us seems to be a good balance; safe for very low end
478 * platforms but not overly aggressive on lower latency configs.
479 */
480 static const int pessimal_latency_ns = 5000;
481
482 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
483 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
484
485 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486 {
487 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
488 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490 enum pipe pipe = crtc->pipe;
491 int sprite0_start, sprite1_start;
492
493 switch (pipe) {
494 uint32_t dsparb, dsparb2, dsparb3;
495 case PIPE_A:
496 dsparb = I915_READ(DSPARB);
497 dsparb2 = I915_READ(DSPARB2);
498 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
499 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
500 break;
501 case PIPE_B:
502 dsparb = I915_READ(DSPARB);
503 dsparb2 = I915_READ(DSPARB2);
504 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
505 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
506 break;
507 case PIPE_C:
508 dsparb2 = I915_READ(DSPARB2);
509 dsparb3 = I915_READ(DSPARB3);
510 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
511 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
512 break;
513 default:
514 MISSING_CASE(pipe);
515 return;
516 }
517
518 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
519 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
520 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
521 fifo_state->plane[PLANE_CURSOR] = 63;
522 }
523
524 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
525 {
526 uint32_t dsparb = I915_READ(DSPARB);
527 int size;
528
529 size = dsparb & 0x7f;
530 if (plane)
531 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
532
533 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
534 plane ? "B" : "A", size);
535
536 return size;
537 }
538
539 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
540 {
541 uint32_t dsparb = I915_READ(DSPARB);
542 int size;
543
544 size = dsparb & 0x1ff;
545 if (plane)
546 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
547 size >>= 1; /* Convert to cachelines */
548
549 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
550 plane ? "B" : "A", size);
551
552 return size;
553 }
554
555 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
556 {
557 uint32_t dsparb = I915_READ(DSPARB);
558 int size;
559
560 size = dsparb & 0x7f;
561 size >>= 2; /* Convert to cachelines */
562
563 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
564 plane ? "B" : "A",
565 size);
566
567 return size;
568 }
569
570 /* Pineview has different values for various configs */
571 static const struct intel_watermark_params pineview_display_wm = {
572 .fifo_size = PINEVIEW_DISPLAY_FIFO,
573 .max_wm = PINEVIEW_MAX_WM,
574 .default_wm = PINEVIEW_DFT_WM,
575 .guard_size = PINEVIEW_GUARD_WM,
576 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 };
578 static const struct intel_watermark_params pineview_display_hplloff_wm = {
579 .fifo_size = PINEVIEW_DISPLAY_FIFO,
580 .max_wm = PINEVIEW_MAX_WM,
581 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
582 .guard_size = PINEVIEW_GUARD_WM,
583 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 };
585 static const struct intel_watermark_params pineview_cursor_wm = {
586 .fifo_size = PINEVIEW_CURSOR_FIFO,
587 .max_wm = PINEVIEW_CURSOR_MAX_WM,
588 .default_wm = PINEVIEW_CURSOR_DFT_WM,
589 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
590 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 };
592 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593 .fifo_size = PINEVIEW_CURSOR_FIFO,
594 .max_wm = PINEVIEW_CURSOR_MAX_WM,
595 .default_wm = PINEVIEW_CURSOR_DFT_WM,
596 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
597 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 };
599 static const struct intel_watermark_params i965_cursor_wm_info = {
600 .fifo_size = I965_CURSOR_FIFO,
601 .max_wm = I965_CURSOR_MAX_WM,
602 .default_wm = I965_CURSOR_DFT_WM,
603 .guard_size = 2,
604 .cacheline_size = I915_FIFO_LINE_SIZE,
605 };
606 static const struct intel_watermark_params i945_wm_info = {
607 .fifo_size = I945_FIFO_SIZE,
608 .max_wm = I915_MAX_WM,
609 .default_wm = 1,
610 .guard_size = 2,
611 .cacheline_size = I915_FIFO_LINE_SIZE,
612 };
613 static const struct intel_watermark_params i915_wm_info = {
614 .fifo_size = I915_FIFO_SIZE,
615 .max_wm = I915_MAX_WM,
616 .default_wm = 1,
617 .guard_size = 2,
618 .cacheline_size = I915_FIFO_LINE_SIZE,
619 };
620 static const struct intel_watermark_params i830_a_wm_info = {
621 .fifo_size = I855GM_FIFO_SIZE,
622 .max_wm = I915_MAX_WM,
623 .default_wm = 1,
624 .guard_size = 2,
625 .cacheline_size = I830_FIFO_LINE_SIZE,
626 };
627 static const struct intel_watermark_params i830_bc_wm_info = {
628 .fifo_size = I855GM_FIFO_SIZE,
629 .max_wm = I915_MAX_WM/2,
630 .default_wm = 1,
631 .guard_size = 2,
632 .cacheline_size = I830_FIFO_LINE_SIZE,
633 };
634 static const struct intel_watermark_params i845_wm_info = {
635 .fifo_size = I830_FIFO_SIZE,
636 .max_wm = I915_MAX_WM,
637 .default_wm = 1,
638 .guard_size = 2,
639 .cacheline_size = I830_FIFO_LINE_SIZE,
640 };
641
642 /**
643 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
644 * @pixel_rate: Pipe pixel rate in kHz
645 * @cpp: Plane bytes per pixel
646 * @latency: Memory wakeup latency in 0.1us units
647 *
648 * Compute the watermark using the method 1 or "small buffer"
649 * formula. The caller may additonally add extra cachelines
650 * to account for TLB misses and clock crossings.
651 *
652 * This method is concerned with the short term drain rate
653 * of the FIFO, ie. it does not account for blanking periods
654 * which would effectively reduce the average drain rate across
655 * a longer period. The name "small" refers to the fact the
656 * FIFO is relatively small compared to the amount of data
657 * fetched.
658 *
659 * The FIFO level vs. time graph might look something like:
660 *
661 * |\ |\
662 * | \ | \
663 * __---__---__ (- plane active, _ blanking)
664 * -> time
665 *
666 * or perhaps like this:
667 *
668 * |\|\ |\|\
669 * __----__----__ (- plane active, _ blanking)
670 * -> time
671 *
672 * Returns:
673 * The watermark in bytes
674 */
675 static unsigned int intel_wm_method1(unsigned int pixel_rate,
676 unsigned int cpp,
677 unsigned int latency)
678 {
679 uint64_t ret;
680
681 ret = (uint64_t) pixel_rate * cpp * latency;
682 ret = DIV_ROUND_UP_ULL(ret, 10000);
683
684 return ret;
685 }
686
687 /**
688 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
689 * @pixel_rate: Pipe pixel rate in kHz
690 * @htotal: Pipe horizontal total
691 * @width: Plane width in pixels
692 * @cpp: Plane bytes per pixel
693 * @latency: Memory wakeup latency in 0.1us units
694 *
695 * Compute the watermark using the method 2 or "large buffer"
696 * formula. The caller may additonally add extra cachelines
697 * to account for TLB misses and clock crossings.
698 *
699 * This method is concerned with the long term drain rate
700 * of the FIFO, ie. it does account for blanking periods
701 * which effectively reduce the average drain rate across
702 * a longer period. The name "large" refers to the fact the
703 * FIFO is relatively large compared to the amount of data
704 * fetched.
705 *
706 * The FIFO level vs. time graph might look something like:
707 *
708 * |\___ |\___
709 * | \___ | \___
710 * | \ | \
711 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
712 * -> time
713 *
714 * Returns:
715 * The watermark in bytes
716 */
717 static unsigned int intel_wm_method2(unsigned int pixel_rate,
718 unsigned int htotal,
719 unsigned int width,
720 unsigned int cpp,
721 unsigned int latency)
722 {
723 unsigned int ret;
724
725 /*
726 * FIXME remove once all users are computing
727 * watermarks in the correct place.
728 */
729 if (WARN_ON_ONCE(htotal == 0))
730 htotal = 1;
731
732 ret = (latency * pixel_rate) / (htotal * 10000);
733 ret = (ret + 1) * width * cpp;
734
735 return ret;
736 }
737
738 /**
739 * intel_calculate_wm - calculate watermark level
740 * @pixel_rate: pixel clock
741 * @wm: chip FIFO params
742 * @cpp: bytes per pixel
743 * @latency_ns: memory latency for the platform
744 *
745 * Calculate the watermark level (the level at which the display plane will
746 * start fetching from memory again). Each chip has a different display
747 * FIFO size and allocation, so the caller needs to figure that out and pass
748 * in the correct intel_watermark_params structure.
749 *
750 * As the pixel clock runs, the FIFO will be drained at a rate that depends
751 * on the pixel size. When it reaches the watermark level, it'll start
752 * fetching FIFO line sized based chunks from memory until the FIFO fills
753 * past the watermark point. If the FIFO drains completely, a FIFO underrun
754 * will occur, and a display engine hang could result.
755 */
756 static unsigned int intel_calculate_wm(int pixel_rate,
757 const struct intel_watermark_params *wm,
758 int fifo_size, int cpp,
759 unsigned int latency_ns)
760 {
761 int entries, wm_size;
762
763 /*
764 * Note: we need to make sure we don't overflow for various clock &
765 * latency values.
766 * clocks go from a few thousand to several hundred thousand.
767 * latency is usually a few thousand
768 */
769 entries = intel_wm_method1(pixel_rate, cpp,
770 latency_ns / 100);
771 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
772 wm->guard_size;
773 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
774
775 wm_size = fifo_size - entries;
776 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
777
778 /* Don't promote wm_size to unsigned... */
779 if (wm_size > wm->max_wm)
780 wm_size = wm->max_wm;
781 if (wm_size <= 0)
782 wm_size = wm->default_wm;
783
784 /*
785 * Bspec seems to indicate that the value shouldn't be lower than
786 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
787 * Lets go for 8 which is the burst size since certain platforms
788 * already use a hardcoded 8 (which is what the spec says should be
789 * done).
790 */
791 if (wm_size <= 8)
792 wm_size = 8;
793
794 return wm_size;
795 }
796
797 static bool is_disabling(int old, int new, int threshold)
798 {
799 return old >= threshold && new < threshold;
800 }
801
802 static bool is_enabling(int old, int new, int threshold)
803 {
804 return old < threshold && new >= threshold;
805 }
806
807 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
808 {
809 return dev_priv->wm.max_level + 1;
810 }
811
812 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
813 const struct intel_plane_state *plane_state)
814 {
815 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
816
817 /* FIXME check the 'enable' instead */
818 if (!crtc_state->base.active)
819 return false;
820
821 /*
822 * Treat cursor with fb as always visible since cursor updates
823 * can happen faster than the vrefresh rate, and the current
824 * watermark code doesn't handle that correctly. Cursor updates
825 * which set/clear the fb or change the cursor size are going
826 * to get throttled by intel_legacy_cursor_update() to work
827 * around this problem with the watermark code.
828 */
829 if (plane->id == PLANE_CURSOR)
830 return plane_state->base.fb != NULL;
831 else
832 return plane_state->base.visible;
833 }
834
835 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
836 {
837 struct intel_crtc *crtc, *enabled = NULL;
838
839 for_each_intel_crtc(&dev_priv->drm, crtc) {
840 if (intel_crtc_active(crtc)) {
841 if (enabled)
842 return NULL;
843 enabled = crtc;
844 }
845 }
846
847 return enabled;
848 }
849
850 static void pineview_update_wm(struct intel_crtc *unused_crtc)
851 {
852 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
853 struct intel_crtc *crtc;
854 const struct cxsr_latency *latency;
855 u32 reg;
856 unsigned int wm;
857
858 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
859 dev_priv->is_ddr3,
860 dev_priv->fsb_freq,
861 dev_priv->mem_freq);
862 if (!latency) {
863 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
864 intel_set_memory_cxsr(dev_priv, false);
865 return;
866 }
867
868 crtc = single_enabled_crtc(dev_priv);
869 if (crtc) {
870 const struct drm_display_mode *adjusted_mode =
871 &crtc->config->base.adjusted_mode;
872 const struct drm_framebuffer *fb =
873 crtc->base.primary->state->fb;
874 int cpp = fb->format->cpp[0];
875 int clock = adjusted_mode->crtc_clock;
876
877 /* Display SR */
878 wm = intel_calculate_wm(clock, &pineview_display_wm,
879 pineview_display_wm.fifo_size,
880 cpp, latency->display_sr);
881 reg = I915_READ(DSPFW1);
882 reg &= ~DSPFW_SR_MASK;
883 reg |= FW_WM(wm, SR);
884 I915_WRITE(DSPFW1, reg);
885 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
886
887 /* cursor SR */
888 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
889 pineview_display_wm.fifo_size,
890 4, latency->cursor_sr);
891 reg = I915_READ(DSPFW3);
892 reg &= ~DSPFW_CURSOR_SR_MASK;
893 reg |= FW_WM(wm, CURSOR_SR);
894 I915_WRITE(DSPFW3, reg);
895
896 /* Display HPLL off SR */
897 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
898 pineview_display_hplloff_wm.fifo_size,
899 cpp, latency->display_hpll_disable);
900 reg = I915_READ(DSPFW3);
901 reg &= ~DSPFW_HPLL_SR_MASK;
902 reg |= FW_WM(wm, HPLL_SR);
903 I915_WRITE(DSPFW3, reg);
904
905 /* cursor HPLL off SR */
906 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
907 pineview_display_hplloff_wm.fifo_size,
908 4, latency->cursor_hpll_disable);
909 reg = I915_READ(DSPFW3);
910 reg &= ~DSPFW_HPLL_CURSOR_MASK;
911 reg |= FW_WM(wm, HPLL_CURSOR);
912 I915_WRITE(DSPFW3, reg);
913 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
914
915 intel_set_memory_cxsr(dev_priv, true);
916 } else {
917 intel_set_memory_cxsr(dev_priv, false);
918 }
919 }
920
921 /*
922 * Documentation says:
923 * "If the line size is small, the TLB fetches can get in the way of the
924 * data fetches, causing some lag in the pixel data return which is not
925 * accounted for in the above formulas. The following adjustment only
926 * needs to be applied if eight whole lines fit in the buffer at once.
927 * The WM is adjusted upwards by the difference between the FIFO size
928 * and the size of 8 whole lines. This adjustment is always performed
929 * in the actual pixel depth regardless of whether FBC is enabled or not."
930 */
931 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
932 {
933 int tlb_miss = fifo_size * 64 - width * cpp * 8;
934
935 return max(0, tlb_miss);
936 }
937
938 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
939 const struct g4x_wm_values *wm)
940 {
941 enum pipe pipe;
942
943 for_each_pipe(dev_priv, pipe)
944 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
945
946 I915_WRITE(DSPFW1,
947 FW_WM(wm->sr.plane, SR) |
948 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
949 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
950 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
951 I915_WRITE(DSPFW2,
952 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
953 FW_WM(wm->sr.fbc, FBC_SR) |
954 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
955 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
956 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
957 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
958 I915_WRITE(DSPFW3,
959 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
960 FW_WM(wm->sr.cursor, CURSOR_SR) |
961 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
962 FW_WM(wm->hpll.plane, HPLL_SR));
963
964 POSTING_READ(DSPFW1);
965 }
966
967 #define FW_WM_VLV(value, plane) \
968 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
969
970 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
971 const struct vlv_wm_values *wm)
972 {
973 enum pipe pipe;
974
975 for_each_pipe(dev_priv, pipe) {
976 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
977
978 I915_WRITE(VLV_DDL(pipe),
979 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
980 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
981 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
982 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
983 }
984
985 /*
986 * Zero the (unused) WM1 watermarks, and also clear all the
987 * high order bits so that there are no out of bounds values
988 * present in the registers during the reprogramming.
989 */
990 I915_WRITE(DSPHOWM, 0);
991 I915_WRITE(DSPHOWM1, 0);
992 I915_WRITE(DSPFW4, 0);
993 I915_WRITE(DSPFW5, 0);
994 I915_WRITE(DSPFW6, 0);
995
996 I915_WRITE(DSPFW1,
997 FW_WM(wm->sr.plane, SR) |
998 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
999 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1000 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1001 I915_WRITE(DSPFW2,
1002 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1003 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1004 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005 I915_WRITE(DSPFW3,
1006 FW_WM(wm->sr.cursor, CURSOR_SR));
1007
1008 if (IS_CHERRYVIEW(dev_priv)) {
1009 I915_WRITE(DSPFW7_CHV,
1010 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1011 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1012 I915_WRITE(DSPFW8_CHV,
1013 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1014 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1015 I915_WRITE(DSPFW9_CHV,
1016 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1017 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1018 I915_WRITE(DSPHOWM,
1019 FW_WM(wm->sr.plane >> 9, SR_HI) |
1020 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1021 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1022 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1023 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1024 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1025 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1026 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1027 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1028 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1029 } else {
1030 I915_WRITE(DSPFW7,
1031 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1032 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1033 I915_WRITE(DSPHOWM,
1034 FW_WM(wm->sr.plane >> 9, SR_HI) |
1035 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1036 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1037 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1038 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1039 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1040 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1041 }
1042
1043 POSTING_READ(DSPFW1);
1044 }
1045
1046 #undef FW_WM_VLV
1047
1048 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1049 {
1050 /* all latencies in usec */
1051 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1052 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1053 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1054
1055 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1056 }
1057
1058 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1059 {
1060 /*
1061 * DSPCNTR[13] supposedly controls whether the
1062 * primary plane can use the FIFO space otherwise
1063 * reserved for the sprite plane. It's not 100% clear
1064 * what the actual FIFO size is, but it looks like we
1065 * can happily set both primary and sprite watermarks
1066 * up to 127 cachelines. So that would seem to mean
1067 * that either DSPCNTR[13] doesn't do anything, or that
1068 * the total FIFO is >= 256 cachelines in size. Either
1069 * way, we don't seem to have to worry about this
1070 * repartitioning as the maximum watermark value the
1071 * register can hold for each plane is lower than the
1072 * minimum FIFO size.
1073 */
1074 switch (plane_id) {
1075 case PLANE_CURSOR:
1076 return 63;
1077 case PLANE_PRIMARY:
1078 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1079 case PLANE_SPRITE0:
1080 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1081 default:
1082 MISSING_CASE(plane_id);
1083 return 0;
1084 }
1085 }
1086
1087 static int g4x_fbc_fifo_size(int level)
1088 {
1089 switch (level) {
1090 case G4X_WM_LEVEL_SR:
1091 return 7;
1092 case G4X_WM_LEVEL_HPLL:
1093 return 15;
1094 default:
1095 MISSING_CASE(level);
1096 return 0;
1097 }
1098 }
1099
1100 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1101 const struct intel_plane_state *plane_state,
1102 int level)
1103 {
1104 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1105 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1106 const struct drm_display_mode *adjusted_mode =
1107 &crtc_state->base.adjusted_mode;
1108 int clock, htotal, cpp, width, wm;
1109 int latency = dev_priv->wm.pri_latency[level] * 10;
1110
1111 if (latency == 0)
1112 return USHRT_MAX;
1113
1114 if (!intel_wm_plane_visible(crtc_state, plane_state))
1115 return 0;
1116
1117 /*
1118 * Not 100% sure which way ELK should go here as the
1119 * spec only says CL/CTG should assume 32bpp and BW
1120 * doesn't need to. But as these things followed the
1121 * mobile vs. desktop lines on gen3 as well, let's
1122 * assume ELK doesn't need this.
1123 *
1124 * The spec also fails to list such a restriction for
1125 * the HPLL watermark, which seems a little strange.
1126 * Let's use 32bpp for the HPLL watermark as well.
1127 */
1128 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1129 level != G4X_WM_LEVEL_NORMAL)
1130 cpp = 4;
1131 else
1132 cpp = plane_state->base.fb->format->cpp[0];
1133
1134 clock = adjusted_mode->crtc_clock;
1135 htotal = adjusted_mode->crtc_htotal;
1136
1137 if (plane->id == PLANE_CURSOR)
1138 width = plane_state->base.crtc_w;
1139 else
1140 width = drm_rect_width(&plane_state->base.dst);
1141
1142 if (plane->id == PLANE_CURSOR) {
1143 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1144 } else if (plane->id == PLANE_PRIMARY &&
1145 level == G4X_WM_LEVEL_NORMAL) {
1146 wm = intel_wm_method1(clock, cpp, latency);
1147 } else {
1148 int small, large;
1149
1150 small = intel_wm_method1(clock, cpp, latency);
1151 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1152
1153 wm = min(small, large);
1154 }
1155
1156 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1157 width, cpp);
1158
1159 wm = DIV_ROUND_UP(wm, 64) + 2;
1160
1161 return min_t(int, wm, USHRT_MAX);
1162 }
1163
1164 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1165 int level, enum plane_id plane_id, u16 value)
1166 {
1167 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1168 bool dirty = false;
1169
1170 for (; level < intel_wm_num_levels(dev_priv); level++) {
1171 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1172
1173 dirty |= raw->plane[plane_id] != value;
1174 raw->plane[plane_id] = value;
1175 }
1176
1177 return dirty;
1178 }
1179
1180 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1181 int level, u16 value)
1182 {
1183 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1184 bool dirty = false;
1185
1186 /* NORMAL level doesn't have an FBC watermark */
1187 level = max(level, G4X_WM_LEVEL_SR);
1188
1189 for (; level < intel_wm_num_levels(dev_priv); level++) {
1190 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1191
1192 dirty |= raw->fbc != value;
1193 raw->fbc = value;
1194 }
1195
1196 return dirty;
1197 }
1198
1199 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1200 const struct intel_plane_state *pstate,
1201 uint32_t pri_val);
1202
1203 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1204 const struct intel_plane_state *plane_state)
1205 {
1206 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1207 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1208 enum plane_id plane_id = plane->id;
1209 bool dirty = false;
1210 int level;
1211
1212 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1213 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1214 if (plane_id == PLANE_PRIMARY)
1215 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1216 goto out;
1217 }
1218
1219 for (level = 0; level < num_levels; level++) {
1220 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1221 int wm, max_wm;
1222
1223 wm = g4x_compute_wm(crtc_state, plane_state, level);
1224 max_wm = g4x_plane_fifo_size(plane_id, level);
1225
1226 if (wm > max_wm)
1227 break;
1228
1229 dirty |= raw->plane[plane_id] != wm;
1230 raw->plane[plane_id] = wm;
1231
1232 if (plane_id != PLANE_PRIMARY ||
1233 level == G4X_WM_LEVEL_NORMAL)
1234 continue;
1235
1236 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1237 raw->plane[plane_id]);
1238 max_wm = g4x_fbc_fifo_size(level);
1239
1240 /*
1241 * FBC wm is not mandatory as we
1242 * can always just disable its use.
1243 */
1244 if (wm > max_wm)
1245 wm = USHRT_MAX;
1246
1247 dirty |= raw->fbc != wm;
1248 raw->fbc = wm;
1249 }
1250
1251 /* mark watermarks as invalid */
1252 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1253
1254 if (plane_id == PLANE_PRIMARY)
1255 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1256
1257 out:
1258 if (dirty) {
1259 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1260 plane->base.name,
1261 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1262 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1263 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1264
1265 if (plane_id == PLANE_PRIMARY)
1266 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1267 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1268 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1269 }
1270
1271 return dirty;
1272 }
1273
1274 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1275 enum plane_id plane_id, int level)
1276 {
1277 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1278
1279 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1280 }
1281
1282 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1283 int level)
1284 {
1285 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1286
1287 if (level > dev_priv->wm.max_level)
1288 return false;
1289
1290 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1291 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1292 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1293 }
1294
1295 /* mark all levels starting from 'level' as invalid */
1296 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1297 struct g4x_wm_state *wm_state, int level)
1298 {
1299 if (level <= G4X_WM_LEVEL_NORMAL) {
1300 enum plane_id plane_id;
1301
1302 for_each_plane_id_on_crtc(crtc, plane_id)
1303 wm_state->wm.plane[plane_id] = USHRT_MAX;
1304 }
1305
1306 if (level <= G4X_WM_LEVEL_SR) {
1307 wm_state->cxsr = false;
1308 wm_state->sr.cursor = USHRT_MAX;
1309 wm_state->sr.plane = USHRT_MAX;
1310 wm_state->sr.fbc = USHRT_MAX;
1311 }
1312
1313 if (level <= G4X_WM_LEVEL_HPLL) {
1314 wm_state->hpll_en = false;
1315 wm_state->hpll.cursor = USHRT_MAX;
1316 wm_state->hpll.plane = USHRT_MAX;
1317 wm_state->hpll.fbc = USHRT_MAX;
1318 }
1319 }
1320
1321 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1322 {
1323 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1324 struct intel_atomic_state *state =
1325 to_intel_atomic_state(crtc_state->base.state);
1326 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1327 int num_active_planes = hweight32(crtc_state->active_planes &
1328 ~BIT(PLANE_CURSOR));
1329 const struct g4x_pipe_wm *raw;
1330 const struct intel_plane_state *old_plane_state;
1331 const struct intel_plane_state *new_plane_state;
1332 struct intel_plane *plane;
1333 enum plane_id plane_id;
1334 int i, level;
1335 unsigned int dirty = 0;
1336
1337 for_each_oldnew_intel_plane_in_state(state, plane,
1338 old_plane_state,
1339 new_plane_state, i) {
1340 if (new_plane_state->base.crtc != &crtc->base &&
1341 old_plane_state->base.crtc != &crtc->base)
1342 continue;
1343
1344 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1345 dirty |= BIT(plane->id);
1346 }
1347
1348 if (!dirty)
1349 return 0;
1350
1351 level = G4X_WM_LEVEL_NORMAL;
1352 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353 goto out;
1354
1355 raw = &crtc_state->wm.g4x.raw[level];
1356 for_each_plane_id_on_crtc(crtc, plane_id)
1357 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1358
1359 level = G4X_WM_LEVEL_SR;
1360
1361 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1362 goto out;
1363
1364 raw = &crtc_state->wm.g4x.raw[level];
1365 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1366 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1367 wm_state->sr.fbc = raw->fbc;
1368
1369 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1370
1371 level = G4X_WM_LEVEL_HPLL;
1372
1373 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1374 goto out;
1375
1376 raw = &crtc_state->wm.g4x.raw[level];
1377 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1378 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1379 wm_state->hpll.fbc = raw->fbc;
1380
1381 wm_state->hpll_en = wm_state->cxsr;
1382
1383 level++;
1384
1385 out:
1386 if (level == G4X_WM_LEVEL_NORMAL)
1387 return -EINVAL;
1388
1389 /* invalidate the higher levels */
1390 g4x_invalidate_wms(crtc, wm_state, level);
1391
1392 /*
1393 * Determine if the FBC watermark(s) can be used. IF
1394 * this isn't the case we prefer to disable the FBC
1395 ( watermark(s) rather than disable the SR/HPLL
1396 * level(s) entirely.
1397 */
1398 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1399
1400 if (level >= G4X_WM_LEVEL_SR &&
1401 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1402 wm_state->fbc_en = false;
1403 else if (level >= G4X_WM_LEVEL_HPLL &&
1404 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1405 wm_state->fbc_en = false;
1406
1407 return 0;
1408 }
1409
1410 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1411 struct intel_crtc *crtc,
1412 struct intel_crtc_state *crtc_state)
1413 {
1414 struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1415 const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1416 const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1417 enum plane_id plane_id;
1418
1419 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1420 !crtc_state->disable_cxsr;
1421 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1422 !crtc_state->disable_cxsr;
1423 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1424
1425 for_each_plane_id_on_crtc(crtc, plane_id) {
1426 intermediate->wm.plane[plane_id] =
1427 max(optimal->wm.plane[plane_id],
1428 active->wm.plane[plane_id]);
1429
1430 WARN_ON(intermediate->wm.plane[plane_id] >
1431 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1432 }
1433
1434 intermediate->sr.plane = max(optimal->sr.plane,
1435 active->sr.plane);
1436 intermediate->sr.cursor = max(optimal->sr.cursor,
1437 active->sr.cursor);
1438 intermediate->sr.fbc = max(optimal->sr.fbc,
1439 active->sr.fbc);
1440
1441 intermediate->hpll.plane = max(optimal->hpll.plane,
1442 active->hpll.plane);
1443 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1444 active->hpll.cursor);
1445 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1446 active->hpll.fbc);
1447
1448 WARN_ON((intermediate->sr.plane >
1449 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1450 intermediate->sr.cursor >
1451 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1452 intermediate->cxsr);
1453 WARN_ON((intermediate->sr.plane >
1454 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1455 intermediate->sr.cursor >
1456 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1457 intermediate->hpll_en);
1458
1459 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1460 intermediate->fbc_en && intermediate->cxsr);
1461 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1462 intermediate->fbc_en && intermediate->hpll_en);
1463
1464 /*
1465 * If our intermediate WM are identical to the final WM, then we can
1466 * omit the post-vblank programming; only update if it's different.
1467 */
1468 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1469 crtc_state->wm.need_postvbl_update = true;
1470
1471 return 0;
1472 }
1473
1474 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1475 struct g4x_wm_values *wm)
1476 {
1477 struct intel_crtc *crtc;
1478 int num_active_crtcs = 0;
1479
1480 wm->cxsr = true;
1481 wm->hpll_en = true;
1482 wm->fbc_en = true;
1483
1484 for_each_intel_crtc(&dev_priv->drm, crtc) {
1485 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1486
1487 if (!crtc->active)
1488 continue;
1489
1490 if (!wm_state->cxsr)
1491 wm->cxsr = false;
1492 if (!wm_state->hpll_en)
1493 wm->hpll_en = false;
1494 if (!wm_state->fbc_en)
1495 wm->fbc_en = false;
1496
1497 num_active_crtcs++;
1498 }
1499
1500 if (num_active_crtcs != 1) {
1501 wm->cxsr = false;
1502 wm->hpll_en = false;
1503 wm->fbc_en = false;
1504 }
1505
1506 for_each_intel_crtc(&dev_priv->drm, crtc) {
1507 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1508 enum pipe pipe = crtc->pipe;
1509
1510 wm->pipe[pipe] = wm_state->wm;
1511 if (crtc->active && wm->cxsr)
1512 wm->sr = wm_state->sr;
1513 if (crtc->active && wm->hpll_en)
1514 wm->hpll = wm_state->hpll;
1515 }
1516 }
1517
1518 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1519 {
1520 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1521 struct g4x_wm_values new_wm = {};
1522
1523 g4x_merge_wm(dev_priv, &new_wm);
1524
1525 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1526 return;
1527
1528 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1529 _intel_set_memory_cxsr(dev_priv, false);
1530
1531 g4x_write_wm_values(dev_priv, &new_wm);
1532
1533 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1534 _intel_set_memory_cxsr(dev_priv, true);
1535
1536 *old_wm = new_wm;
1537 }
1538
1539 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1540 struct intel_crtc_state *crtc_state)
1541 {
1542 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1544
1545 mutex_lock(&dev_priv->wm.wm_mutex);
1546 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1547 g4x_program_watermarks(dev_priv);
1548 mutex_unlock(&dev_priv->wm.wm_mutex);
1549 }
1550
1551 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1552 struct intel_crtc_state *crtc_state)
1553 {
1554 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1556
1557 if (!crtc_state->wm.need_postvbl_update)
1558 return;
1559
1560 mutex_lock(&dev_priv->wm.wm_mutex);
1561 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1562 g4x_program_watermarks(dev_priv);
1563 mutex_unlock(&dev_priv->wm.wm_mutex);
1564 }
1565
1566 /* latency must be in 0.1us units. */
1567 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1568 unsigned int htotal,
1569 unsigned int width,
1570 unsigned int cpp,
1571 unsigned int latency)
1572 {
1573 unsigned int ret;
1574
1575 ret = intel_wm_method2(pixel_rate, htotal,
1576 width, cpp, latency);
1577 ret = DIV_ROUND_UP(ret, 64);
1578
1579 return ret;
1580 }
1581
1582 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1583 {
1584 /* all latencies in usec */
1585 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1586
1587 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1588
1589 if (IS_CHERRYVIEW(dev_priv)) {
1590 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1591 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1592
1593 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1594 }
1595 }
1596
1597 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1598 const struct intel_plane_state *plane_state,
1599 int level)
1600 {
1601 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1602 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1603 const struct drm_display_mode *adjusted_mode =
1604 &crtc_state->base.adjusted_mode;
1605 int clock, htotal, cpp, width, wm;
1606
1607 if (dev_priv->wm.pri_latency[level] == 0)
1608 return USHRT_MAX;
1609
1610 if (!intel_wm_plane_visible(crtc_state, plane_state))
1611 return 0;
1612
1613 cpp = plane_state->base.fb->format->cpp[0];
1614 clock = adjusted_mode->crtc_clock;
1615 htotal = adjusted_mode->crtc_htotal;
1616 width = crtc_state->pipe_src_w;
1617
1618 if (plane->id == PLANE_CURSOR) {
1619 /*
1620 * FIXME the formula gives values that are
1621 * too big for the cursor FIFO, and hence we
1622 * would never be able to use cursors. For
1623 * now just hardcode the watermark.
1624 */
1625 wm = 63;
1626 } else {
1627 wm = vlv_wm_method2(clock, htotal, width, cpp,
1628 dev_priv->wm.pri_latency[level] * 10);
1629 }
1630
1631 return min_t(int, wm, USHRT_MAX);
1632 }
1633
1634 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1635 {
1636 return (active_planes & (BIT(PLANE_SPRITE0) |
1637 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1638 }
1639
1640 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1641 {
1642 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1643 const struct g4x_pipe_wm *raw =
1644 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1645 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1646 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1647 int num_active_planes = hweight32(active_planes);
1648 const int fifo_size = 511;
1649 int fifo_extra, fifo_left = fifo_size;
1650 int sprite0_fifo_extra = 0;
1651 unsigned int total_rate;
1652 enum plane_id plane_id;
1653
1654 /*
1655 * When enabling sprite0 after sprite1 has already been enabled
1656 * we tend to get an underrun unless sprite0 already has some
1657 * FIFO space allcoated. Hence we always allocate at least one
1658 * cacheline for sprite0 whenever sprite1 is enabled.
1659 *
1660 * All other plane enable sequences appear immune to this problem.
1661 */
1662 if (vlv_need_sprite0_fifo_workaround(active_planes))
1663 sprite0_fifo_extra = 1;
1664
1665 total_rate = raw->plane[PLANE_PRIMARY] +
1666 raw->plane[PLANE_SPRITE0] +
1667 raw->plane[PLANE_SPRITE1] +
1668 sprite0_fifo_extra;
1669
1670 if (total_rate > fifo_size)
1671 return -EINVAL;
1672
1673 if (total_rate == 0)
1674 total_rate = 1;
1675
1676 for_each_plane_id_on_crtc(crtc, plane_id) {
1677 unsigned int rate;
1678
1679 if ((active_planes & BIT(plane_id)) == 0) {
1680 fifo_state->plane[plane_id] = 0;
1681 continue;
1682 }
1683
1684 rate = raw->plane[plane_id];
1685 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1686 fifo_left -= fifo_state->plane[plane_id];
1687 }
1688
1689 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1690 fifo_left -= sprite0_fifo_extra;
1691
1692 fifo_state->plane[PLANE_CURSOR] = 63;
1693
1694 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1695
1696 /* spread the remainder evenly */
1697 for_each_plane_id_on_crtc(crtc, plane_id) {
1698 int plane_extra;
1699
1700 if (fifo_left == 0)
1701 break;
1702
1703 if ((active_planes & BIT(plane_id)) == 0)
1704 continue;
1705
1706 plane_extra = min(fifo_extra, fifo_left);
1707 fifo_state->plane[plane_id] += plane_extra;
1708 fifo_left -= plane_extra;
1709 }
1710
1711 WARN_ON(active_planes != 0 && fifo_left != 0);
1712
1713 /* give it all to the first plane if none are active */
1714 if (active_planes == 0) {
1715 WARN_ON(fifo_left != fifo_size);
1716 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1717 }
1718
1719 return 0;
1720 }
1721
1722 /* mark all levels starting from 'level' as invalid */
1723 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1724 struct vlv_wm_state *wm_state, int level)
1725 {
1726 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1727
1728 for (; level < intel_wm_num_levels(dev_priv); level++) {
1729 enum plane_id plane_id;
1730
1731 for_each_plane_id_on_crtc(crtc, plane_id)
1732 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1733
1734 wm_state->sr[level].cursor = USHRT_MAX;
1735 wm_state->sr[level].plane = USHRT_MAX;
1736 }
1737 }
1738
1739 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1740 {
1741 if (wm > fifo_size)
1742 return USHRT_MAX;
1743 else
1744 return fifo_size - wm;
1745 }
1746
1747 /*
1748 * Starting from 'level' set all higher
1749 * levels to 'value' in the "raw" watermarks.
1750 */
1751 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1752 int level, enum plane_id plane_id, u16 value)
1753 {
1754 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1755 int num_levels = intel_wm_num_levels(dev_priv);
1756 bool dirty = false;
1757
1758 for (; level < num_levels; level++) {
1759 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1760
1761 dirty |= raw->plane[plane_id] != value;
1762 raw->plane[plane_id] = value;
1763 }
1764
1765 return dirty;
1766 }
1767
1768 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1769 const struct intel_plane_state *plane_state)
1770 {
1771 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1772 enum plane_id plane_id = plane->id;
1773 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1774 int level;
1775 bool dirty = false;
1776
1777 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1778 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1779 goto out;
1780 }
1781
1782 for (level = 0; level < num_levels; level++) {
1783 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1784 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1785 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1786
1787 if (wm > max_wm)
1788 break;
1789
1790 dirty |= raw->plane[plane_id] != wm;
1791 raw->plane[plane_id] = wm;
1792 }
1793
1794 /* mark all higher levels as invalid */
1795 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1796
1797 out:
1798 if (dirty)
1799 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1800 plane->base.name,
1801 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1802 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1803 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1804
1805 return dirty;
1806 }
1807
1808 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1809 enum plane_id plane_id, int level)
1810 {
1811 const struct g4x_pipe_wm *raw =
1812 &crtc_state->wm.vlv.raw[level];
1813 const struct vlv_fifo_state *fifo_state =
1814 &crtc_state->wm.vlv.fifo_state;
1815
1816 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1817 }
1818
1819 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1820 {
1821 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1822 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1823 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1824 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1825 }
1826
1827 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1828 {
1829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1831 struct intel_atomic_state *state =
1832 to_intel_atomic_state(crtc_state->base.state);
1833 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1834 const struct vlv_fifo_state *fifo_state =
1835 &crtc_state->wm.vlv.fifo_state;
1836 int num_active_planes = hweight32(crtc_state->active_planes &
1837 ~BIT(PLANE_CURSOR));
1838 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1839 const struct intel_plane_state *old_plane_state;
1840 const struct intel_plane_state *new_plane_state;
1841 struct intel_plane *plane;
1842 enum plane_id plane_id;
1843 int level, ret, i;
1844 unsigned int dirty = 0;
1845
1846 for_each_oldnew_intel_plane_in_state(state, plane,
1847 old_plane_state,
1848 new_plane_state, i) {
1849 if (new_plane_state->base.crtc != &crtc->base &&
1850 old_plane_state->base.crtc != &crtc->base)
1851 continue;
1852
1853 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1854 dirty |= BIT(plane->id);
1855 }
1856
1857 /*
1858 * DSPARB registers may have been reset due to the
1859 * power well being turned off. Make sure we restore
1860 * them to a consistent state even if no primary/sprite
1861 * planes are initially active.
1862 */
1863 if (needs_modeset)
1864 crtc_state->fifo_changed = true;
1865
1866 if (!dirty)
1867 return 0;
1868
1869 /* cursor changes don't warrant a FIFO recompute */
1870 if (dirty & ~BIT(PLANE_CURSOR)) {
1871 const struct intel_crtc_state *old_crtc_state =
1872 intel_atomic_get_old_crtc_state(state, crtc);
1873 const struct vlv_fifo_state *old_fifo_state =
1874 &old_crtc_state->wm.vlv.fifo_state;
1875
1876 ret = vlv_compute_fifo(crtc_state);
1877 if (ret)
1878 return ret;
1879
1880 if (needs_modeset ||
1881 memcmp(old_fifo_state, fifo_state,
1882 sizeof(*fifo_state)) != 0)
1883 crtc_state->fifo_changed = true;
1884 }
1885
1886 /* initially allow all levels */
1887 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1888 /*
1889 * Note that enabling cxsr with no primary/sprite planes
1890 * enabled can wedge the pipe. Hence we only allow cxsr
1891 * with exactly one enabled primary/sprite plane.
1892 */
1893 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1894
1895 for (level = 0; level < wm_state->num_levels; level++) {
1896 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1897 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1898
1899 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1900 break;
1901
1902 for_each_plane_id_on_crtc(crtc, plane_id) {
1903 wm_state->wm[level].plane[plane_id] =
1904 vlv_invert_wm_value(raw->plane[plane_id],
1905 fifo_state->plane[plane_id]);
1906 }
1907
1908 wm_state->sr[level].plane =
1909 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1910 raw->plane[PLANE_SPRITE0],
1911 raw->plane[PLANE_SPRITE1]),
1912 sr_fifo_size);
1913
1914 wm_state->sr[level].cursor =
1915 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1916 63);
1917 }
1918
1919 if (level == 0)
1920 return -EINVAL;
1921
1922 /* limit to only levels we can actually handle */
1923 wm_state->num_levels = level;
1924
1925 /* invalidate the higher levels */
1926 vlv_invalidate_wms(crtc, wm_state, level);
1927
1928 return 0;
1929 }
1930
1931 #define VLV_FIFO(plane, value) \
1932 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1933
1934 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1935 struct intel_crtc_state *crtc_state)
1936 {
1937 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1938 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1939 const struct vlv_fifo_state *fifo_state =
1940 &crtc_state->wm.vlv.fifo_state;
1941 int sprite0_start, sprite1_start, fifo_size;
1942
1943 if (!crtc_state->fifo_changed)
1944 return;
1945
1946 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1947 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1948 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1949
1950 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1951 WARN_ON(fifo_size != 511);
1952
1953 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1954
1955 /*
1956 * uncore.lock serves a double purpose here. It allows us to
1957 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1958 * it protects the DSPARB registers from getting clobbered by
1959 * parallel updates from multiple pipes.
1960 *
1961 * intel_pipe_update_start() has already disabled interrupts
1962 * for us, so a plain spin_lock() is sufficient here.
1963 */
1964 spin_lock(&dev_priv->uncore.lock);
1965
1966 switch (crtc->pipe) {
1967 uint32_t dsparb, dsparb2, dsparb3;
1968 case PIPE_A:
1969 dsparb = I915_READ_FW(DSPARB);
1970 dsparb2 = I915_READ_FW(DSPARB2);
1971
1972 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1973 VLV_FIFO(SPRITEB, 0xff));
1974 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1975 VLV_FIFO(SPRITEB, sprite1_start));
1976
1977 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1978 VLV_FIFO(SPRITEB_HI, 0x1));
1979 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1980 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1981
1982 I915_WRITE_FW(DSPARB, dsparb);
1983 I915_WRITE_FW(DSPARB2, dsparb2);
1984 break;
1985 case PIPE_B:
1986 dsparb = I915_READ_FW(DSPARB);
1987 dsparb2 = I915_READ_FW(DSPARB2);
1988
1989 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1990 VLV_FIFO(SPRITED, 0xff));
1991 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1992 VLV_FIFO(SPRITED, sprite1_start));
1993
1994 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1995 VLV_FIFO(SPRITED_HI, 0xff));
1996 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1997 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1998
1999 I915_WRITE_FW(DSPARB, dsparb);
2000 I915_WRITE_FW(DSPARB2, dsparb2);
2001 break;
2002 case PIPE_C:
2003 dsparb3 = I915_READ_FW(DSPARB3);
2004 dsparb2 = I915_READ_FW(DSPARB2);
2005
2006 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2007 VLV_FIFO(SPRITEF, 0xff));
2008 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2009 VLV_FIFO(SPRITEF, sprite1_start));
2010
2011 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2012 VLV_FIFO(SPRITEF_HI, 0xff));
2013 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2014 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2015
2016 I915_WRITE_FW(DSPARB3, dsparb3);
2017 I915_WRITE_FW(DSPARB2, dsparb2);
2018 break;
2019 default:
2020 break;
2021 }
2022
2023 POSTING_READ_FW(DSPARB);
2024
2025 spin_unlock(&dev_priv->uncore.lock);
2026 }
2027
2028 #undef VLV_FIFO
2029
2030 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2031 struct intel_crtc *crtc,
2032 struct intel_crtc_state *crtc_state)
2033 {
2034 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2035 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2036 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2037 int level;
2038
2039 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2040 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2041 !crtc_state->disable_cxsr;
2042
2043 for (level = 0; level < intermediate->num_levels; level++) {
2044 enum plane_id plane_id;
2045
2046 for_each_plane_id_on_crtc(crtc, plane_id) {
2047 intermediate->wm[level].plane[plane_id] =
2048 min(optimal->wm[level].plane[plane_id],
2049 active->wm[level].plane[plane_id]);
2050 }
2051
2052 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2053 active->sr[level].plane);
2054 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2055 active->sr[level].cursor);
2056 }
2057
2058 vlv_invalidate_wms(crtc, intermediate, level);
2059
2060 /*
2061 * If our intermediate WM are identical to the final WM, then we can
2062 * omit the post-vblank programming; only update if it's different.
2063 */
2064 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2065 crtc_state->wm.need_postvbl_update = true;
2066
2067 return 0;
2068 }
2069
2070 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2071 struct vlv_wm_values *wm)
2072 {
2073 struct intel_crtc *crtc;
2074 int num_active_crtcs = 0;
2075
2076 wm->level = dev_priv->wm.max_level;
2077 wm->cxsr = true;
2078
2079 for_each_intel_crtc(&dev_priv->drm, crtc) {
2080 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2081
2082 if (!crtc->active)
2083 continue;
2084
2085 if (!wm_state->cxsr)
2086 wm->cxsr = false;
2087
2088 num_active_crtcs++;
2089 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2090 }
2091
2092 if (num_active_crtcs != 1)
2093 wm->cxsr = false;
2094
2095 if (num_active_crtcs > 1)
2096 wm->level = VLV_WM_LEVEL_PM2;
2097
2098 for_each_intel_crtc(&dev_priv->drm, crtc) {
2099 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2100 enum pipe pipe = crtc->pipe;
2101
2102 wm->pipe[pipe] = wm_state->wm[wm->level];
2103 if (crtc->active && wm->cxsr)
2104 wm->sr = wm_state->sr[wm->level];
2105
2106 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2107 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2108 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2109 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2110 }
2111 }
2112
2113 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2114 {
2115 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2116 struct vlv_wm_values new_wm = {};
2117
2118 vlv_merge_wm(dev_priv, &new_wm);
2119
2120 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2121 return;
2122
2123 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2124 chv_set_memory_dvfs(dev_priv, false);
2125
2126 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2127 chv_set_memory_pm5(dev_priv, false);
2128
2129 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2130 _intel_set_memory_cxsr(dev_priv, false);
2131
2132 vlv_write_wm_values(dev_priv, &new_wm);
2133
2134 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2135 _intel_set_memory_cxsr(dev_priv, true);
2136
2137 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2138 chv_set_memory_pm5(dev_priv, true);
2139
2140 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 chv_set_memory_dvfs(dev_priv, true);
2142
2143 *old_wm = new_wm;
2144 }
2145
2146 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2147 struct intel_crtc_state *crtc_state)
2148 {
2149 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2150 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2151
2152 mutex_lock(&dev_priv->wm.wm_mutex);
2153 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2154 vlv_program_watermarks(dev_priv);
2155 mutex_unlock(&dev_priv->wm.wm_mutex);
2156 }
2157
2158 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2159 struct intel_crtc_state *crtc_state)
2160 {
2161 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2163
2164 if (!crtc_state->wm.need_postvbl_update)
2165 return;
2166
2167 mutex_lock(&dev_priv->wm.wm_mutex);
2168 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2169 vlv_program_watermarks(dev_priv);
2170 mutex_unlock(&dev_priv->wm.wm_mutex);
2171 }
2172
2173 static void i965_update_wm(struct intel_crtc *unused_crtc)
2174 {
2175 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2176 struct intel_crtc *crtc;
2177 int srwm = 1;
2178 int cursor_sr = 16;
2179 bool cxsr_enabled;
2180
2181 /* Calc sr entries for one plane configs */
2182 crtc = single_enabled_crtc(dev_priv);
2183 if (crtc) {
2184 /* self-refresh has much higher latency */
2185 static const int sr_latency_ns = 12000;
2186 const struct drm_display_mode *adjusted_mode =
2187 &crtc->config->base.adjusted_mode;
2188 const struct drm_framebuffer *fb =
2189 crtc->base.primary->state->fb;
2190 int clock = adjusted_mode->crtc_clock;
2191 int htotal = adjusted_mode->crtc_htotal;
2192 int hdisplay = crtc->config->pipe_src_w;
2193 int cpp = fb->format->cpp[0];
2194 int entries;
2195
2196 entries = intel_wm_method2(clock, htotal,
2197 hdisplay, cpp, sr_latency_ns / 100);
2198 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2199 srwm = I965_FIFO_SIZE - entries;
2200 if (srwm < 0)
2201 srwm = 1;
2202 srwm &= 0x1ff;
2203 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2204 entries, srwm);
2205
2206 entries = intel_wm_method2(clock, htotal,
2207 crtc->base.cursor->state->crtc_w, 4,
2208 sr_latency_ns / 100);
2209 entries = DIV_ROUND_UP(entries,
2210 i965_cursor_wm_info.cacheline_size) +
2211 i965_cursor_wm_info.guard_size;
2212
2213 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2214 if (cursor_sr > i965_cursor_wm_info.max_wm)
2215 cursor_sr = i965_cursor_wm_info.max_wm;
2216
2217 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2218 "cursor %d\n", srwm, cursor_sr);
2219
2220 cxsr_enabled = true;
2221 } else {
2222 cxsr_enabled = false;
2223 /* Turn off self refresh if both pipes are enabled */
2224 intel_set_memory_cxsr(dev_priv, false);
2225 }
2226
2227 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2228 srwm);
2229
2230 /* 965 has limitations... */
2231 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2232 FW_WM(8, CURSORB) |
2233 FW_WM(8, PLANEB) |
2234 FW_WM(8, PLANEA));
2235 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2236 FW_WM(8, PLANEC_OLD));
2237 /* update cursor SR watermark */
2238 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2239
2240 if (cxsr_enabled)
2241 intel_set_memory_cxsr(dev_priv, true);
2242 }
2243
2244 #undef FW_WM
2245
2246 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2247 {
2248 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2249 const struct intel_watermark_params *wm_info;
2250 uint32_t fwater_lo;
2251 uint32_t fwater_hi;
2252 int cwm, srwm = 1;
2253 int fifo_size;
2254 int planea_wm, planeb_wm;
2255 struct intel_crtc *crtc, *enabled = NULL;
2256
2257 if (IS_I945GM(dev_priv))
2258 wm_info = &i945_wm_info;
2259 else if (!IS_GEN2(dev_priv))
2260 wm_info = &i915_wm_info;
2261 else
2262 wm_info = &i830_a_wm_info;
2263
2264 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2265 crtc = intel_get_crtc_for_plane(dev_priv, 0);
2266 if (intel_crtc_active(crtc)) {
2267 const struct drm_display_mode *adjusted_mode =
2268 &crtc->config->base.adjusted_mode;
2269 const struct drm_framebuffer *fb =
2270 crtc->base.primary->state->fb;
2271 int cpp;
2272
2273 if (IS_GEN2(dev_priv))
2274 cpp = 4;
2275 else
2276 cpp = fb->format->cpp[0];
2277
2278 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2279 wm_info, fifo_size, cpp,
2280 pessimal_latency_ns);
2281 enabled = crtc;
2282 } else {
2283 planea_wm = fifo_size - wm_info->guard_size;
2284 if (planea_wm > (long)wm_info->max_wm)
2285 planea_wm = wm_info->max_wm;
2286 }
2287
2288 if (IS_GEN2(dev_priv))
2289 wm_info = &i830_bc_wm_info;
2290
2291 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2292 crtc = intel_get_crtc_for_plane(dev_priv, 1);
2293 if (intel_crtc_active(crtc)) {
2294 const struct drm_display_mode *adjusted_mode =
2295 &crtc->config->base.adjusted_mode;
2296 const struct drm_framebuffer *fb =
2297 crtc->base.primary->state->fb;
2298 int cpp;
2299
2300 if (IS_GEN2(dev_priv))
2301 cpp = 4;
2302 else
2303 cpp = fb->format->cpp[0];
2304
2305 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2306 wm_info, fifo_size, cpp,
2307 pessimal_latency_ns);
2308 if (enabled == NULL)
2309 enabled = crtc;
2310 else
2311 enabled = NULL;
2312 } else {
2313 planeb_wm = fifo_size - wm_info->guard_size;
2314 if (planeb_wm > (long)wm_info->max_wm)
2315 planeb_wm = wm_info->max_wm;
2316 }
2317
2318 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2319
2320 if (IS_I915GM(dev_priv) && enabled) {
2321 struct drm_i915_gem_object *obj;
2322
2323 obj = intel_fb_obj(enabled->base.primary->state->fb);
2324
2325 /* self-refresh seems busted with untiled */
2326 if (!i915_gem_object_is_tiled(obj))
2327 enabled = NULL;
2328 }
2329
2330 /*
2331 * Overlay gets an aggressive default since video jitter is bad.
2332 */
2333 cwm = 2;
2334
2335 /* Play safe and disable self-refresh before adjusting watermarks. */
2336 intel_set_memory_cxsr(dev_priv, false);
2337
2338 /* Calc sr entries for one plane configs */
2339 if (HAS_FW_BLC(dev_priv) && enabled) {
2340 /* self-refresh has much higher latency */
2341 static const int sr_latency_ns = 6000;
2342 const struct drm_display_mode *adjusted_mode =
2343 &enabled->config->base.adjusted_mode;
2344 const struct drm_framebuffer *fb =
2345 enabled->base.primary->state->fb;
2346 int clock = adjusted_mode->crtc_clock;
2347 int htotal = adjusted_mode->crtc_htotal;
2348 int hdisplay = enabled->config->pipe_src_w;
2349 int cpp;
2350 int entries;
2351
2352 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2353 cpp = 4;
2354 else
2355 cpp = fb->format->cpp[0];
2356
2357 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2358 sr_latency_ns / 100);
2359 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2360 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2361 srwm = wm_info->fifo_size - entries;
2362 if (srwm < 0)
2363 srwm = 1;
2364
2365 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2366 I915_WRITE(FW_BLC_SELF,
2367 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2368 else
2369 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2370 }
2371
2372 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2373 planea_wm, planeb_wm, cwm, srwm);
2374
2375 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2376 fwater_hi = (cwm & 0x1f);
2377
2378 /* Set request length to 8 cachelines per fetch */
2379 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2380 fwater_hi = fwater_hi | (1 << 8);
2381
2382 I915_WRITE(FW_BLC, fwater_lo);
2383 I915_WRITE(FW_BLC2, fwater_hi);
2384
2385 if (enabled)
2386 intel_set_memory_cxsr(dev_priv, true);
2387 }
2388
2389 static void i845_update_wm(struct intel_crtc *unused_crtc)
2390 {
2391 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2392 struct intel_crtc *crtc;
2393 const struct drm_display_mode *adjusted_mode;
2394 uint32_t fwater_lo;
2395 int planea_wm;
2396
2397 crtc = single_enabled_crtc(dev_priv);
2398 if (crtc == NULL)
2399 return;
2400
2401 adjusted_mode = &crtc->config->base.adjusted_mode;
2402 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2403 &i845_wm_info,
2404 dev_priv->display.get_fifo_size(dev_priv, 0),
2405 4, pessimal_latency_ns);
2406 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2407 fwater_lo |= (3<<8) | planea_wm;
2408
2409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2410
2411 I915_WRITE(FW_BLC, fwater_lo);
2412 }
2413
2414 /* latency must be in 0.1us units. */
2415 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2416 unsigned int cpp,
2417 unsigned int latency)
2418 {
2419 unsigned int ret;
2420
2421 ret = intel_wm_method1(pixel_rate, cpp, latency);
2422 ret = DIV_ROUND_UP(ret, 64) + 2;
2423
2424 return ret;
2425 }
2426
2427 /* latency must be in 0.1us units. */
2428 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2429 unsigned int htotal,
2430 unsigned int width,
2431 unsigned int cpp,
2432 unsigned int latency)
2433 {
2434 unsigned int ret;
2435
2436 ret = intel_wm_method2(pixel_rate, htotal,
2437 width, cpp, latency);
2438 ret = DIV_ROUND_UP(ret, 64) + 2;
2439
2440 return ret;
2441 }
2442
2443 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2444 uint8_t cpp)
2445 {
2446 /*
2447 * Neither of these should be possible since this function shouldn't be
2448 * called if the CRTC is off or the plane is invisible. But let's be
2449 * extra paranoid to avoid a potential divide-by-zero if we screw up
2450 * elsewhere in the driver.
2451 */
2452 if (WARN_ON(!cpp))
2453 return 0;
2454 if (WARN_ON(!horiz_pixels))
2455 return 0;
2456
2457 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2458 }
2459
2460 struct ilk_wm_maximums {
2461 uint16_t pri;
2462 uint16_t spr;
2463 uint16_t cur;
2464 uint16_t fbc;
2465 };
2466
2467 /*
2468 * For both WM_PIPE and WM_LP.
2469 * mem_value must be in 0.1us units.
2470 */
2471 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2472 const struct intel_plane_state *pstate,
2473 uint32_t mem_value,
2474 bool is_lp)
2475 {
2476 uint32_t method1, method2;
2477 int cpp;
2478
2479 if (!intel_wm_plane_visible(cstate, pstate))
2480 return 0;
2481
2482 cpp = pstate->base.fb->format->cpp[0];
2483
2484 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2485
2486 if (!is_lp)
2487 return method1;
2488
2489 method2 = ilk_wm_method2(cstate->pixel_rate,
2490 cstate->base.adjusted_mode.crtc_htotal,
2491 drm_rect_width(&pstate->base.dst),
2492 cpp, mem_value);
2493
2494 return min(method1, method2);
2495 }
2496
2497 /*
2498 * For both WM_PIPE and WM_LP.
2499 * mem_value must be in 0.1us units.
2500 */
2501 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2502 const struct intel_plane_state *pstate,
2503 uint32_t mem_value)
2504 {
2505 uint32_t method1, method2;
2506 int cpp;
2507
2508 if (!intel_wm_plane_visible(cstate, pstate))
2509 return 0;
2510
2511 cpp = pstate->base.fb->format->cpp[0];
2512
2513 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2514 method2 = ilk_wm_method2(cstate->pixel_rate,
2515 cstate->base.adjusted_mode.crtc_htotal,
2516 drm_rect_width(&pstate->base.dst),
2517 cpp, mem_value);
2518 return min(method1, method2);
2519 }
2520
2521 /*
2522 * For both WM_PIPE and WM_LP.
2523 * mem_value must be in 0.1us units.
2524 */
2525 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2526 const struct intel_plane_state *pstate,
2527 uint32_t mem_value)
2528 {
2529 int cpp;
2530
2531 if (!intel_wm_plane_visible(cstate, pstate))
2532 return 0;
2533
2534 cpp = pstate->base.fb->format->cpp[0];
2535
2536 return ilk_wm_method2(cstate->pixel_rate,
2537 cstate->base.adjusted_mode.crtc_htotal,
2538 pstate->base.crtc_w, cpp, mem_value);
2539 }
2540
2541 /* Only for WM_LP. */
2542 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2543 const struct intel_plane_state *pstate,
2544 uint32_t pri_val)
2545 {
2546 int cpp;
2547
2548 if (!intel_wm_plane_visible(cstate, pstate))
2549 return 0;
2550
2551 cpp = pstate->base.fb->format->cpp[0];
2552
2553 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2554 }
2555
2556 static unsigned int
2557 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2558 {
2559 if (INTEL_GEN(dev_priv) >= 8)
2560 return 3072;
2561 else if (INTEL_GEN(dev_priv) >= 7)
2562 return 768;
2563 else
2564 return 512;
2565 }
2566
2567 static unsigned int
2568 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2569 int level, bool is_sprite)
2570 {
2571 if (INTEL_GEN(dev_priv) >= 8)
2572 /* BDW primary/sprite plane watermarks */
2573 return level == 0 ? 255 : 2047;
2574 else if (INTEL_GEN(dev_priv) >= 7)
2575 /* IVB/HSW primary/sprite plane watermarks */
2576 return level == 0 ? 127 : 1023;
2577 else if (!is_sprite)
2578 /* ILK/SNB primary plane watermarks */
2579 return level == 0 ? 127 : 511;
2580 else
2581 /* ILK/SNB sprite plane watermarks */
2582 return level == 0 ? 63 : 255;
2583 }
2584
2585 static unsigned int
2586 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2587 {
2588 if (INTEL_GEN(dev_priv) >= 7)
2589 return level == 0 ? 63 : 255;
2590 else
2591 return level == 0 ? 31 : 63;
2592 }
2593
2594 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2595 {
2596 if (INTEL_GEN(dev_priv) >= 8)
2597 return 31;
2598 else
2599 return 15;
2600 }
2601
2602 /* Calculate the maximum primary/sprite plane watermark */
2603 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2604 int level,
2605 const struct intel_wm_config *config,
2606 enum intel_ddb_partitioning ddb_partitioning,
2607 bool is_sprite)
2608 {
2609 struct drm_i915_private *dev_priv = to_i915(dev);
2610 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2611
2612 /* if sprites aren't enabled, sprites get nothing */
2613 if (is_sprite && !config->sprites_enabled)
2614 return 0;
2615
2616 /* HSW allows LP1+ watermarks even with multiple pipes */
2617 if (level == 0 || config->num_pipes_active > 1) {
2618 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2619
2620 /*
2621 * For some reason the non self refresh
2622 * FIFO size is only half of the self
2623 * refresh FIFO size on ILK/SNB.
2624 */
2625 if (INTEL_GEN(dev_priv) <= 6)
2626 fifo_size /= 2;
2627 }
2628
2629 if (config->sprites_enabled) {
2630 /* level 0 is always calculated with 1:1 split */
2631 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2632 if (is_sprite)
2633 fifo_size *= 5;
2634 fifo_size /= 6;
2635 } else {
2636 fifo_size /= 2;
2637 }
2638 }
2639
2640 /* clamp to max that the registers can hold */
2641 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2642 }
2643
2644 /* Calculate the maximum cursor plane watermark */
2645 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2646 int level,
2647 const struct intel_wm_config *config)
2648 {
2649 /* HSW LP1+ watermarks w/ multiple pipes */
2650 if (level > 0 && config->num_pipes_active > 1)
2651 return 64;
2652
2653 /* otherwise just report max that registers can hold */
2654 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2655 }
2656
2657 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2658 int level,
2659 const struct intel_wm_config *config,
2660 enum intel_ddb_partitioning ddb_partitioning,
2661 struct ilk_wm_maximums *max)
2662 {
2663 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2664 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2665 max->cur = ilk_cursor_wm_max(dev, level, config);
2666 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2667 }
2668
2669 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2670 int level,
2671 struct ilk_wm_maximums *max)
2672 {
2673 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2674 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2675 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2676 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2677 }
2678
2679 static bool ilk_validate_wm_level(int level,
2680 const struct ilk_wm_maximums *max,
2681 struct intel_wm_level *result)
2682 {
2683 bool ret;
2684
2685 /* already determined to be invalid? */
2686 if (!result->enable)
2687 return false;
2688
2689 result->enable = result->pri_val <= max->pri &&
2690 result->spr_val <= max->spr &&
2691 result->cur_val <= max->cur;
2692
2693 ret = result->enable;
2694
2695 /*
2696 * HACK until we can pre-compute everything,
2697 * and thus fail gracefully if LP0 watermarks
2698 * are exceeded...
2699 */
2700 if (level == 0 && !result->enable) {
2701 if (result->pri_val > max->pri)
2702 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2703 level, result->pri_val, max->pri);
2704 if (result->spr_val > max->spr)
2705 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2706 level, result->spr_val, max->spr);
2707 if (result->cur_val > max->cur)
2708 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2709 level, result->cur_val, max->cur);
2710
2711 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2712 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2713 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2714 result->enable = true;
2715 }
2716
2717 return ret;
2718 }
2719
2720 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2721 const struct intel_crtc *intel_crtc,
2722 int level,
2723 struct intel_crtc_state *cstate,
2724 const struct intel_plane_state *pristate,
2725 const struct intel_plane_state *sprstate,
2726 const struct intel_plane_state *curstate,
2727 struct intel_wm_level *result)
2728 {
2729 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2730 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2731 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2732
2733 /* WM1+ latency values stored in 0.5us units */
2734 if (level > 0) {
2735 pri_latency *= 5;
2736 spr_latency *= 5;
2737 cur_latency *= 5;
2738 }
2739
2740 if (pristate) {
2741 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2742 pri_latency, level);
2743 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2744 }
2745
2746 if (sprstate)
2747 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2748
2749 if (curstate)
2750 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2751
2752 result->enable = true;
2753 }
2754
2755 static uint32_t
2756 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2757 {
2758 const struct intel_atomic_state *intel_state =
2759 to_intel_atomic_state(cstate->base.state);
2760 const struct drm_display_mode *adjusted_mode =
2761 &cstate->base.adjusted_mode;
2762 u32 linetime, ips_linetime;
2763
2764 if (!cstate->base.active)
2765 return 0;
2766 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2767 return 0;
2768 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2769 return 0;
2770
2771 /* The WM are computed with base on how long it takes to fill a single
2772 * row at the given clock rate, multiplied by 8.
2773 * */
2774 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2775 adjusted_mode->crtc_clock);
2776 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2777 intel_state->cdclk.logical.cdclk);
2778
2779 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2780 PIPE_WM_LINETIME_TIME(linetime);
2781 }
2782
2783 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2784 uint16_t wm[8])
2785 {
2786 if (INTEL_GEN(dev_priv) >= 9) {
2787 uint32_t val;
2788 int ret, i;
2789 int level, max_level = ilk_wm_max_level(dev_priv);
2790
2791 /* read the first set of memory latencies[0:3] */
2792 val = 0; /* data0 to be programmed to 0 for first set */
2793 mutex_lock(&dev_priv->pcu_lock);
2794 ret = sandybridge_pcode_read(dev_priv,
2795 GEN9_PCODE_READ_MEM_LATENCY,
2796 &val);
2797 mutex_unlock(&dev_priv->pcu_lock);
2798
2799 if (ret) {
2800 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2801 return;
2802 }
2803
2804 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2805 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2806 GEN9_MEM_LATENCY_LEVEL_MASK;
2807 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2808 GEN9_MEM_LATENCY_LEVEL_MASK;
2809 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2810 GEN9_MEM_LATENCY_LEVEL_MASK;
2811
2812 /* read the second set of memory latencies[4:7] */
2813 val = 1; /* data0 to be programmed to 1 for second set */
2814 mutex_lock(&dev_priv->pcu_lock);
2815 ret = sandybridge_pcode_read(dev_priv,
2816 GEN9_PCODE_READ_MEM_LATENCY,
2817 &val);
2818 mutex_unlock(&dev_priv->pcu_lock);
2819 if (ret) {
2820 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2821 return;
2822 }
2823
2824 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2825 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2826 GEN9_MEM_LATENCY_LEVEL_MASK;
2827 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2828 GEN9_MEM_LATENCY_LEVEL_MASK;
2829 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2830 GEN9_MEM_LATENCY_LEVEL_MASK;
2831
2832 /*
2833 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2834 * need to be disabled. We make sure to sanitize the values out
2835 * of the punit to satisfy this requirement.
2836 */
2837 for (level = 1; level <= max_level; level++) {
2838 if (wm[level] == 0) {
2839 for (i = level + 1; i <= max_level; i++)
2840 wm[i] = 0;
2841 break;
2842 }
2843 }
2844
2845 /*
2846 * WaWmMemoryReadLatency:skl+,glk
2847 *
2848 * punit doesn't take into account the read latency so we need
2849 * to add 2us to the various latency levels we retrieve from the
2850 * punit when level 0 response data us 0us.
2851 */
2852 if (wm[0] == 0) {
2853 wm[0] += 2;
2854 for (level = 1; level <= max_level; level++) {
2855 if (wm[level] == 0)
2856 break;
2857 wm[level] += 2;
2858 }
2859 }
2860
2861 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2862 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2863
2864 wm[0] = (sskpd >> 56) & 0xFF;
2865 if (wm[0] == 0)
2866 wm[0] = sskpd & 0xF;
2867 wm[1] = (sskpd >> 4) & 0xFF;
2868 wm[2] = (sskpd >> 12) & 0xFF;
2869 wm[3] = (sskpd >> 20) & 0x1FF;
2870 wm[4] = (sskpd >> 32) & 0x1FF;
2871 } else if (INTEL_GEN(dev_priv) >= 6) {
2872 uint32_t sskpd = I915_READ(MCH_SSKPD);
2873
2874 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2875 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2876 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2877 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2878 } else if (INTEL_GEN(dev_priv) >= 5) {
2879 uint32_t mltr = I915_READ(MLTR_ILK);
2880
2881 /* ILK primary LP0 latency is 700 ns */
2882 wm[0] = 7;
2883 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2884 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2885 } else {
2886 MISSING_CASE(INTEL_DEVID(dev_priv));
2887 }
2888 }
2889
2890 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2891 uint16_t wm[5])
2892 {
2893 /* ILK sprite LP0 latency is 1300 ns */
2894 if (IS_GEN5(dev_priv))
2895 wm[0] = 13;
2896 }
2897
2898 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2899 uint16_t wm[5])
2900 {
2901 /* ILK cursor LP0 latency is 1300 ns */
2902 if (IS_GEN5(dev_priv))
2903 wm[0] = 13;
2904
2905 /* WaDoubleCursorLP3Latency:ivb */
2906 if (IS_IVYBRIDGE(dev_priv))
2907 wm[3] *= 2;
2908 }
2909
2910 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2911 {
2912 /* how many WM levels are we expecting */
2913 if (INTEL_GEN(dev_priv) >= 9)
2914 return 7;
2915 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2916 return 4;
2917 else if (INTEL_GEN(dev_priv) >= 6)
2918 return 3;
2919 else
2920 return 2;
2921 }
2922
2923 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2924 const char *name,
2925 const uint16_t wm[8])
2926 {
2927 int level, max_level = ilk_wm_max_level(dev_priv);
2928
2929 for (level = 0; level <= max_level; level++) {
2930 unsigned int latency = wm[level];
2931
2932 if (latency == 0) {
2933 DRM_ERROR("%s WM%d latency not provided\n",
2934 name, level);
2935 continue;
2936 }
2937
2938 /*
2939 * - latencies are in us on gen9.
2940 * - before then, WM1+ latency values are in 0.5us units
2941 */
2942 if (INTEL_GEN(dev_priv) >= 9)
2943 latency *= 10;
2944 else if (level > 0)
2945 latency *= 5;
2946
2947 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2948 name, level, wm[level],
2949 latency / 10, latency % 10);
2950 }
2951 }
2952
2953 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2954 uint16_t wm[5], uint16_t min)
2955 {
2956 int level, max_level = ilk_wm_max_level(dev_priv);
2957
2958 if (wm[0] >= min)
2959 return false;
2960
2961 wm[0] = max(wm[0], min);
2962 for (level = 1; level <= max_level; level++)
2963 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2964
2965 return true;
2966 }
2967
2968 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2969 {
2970 bool changed;
2971
2972 /*
2973 * The BIOS provided WM memory latency values are often
2974 * inadequate for high resolution displays. Adjust them.
2975 */
2976 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2977 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2978 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2979
2980 if (!changed)
2981 return;
2982
2983 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2984 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2985 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2986 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2987 }
2988
2989 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2990 {
2991 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2992
2993 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2994 sizeof(dev_priv->wm.pri_latency));
2995 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2996 sizeof(dev_priv->wm.pri_latency));
2997
2998 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2999 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3000
3001 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3002 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3003 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3004
3005 if (IS_GEN6(dev_priv))
3006 snb_wm_latency_quirk(dev_priv);
3007 }
3008
3009 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3010 {
3011 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3012 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3013 }
3014
3015 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3016 struct intel_pipe_wm *pipe_wm)
3017 {
3018 /* LP0 watermark maximums depend on this pipe alone */
3019 const struct intel_wm_config config = {
3020 .num_pipes_active = 1,
3021 .sprites_enabled = pipe_wm->sprites_enabled,
3022 .sprites_scaled = pipe_wm->sprites_scaled,
3023 };
3024 struct ilk_wm_maximums max;
3025
3026 /* LP0 watermarks always use 1/2 DDB partitioning */
3027 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3028
3029 /* At least LP0 must be valid */
3030 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3031 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3032 return false;
3033 }
3034
3035 return true;
3036 }
3037
3038 /* Compute new watermarks for the pipe */
3039 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3040 {
3041 struct drm_atomic_state *state = cstate->base.state;
3042 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3043 struct intel_pipe_wm *pipe_wm;
3044 struct drm_device *dev = state->dev;
3045 const struct drm_i915_private *dev_priv = to_i915(dev);
3046 struct drm_plane *plane;
3047 const struct drm_plane_state *plane_state;
3048 const struct intel_plane_state *pristate = NULL;
3049 const struct intel_plane_state *sprstate = NULL;
3050 const struct intel_plane_state *curstate = NULL;
3051 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3052 struct ilk_wm_maximums max;
3053
3054 pipe_wm = &cstate->wm.ilk.optimal;
3055
3056 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3057 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3058
3059 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3060 pristate = ps;
3061 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3062 sprstate = ps;
3063 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3064 curstate = ps;
3065 }
3066
3067 pipe_wm->pipe_enabled = cstate->base.active;
3068 if (sprstate) {
3069 pipe_wm->sprites_enabled = sprstate->base.visible;
3070 pipe_wm->sprites_scaled = sprstate->base.visible &&
3071 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3072 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3073 }
3074
3075 usable_level = max_level;
3076
3077 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3078 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3079 usable_level = 1;
3080
3081 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3082 if (pipe_wm->sprites_scaled)
3083 usable_level = 0;
3084
3085 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3086 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3087 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3088
3089 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3090 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3091
3092 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3093 return -EINVAL;
3094
3095 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3096
3097 for (level = 1; level <= usable_level; level++) {
3098 struct intel_wm_level *wm = &pipe_wm->wm[level];
3099
3100 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3101 pristate, sprstate, curstate, wm);
3102
3103 /*
3104 * Disable any watermark level that exceeds the
3105 * register maximums since such watermarks are
3106 * always invalid.
3107 */
3108 if (!ilk_validate_wm_level(level, &max, wm)) {
3109 memset(wm, 0, sizeof(*wm));
3110 break;
3111 }
3112 }
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * Build a set of 'intermediate' watermark values that satisfy both the old
3119 * state and the new state. These can be programmed to the hardware
3120 * immediately.
3121 */
3122 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3123 struct intel_crtc *intel_crtc,
3124 struct intel_crtc_state *newstate)
3125 {
3126 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3127 struct intel_atomic_state *intel_state =
3128 to_intel_atomic_state(newstate->base.state);
3129 const struct intel_crtc_state *oldstate =
3130 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3131 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3132 int level, max_level = ilk_wm_max_level(to_i915(dev));
3133
3134 /*
3135 * Start with the final, target watermarks, then combine with the
3136 * currently active watermarks to get values that are safe both before
3137 * and after the vblank.
3138 */
3139 *a = newstate->wm.ilk.optimal;
3140 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3141 return 0;
3142
3143 a->pipe_enabled |= b->pipe_enabled;
3144 a->sprites_enabled |= b->sprites_enabled;
3145 a->sprites_scaled |= b->sprites_scaled;
3146
3147 for (level = 0; level <= max_level; level++) {
3148 struct intel_wm_level *a_wm = &a->wm[level];
3149 const struct intel_wm_level *b_wm = &b->wm[level];
3150
3151 a_wm->enable &= b_wm->enable;
3152 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3153 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3154 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3155 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3156 }
3157
3158 /*
3159 * We need to make sure that these merged watermark values are
3160 * actually a valid configuration themselves. If they're not,
3161 * there's no safe way to transition from the old state to
3162 * the new state, so we need to fail the atomic transaction.
3163 */
3164 if (!ilk_validate_pipe_wm(dev, a))
3165 return -EINVAL;
3166
3167 /*
3168 * If our intermediate WM are identical to the final WM, then we can
3169 * omit the post-vblank programming; only update if it's different.
3170 */
3171 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3172 newstate->wm.need_postvbl_update = true;
3173
3174 return 0;
3175 }
3176
3177 /*
3178 * Merge the watermarks from all active pipes for a specific level.
3179 */
3180 static void ilk_merge_wm_level(struct drm_device *dev,
3181 int level,
3182 struct intel_wm_level *ret_wm)
3183 {
3184 const struct intel_crtc *intel_crtc;
3185
3186 ret_wm->enable = true;
3187
3188 for_each_intel_crtc(dev, intel_crtc) {
3189 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3190 const struct intel_wm_level *wm = &active->wm[level];
3191
3192 if (!active->pipe_enabled)
3193 continue;
3194
3195 /*
3196 * The watermark values may have been used in the past,
3197 * so we must maintain them in the registers for some
3198 * time even if the level is now disabled.
3199 */
3200 if (!wm->enable)
3201 ret_wm->enable = false;
3202
3203 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3204 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3205 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3206 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3207 }
3208 }
3209
3210 /*
3211 * Merge all low power watermarks for all active pipes.
3212 */
3213 static void ilk_wm_merge(struct drm_device *dev,
3214 const struct intel_wm_config *config,
3215 const struct ilk_wm_maximums *max,
3216 struct intel_pipe_wm *merged)
3217 {
3218 struct drm_i915_private *dev_priv = to_i915(dev);
3219 int level, max_level = ilk_wm_max_level(dev_priv);
3220 int last_enabled_level = max_level;
3221
3222 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3223 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3224 config->num_pipes_active > 1)
3225 last_enabled_level = 0;
3226
3227 /* ILK: FBC WM must be disabled always */
3228 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3229
3230 /* merge each WM1+ level */
3231 for (level = 1; level <= max_level; level++) {
3232 struct intel_wm_level *wm = &merged->wm[level];
3233
3234 ilk_merge_wm_level(dev, level, wm);
3235
3236 if (level > last_enabled_level)
3237 wm->enable = false;
3238 else if (!ilk_validate_wm_level(level, max, wm))
3239 /* make sure all following levels get disabled */
3240 last_enabled_level = level - 1;
3241
3242 /*
3243 * The spec says it is preferred to disable
3244 * FBC WMs instead of disabling a WM level.
3245 */
3246 if (wm->fbc_val > max->fbc) {
3247 if (wm->enable)
3248 merged->fbc_wm_enabled = false;
3249 wm->fbc_val = 0;
3250 }
3251 }
3252
3253 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3254 /*
3255 * FIXME this is racy. FBC might get enabled later.
3256 * What we should check here is whether FBC can be
3257 * enabled sometime later.
3258 */
3259 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3260 intel_fbc_is_active(dev_priv)) {
3261 for (level = 2; level <= max_level; level++) {
3262 struct intel_wm_level *wm = &merged->wm[level];
3263
3264 wm->enable = false;
3265 }
3266 }
3267 }
3268
3269 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3270 {
3271 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3272 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3273 }
3274
3275 /* The value we need to program into the WM_LPx latency field */
3276 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3277 {
3278 struct drm_i915_private *dev_priv = to_i915(dev);
3279
3280 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3281 return 2 * level;
3282 else
3283 return dev_priv->wm.pri_latency[level];
3284 }
3285
3286 static void ilk_compute_wm_results(struct drm_device *dev,
3287 const struct intel_pipe_wm *merged,
3288 enum intel_ddb_partitioning partitioning,
3289 struct ilk_wm_values *results)
3290 {
3291 struct drm_i915_private *dev_priv = to_i915(dev);
3292 struct intel_crtc *intel_crtc;
3293 int level, wm_lp;
3294
3295 results->enable_fbc_wm = merged->fbc_wm_enabled;
3296 results->partitioning = partitioning;
3297
3298 /* LP1+ register values */
3299 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3300 const struct intel_wm_level *r;
3301
3302 level = ilk_wm_lp_to_level(wm_lp, merged);
3303
3304 r = &merged->wm[level];
3305
3306 /*
3307 * Maintain the watermark values even if the level is
3308 * disabled. Doing otherwise could cause underruns.
3309 */
3310 results->wm_lp[wm_lp - 1] =
3311 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3312 (r->pri_val << WM1_LP_SR_SHIFT) |
3313 r->cur_val;
3314
3315 if (r->enable)
3316 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3317
3318 if (INTEL_GEN(dev_priv) >= 8)
3319 results->wm_lp[wm_lp - 1] |=
3320 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3321 else
3322 results->wm_lp[wm_lp - 1] |=
3323 r->fbc_val << WM1_LP_FBC_SHIFT;
3324
3325 /*
3326 * Always set WM1S_LP_EN when spr_val != 0, even if the
3327 * level is disabled. Doing otherwise could cause underruns.
3328 */
3329 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3330 WARN_ON(wm_lp != 1);
3331 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3332 } else
3333 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3334 }
3335
3336 /* LP0 register values */
3337 for_each_intel_crtc(dev, intel_crtc) {
3338 enum pipe pipe = intel_crtc->pipe;
3339 const struct intel_wm_level *r =
3340 &intel_crtc->wm.active.ilk.wm[0];
3341
3342 if (WARN_ON(!r->enable))
3343 continue;
3344
3345 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3346
3347 results->wm_pipe[pipe] =
3348 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3349 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3350 r->cur_val;
3351 }
3352 }
3353
3354 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3355 * case both are at the same level. Prefer r1 in case they're the same. */
3356 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3357 struct intel_pipe_wm *r1,
3358 struct intel_pipe_wm *r2)
3359 {
3360 int level, max_level = ilk_wm_max_level(to_i915(dev));
3361 int level1 = 0, level2 = 0;
3362
3363 for (level = 1; level <= max_level; level++) {
3364 if (r1->wm[level].enable)
3365 level1 = level;
3366 if (r2->wm[level].enable)
3367 level2 = level;
3368 }
3369
3370 if (level1 == level2) {
3371 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3372 return r2;
3373 else
3374 return r1;
3375 } else if (level1 > level2) {
3376 return r1;
3377 } else {
3378 return r2;
3379 }
3380 }
3381
3382 /* dirty bits used to track which watermarks need changes */
3383 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3384 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3385 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3386 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3387 #define WM_DIRTY_FBC (1 << 24)
3388 #define WM_DIRTY_DDB (1 << 25)
3389
3390 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3391 const struct ilk_wm_values *old,
3392 const struct ilk_wm_values *new)
3393 {
3394 unsigned int dirty = 0;
3395 enum pipe pipe;
3396 int wm_lp;
3397
3398 for_each_pipe(dev_priv, pipe) {
3399 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3400 dirty |= WM_DIRTY_LINETIME(pipe);
3401 /* Must disable LP1+ watermarks too */
3402 dirty |= WM_DIRTY_LP_ALL;
3403 }
3404
3405 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3406 dirty |= WM_DIRTY_PIPE(pipe);
3407 /* Must disable LP1+ watermarks too */
3408 dirty |= WM_DIRTY_LP_ALL;
3409 }
3410 }
3411
3412 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3413 dirty |= WM_DIRTY_FBC;
3414 /* Must disable LP1+ watermarks too */
3415 dirty |= WM_DIRTY_LP_ALL;
3416 }
3417
3418 if (old->partitioning != new->partitioning) {
3419 dirty |= WM_DIRTY_DDB;
3420 /* Must disable LP1+ watermarks too */
3421 dirty |= WM_DIRTY_LP_ALL;
3422 }
3423
3424 /* LP1+ watermarks already deemed dirty, no need to continue */
3425 if (dirty & WM_DIRTY_LP_ALL)
3426 return dirty;
3427
3428 /* Find the lowest numbered LP1+ watermark in need of an update... */
3429 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3430 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3431 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3432 break;
3433 }
3434
3435 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3436 for (; wm_lp <= 3; wm_lp++)
3437 dirty |= WM_DIRTY_LP(wm_lp);
3438
3439 return dirty;
3440 }
3441
3442 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3443 unsigned int dirty)
3444 {
3445 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3446 bool changed = false;
3447
3448 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3449 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3450 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3451 changed = true;
3452 }
3453 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3454 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3455 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3456 changed = true;
3457 }
3458 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3459 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3460 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3461 changed = true;
3462 }
3463
3464 /*
3465 * Don't touch WM1S_LP_EN here.
3466 * Doing so could cause underruns.
3467 */
3468
3469 return changed;
3470 }
3471
3472 /*
3473 * The spec says we shouldn't write when we don't need, because every write
3474 * causes WMs to be re-evaluated, expending some power.
3475 */
3476 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3477 struct ilk_wm_values *results)
3478 {
3479 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3480 unsigned int dirty;
3481 uint32_t val;
3482
3483 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3484 if (!dirty)
3485 return;
3486
3487 _ilk_disable_lp_wm(dev_priv, dirty);
3488
3489 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3490 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3491 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3492 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3493 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3494 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3495
3496 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3497 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3498 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3499 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3500 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3501 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3502
3503 if (dirty & WM_DIRTY_DDB) {
3504 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3505 val = I915_READ(WM_MISC);
3506 if (results->partitioning == INTEL_DDB_PART_1_2)
3507 val &= ~WM_MISC_DATA_PARTITION_5_6;
3508 else
3509 val |= WM_MISC_DATA_PARTITION_5_6;
3510 I915_WRITE(WM_MISC, val);
3511 } else {
3512 val = I915_READ(DISP_ARB_CTL2);
3513 if (results->partitioning == INTEL_DDB_PART_1_2)
3514 val &= ~DISP_DATA_PARTITION_5_6;
3515 else
3516 val |= DISP_DATA_PARTITION_5_6;
3517 I915_WRITE(DISP_ARB_CTL2, val);
3518 }
3519 }
3520
3521 if (dirty & WM_DIRTY_FBC) {
3522 val = I915_READ(DISP_ARB_CTL);
3523 if (results->enable_fbc_wm)
3524 val &= ~DISP_FBC_WM_DIS;
3525 else
3526 val |= DISP_FBC_WM_DIS;
3527 I915_WRITE(DISP_ARB_CTL, val);
3528 }
3529
3530 if (dirty & WM_DIRTY_LP(1) &&
3531 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3532 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3533
3534 if (INTEL_GEN(dev_priv) >= 7) {
3535 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3536 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3537 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3538 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3539 }
3540
3541 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3542 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3543 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3544 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3545 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3546 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3547
3548 dev_priv->wm.hw = *results;
3549 }
3550
3551 bool ilk_disable_lp_wm(struct drm_device *dev)
3552 {
3553 struct drm_i915_private *dev_priv = to_i915(dev);
3554
3555 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3556 }
3557
3558 /*
3559 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3560 * so assume we'll always need it in order to avoid underruns.
3561 */
3562 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3563 {
3564 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3565
3566 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3567 return true;
3568
3569 return false;
3570 }
3571
3572 static bool
3573 intel_has_sagv(struct drm_i915_private *dev_priv)
3574 {
3575 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3576 IS_CANNONLAKE(dev_priv))
3577 return true;
3578
3579 if (IS_SKYLAKE(dev_priv) &&
3580 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3581 return true;
3582
3583 return false;
3584 }
3585
3586 /*
3587 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3588 * depending on power and performance requirements. The display engine access
3589 * to system memory is blocked during the adjustment time. Because of the
3590 * blocking time, having this enabled can cause full system hangs and/or pipe
3591 * underruns if we don't meet all of the following requirements:
3592 *
3593 * - <= 1 pipe enabled
3594 * - All planes can enable watermarks for latencies >= SAGV engine block time
3595 * - We're not using an interlaced display configuration
3596 */
3597 int
3598 intel_enable_sagv(struct drm_i915_private *dev_priv)
3599 {
3600 int ret;
3601
3602 if (!intel_has_sagv(dev_priv))
3603 return 0;
3604
3605 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3606 return 0;
3607
3608 DRM_DEBUG_KMS("Enabling the SAGV\n");
3609 mutex_lock(&dev_priv->pcu_lock);
3610
3611 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3612 GEN9_SAGV_ENABLE);
3613
3614 /* We don't need to wait for the SAGV when enabling */
3615 mutex_unlock(&dev_priv->pcu_lock);
3616
3617 /*
3618 * Some skl systems, pre-release machines in particular,
3619 * don't actually have an SAGV.
3620 */
3621 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3622 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3623 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3624 return 0;
3625 } else if (ret < 0) {
3626 DRM_ERROR("Failed to enable the SAGV\n");
3627 return ret;
3628 }
3629
3630 dev_priv->sagv_status = I915_SAGV_ENABLED;
3631 return 0;
3632 }
3633
3634 int
3635 intel_disable_sagv(struct drm_i915_private *dev_priv)
3636 {
3637 int ret;
3638
3639 if (!intel_has_sagv(dev_priv))
3640 return 0;
3641
3642 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3643 return 0;
3644
3645 DRM_DEBUG_KMS("Disabling the SAGV\n");
3646 mutex_lock(&dev_priv->pcu_lock);
3647
3648 /* bspec says to keep retrying for at least 1 ms */
3649 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3650 GEN9_SAGV_DISABLE,
3651 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3652 1);
3653 mutex_unlock(&dev_priv->pcu_lock);
3654
3655 /*
3656 * Some skl systems, pre-release machines in particular,
3657 * don't actually have an SAGV.
3658 */
3659 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3660 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3661 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3662 return 0;
3663 } else if (ret < 0) {
3664 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3665 return ret;
3666 }
3667
3668 dev_priv->sagv_status = I915_SAGV_DISABLED;
3669 return 0;
3670 }
3671
3672 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3673 {
3674 struct drm_device *dev = state->dev;
3675 struct drm_i915_private *dev_priv = to_i915(dev);
3676 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3677 struct intel_crtc *crtc;
3678 struct intel_plane *plane;
3679 struct intel_crtc_state *cstate;
3680 enum pipe pipe;
3681 int level, latency;
3682 int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3683
3684 if (!intel_has_sagv(dev_priv))
3685 return false;
3686
3687 /*
3688 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3689 * more then one pipe enabled
3690 *
3691 * If there are no active CRTCs, no additional checks need be performed
3692 */
3693 if (hweight32(intel_state->active_crtcs) == 0)
3694 return true;
3695 else if (hweight32(intel_state->active_crtcs) > 1)
3696 return false;
3697
3698 /* Since we're now guaranteed to only have one active CRTC... */
3699 pipe = ffs(intel_state->active_crtcs) - 1;
3700 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3701 cstate = to_intel_crtc_state(crtc->base.state);
3702
3703 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3704 return false;
3705
3706 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3707 struct skl_plane_wm *wm =
3708 &cstate->wm.skl.optimal.planes[plane->id];
3709
3710 /* Skip this plane if it's not enabled */
3711 if (!wm->wm[0].plane_en)
3712 continue;
3713
3714 /* Find the highest enabled wm level for this plane */
3715 for (level = ilk_wm_max_level(dev_priv);
3716 !wm->wm[level].plane_en; --level)
3717 { }
3718
3719 latency = dev_priv->wm.skl_latency[level];
3720
3721 if (skl_needs_memory_bw_wa(intel_state) &&
3722 plane->base.state->fb->modifier ==
3723 I915_FORMAT_MOD_X_TILED)
3724 latency += 15;
3725
3726 /*
3727 * If any of the planes on this pipe don't enable wm levels that
3728 * incur memory latencies higher than sagv_block_time_us we
3729 * can't enable the SAGV.
3730 */
3731 if (latency < sagv_block_time_us)
3732 return false;
3733 }
3734
3735 return true;
3736 }
3737
3738 static void
3739 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3740 const struct intel_crtc_state *cstate,
3741 struct skl_ddb_entry *alloc, /* out */
3742 int *num_active /* out */)
3743 {
3744 struct drm_atomic_state *state = cstate->base.state;
3745 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3746 struct drm_i915_private *dev_priv = to_i915(dev);
3747 struct drm_crtc *for_crtc = cstate->base.crtc;
3748 unsigned int pipe_size, ddb_size;
3749 int nth_active_pipe;
3750
3751 if (WARN_ON(!state) || !cstate->base.active) {
3752 alloc->start = 0;
3753 alloc->end = 0;
3754 *num_active = hweight32(dev_priv->active_crtcs);
3755 return;
3756 }
3757
3758 if (intel_state->active_pipe_changes)
3759 *num_active = hweight32(intel_state->active_crtcs);
3760 else
3761 *num_active = hweight32(dev_priv->active_crtcs);
3762
3763 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3764 WARN_ON(ddb_size == 0);
3765
3766 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3767
3768 /*
3769 * If the state doesn't change the active CRTC's, then there's
3770 * no need to recalculate; the existing pipe allocation limits
3771 * should remain unchanged. Note that we're safe from racing
3772 * commits since any racing commit that changes the active CRTC
3773 * list would need to grab _all_ crtc locks, including the one
3774 * we currently hold.
3775 */
3776 if (!intel_state->active_pipe_changes) {
3777 /*
3778 * alloc may be cleared by clear_intel_crtc_state,
3779 * copy from old state to be sure
3780 */
3781 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3782 return;
3783 }
3784
3785 nth_active_pipe = hweight32(intel_state->active_crtcs &
3786 (drm_crtc_mask(for_crtc) - 1));
3787 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3788 alloc->start = nth_active_pipe * ddb_size / *num_active;
3789 alloc->end = alloc->start + pipe_size;
3790 }
3791
3792 static unsigned int skl_cursor_allocation(int num_active)
3793 {
3794 if (num_active == 1)
3795 return 32;
3796
3797 return 8;
3798 }
3799
3800 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3801 {
3802 entry->start = reg & 0x3ff;
3803 entry->end = (reg >> 16) & 0x3ff;
3804 if (entry->end)
3805 entry->end += 1;
3806 }
3807
3808 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3809 struct skl_ddb_allocation *ddb /* out */)
3810 {
3811 struct intel_crtc *crtc;
3812
3813 memset(ddb, 0, sizeof(*ddb));
3814
3815 for_each_intel_crtc(&dev_priv->drm, crtc) {
3816 enum intel_display_power_domain power_domain;
3817 enum plane_id plane_id;
3818 enum pipe pipe = crtc->pipe;
3819
3820 power_domain = POWER_DOMAIN_PIPE(pipe);
3821 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3822 continue;
3823
3824 for_each_plane_id_on_crtc(crtc, plane_id) {
3825 u32 val;
3826
3827 if (plane_id != PLANE_CURSOR)
3828 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3829 else
3830 val = I915_READ(CUR_BUF_CFG(pipe));
3831
3832 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3833 }
3834
3835 intel_display_power_put(dev_priv, power_domain);
3836 }
3837 }
3838
3839 /*
3840 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3841 * The bspec defines downscale amount as:
3842 *
3843 * """
3844 * Horizontal down scale amount = maximum[1, Horizontal source size /
3845 * Horizontal destination size]
3846 * Vertical down scale amount = maximum[1, Vertical source size /
3847 * Vertical destination size]
3848 * Total down scale amount = Horizontal down scale amount *
3849 * Vertical down scale amount
3850 * """
3851 *
3852 * Return value is provided in 16.16 fixed point form to retain fractional part.
3853 * Caller should take care of dividing & rounding off the value.
3854 */
3855 static uint_fixed_16_16_t
3856 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3857 const struct intel_plane_state *pstate)
3858 {
3859 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3860 uint32_t src_w, src_h, dst_w, dst_h;
3861 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3862 uint_fixed_16_16_t downscale_h, downscale_w;
3863
3864 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3865 return u32_to_fixed16(0);
3866
3867 /* n.b., src is 16.16 fixed point, dst is whole integer */
3868 if (plane->id == PLANE_CURSOR) {
3869 /*
3870 * Cursors only support 0/180 degree rotation,
3871 * hence no need to account for rotation here.
3872 */
3873 src_w = pstate->base.src_w >> 16;
3874 src_h = pstate->base.src_h >> 16;
3875 dst_w = pstate->base.crtc_w;
3876 dst_h = pstate->base.crtc_h;
3877 } else {
3878 /*
3879 * Src coordinates are already rotated by 270 degrees for
3880 * the 90/270 degree plane rotation cases (to match the
3881 * GTT mapping), hence no need to account for rotation here.
3882 */
3883 src_w = drm_rect_width(&pstate->base.src) >> 16;
3884 src_h = drm_rect_height(&pstate->base.src) >> 16;
3885 dst_w = drm_rect_width(&pstate->base.dst);
3886 dst_h = drm_rect_height(&pstate->base.dst);
3887 }
3888
3889 fp_w_ratio = div_fixed16(src_w, dst_w);
3890 fp_h_ratio = div_fixed16(src_h, dst_h);
3891 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3892 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3893
3894 return mul_fixed16(downscale_w, downscale_h);
3895 }
3896
3897 static uint_fixed_16_16_t
3898 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3899 {
3900 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3901
3902 if (!crtc_state->base.enable)
3903 return pipe_downscale;
3904
3905 if (crtc_state->pch_pfit.enabled) {
3906 uint32_t src_w, src_h, dst_w, dst_h;
3907 uint32_t pfit_size = crtc_state->pch_pfit.size;
3908 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3909 uint_fixed_16_16_t downscale_h, downscale_w;
3910
3911 src_w = crtc_state->pipe_src_w;
3912 src_h = crtc_state->pipe_src_h;
3913 dst_w = pfit_size >> 16;
3914 dst_h = pfit_size & 0xffff;
3915
3916 if (!dst_w || !dst_h)
3917 return pipe_downscale;
3918
3919 fp_w_ratio = div_fixed16(src_w, dst_w);
3920 fp_h_ratio = div_fixed16(src_h, dst_h);
3921 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3922 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3923
3924 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3925 }
3926
3927 return pipe_downscale;
3928 }
3929
3930 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3931 struct intel_crtc_state *cstate)
3932 {
3933 struct drm_crtc_state *crtc_state = &cstate->base;
3934 struct drm_atomic_state *state = crtc_state->state;
3935 struct drm_plane *plane;
3936 const struct drm_plane_state *pstate;
3937 struct intel_plane_state *intel_pstate;
3938 int crtc_clock, dotclk;
3939 uint32_t pipe_max_pixel_rate;
3940 uint_fixed_16_16_t pipe_downscale;
3941 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3942
3943 if (!cstate->base.enable)
3944 return 0;
3945
3946 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3947 uint_fixed_16_16_t plane_downscale;
3948 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3949 int bpp;
3950
3951 if (!intel_wm_plane_visible(cstate,
3952 to_intel_plane_state(pstate)))
3953 continue;
3954
3955 if (WARN_ON(!pstate->fb))
3956 return -EINVAL;
3957
3958 intel_pstate = to_intel_plane_state(pstate);
3959 plane_downscale = skl_plane_downscale_amount(cstate,
3960 intel_pstate);
3961 bpp = pstate->fb->format->cpp[0] * 8;
3962 if (bpp == 64)
3963 plane_downscale = mul_fixed16(plane_downscale,
3964 fp_9_div_8);
3965
3966 max_downscale = max_fixed16(plane_downscale, max_downscale);
3967 }
3968 pipe_downscale = skl_pipe_downscale_amount(cstate);
3969
3970 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3971
3972 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3973 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3974
3975 if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3976 dotclk *= 2;
3977
3978 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3979
3980 if (pipe_max_pixel_rate < crtc_clock) {
3981 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3982 return -EINVAL;
3983 }
3984
3985 return 0;
3986 }
3987
3988 static unsigned int
3989 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3990 const struct drm_plane_state *pstate,
3991 int y)
3992 {
3993 struct intel_plane *plane = to_intel_plane(pstate->plane);
3994 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3995 uint32_t data_rate;
3996 uint32_t width = 0, height = 0;
3997 struct drm_framebuffer *fb;
3998 u32 format;
3999 uint_fixed_16_16_t down_scale_amount;
4000
4001 if (!intel_pstate->base.visible)
4002 return 0;
4003
4004 fb = pstate->fb;
4005 format = fb->format->format;
4006
4007 if (plane->id == PLANE_CURSOR)
4008 return 0;
4009 if (y && format != DRM_FORMAT_NV12)
4010 return 0;
4011
4012 /*
4013 * Src coordinates are already rotated by 270 degrees for
4014 * the 90/270 degree plane rotation cases (to match the
4015 * GTT mapping), hence no need to account for rotation here.
4016 */
4017 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4018 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4019
4020 /* for planar format */
4021 if (format == DRM_FORMAT_NV12) {
4022 if (y) /* y-plane data rate */
4023 data_rate = width * height *
4024 fb->format->cpp[0];
4025 else /* uv-plane data rate */
4026 data_rate = (width / 2) * (height / 2) *
4027 fb->format->cpp[1];
4028 } else {
4029 /* for packed formats */
4030 data_rate = width * height * fb->format->cpp[0];
4031 }
4032
4033 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4034
4035 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4036 }
4037
4038 /*
4039 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4040 * a 8192x4096@32bpp framebuffer:
4041 * 3 * 4096 * 8192 * 4 < 2^32
4042 */
4043 static unsigned int
4044 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4045 unsigned *plane_data_rate,
4046 unsigned *plane_y_data_rate)
4047 {
4048 struct drm_crtc_state *cstate = &intel_cstate->base;
4049 struct drm_atomic_state *state = cstate->state;
4050 struct drm_plane *plane;
4051 const struct drm_plane_state *pstate;
4052 unsigned int total_data_rate = 0;
4053
4054 if (WARN_ON(!state))
4055 return 0;
4056
4057 /* Calculate and cache data rate for each plane */
4058 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4059 enum plane_id plane_id = to_intel_plane(plane)->id;
4060 unsigned int rate;
4061
4062 /* packed/uv */
4063 rate = skl_plane_relative_data_rate(intel_cstate,
4064 pstate, 0);
4065 plane_data_rate[plane_id] = rate;
4066
4067 total_data_rate += rate;
4068
4069 /* y-plane */
4070 rate = skl_plane_relative_data_rate(intel_cstate,
4071 pstate, 1);
4072 plane_y_data_rate[plane_id] = rate;
4073
4074 total_data_rate += rate;
4075 }
4076
4077 return total_data_rate;
4078 }
4079
4080 static uint16_t
4081 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4082 const int y)
4083 {
4084 struct drm_framebuffer *fb = pstate->fb;
4085 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4086 uint32_t src_w, src_h;
4087 uint32_t min_scanlines = 8;
4088 uint8_t plane_bpp;
4089
4090 if (WARN_ON(!fb))
4091 return 0;
4092
4093 /* For packed formats, no y-plane, return 0 */
4094 if (y && fb->format->format != DRM_FORMAT_NV12)
4095 return 0;
4096
4097 /* For Non Y-tile return 8-blocks */
4098 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4099 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4100 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4101 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4102 return 8;
4103
4104 /*
4105 * Src coordinates are already rotated by 270 degrees for
4106 * the 90/270 degree plane rotation cases (to match the
4107 * GTT mapping), hence no need to account for rotation here.
4108 */
4109 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4110 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4111
4112 /* Halve UV plane width and height for NV12 */
4113 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4114 src_w /= 2;
4115 src_h /= 2;
4116 }
4117
4118 if (fb->format->format == DRM_FORMAT_NV12 && !y)
4119 plane_bpp = fb->format->cpp[1];
4120 else
4121 plane_bpp = fb->format->cpp[0];
4122
4123 if (drm_rotation_90_or_270(pstate->rotation)) {
4124 switch (plane_bpp) {
4125 case 1:
4126 min_scanlines = 32;
4127 break;
4128 case 2:
4129 min_scanlines = 16;
4130 break;
4131 case 4:
4132 min_scanlines = 8;
4133 break;
4134 case 8:
4135 min_scanlines = 4;
4136 break;
4137 default:
4138 WARN(1, "Unsupported pixel depth %u for rotation",
4139 plane_bpp);
4140 min_scanlines = 32;
4141 }
4142 }
4143
4144 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4145 }
4146
4147 static void
4148 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4149 uint16_t *minimum, uint16_t *y_minimum)
4150 {
4151 const struct drm_plane_state *pstate;
4152 struct drm_plane *plane;
4153
4154 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4155 enum plane_id plane_id = to_intel_plane(plane)->id;
4156
4157 if (plane_id == PLANE_CURSOR)
4158 continue;
4159
4160 if (!pstate->visible)
4161 continue;
4162
4163 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4164 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4165 }
4166
4167 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4168 }
4169
4170 static int
4171 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4172 struct skl_ddb_allocation *ddb /* out */)
4173 {
4174 struct drm_atomic_state *state = cstate->base.state;
4175 struct drm_crtc *crtc = cstate->base.crtc;
4176 struct drm_device *dev = crtc->dev;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178 enum pipe pipe = intel_crtc->pipe;
4179 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4180 uint16_t alloc_size, start;
4181 uint16_t minimum[I915_MAX_PLANES] = {};
4182 uint16_t y_minimum[I915_MAX_PLANES] = {};
4183 unsigned int total_data_rate;
4184 enum plane_id plane_id;
4185 int num_active;
4186 unsigned plane_data_rate[I915_MAX_PLANES] = {};
4187 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4188 uint16_t total_min_blocks = 0;
4189
4190 /* Clear the partitioning for disabled planes. */
4191 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4192 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4193
4194 if (WARN_ON(!state))
4195 return 0;
4196
4197 if (!cstate->base.active) {
4198 alloc->start = alloc->end = 0;
4199 return 0;
4200 }
4201
4202 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4203 alloc_size = skl_ddb_entry_size(alloc);
4204 if (alloc_size == 0)
4205 return 0;
4206
4207 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4208
4209 /*
4210 * 1. Allocate the mininum required blocks for each active plane
4211 * and allocate the cursor, it doesn't require extra allocation
4212 * proportional to the data rate.
4213 */
4214
4215 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4216 total_min_blocks += minimum[plane_id];
4217 total_min_blocks += y_minimum[plane_id];
4218 }
4219
4220 if (total_min_blocks > alloc_size) {
4221 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4222 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4223 alloc_size);
4224 return -EINVAL;
4225 }
4226
4227 alloc_size -= total_min_blocks;
4228 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4229 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4230
4231 /*
4232 * 2. Distribute the remaining space in proportion to the amount of
4233 * data each plane needs to fetch from memory.
4234 *
4235 * FIXME: we may not allocate every single block here.
4236 */
4237 total_data_rate = skl_get_total_relative_data_rate(cstate,
4238 plane_data_rate,
4239 plane_y_data_rate);
4240 if (total_data_rate == 0)
4241 return 0;
4242
4243 start = alloc->start;
4244 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4245 unsigned int data_rate, y_data_rate;
4246 uint16_t plane_blocks, y_plane_blocks = 0;
4247
4248 if (plane_id == PLANE_CURSOR)
4249 continue;
4250
4251 data_rate = plane_data_rate[plane_id];
4252
4253 /*
4254 * allocation for (packed formats) or (uv-plane part of planar format):
4255 * promote the expression to 64 bits to avoid overflowing, the
4256 * result is < available as data_rate / total_data_rate < 1
4257 */
4258 plane_blocks = minimum[plane_id];
4259 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4260 total_data_rate);
4261
4262 /* Leave disabled planes at (0,0) */
4263 if (data_rate) {
4264 ddb->plane[pipe][plane_id].start = start;
4265 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4266 }
4267
4268 start += plane_blocks;
4269
4270 /*
4271 * allocation for y_plane part of planar format:
4272 */
4273 y_data_rate = plane_y_data_rate[plane_id];
4274
4275 y_plane_blocks = y_minimum[plane_id];
4276 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4277 total_data_rate);
4278
4279 if (y_data_rate) {
4280 ddb->y_plane[pipe][plane_id].start = start;
4281 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4282 }
4283
4284 start += y_plane_blocks;
4285 }
4286
4287 return 0;
4288 }
4289
4290 /*
4291 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4292 * for the read latency) and cpp should always be <= 8, so that
4293 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4294 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4295 */
4296 static uint_fixed_16_16_t
4297 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4298 uint8_t cpp, uint32_t latency)
4299 {
4300 uint32_t wm_intermediate_val;
4301 uint_fixed_16_16_t ret;
4302
4303 if (latency == 0)
4304 return FP_16_16_MAX;
4305
4306 wm_intermediate_val = latency * pixel_rate * cpp;
4307 ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4308
4309 if (INTEL_GEN(dev_priv) >= 10)
4310 ret = add_fixed16_u32(ret, 1);
4311
4312 return ret;
4313 }
4314
4315 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4316 uint32_t pipe_htotal,
4317 uint32_t latency,
4318 uint_fixed_16_16_t plane_blocks_per_line)
4319 {
4320 uint32_t wm_intermediate_val;
4321 uint_fixed_16_16_t ret;
4322
4323 if (latency == 0)
4324 return FP_16_16_MAX;
4325
4326 wm_intermediate_val = latency * pixel_rate;
4327 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4328 pipe_htotal * 1000);
4329 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4330 return ret;
4331 }
4332
4333 static uint_fixed_16_16_t
4334 intel_get_linetime_us(struct intel_crtc_state *cstate)
4335 {
4336 uint32_t pixel_rate;
4337 uint32_t crtc_htotal;
4338 uint_fixed_16_16_t linetime_us;
4339
4340 if (!cstate->base.active)
4341 return u32_to_fixed16(0);
4342
4343 pixel_rate = cstate->pixel_rate;
4344
4345 if (WARN_ON(pixel_rate == 0))
4346 return u32_to_fixed16(0);
4347
4348 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4349 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4350
4351 return linetime_us;
4352 }
4353
4354 static uint32_t
4355 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4356 const struct intel_plane_state *pstate)
4357 {
4358 uint64_t adjusted_pixel_rate;
4359 uint_fixed_16_16_t downscale_amount;
4360
4361 /* Shouldn't reach here on disabled planes... */
4362 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4363 return 0;
4364
4365 /*
4366 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4367 * with additional adjustments for plane-specific scaling.
4368 */
4369 adjusted_pixel_rate = cstate->pixel_rate;
4370 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4371
4372 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4373 downscale_amount);
4374 }
4375
4376 static int
4377 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4378 struct intel_crtc_state *cstate,
4379 const struct intel_plane_state *intel_pstate,
4380 struct skl_wm_params *wp)
4381 {
4382 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4383 const struct drm_plane_state *pstate = &intel_pstate->base;
4384 const struct drm_framebuffer *fb = pstate->fb;
4385 uint32_t interm_pbpl;
4386 struct intel_atomic_state *state =
4387 to_intel_atomic_state(cstate->base.state);
4388 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4389
4390 if (!intel_wm_plane_visible(cstate, intel_pstate))
4391 return 0;
4392
4393 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4394 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4395 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4396 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4397 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4398 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4399 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4400
4401 if (plane->id == PLANE_CURSOR) {
4402 wp->width = intel_pstate->base.crtc_w;
4403 } else {
4404 /*
4405 * Src coordinates are already rotated by 270 degrees for
4406 * the 90/270 degree plane rotation cases (to match the
4407 * GTT mapping), hence no need to account for rotation here.
4408 */
4409 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4410 }
4411
4412 wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4413 fb->format->cpp[0];
4414 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4415 intel_pstate);
4416
4417 if (drm_rotation_90_or_270(pstate->rotation)) {
4418
4419 switch (wp->cpp) {
4420 case 1:
4421 wp->y_min_scanlines = 16;
4422 break;
4423 case 2:
4424 wp->y_min_scanlines = 8;
4425 break;
4426 case 4:
4427 wp->y_min_scanlines = 4;
4428 break;
4429 default:
4430 MISSING_CASE(wp->cpp);
4431 return -EINVAL;
4432 }
4433 } else {
4434 wp->y_min_scanlines = 4;
4435 }
4436
4437 if (apply_memory_bw_wa)
4438 wp->y_min_scanlines *= 2;
4439
4440 wp->plane_bytes_per_line = wp->width * wp->cpp;
4441 if (wp->y_tiled) {
4442 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4443 wp->y_min_scanlines, 512);
4444
4445 if (INTEL_GEN(dev_priv) >= 10)
4446 interm_pbpl++;
4447
4448 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4449 wp->y_min_scanlines);
4450 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4451 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
4452 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4453 } else {
4454 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
4455 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4456 }
4457
4458 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4459 wp->plane_blocks_per_line);
4460 wp->linetime_us = fixed16_to_u32_round_up(
4461 intel_get_linetime_us(cstate));
4462
4463 return 0;
4464 }
4465
4466 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4467 struct intel_crtc_state *cstate,
4468 const struct intel_plane_state *intel_pstate,
4469 uint16_t ddb_allocation,
4470 int level,
4471 const struct skl_wm_params *wp,
4472 uint16_t *out_blocks, /* out */
4473 uint8_t *out_lines, /* out */
4474 bool *enabled /* out */)
4475 {
4476 const struct drm_plane_state *pstate = &intel_pstate->base;
4477 uint32_t latency = dev_priv->wm.skl_latency[level];
4478 uint_fixed_16_16_t method1, method2;
4479 uint_fixed_16_16_t selected_result;
4480 uint32_t res_blocks, res_lines;
4481 struct intel_atomic_state *state =
4482 to_intel_atomic_state(cstate->base.state);
4483 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4484
4485 if (latency == 0 ||
4486 !intel_wm_plane_visible(cstate, intel_pstate)) {
4487 *enabled = false;
4488 return 0;
4489 }
4490
4491 /* Display WA #1141: kbl,cfl */
4492 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4493 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4494 dev_priv->ipc_enabled)
4495 latency += 4;
4496
4497 if (apply_memory_bw_wa && wp->x_tiled)
4498 latency += 15;
4499
4500 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4501 wp->cpp, latency);
4502 method2 = skl_wm_method2(wp->plane_pixel_rate,
4503 cstate->base.adjusted_mode.crtc_htotal,
4504 latency,
4505 wp->plane_blocks_per_line);
4506
4507 if (wp->y_tiled) {
4508 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4509 } else {
4510 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4511 512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4512 selected_result = method2;
4513 else if (ddb_allocation >=
4514 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4515 selected_result = min_fixed16(method1, method2);
4516 else if (latency >= wp->linetime_us)
4517 selected_result = min_fixed16(method1, method2);
4518 else
4519 selected_result = method1;
4520 }
4521
4522 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4523 res_lines = div_round_up_fixed16(selected_result,
4524 wp->plane_blocks_per_line);
4525
4526 /* Display WA #1125: skl,bxt,kbl,glk */
4527 if (level == 0 && wp->rc_surface)
4528 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4529
4530 /* Display WA #1126: skl,bxt,kbl,glk */
4531 if (level >= 1 && level <= 7) {
4532 if (wp->y_tiled) {
4533 res_blocks += fixed16_to_u32_round_up(
4534 wp->y_tile_minimum);
4535 res_lines += wp->y_min_scanlines;
4536 } else {
4537 res_blocks++;
4538 }
4539 }
4540
4541 if (res_blocks >= ddb_allocation || res_lines > 31) {
4542 *enabled = false;
4543
4544 /*
4545 * If there are no valid level 0 watermarks, then we can't
4546 * support this display configuration.
4547 */
4548 if (level) {
4549 return 0;
4550 } else {
4551 struct drm_plane *plane = pstate->plane;
4552
4553 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4554 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4555 plane->base.id, plane->name,
4556 res_blocks, ddb_allocation, res_lines);
4557 return -EINVAL;
4558 }
4559 }
4560
4561 *out_blocks = res_blocks;
4562 *out_lines = res_lines;
4563 *enabled = true;
4564
4565 return 0;
4566 }
4567
4568 static int
4569 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4570 struct skl_ddb_allocation *ddb,
4571 struct intel_crtc_state *cstate,
4572 const struct intel_plane_state *intel_pstate,
4573 const struct skl_wm_params *wm_params,
4574 struct skl_plane_wm *wm)
4575 {
4576 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4577 struct drm_plane *plane = intel_pstate->base.plane;
4578 struct intel_plane *intel_plane = to_intel_plane(plane);
4579 uint16_t ddb_blocks;
4580 enum pipe pipe = intel_crtc->pipe;
4581 int level, max_level = ilk_wm_max_level(dev_priv);
4582 int ret;
4583
4584 if (WARN_ON(!intel_pstate->base.fb))
4585 return -EINVAL;
4586
4587 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4588
4589 for (level = 0; level <= max_level; level++) {
4590 struct skl_wm_level *result = &wm->wm[level];
4591
4592 ret = skl_compute_plane_wm(dev_priv,
4593 cstate,
4594 intel_pstate,
4595 ddb_blocks,
4596 level,
4597 wm_params,
4598 &result->plane_res_b,
4599 &result->plane_res_l,
4600 &result->plane_en);
4601 if (ret)
4602 return ret;
4603 }
4604
4605 return 0;
4606 }
4607
4608 static uint32_t
4609 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4610 {
4611 struct drm_atomic_state *state = cstate->base.state;
4612 struct drm_i915_private *dev_priv = to_i915(state->dev);
4613 uint_fixed_16_16_t linetime_us;
4614 uint32_t linetime_wm;
4615
4616 linetime_us = intel_get_linetime_us(cstate);
4617
4618 if (is_fixed16_zero(linetime_us))
4619 return 0;
4620
4621 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4622
4623 /* Display WA #1135: bxt:ALL GLK:ALL */
4624 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4625 dev_priv->ipc_enabled)
4626 linetime_wm /= 2;
4627
4628 return linetime_wm;
4629 }
4630
4631 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4632 struct skl_wm_params *wp,
4633 struct skl_wm_level *wm_l0,
4634 uint16_t ddb_allocation,
4635 struct skl_wm_level *trans_wm /* out */)
4636 {
4637 struct drm_device *dev = cstate->base.crtc->dev;
4638 const struct drm_i915_private *dev_priv = to_i915(dev);
4639 uint16_t trans_min, trans_y_tile_min;
4640 const uint16_t trans_amount = 10; /* This is configurable amount */
4641 uint16_t trans_offset_b, res_blocks;
4642
4643 if (!cstate->base.active)
4644 goto exit;
4645
4646 /* Transition WM are not recommended by HW team for GEN9 */
4647 if (INTEL_GEN(dev_priv) <= 9)
4648 goto exit;
4649
4650 /* Transition WM don't make any sense if ipc is disabled */
4651 if (!dev_priv->ipc_enabled)
4652 goto exit;
4653
4654 if (INTEL_GEN(dev_priv) >= 10)
4655 trans_min = 4;
4656
4657 trans_offset_b = trans_min + trans_amount;
4658
4659 if (wp->y_tiled) {
4660 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4661 wp->y_tile_minimum);
4662 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4663 trans_offset_b;
4664 } else {
4665 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4666
4667 /* WA BUG:1938466 add one block for non y-tile planes */
4668 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4669 res_blocks += 1;
4670
4671 }
4672
4673 res_blocks += 1;
4674
4675 if (res_blocks < ddb_allocation) {
4676 trans_wm->plane_res_b = res_blocks;
4677 trans_wm->plane_en = true;
4678 return;
4679 }
4680
4681 exit:
4682 trans_wm->plane_en = false;
4683 }
4684
4685 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4686 struct skl_ddb_allocation *ddb,
4687 struct skl_pipe_wm *pipe_wm)
4688 {
4689 struct drm_device *dev = cstate->base.crtc->dev;
4690 struct drm_crtc_state *crtc_state = &cstate->base;
4691 const struct drm_i915_private *dev_priv = to_i915(dev);
4692 struct drm_plane *plane;
4693 const struct drm_plane_state *pstate;
4694 struct skl_plane_wm *wm;
4695 int ret;
4696
4697 /*
4698 * We'll only calculate watermarks for planes that are actually
4699 * enabled, so make sure all other planes are set as disabled.
4700 */
4701 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4702
4703 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4704 const struct intel_plane_state *intel_pstate =
4705 to_intel_plane_state(pstate);
4706 enum plane_id plane_id = to_intel_plane(plane)->id;
4707 struct skl_wm_params wm_params;
4708 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4709 uint16_t ddb_blocks;
4710
4711 wm = &pipe_wm->planes[plane_id];
4712 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4713 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4714
4715 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4716 intel_pstate, &wm_params);
4717 if (ret)
4718 return ret;
4719
4720 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4721 intel_pstate, &wm_params, wm);
4722 if (ret)
4723 return ret;
4724 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4725 ddb_blocks, &wm->trans_wm);
4726 }
4727 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4728
4729 return 0;
4730 }
4731
4732 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4733 i915_reg_t reg,
4734 const struct skl_ddb_entry *entry)
4735 {
4736 if (entry->end)
4737 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4738 else
4739 I915_WRITE(reg, 0);
4740 }
4741
4742 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4743 i915_reg_t reg,
4744 const struct skl_wm_level *level)
4745 {
4746 uint32_t val = 0;
4747
4748 if (level->plane_en) {
4749 val |= PLANE_WM_EN;
4750 val |= level->plane_res_b;
4751 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4752 }
4753
4754 I915_WRITE(reg, val);
4755 }
4756
4757 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4758 const struct skl_plane_wm *wm,
4759 const struct skl_ddb_allocation *ddb,
4760 enum plane_id plane_id)
4761 {
4762 struct drm_crtc *crtc = &intel_crtc->base;
4763 struct drm_device *dev = crtc->dev;
4764 struct drm_i915_private *dev_priv = to_i915(dev);
4765 int level, max_level = ilk_wm_max_level(dev_priv);
4766 enum pipe pipe = intel_crtc->pipe;
4767
4768 for (level = 0; level <= max_level; level++) {
4769 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4770 &wm->wm[level]);
4771 }
4772 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4773 &wm->trans_wm);
4774
4775 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4776 &ddb->plane[pipe][plane_id]);
4777 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4778 &ddb->y_plane[pipe][plane_id]);
4779 }
4780
4781 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4782 const struct skl_plane_wm *wm,
4783 const struct skl_ddb_allocation *ddb)
4784 {
4785 struct drm_crtc *crtc = &intel_crtc->base;
4786 struct drm_device *dev = crtc->dev;
4787 struct drm_i915_private *dev_priv = to_i915(dev);
4788 int level, max_level = ilk_wm_max_level(dev_priv);
4789 enum pipe pipe = intel_crtc->pipe;
4790
4791 for (level = 0; level <= max_level; level++) {
4792 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4793 &wm->wm[level]);
4794 }
4795 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4796
4797 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4798 &ddb->plane[pipe][PLANE_CURSOR]);
4799 }
4800
4801 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4802 const struct skl_wm_level *l2)
4803 {
4804 if (l1->plane_en != l2->plane_en)
4805 return false;
4806
4807 /* If both planes aren't enabled, the rest shouldn't matter */
4808 if (!l1->plane_en)
4809 return true;
4810
4811 return (l1->plane_res_l == l2->plane_res_l &&
4812 l1->plane_res_b == l2->plane_res_b);
4813 }
4814
4815 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4816 const struct skl_ddb_entry *b)
4817 {
4818 return a->start < b->end && b->start < a->end;
4819 }
4820
4821 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
4822 const struct skl_ddb_entry **entries,
4823 const struct skl_ddb_entry *ddb,
4824 int ignore)
4825 {
4826 enum pipe pipe;
4827
4828 for_each_pipe(dev_priv, pipe) {
4829 if (pipe != ignore && entries[pipe] &&
4830 skl_ddb_entries_overlap(ddb, entries[pipe]))
4831 return true;
4832 }
4833
4834 return false;
4835 }
4836
4837 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4838 const struct skl_pipe_wm *old_pipe_wm,
4839 struct skl_pipe_wm *pipe_wm, /* out */
4840 struct skl_ddb_allocation *ddb, /* out */
4841 bool *changed /* out */)
4842 {
4843 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4844 int ret;
4845
4846 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4847 if (ret)
4848 return ret;
4849
4850 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4851 *changed = false;
4852 else
4853 *changed = true;
4854
4855 return 0;
4856 }
4857
4858 static uint32_t
4859 pipes_modified(struct drm_atomic_state *state)
4860 {
4861 struct drm_crtc *crtc;
4862 struct drm_crtc_state *cstate;
4863 uint32_t i, ret = 0;
4864
4865 for_each_new_crtc_in_state(state, crtc, cstate, i)
4866 ret |= drm_crtc_mask(crtc);
4867
4868 return ret;
4869 }
4870
4871 static int
4872 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4873 {
4874 struct drm_atomic_state *state = cstate->base.state;
4875 struct drm_device *dev = state->dev;
4876 struct drm_crtc *crtc = cstate->base.crtc;
4877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4878 struct drm_i915_private *dev_priv = to_i915(dev);
4879 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4880 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4881 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4882 struct drm_plane_state *plane_state;
4883 struct drm_plane *plane;
4884 enum pipe pipe = intel_crtc->pipe;
4885
4886 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4887
4888 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4889 enum plane_id plane_id = to_intel_plane(plane)->id;
4890
4891 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4892 &new_ddb->plane[pipe][plane_id]) &&
4893 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4894 &new_ddb->y_plane[pipe][plane_id]))
4895 continue;
4896
4897 plane_state = drm_atomic_get_plane_state(state, plane);
4898 if (IS_ERR(plane_state))
4899 return PTR_ERR(plane_state);
4900 }
4901
4902 return 0;
4903 }
4904
4905 static int
4906 skl_compute_ddb(struct drm_atomic_state *state)
4907 {
4908 struct drm_device *dev = state->dev;
4909 struct drm_i915_private *dev_priv = to_i915(dev);
4910 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4911 struct intel_crtc *intel_crtc;
4912 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4913 uint32_t realloc_pipes = pipes_modified(state);
4914 int ret;
4915
4916 /*
4917 * If this is our first atomic update following hardware readout,
4918 * we can't trust the DDB that the BIOS programmed for us. Let's
4919 * pretend that all pipes switched active status so that we'll
4920 * ensure a full DDB recompute.
4921 */
4922 if (dev_priv->wm.distrust_bios_wm) {
4923 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4924 state->acquire_ctx);
4925 if (ret)
4926 return ret;
4927
4928 intel_state->active_pipe_changes = ~0;
4929
4930 /*
4931 * We usually only initialize intel_state->active_crtcs if we
4932 * we're doing a modeset; make sure this field is always
4933 * initialized during the sanitization process that happens
4934 * on the first commit too.
4935 */
4936 if (!intel_state->modeset)
4937 intel_state->active_crtcs = dev_priv->active_crtcs;
4938 }
4939
4940 /*
4941 * If the modeset changes which CRTC's are active, we need to
4942 * recompute the DDB allocation for *all* active pipes, even
4943 * those that weren't otherwise being modified in any way by this
4944 * atomic commit. Due to the shrinking of the per-pipe allocations
4945 * when new active CRTC's are added, it's possible for a pipe that
4946 * we were already using and aren't changing at all here to suddenly
4947 * become invalid if its DDB needs exceeds its new allocation.
4948 *
4949 * Note that if we wind up doing a full DDB recompute, we can't let
4950 * any other display updates race with this transaction, so we need
4951 * to grab the lock on *all* CRTC's.
4952 */
4953 if (intel_state->active_pipe_changes) {
4954 realloc_pipes = ~0;
4955 intel_state->wm_results.dirty_pipes = ~0;
4956 }
4957
4958 /*
4959 * We're not recomputing for the pipes not included in the commit, so
4960 * make sure we start with the current state.
4961 */
4962 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4963
4964 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4965 struct intel_crtc_state *cstate;
4966
4967 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4968 if (IS_ERR(cstate))
4969 return PTR_ERR(cstate);
4970
4971 ret = skl_allocate_pipe_ddb(cstate, ddb);
4972 if (ret)
4973 return ret;
4974
4975 ret = skl_ddb_add_affected_planes(cstate);
4976 if (ret)
4977 return ret;
4978 }
4979
4980 return 0;
4981 }
4982
4983 static void
4984 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4985 struct skl_wm_values *src,
4986 enum pipe pipe)
4987 {
4988 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4989 sizeof(dst->ddb.y_plane[pipe]));
4990 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4991 sizeof(dst->ddb.plane[pipe]));
4992 }
4993
4994 static void
4995 skl_print_wm_changes(const struct drm_atomic_state *state)
4996 {
4997 const struct drm_device *dev = state->dev;
4998 const struct drm_i915_private *dev_priv = to_i915(dev);
4999 const struct intel_atomic_state *intel_state =
5000 to_intel_atomic_state(state);
5001 const struct drm_crtc *crtc;
5002 const struct drm_crtc_state *cstate;
5003 const struct intel_plane *intel_plane;
5004 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5005 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5006 int i;
5007
5008 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5009 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5010 enum pipe pipe = intel_crtc->pipe;
5011
5012 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5013 enum plane_id plane_id = intel_plane->id;
5014 const struct skl_ddb_entry *old, *new;
5015
5016 old = &old_ddb->plane[pipe][plane_id];
5017 new = &new_ddb->plane[pipe][plane_id];
5018
5019 if (skl_ddb_entry_equal(old, new))
5020 continue;
5021
5022 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5023 intel_plane->base.base.id,
5024 intel_plane->base.name,
5025 old->start, old->end,
5026 new->start, new->end);
5027 }
5028 }
5029 }
5030
5031 static int
5032 skl_compute_wm(struct drm_atomic_state *state)
5033 {
5034 struct drm_crtc *crtc;
5035 struct drm_crtc_state *cstate;
5036 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5037 struct skl_wm_values *results = &intel_state->wm_results;
5038 struct drm_device *dev = state->dev;
5039 struct skl_pipe_wm *pipe_wm;
5040 bool changed = false;
5041 int ret, i;
5042
5043 /*
5044 * When we distrust bios wm we always need to recompute to set the
5045 * expected DDB allocations for each CRTC.
5046 */
5047 if (to_i915(dev)->wm.distrust_bios_wm)
5048 changed = true;
5049
5050 /*
5051 * If this transaction isn't actually touching any CRTC's, don't
5052 * bother with watermark calculation. Note that if we pass this
5053 * test, we're guaranteed to hold at least one CRTC state mutex,
5054 * which means we can safely use values like dev_priv->active_crtcs
5055 * since any racing commits that want to update them would need to
5056 * hold _all_ CRTC state mutexes.
5057 */
5058 for_each_new_crtc_in_state(state, crtc, cstate, i)
5059 changed = true;
5060
5061 if (!changed)
5062 return 0;
5063
5064 /* Clear all dirty flags */
5065 results->dirty_pipes = 0;
5066
5067 ret = skl_compute_ddb(state);
5068 if (ret)
5069 return ret;
5070
5071 /*
5072 * Calculate WM's for all pipes that are part of this transaction.
5073 * Note that the DDB allocation above may have added more CRTC's that
5074 * weren't otherwise being modified (and set bits in dirty_pipes) if
5075 * pipe allocations had to change.
5076 *
5077 * FIXME: Now that we're doing this in the atomic check phase, we
5078 * should allow skl_update_pipe_wm() to return failure in cases where
5079 * no suitable watermark values can be found.
5080 */
5081 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5082 struct intel_crtc_state *intel_cstate =
5083 to_intel_crtc_state(cstate);
5084 const struct skl_pipe_wm *old_pipe_wm =
5085 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5086
5087 pipe_wm = &intel_cstate->wm.skl.optimal;
5088 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5089 &results->ddb, &changed);
5090 if (ret)
5091 return ret;
5092
5093 if (changed)
5094 results->dirty_pipes |= drm_crtc_mask(crtc);
5095
5096 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5097 /* This pipe's WM's did not change */
5098 continue;
5099
5100 intel_cstate->update_wm_pre = true;
5101 }
5102
5103 skl_print_wm_changes(state);
5104
5105 return 0;
5106 }
5107
5108 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5109 struct intel_crtc_state *cstate)
5110 {
5111 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5112 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5113 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5114 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5115 enum pipe pipe = crtc->pipe;
5116 enum plane_id plane_id;
5117
5118 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5119 return;
5120
5121 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5122
5123 for_each_plane_id_on_crtc(crtc, plane_id) {
5124 if (plane_id != PLANE_CURSOR)
5125 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5126 ddb, plane_id);
5127 else
5128 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5129 ddb);
5130 }
5131 }
5132
5133 static void skl_initial_wm(struct intel_atomic_state *state,
5134 struct intel_crtc_state *cstate)
5135 {
5136 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5137 struct drm_device *dev = intel_crtc->base.dev;
5138 struct drm_i915_private *dev_priv = to_i915(dev);
5139 struct skl_wm_values *results = &state->wm_results;
5140 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5141 enum pipe pipe = intel_crtc->pipe;
5142
5143 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5144 return;
5145
5146 mutex_lock(&dev_priv->wm.wm_mutex);
5147
5148 if (cstate->base.active_changed)
5149 skl_atomic_update_crtc_wm(state, cstate);
5150
5151 skl_copy_wm_for_pipe(hw_vals, results, pipe);
5152
5153 mutex_unlock(&dev_priv->wm.wm_mutex);
5154 }
5155
5156 static void ilk_compute_wm_config(struct drm_device *dev,
5157 struct intel_wm_config *config)
5158 {
5159 struct intel_crtc *crtc;
5160
5161 /* Compute the currently _active_ config */
5162 for_each_intel_crtc(dev, crtc) {
5163 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5164
5165 if (!wm->pipe_enabled)
5166 continue;
5167
5168 config->sprites_enabled |= wm->sprites_enabled;
5169 config->sprites_scaled |= wm->sprites_scaled;
5170 config->num_pipes_active++;
5171 }
5172 }
5173
5174 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5175 {
5176 struct drm_device *dev = &dev_priv->drm;
5177 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5178 struct ilk_wm_maximums max;
5179 struct intel_wm_config config = {};
5180 struct ilk_wm_values results = {};
5181 enum intel_ddb_partitioning partitioning;
5182
5183 ilk_compute_wm_config(dev, &config);
5184
5185 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5186 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5187
5188 /* 5/6 split only in single pipe config on IVB+ */
5189 if (INTEL_GEN(dev_priv) >= 7 &&
5190 config.num_pipes_active == 1 && config.sprites_enabled) {
5191 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5192 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5193
5194 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5195 } else {
5196 best_lp_wm = &lp_wm_1_2;
5197 }
5198
5199 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5200 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5201
5202 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5203
5204 ilk_write_wm_values(dev_priv, &results);
5205 }
5206
5207 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5208 struct intel_crtc_state *cstate)
5209 {
5210 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5211 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5212
5213 mutex_lock(&dev_priv->wm.wm_mutex);
5214 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5215 ilk_program_watermarks(dev_priv);
5216 mutex_unlock(&dev_priv->wm.wm_mutex);
5217 }
5218
5219 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5220 struct intel_crtc_state *cstate)
5221 {
5222 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5223 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5224
5225 mutex_lock(&dev_priv->wm.wm_mutex);
5226 if (cstate->wm.need_postvbl_update) {
5227 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5228 ilk_program_watermarks(dev_priv);
5229 }
5230 mutex_unlock(&dev_priv->wm.wm_mutex);
5231 }
5232
5233 static inline void skl_wm_level_from_reg_val(uint32_t val,
5234 struct skl_wm_level *level)
5235 {
5236 level->plane_en = val & PLANE_WM_EN;
5237 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5238 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5239 PLANE_WM_LINES_MASK;
5240 }
5241
5242 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5243 struct skl_pipe_wm *out)
5244 {
5245 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5247 enum pipe pipe = intel_crtc->pipe;
5248 int level, max_level;
5249 enum plane_id plane_id;
5250 uint32_t val;
5251
5252 max_level = ilk_wm_max_level(dev_priv);
5253
5254 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5255 struct skl_plane_wm *wm = &out->planes[plane_id];
5256
5257 for (level = 0; level <= max_level; level++) {
5258 if (plane_id != PLANE_CURSOR)
5259 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5260 else
5261 val = I915_READ(CUR_WM(pipe, level));
5262
5263 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5264 }
5265
5266 if (plane_id != PLANE_CURSOR)
5267 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5268 else
5269 val = I915_READ(CUR_WM_TRANS(pipe));
5270
5271 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5272 }
5273
5274 if (!intel_crtc->active)
5275 return;
5276
5277 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5278 }
5279
5280 void skl_wm_get_hw_state(struct drm_device *dev)
5281 {
5282 struct drm_i915_private *dev_priv = to_i915(dev);
5283 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5284 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5285 struct drm_crtc *crtc;
5286 struct intel_crtc *intel_crtc;
5287 struct intel_crtc_state *cstate;
5288
5289 skl_ddb_get_hw_state(dev_priv, ddb);
5290 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5291 intel_crtc = to_intel_crtc(crtc);
5292 cstate = to_intel_crtc_state(crtc->state);
5293
5294 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5295
5296 if (intel_crtc->active)
5297 hw->dirty_pipes |= drm_crtc_mask(crtc);
5298 }
5299
5300 if (dev_priv->active_crtcs) {
5301 /* Fully recompute DDB on first atomic commit */
5302 dev_priv->wm.distrust_bios_wm = true;
5303 } else {
5304 /* Easy/common case; just sanitize DDB now if everything off */
5305 memset(ddb, 0, sizeof(*ddb));
5306 }
5307 }
5308
5309 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5310 {
5311 struct drm_device *dev = crtc->dev;
5312 struct drm_i915_private *dev_priv = to_i915(dev);
5313 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5315 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5316 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5317 enum pipe pipe = intel_crtc->pipe;
5318 static const i915_reg_t wm0_pipe_reg[] = {
5319 [PIPE_A] = WM0_PIPEA_ILK,
5320 [PIPE_B] = WM0_PIPEB_ILK,
5321 [PIPE_C] = WM0_PIPEC_IVB,
5322 };
5323
5324 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5325 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5326 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5327
5328 memset(active, 0, sizeof(*active));
5329
5330 active->pipe_enabled = intel_crtc->active;
5331
5332 if (active->pipe_enabled) {
5333 u32 tmp = hw->wm_pipe[pipe];
5334
5335 /*
5336 * For active pipes LP0 watermark is marked as
5337 * enabled, and LP1+ watermaks as disabled since
5338 * we can't really reverse compute them in case
5339 * multiple pipes are active.
5340 */
5341 active->wm[0].enable = true;
5342 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5343 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5344 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5345 active->linetime = hw->wm_linetime[pipe];
5346 } else {
5347 int level, max_level = ilk_wm_max_level(dev_priv);
5348
5349 /*
5350 * For inactive pipes, all watermark levels
5351 * should be marked as enabled but zeroed,
5352 * which is what we'd compute them to.
5353 */
5354 for (level = 0; level <= max_level; level++)
5355 active->wm[level].enable = true;
5356 }
5357
5358 intel_crtc->wm.active.ilk = *active;
5359 }
5360
5361 #define _FW_WM(value, plane) \
5362 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5363 #define _FW_WM_VLV(value, plane) \
5364 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5365
5366 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5367 struct g4x_wm_values *wm)
5368 {
5369 uint32_t tmp;
5370
5371 tmp = I915_READ(DSPFW1);
5372 wm->sr.plane = _FW_WM(tmp, SR);
5373 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5374 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5375 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5376
5377 tmp = I915_READ(DSPFW2);
5378 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5379 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5380 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5381 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5382 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5383 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5384
5385 tmp = I915_READ(DSPFW3);
5386 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5387 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5388 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5389 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5390 }
5391
5392 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5393 struct vlv_wm_values *wm)
5394 {
5395 enum pipe pipe;
5396 uint32_t tmp;
5397
5398 for_each_pipe(dev_priv, pipe) {
5399 tmp = I915_READ(VLV_DDL(pipe));
5400
5401 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5402 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5403 wm->ddl[pipe].plane[PLANE_CURSOR] =
5404 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5405 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5406 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5407 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5408 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5409 }
5410
5411 tmp = I915_READ(DSPFW1);
5412 wm->sr.plane = _FW_WM(tmp, SR);
5413 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5414 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5415 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5416
5417 tmp = I915_READ(DSPFW2);
5418 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5419 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5420 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5421
5422 tmp = I915_READ(DSPFW3);
5423 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5424
5425 if (IS_CHERRYVIEW(dev_priv)) {
5426 tmp = I915_READ(DSPFW7_CHV);
5427 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5428 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5429
5430 tmp = I915_READ(DSPFW8_CHV);
5431 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5432 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5433
5434 tmp = I915_READ(DSPFW9_CHV);
5435 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5436 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5437
5438 tmp = I915_READ(DSPHOWM);
5439 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5440 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5441 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5442 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5443 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5444 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5445 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5446 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5447 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5448 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5449 } else {
5450 tmp = I915_READ(DSPFW7);
5451 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5452 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5453
5454 tmp = I915_READ(DSPHOWM);
5455 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5456 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5457 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5458 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5459 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5460 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5461 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5462 }
5463 }
5464
5465 #undef _FW_WM
5466 #undef _FW_WM_VLV
5467
5468 void g4x_wm_get_hw_state(struct drm_device *dev)
5469 {
5470 struct drm_i915_private *dev_priv = to_i915(dev);
5471 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5472 struct intel_crtc *crtc;
5473
5474 g4x_read_wm_values(dev_priv, wm);
5475
5476 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5477
5478 for_each_intel_crtc(dev, crtc) {
5479 struct intel_crtc_state *crtc_state =
5480 to_intel_crtc_state(crtc->base.state);
5481 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5482 struct g4x_pipe_wm *raw;
5483 enum pipe pipe = crtc->pipe;
5484 enum plane_id plane_id;
5485 int level, max_level;
5486
5487 active->cxsr = wm->cxsr;
5488 active->hpll_en = wm->hpll_en;
5489 active->fbc_en = wm->fbc_en;
5490
5491 active->sr = wm->sr;
5492 active->hpll = wm->hpll;
5493
5494 for_each_plane_id_on_crtc(crtc, plane_id) {
5495 active->wm.plane[plane_id] =
5496 wm->pipe[pipe].plane[plane_id];
5497 }
5498
5499 if (wm->cxsr && wm->hpll_en)
5500 max_level = G4X_WM_LEVEL_HPLL;
5501 else if (wm->cxsr)
5502 max_level = G4X_WM_LEVEL_SR;
5503 else
5504 max_level = G4X_WM_LEVEL_NORMAL;
5505
5506 level = G4X_WM_LEVEL_NORMAL;
5507 raw = &crtc_state->wm.g4x.raw[level];
5508 for_each_plane_id_on_crtc(crtc, plane_id)
5509 raw->plane[plane_id] = active->wm.plane[plane_id];
5510
5511 if (++level > max_level)
5512 goto out;
5513
5514 raw = &crtc_state->wm.g4x.raw[level];
5515 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5516 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5517 raw->plane[PLANE_SPRITE0] = 0;
5518 raw->fbc = active->sr.fbc;
5519
5520 if (++level > max_level)
5521 goto out;
5522
5523 raw = &crtc_state->wm.g4x.raw[level];
5524 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5525 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5526 raw->plane[PLANE_SPRITE0] = 0;
5527 raw->fbc = active->hpll.fbc;
5528
5529 out:
5530 for_each_plane_id_on_crtc(crtc, plane_id)
5531 g4x_raw_plane_wm_set(crtc_state, level,
5532 plane_id, USHRT_MAX);
5533 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5534
5535 crtc_state->wm.g4x.optimal = *active;
5536 crtc_state->wm.g4x.intermediate = *active;
5537
5538 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5539 pipe_name(pipe),
5540 wm->pipe[pipe].plane[PLANE_PRIMARY],
5541 wm->pipe[pipe].plane[PLANE_CURSOR],
5542 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5543 }
5544
5545 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5546 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5547 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5548 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5549 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5550 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5551 }
5552
5553 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5554 {
5555 struct intel_plane *plane;
5556 struct intel_crtc *crtc;
5557
5558 mutex_lock(&dev_priv->wm.wm_mutex);
5559
5560 for_each_intel_plane(&dev_priv->drm, plane) {
5561 struct intel_crtc *crtc =
5562 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5563 struct intel_crtc_state *crtc_state =
5564 to_intel_crtc_state(crtc->base.state);
5565 struct intel_plane_state *plane_state =
5566 to_intel_plane_state(plane->base.state);
5567 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5568 enum plane_id plane_id = plane->id;
5569 int level;
5570
5571 if (plane_state->base.visible)
5572 continue;
5573
5574 for (level = 0; level < 3; level++) {
5575 struct g4x_pipe_wm *raw =
5576 &crtc_state->wm.g4x.raw[level];
5577
5578 raw->plane[plane_id] = 0;
5579 wm_state->wm.plane[plane_id] = 0;
5580 }
5581
5582 if (plane_id == PLANE_PRIMARY) {
5583 for (level = 0; level < 3; level++) {
5584 struct g4x_pipe_wm *raw =
5585 &crtc_state->wm.g4x.raw[level];
5586 raw->fbc = 0;
5587 }
5588
5589 wm_state->sr.fbc = 0;
5590 wm_state->hpll.fbc = 0;
5591 wm_state->fbc_en = false;
5592 }
5593 }
5594
5595 for_each_intel_crtc(&dev_priv->drm, crtc) {
5596 struct intel_crtc_state *crtc_state =
5597 to_intel_crtc_state(crtc->base.state);
5598
5599 crtc_state->wm.g4x.intermediate =
5600 crtc_state->wm.g4x.optimal;
5601 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5602 }
5603
5604 g4x_program_watermarks(dev_priv);
5605
5606 mutex_unlock(&dev_priv->wm.wm_mutex);
5607 }
5608
5609 void vlv_wm_get_hw_state(struct drm_device *dev)
5610 {
5611 struct drm_i915_private *dev_priv = to_i915(dev);
5612 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5613 struct intel_crtc *crtc;
5614 u32 val;
5615
5616 vlv_read_wm_values(dev_priv, wm);
5617
5618 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5619 wm->level = VLV_WM_LEVEL_PM2;
5620
5621 if (IS_CHERRYVIEW(dev_priv)) {
5622 mutex_lock(&dev_priv->pcu_lock);
5623
5624 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5625 if (val & DSP_MAXFIFO_PM5_ENABLE)
5626 wm->level = VLV_WM_LEVEL_PM5;
5627
5628 /*
5629 * If DDR DVFS is disabled in the BIOS, Punit
5630 * will never ack the request. So if that happens
5631 * assume we don't have to enable/disable DDR DVFS
5632 * dynamically. To test that just set the REQ_ACK
5633 * bit to poke the Punit, but don't change the
5634 * HIGH/LOW bits so that we don't actually change
5635 * the current state.
5636 */
5637 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5638 val |= FORCE_DDR_FREQ_REQ_ACK;
5639 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5640
5641 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5642 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5643 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5644 "assuming DDR DVFS is disabled\n");
5645 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5646 } else {
5647 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5648 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5649 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5650 }
5651
5652 mutex_unlock(&dev_priv->pcu_lock);
5653 }
5654
5655 for_each_intel_crtc(dev, crtc) {
5656 struct intel_crtc_state *crtc_state =
5657 to_intel_crtc_state(crtc->base.state);
5658 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5659 const struct vlv_fifo_state *fifo_state =
5660 &crtc_state->wm.vlv.fifo_state;
5661 enum pipe pipe = crtc->pipe;
5662 enum plane_id plane_id;
5663 int level;
5664
5665 vlv_get_fifo_size(crtc_state);
5666
5667 active->num_levels = wm->level + 1;
5668 active->cxsr = wm->cxsr;
5669
5670 for (level = 0; level < active->num_levels; level++) {
5671 struct g4x_pipe_wm *raw =
5672 &crtc_state->wm.vlv.raw[level];
5673
5674 active->sr[level].plane = wm->sr.plane;
5675 active->sr[level].cursor = wm->sr.cursor;
5676
5677 for_each_plane_id_on_crtc(crtc, plane_id) {
5678 active->wm[level].plane[plane_id] =
5679 wm->pipe[pipe].plane[plane_id];
5680
5681 raw->plane[plane_id] =
5682 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5683 fifo_state->plane[plane_id]);
5684 }
5685 }
5686
5687 for_each_plane_id_on_crtc(crtc, plane_id)
5688 vlv_raw_plane_wm_set(crtc_state, level,
5689 plane_id, USHRT_MAX);
5690 vlv_invalidate_wms(crtc, active, level);
5691
5692 crtc_state->wm.vlv.optimal = *active;
5693 crtc_state->wm.vlv.intermediate = *active;
5694
5695 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5696 pipe_name(pipe),
5697 wm->pipe[pipe].plane[PLANE_PRIMARY],
5698 wm->pipe[pipe].plane[PLANE_CURSOR],
5699 wm->pipe[pipe].plane[PLANE_SPRITE0],
5700 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5701 }
5702
5703 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5704 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5705 }
5706
5707 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5708 {
5709 struct intel_plane *plane;
5710 struct intel_crtc *crtc;
5711
5712 mutex_lock(&dev_priv->wm.wm_mutex);
5713
5714 for_each_intel_plane(&dev_priv->drm, plane) {
5715 struct intel_crtc *crtc =
5716 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5717 struct intel_crtc_state *crtc_state =
5718 to_intel_crtc_state(crtc->base.state);
5719 struct intel_plane_state *plane_state =
5720 to_intel_plane_state(plane->base.state);
5721 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5722 const struct vlv_fifo_state *fifo_state =
5723 &crtc_state->wm.vlv.fifo_state;
5724 enum plane_id plane_id = plane->id;
5725 int level;
5726
5727 if (plane_state->base.visible)
5728 continue;
5729
5730 for (level = 0; level < wm_state->num_levels; level++) {
5731 struct g4x_pipe_wm *raw =
5732 &crtc_state->wm.vlv.raw[level];
5733
5734 raw->plane[plane_id] = 0;
5735
5736 wm_state->wm[level].plane[plane_id] =
5737 vlv_invert_wm_value(raw->plane[plane_id],
5738 fifo_state->plane[plane_id]);
5739 }
5740 }
5741
5742 for_each_intel_crtc(&dev_priv->drm, crtc) {
5743 struct intel_crtc_state *crtc_state =
5744 to_intel_crtc_state(crtc->base.state);
5745
5746 crtc_state->wm.vlv.intermediate =
5747 crtc_state->wm.vlv.optimal;
5748 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5749 }
5750
5751 vlv_program_watermarks(dev_priv);
5752
5753 mutex_unlock(&dev_priv->wm.wm_mutex);
5754 }
5755
5756 /*
5757 * FIXME should probably kill this and improve
5758 * the real watermark readout/sanitation instead
5759 */
5760 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5761 {
5762 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5763 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5764 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5765
5766 /*
5767 * Don't touch WM1S_LP_EN here.
5768 * Doing so could cause underruns.
5769 */
5770 }
5771
5772 void ilk_wm_get_hw_state(struct drm_device *dev)
5773 {
5774 struct drm_i915_private *dev_priv = to_i915(dev);
5775 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5776 struct drm_crtc *crtc;
5777
5778 ilk_init_lp_watermarks(dev_priv);
5779
5780 for_each_crtc(dev, crtc)
5781 ilk_pipe_wm_get_hw_state(crtc);
5782
5783 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5784 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5785 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5786
5787 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5788 if (INTEL_GEN(dev_priv) >= 7) {
5789 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5790 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5791 }
5792
5793 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5794 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5795 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5796 else if (IS_IVYBRIDGE(dev_priv))
5797 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5798 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5799
5800 hw->enable_fbc_wm =
5801 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5802 }
5803
5804 /**
5805 * intel_update_watermarks - update FIFO watermark values based on current modes
5806 *
5807 * Calculate watermark values for the various WM regs based on current mode
5808 * and plane configuration.
5809 *
5810 * There are several cases to deal with here:
5811 * - normal (i.e. non-self-refresh)
5812 * - self-refresh (SR) mode
5813 * - lines are large relative to FIFO size (buffer can hold up to 2)
5814 * - lines are small relative to FIFO size (buffer can hold more than 2
5815 * lines), so need to account for TLB latency
5816 *
5817 * The normal calculation is:
5818 * watermark = dotclock * bytes per pixel * latency
5819 * where latency is platform & configuration dependent (we assume pessimal
5820 * values here).
5821 *
5822 * The SR calculation is:
5823 * watermark = (trunc(latency/line time)+1) * surface width *
5824 * bytes per pixel
5825 * where
5826 * line time = htotal / dotclock
5827 * surface width = hdisplay for normal plane and 64 for cursor
5828 * and latency is assumed to be high, as above.
5829 *
5830 * The final value programmed to the register should always be rounded up,
5831 * and include an extra 2 entries to account for clock crossings.
5832 *
5833 * We don't use the sprite, so we can ignore that. And on Crestline we have
5834 * to set the non-SR watermarks to 8.
5835 */
5836 void intel_update_watermarks(struct intel_crtc *crtc)
5837 {
5838 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5839
5840 if (dev_priv->display.update_wm)
5841 dev_priv->display.update_wm(crtc);
5842 }
5843
5844 void intel_enable_ipc(struct drm_i915_private *dev_priv)
5845 {
5846 u32 val;
5847
5848 /* Display WA #0477 WaDisableIPC: skl */
5849 if (IS_SKYLAKE(dev_priv)) {
5850 dev_priv->ipc_enabled = false;
5851 return;
5852 }
5853
5854 val = I915_READ(DISP_ARB_CTL2);
5855
5856 if (dev_priv->ipc_enabled)
5857 val |= DISP_IPC_ENABLE;
5858 else
5859 val &= ~DISP_IPC_ENABLE;
5860
5861 I915_WRITE(DISP_ARB_CTL2, val);
5862 }
5863
5864 void intel_init_ipc(struct drm_i915_private *dev_priv)
5865 {
5866 dev_priv->ipc_enabled = false;
5867 if (!HAS_IPC(dev_priv))
5868 return;
5869
5870 dev_priv->ipc_enabled = true;
5871 intel_enable_ipc(dev_priv);
5872 }
5873
5874 /*
5875 * Lock protecting IPS related data structures
5876 */
5877 DEFINE_SPINLOCK(mchdev_lock);
5878
5879 /* Global for IPS driver to get at the current i915 device. Protected by
5880 * mchdev_lock. */
5881 static struct drm_i915_private *i915_mch_dev;
5882
5883 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5884 {
5885 u16 rgvswctl;
5886
5887 lockdep_assert_held(&mchdev_lock);
5888
5889 rgvswctl = I915_READ16(MEMSWCTL);
5890 if (rgvswctl & MEMCTL_CMD_STS) {
5891 DRM_DEBUG("gpu busy, RCS change rejected\n");
5892 return false; /* still busy with another command */
5893 }
5894
5895 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5896 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5897 I915_WRITE16(MEMSWCTL, rgvswctl);
5898 POSTING_READ16(MEMSWCTL);
5899
5900 rgvswctl |= MEMCTL_CMD_STS;
5901 I915_WRITE16(MEMSWCTL, rgvswctl);
5902
5903 return true;
5904 }
5905
5906 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5907 {
5908 u32 rgvmodectl;
5909 u8 fmax, fmin, fstart, vstart;
5910
5911 spin_lock_irq(&mchdev_lock);
5912
5913 rgvmodectl = I915_READ(MEMMODECTL);
5914
5915 /* Enable temp reporting */
5916 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5917 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5918
5919 /* 100ms RC evaluation intervals */
5920 I915_WRITE(RCUPEI, 100000);
5921 I915_WRITE(RCDNEI, 100000);
5922
5923 /* Set max/min thresholds to 90ms and 80ms respectively */
5924 I915_WRITE(RCBMAXAVG, 90000);
5925 I915_WRITE(RCBMINAVG, 80000);
5926
5927 I915_WRITE(MEMIHYST, 1);
5928
5929 /* Set up min, max, and cur for interrupt handling */
5930 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5931 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5932 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5933 MEMMODE_FSTART_SHIFT;
5934
5935 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5936 PXVFREQ_PX_SHIFT;
5937
5938 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5939 dev_priv->ips.fstart = fstart;
5940
5941 dev_priv->ips.max_delay = fstart;
5942 dev_priv->ips.min_delay = fmin;
5943 dev_priv->ips.cur_delay = fstart;
5944
5945 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5946 fmax, fmin, fstart);
5947
5948 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5949
5950 /*
5951 * Interrupts will be enabled in ironlake_irq_postinstall
5952 */
5953
5954 I915_WRITE(VIDSTART, vstart);
5955 POSTING_READ(VIDSTART);
5956
5957 rgvmodectl |= MEMMODE_SWMODE_EN;
5958 I915_WRITE(MEMMODECTL, rgvmodectl);
5959
5960 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5961 DRM_ERROR("stuck trying to change perf mode\n");
5962 mdelay(1);
5963
5964 ironlake_set_drps(dev_priv, fstart);
5965
5966 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5967 I915_READ(DDREC) + I915_READ(CSIEC);
5968 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5969 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5970 dev_priv->ips.last_time2 = ktime_get_raw_ns();
5971
5972 spin_unlock_irq(&mchdev_lock);
5973 }
5974
5975 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5976 {
5977 u16 rgvswctl;
5978
5979 spin_lock_irq(&mchdev_lock);
5980
5981 rgvswctl = I915_READ16(MEMSWCTL);
5982
5983 /* Ack interrupts, disable EFC interrupt */
5984 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5985 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5986 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5987 I915_WRITE(DEIIR, DE_PCU_EVENT);
5988 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5989
5990 /* Go back to the starting frequency */
5991 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5992 mdelay(1);
5993 rgvswctl |= MEMCTL_CMD_STS;
5994 I915_WRITE(MEMSWCTL, rgvswctl);
5995 mdelay(1);
5996
5997 spin_unlock_irq(&mchdev_lock);
5998 }
5999
6000 /* There's a funny hw issue where the hw returns all 0 when reading from
6001 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6002 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6003 * all limits and the gpu stuck at whatever frequency it is at atm).
6004 */
6005 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6006 {
6007 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6008 u32 limits;
6009
6010 /* Only set the down limit when we've reached the lowest level to avoid
6011 * getting more interrupts, otherwise leave this clear. This prevents a
6012 * race in the hw when coming out of rc6: There's a tiny window where
6013 * the hw runs at the minimal clock before selecting the desired
6014 * frequency, if the down threshold expires in that window we will not
6015 * receive a down interrupt. */
6016 if (INTEL_GEN(dev_priv) >= 9) {
6017 limits = (rps->max_freq_softlimit) << 23;
6018 if (val <= rps->min_freq_softlimit)
6019 limits |= (rps->min_freq_softlimit) << 14;
6020 } else {
6021 limits = rps->max_freq_softlimit << 24;
6022 if (val <= rps->min_freq_softlimit)
6023 limits |= rps->min_freq_softlimit << 16;
6024 }
6025
6026 return limits;
6027 }
6028
6029 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6030 {
6031 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6032 int new_power;
6033 u32 threshold_up = 0, threshold_down = 0; /* in % */
6034 u32 ei_up = 0, ei_down = 0;
6035
6036 new_power = rps->power;
6037 switch (rps->power) {
6038 case LOW_POWER:
6039 if (val > rps->efficient_freq + 1 &&
6040 val > rps->cur_freq)
6041 new_power = BETWEEN;
6042 break;
6043
6044 case BETWEEN:
6045 if (val <= rps->efficient_freq &&
6046 val < rps->cur_freq)
6047 new_power = LOW_POWER;
6048 else if (val >= rps->rp0_freq &&
6049 val > rps->cur_freq)
6050 new_power = HIGH_POWER;
6051 break;
6052
6053 case HIGH_POWER:
6054 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6055 val < rps->cur_freq)
6056 new_power = BETWEEN;
6057 break;
6058 }
6059 /* Max/min bins are special */
6060 if (val <= rps->min_freq_softlimit)
6061 new_power = LOW_POWER;
6062 if (val >= rps->max_freq_softlimit)
6063 new_power = HIGH_POWER;
6064 if (new_power == rps->power)
6065 return;
6066
6067 /* Note the units here are not exactly 1us, but 1280ns. */
6068 switch (new_power) {
6069 case LOW_POWER:
6070 /* Upclock if more than 95% busy over 16ms */
6071 ei_up = 16000;
6072 threshold_up = 95;
6073
6074 /* Downclock if less than 85% busy over 32ms */
6075 ei_down = 32000;
6076 threshold_down = 85;
6077 break;
6078
6079 case BETWEEN:
6080 /* Upclock if more than 90% busy over 13ms */
6081 ei_up = 13000;
6082 threshold_up = 90;
6083
6084 /* Downclock if less than 75% busy over 32ms */
6085 ei_down = 32000;
6086 threshold_down = 75;
6087 break;
6088
6089 case HIGH_POWER:
6090 /* Upclock if more than 85% busy over 10ms */
6091 ei_up = 10000;
6092 threshold_up = 85;
6093
6094 /* Downclock if less than 60% busy over 32ms */
6095 ei_down = 32000;
6096 threshold_down = 60;
6097 break;
6098 }
6099
6100 /* When byt can survive without system hang with dynamic
6101 * sw freq adjustments, this restriction can be lifted.
6102 */
6103 if (IS_VALLEYVIEW(dev_priv))
6104 goto skip_hw_write;
6105
6106 I915_WRITE(GEN6_RP_UP_EI,
6107 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6108 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6109 GT_INTERVAL_FROM_US(dev_priv,
6110 ei_up * threshold_up / 100));
6111
6112 I915_WRITE(GEN6_RP_DOWN_EI,
6113 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6114 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6115 GT_INTERVAL_FROM_US(dev_priv,
6116 ei_down * threshold_down / 100));
6117
6118 I915_WRITE(GEN6_RP_CONTROL,
6119 GEN6_RP_MEDIA_TURBO |
6120 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6121 GEN6_RP_MEDIA_IS_GFX |
6122 GEN6_RP_ENABLE |
6123 GEN6_RP_UP_BUSY_AVG |
6124 GEN6_RP_DOWN_IDLE_AVG);
6125
6126 skip_hw_write:
6127 rps->power = new_power;
6128 rps->up_threshold = threshold_up;
6129 rps->down_threshold = threshold_down;
6130 rps->last_adj = 0;
6131 }
6132
6133 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6134 {
6135 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6136 u32 mask = 0;
6137
6138 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6139 if (val > rps->min_freq_softlimit)
6140 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6141 if (val < rps->max_freq_softlimit)
6142 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6143
6144 mask &= dev_priv->pm_rps_events;
6145
6146 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6147 }
6148
6149 /* gen6_set_rps is called to update the frequency request, but should also be
6150 * called when the range (min_delay and max_delay) is modified so that we can
6151 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6152 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6153 {
6154 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6155
6156 /* min/max delay may still have been modified so be sure to
6157 * write the limits value.
6158 */
6159 if (val != rps->cur_freq) {
6160 gen6_set_rps_thresholds(dev_priv, val);
6161
6162 if (INTEL_GEN(dev_priv) >= 9)
6163 I915_WRITE(GEN6_RPNSWREQ,
6164 GEN9_FREQUENCY(val));
6165 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6166 I915_WRITE(GEN6_RPNSWREQ,
6167 HSW_FREQUENCY(val));
6168 else
6169 I915_WRITE(GEN6_RPNSWREQ,
6170 GEN6_FREQUENCY(val) |
6171 GEN6_OFFSET(0) |
6172 GEN6_AGGRESSIVE_TURBO);
6173 }
6174
6175 /* Make sure we continue to get interrupts
6176 * until we hit the minimum or maximum frequencies.
6177 */
6178 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6179 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6180
6181 rps->cur_freq = val;
6182 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6183
6184 return 0;
6185 }
6186
6187 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6188 {
6189 int err;
6190
6191 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6192 "Odd GPU freq value\n"))
6193 val &= ~1;
6194
6195 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6196
6197 if (val != dev_priv->gt_pm.rps.cur_freq) {
6198 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6199 if (err)
6200 return err;
6201
6202 gen6_set_rps_thresholds(dev_priv, val);
6203 }
6204
6205 dev_priv->gt_pm.rps.cur_freq = val;
6206 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6207
6208 return 0;
6209 }
6210
6211 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6212 *
6213 * * If Gfx is Idle, then
6214 * 1. Forcewake Media well.
6215 * 2. Request idle freq.
6216 * 3. Release Forcewake of Media well.
6217 */
6218 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6219 {
6220 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6221 u32 val = rps->idle_freq;
6222 int err;
6223
6224 if (rps->cur_freq <= val)
6225 return;
6226
6227 /* The punit delays the write of the frequency and voltage until it
6228 * determines the GPU is awake. During normal usage we don't want to
6229 * waste power changing the frequency if the GPU is sleeping (rc6).
6230 * However, the GPU and driver is now idle and we do not want to delay
6231 * switching to minimum voltage (reducing power whilst idle) as we do
6232 * not expect to be woken in the near future and so must flush the
6233 * change by waking the device.
6234 *
6235 * We choose to take the media powerwell (either would do to trick the
6236 * punit into committing the voltage change) as that takes a lot less
6237 * power than the render powerwell.
6238 */
6239 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6240 err = valleyview_set_rps(dev_priv, val);
6241 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6242
6243 if (err)
6244 DRM_ERROR("Failed to set RPS for idle\n");
6245 }
6246
6247 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6248 {
6249 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6250
6251 mutex_lock(&dev_priv->pcu_lock);
6252 if (rps->enabled) {
6253 u8 freq;
6254
6255 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6256 gen6_rps_reset_ei(dev_priv);
6257 I915_WRITE(GEN6_PMINTRMSK,
6258 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6259
6260 gen6_enable_rps_interrupts(dev_priv);
6261
6262 /* Use the user's desired frequency as a guide, but for better
6263 * performance, jump directly to RPe as our starting frequency.
6264 */
6265 freq = max(rps->cur_freq,
6266 rps->efficient_freq);
6267
6268 if (intel_set_rps(dev_priv,
6269 clamp(freq,
6270 rps->min_freq_softlimit,
6271 rps->max_freq_softlimit)))
6272 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6273 }
6274 mutex_unlock(&dev_priv->pcu_lock);
6275 }
6276
6277 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6278 {
6279 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6280
6281 /* Flush our bottom-half so that it does not race with us
6282 * setting the idle frequency and so that it is bounded by
6283 * our rpm wakeref. And then disable the interrupts to stop any
6284 * futher RPS reclocking whilst we are asleep.
6285 */
6286 gen6_disable_rps_interrupts(dev_priv);
6287
6288 mutex_lock(&dev_priv->pcu_lock);
6289 if (rps->enabled) {
6290 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6291 vlv_set_rps_idle(dev_priv);
6292 else
6293 gen6_set_rps(dev_priv, rps->idle_freq);
6294 rps->last_adj = 0;
6295 I915_WRITE(GEN6_PMINTRMSK,
6296 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6297 }
6298 mutex_unlock(&dev_priv->pcu_lock);
6299 }
6300
6301 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6302 struct intel_rps_client *rps_client)
6303 {
6304 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6305 unsigned long flags;
6306 bool boost;
6307
6308 /* This is intentionally racy! We peek at the state here, then
6309 * validate inside the RPS worker.
6310 */
6311 if (!rps->enabled)
6312 return;
6313
6314 boost = false;
6315 spin_lock_irqsave(&rq->lock, flags);
6316 if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6317 atomic_inc(&rps->num_waiters);
6318 rq->waitboost = true;
6319 boost = true;
6320 }
6321 spin_unlock_irqrestore(&rq->lock, flags);
6322 if (!boost)
6323 return;
6324
6325 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6326 schedule_work(&rps->work);
6327
6328 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6329 }
6330
6331 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6332 {
6333 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6334 int err;
6335
6336 lockdep_assert_held(&dev_priv->pcu_lock);
6337 GEM_BUG_ON(val > rps->max_freq);
6338 GEM_BUG_ON(val < rps->min_freq);
6339
6340 if (!rps->enabled) {
6341 rps->cur_freq = val;
6342 return 0;
6343 }
6344
6345 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6346 err = valleyview_set_rps(dev_priv, val);
6347 else
6348 err = gen6_set_rps(dev_priv, val);
6349
6350 return err;
6351 }
6352
6353 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6354 {
6355 I915_WRITE(GEN6_RC_CONTROL, 0);
6356 I915_WRITE(GEN9_PG_ENABLE, 0);
6357 }
6358
6359 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6360 {
6361 I915_WRITE(GEN6_RP_CONTROL, 0);
6362 }
6363
6364 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6365 {
6366 I915_WRITE(GEN6_RC_CONTROL, 0);
6367 }
6368
6369 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6370 {
6371 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6372 I915_WRITE(GEN6_RP_CONTROL, 0);
6373 }
6374
6375 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6376 {
6377 I915_WRITE(GEN6_RC_CONTROL, 0);
6378 }
6379
6380 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6381 {
6382 I915_WRITE(GEN6_RP_CONTROL, 0);
6383 }
6384
6385 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6386 {
6387 /* We're doing forcewake before Disabling RC6,
6388 * This what the BIOS expects when going into suspend */
6389 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6390
6391 I915_WRITE(GEN6_RC_CONTROL, 0);
6392
6393 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6394 }
6395
6396 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6397 {
6398 I915_WRITE(GEN6_RP_CONTROL, 0);
6399 }
6400
6401 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6402 {
6403 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6404 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6405 mode = GEN6_RC_CTL_RC6_ENABLE;
6406 else
6407 mode = 0;
6408 }
6409 if (HAS_RC6p(dev_priv))
6410 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6411 "RC6 %s RC6p %s RC6pp %s\n",
6412 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6413 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6414 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6415
6416 else
6417 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6418 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6419 }
6420
6421 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6422 {
6423 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6424 bool enable_rc6 = true;
6425 unsigned long rc6_ctx_base;
6426 u32 rc_ctl;
6427 int rc_sw_target;
6428
6429 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6430 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6431 RC_SW_TARGET_STATE_SHIFT;
6432 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6433 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6434 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6435 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6436 rc_sw_target);
6437
6438 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6439 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6440 enable_rc6 = false;
6441 }
6442
6443 /*
6444 * The exact context size is not known for BXT, so assume a page size
6445 * for this check.
6446 */
6447 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6448 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6449 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6450 ggtt->stolen_reserved_size))) {
6451 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6452 enable_rc6 = false;
6453 }
6454
6455 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6456 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6457 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6458 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6459 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6460 enable_rc6 = false;
6461 }
6462
6463 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6464 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6465 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6466 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6467 enable_rc6 = false;
6468 }
6469
6470 if (!I915_READ(GEN6_GFXPAUSE)) {
6471 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6472 enable_rc6 = false;
6473 }
6474
6475 if (!I915_READ(GEN8_MISC_CTRL0)) {
6476 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6477 enable_rc6 = false;
6478 }
6479
6480 return enable_rc6;
6481 }
6482
6483 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6484 {
6485 /* No RC6 before Ironlake and code is gone for ilk. */
6486 if (INTEL_INFO(dev_priv)->gen < 6)
6487 return 0;
6488
6489 if (!enable_rc6)
6490 return 0;
6491
6492 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6493 DRM_INFO("RC6 disabled by BIOS\n");
6494 return 0;
6495 }
6496
6497 /* Respect the kernel parameter if it is set */
6498 if (enable_rc6 >= 0) {
6499 int mask;
6500
6501 if (HAS_RC6p(dev_priv))
6502 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6503 INTEL_RC6pp_ENABLE;
6504 else
6505 mask = INTEL_RC6_ENABLE;
6506
6507 if ((enable_rc6 & mask) != enable_rc6)
6508 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6509 "(requested %d, valid %d)\n",
6510 enable_rc6 & mask, enable_rc6, mask);
6511
6512 return enable_rc6 & mask;
6513 }
6514
6515 if (IS_IVYBRIDGE(dev_priv))
6516 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6517
6518 return INTEL_RC6_ENABLE;
6519 }
6520
6521 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6522 {
6523 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6524
6525 /* All of these values are in units of 50MHz */
6526
6527 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6528 if (IS_GEN9_LP(dev_priv)) {
6529 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6530 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6531 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6532 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6533 } else {
6534 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6535 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6536 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6537 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6538 }
6539 /* hw_max = RP0 until we check for overclocking */
6540 rps->max_freq = rps->rp0_freq;
6541
6542 rps->efficient_freq = rps->rp1_freq;
6543 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6544 IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6545 u32 ddcc_status = 0;
6546
6547 if (sandybridge_pcode_read(dev_priv,
6548 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6549 &ddcc_status) == 0)
6550 rps->efficient_freq =
6551 clamp_t(u8,
6552 ((ddcc_status >> 8) & 0xff),
6553 rps->min_freq,
6554 rps->max_freq);
6555 }
6556
6557 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6558 /* Store the frequency values in 16.66 MHZ units, which is
6559 * the natural hardware unit for SKL
6560 */
6561 rps->rp0_freq *= GEN9_FREQ_SCALER;
6562 rps->rp1_freq *= GEN9_FREQ_SCALER;
6563 rps->min_freq *= GEN9_FREQ_SCALER;
6564 rps->max_freq *= GEN9_FREQ_SCALER;
6565 rps->efficient_freq *= GEN9_FREQ_SCALER;
6566 }
6567 }
6568
6569 static void reset_rps(struct drm_i915_private *dev_priv,
6570 int (*set)(struct drm_i915_private *, u8))
6571 {
6572 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6573 u8 freq = rps->cur_freq;
6574
6575 /* force a reset */
6576 rps->power = -1;
6577 rps->cur_freq = -1;
6578
6579 if (set(dev_priv, freq))
6580 DRM_ERROR("Failed to reset RPS to initial values\n");
6581 }
6582
6583 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6584 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6585 {
6586 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6587
6588 /* Program defaults and thresholds for RPS*/
6589 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6590 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6591
6592 /* 1 second timeout*/
6593 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6594 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6595
6596 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6597
6598 /* Leaning on the below call to gen6_set_rps to program/setup the
6599 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6600 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6601 reset_rps(dev_priv, gen6_set_rps);
6602
6603 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6604 }
6605
6606 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6607 {
6608 struct intel_engine_cs *engine;
6609 enum intel_engine_id id;
6610 u32 rc6_mode, rc6_mask = 0;
6611
6612 /* 1a: Software RC state - RC0 */
6613 I915_WRITE(GEN6_RC_STATE, 0);
6614
6615 /* 1b: Get forcewake during program sequence. Although the driver
6616 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6617 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6618
6619 /* 2a: Disable RC states. */
6620 I915_WRITE(GEN6_RC_CONTROL, 0);
6621
6622 /* 2b: Program RC6 thresholds.*/
6623
6624 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6625 if (IS_SKYLAKE(dev_priv))
6626 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6627 else
6628 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6629 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6630 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6631 for_each_engine(engine, dev_priv, id)
6632 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6633
6634 if (HAS_GUC(dev_priv))
6635 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6636
6637 I915_WRITE(GEN6_RC_SLEEP, 0);
6638
6639 /* 2c: Program Coarse Power Gating Policies. */
6640 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6641 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6642
6643 /* 3a: Enable RC6 */
6644 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6645 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6646 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6647 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6648
6649 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6650 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6651 rc6_mode = GEN7_RC_CTL_TO_MODE;
6652 else
6653 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6654
6655 I915_WRITE(GEN6_RC_CONTROL,
6656 GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
6657
6658 /*
6659 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6660 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6661 */
6662 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6663 I915_WRITE(GEN9_PG_ENABLE, 0);
6664 else
6665 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6666 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6667
6668 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6669 }
6670
6671 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6672 {
6673 struct intel_engine_cs *engine;
6674 enum intel_engine_id id;
6675 uint32_t rc6_mask = 0;
6676
6677 /* 1a: Software RC state - RC0 */
6678 I915_WRITE(GEN6_RC_STATE, 0);
6679
6680 /* 1b: Get forcewake during program sequence. Although the driver
6681 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6682 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6683
6684 /* 2a: Disable RC states. */
6685 I915_WRITE(GEN6_RC_CONTROL, 0);
6686
6687 /* 2b: Program RC6 thresholds.*/
6688 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6689 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6690 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6691 for_each_engine(engine, dev_priv, id)
6692 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6693 I915_WRITE(GEN6_RC_SLEEP, 0);
6694 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6695
6696 /* 3: Enable RC6 */
6697 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6698 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6699 intel_print_rc6_info(dev_priv, rc6_mask);
6700
6701 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6702 GEN7_RC_CTL_TO_MODE |
6703 rc6_mask);
6704
6705 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6706 }
6707
6708 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6709 {
6710 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6711
6712 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6713
6714 /* 1 Program defaults and thresholds for RPS*/
6715 I915_WRITE(GEN6_RPNSWREQ,
6716 HSW_FREQUENCY(rps->rp1_freq));
6717 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6718 HSW_FREQUENCY(rps->rp1_freq));
6719 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6720 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6721
6722 /* Docs recommend 900MHz, and 300 MHz respectively */
6723 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6724 rps->max_freq_softlimit << 24 |
6725 rps->min_freq_softlimit << 16);
6726
6727 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6728 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6729 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6730 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6731
6732 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6733
6734 /* 2: Enable RPS */
6735 I915_WRITE(GEN6_RP_CONTROL,
6736 GEN6_RP_MEDIA_TURBO |
6737 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6738 GEN6_RP_MEDIA_IS_GFX |
6739 GEN6_RP_ENABLE |
6740 GEN6_RP_UP_BUSY_AVG |
6741 GEN6_RP_DOWN_IDLE_AVG);
6742
6743 reset_rps(dev_priv, gen6_set_rps);
6744
6745 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6746 }
6747
6748 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6749 {
6750 struct intel_engine_cs *engine;
6751 enum intel_engine_id id;
6752 u32 rc6vids, rc6_mask = 0;
6753 u32 gtfifodbg;
6754 int rc6_mode;
6755 int ret;
6756
6757 I915_WRITE(GEN6_RC_STATE, 0);
6758
6759 /* Clear the DBG now so we don't confuse earlier errors */
6760 gtfifodbg = I915_READ(GTFIFODBG);
6761 if (gtfifodbg) {
6762 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6763 I915_WRITE(GTFIFODBG, gtfifodbg);
6764 }
6765
6766 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6767
6768 /* disable the counters and set deterministic thresholds */
6769 I915_WRITE(GEN6_RC_CONTROL, 0);
6770
6771 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6772 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6773 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6774 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6775 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6776
6777 for_each_engine(engine, dev_priv, id)
6778 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6779
6780 I915_WRITE(GEN6_RC_SLEEP, 0);
6781 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6782 if (IS_IVYBRIDGE(dev_priv))
6783 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6784 else
6785 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6786 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6787 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6788
6789 /* Check if we are enabling RC6 */
6790 rc6_mode = intel_rc6_enabled();
6791 if (rc6_mode & INTEL_RC6_ENABLE)
6792 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6793
6794 /* We don't use those on Haswell */
6795 if (!IS_HASWELL(dev_priv)) {
6796 if (rc6_mode & INTEL_RC6p_ENABLE)
6797 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6798
6799 if (rc6_mode & INTEL_RC6pp_ENABLE)
6800 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6801 }
6802
6803 intel_print_rc6_info(dev_priv, rc6_mask);
6804
6805 I915_WRITE(GEN6_RC_CONTROL,
6806 rc6_mask |
6807 GEN6_RC_CTL_EI_MODE(1) |
6808 GEN6_RC_CTL_HW_ENABLE);
6809
6810 rc6vids = 0;
6811 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6812 if (IS_GEN6(dev_priv) && ret) {
6813 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6814 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6815 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6816 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6817 rc6vids &= 0xffff00;
6818 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6819 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6820 if (ret)
6821 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6822 }
6823
6824 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6825 }
6826
6827 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6828 {
6829 /* Here begins a magic sequence of register writes to enable
6830 * auto-downclocking.
6831 *
6832 * Perhaps there might be some value in exposing these to
6833 * userspace...
6834 */
6835 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6836
6837 /* Power down if completely idle for over 50ms */
6838 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6839 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6840
6841 reset_rps(dev_priv, gen6_set_rps);
6842
6843 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6844 }
6845
6846 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6847 {
6848 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6849 int min_freq = 15;
6850 unsigned int gpu_freq;
6851 unsigned int max_ia_freq, min_ring_freq;
6852 unsigned int max_gpu_freq, min_gpu_freq;
6853 int scaling_factor = 180;
6854 struct cpufreq_policy *policy;
6855
6856 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6857
6858 policy = cpufreq_cpu_get(0);
6859 if (policy) {
6860 max_ia_freq = policy->cpuinfo.max_freq;
6861 cpufreq_cpu_put(policy);
6862 } else {
6863 /*
6864 * Default to measured freq if none found, PCU will ensure we
6865 * don't go over
6866 */
6867 max_ia_freq = tsc_khz;
6868 }
6869
6870 /* Convert from kHz to MHz */
6871 max_ia_freq /= 1000;
6872
6873 min_ring_freq = I915_READ(DCLK) & 0xf;
6874 /* convert DDR frequency from units of 266.6MHz to bandwidth */
6875 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6876
6877 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6878 /* Convert GT frequency to 50 HZ units */
6879 min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
6880 max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6881 } else {
6882 min_gpu_freq = rps->min_freq;
6883 max_gpu_freq = rps->max_freq;
6884 }
6885
6886 /*
6887 * For each potential GPU frequency, load a ring frequency we'd like
6888 * to use for memory access. We do this by specifying the IA frequency
6889 * the PCU should use as a reference to determine the ring frequency.
6890 */
6891 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6892 int diff = max_gpu_freq - gpu_freq;
6893 unsigned int ia_freq = 0, ring_freq = 0;
6894
6895 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6896 /*
6897 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6898 * No floor required for ring frequency on SKL.
6899 */
6900 ring_freq = gpu_freq;
6901 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6902 /* max(2 * GT, DDR). NB: GT is 50MHz units */
6903 ring_freq = max(min_ring_freq, gpu_freq);
6904 } else if (IS_HASWELL(dev_priv)) {
6905 ring_freq = mult_frac(gpu_freq, 5, 4);
6906 ring_freq = max(min_ring_freq, ring_freq);
6907 /* leave ia_freq as the default, chosen by cpufreq */
6908 } else {
6909 /* On older processors, there is no separate ring
6910 * clock domain, so in order to boost the bandwidth
6911 * of the ring, we need to upclock the CPU (ia_freq).
6912 *
6913 * For GPU frequencies less than 750MHz,
6914 * just use the lowest ring freq.
6915 */
6916 if (gpu_freq < min_freq)
6917 ia_freq = 800;
6918 else
6919 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6920 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6921 }
6922
6923 sandybridge_pcode_write(dev_priv,
6924 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6925 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6926 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6927 gpu_freq);
6928 }
6929 }
6930
6931 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6932 {
6933 u32 val, rp0;
6934
6935 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6936
6937 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6938 case 8:
6939 /* (2 * 4) config */
6940 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6941 break;
6942 case 12:
6943 /* (2 * 6) config */
6944 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6945 break;
6946 case 16:
6947 /* (2 * 8) config */
6948 default:
6949 /* Setting (2 * 8) Min RP0 for any other combination */
6950 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6951 break;
6952 }
6953
6954 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6955
6956 return rp0;
6957 }
6958
6959 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6960 {
6961 u32 val, rpe;
6962
6963 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6964 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6965
6966 return rpe;
6967 }
6968
6969 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6970 {
6971 u32 val, rp1;
6972
6973 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6974 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6975
6976 return rp1;
6977 }
6978
6979 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6980 {
6981 u32 val, rpn;
6982
6983 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6984 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6985 FB_GFX_FREQ_FUSE_MASK);
6986
6987 return rpn;
6988 }
6989
6990 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6991 {
6992 u32 val, rp1;
6993
6994 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6995
6996 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6997
6998 return rp1;
6999 }
7000
7001 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7002 {
7003 u32 val, rp0;
7004
7005 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7006
7007 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7008 /* Clamp to max */
7009 rp0 = min_t(u32, rp0, 0xea);
7010
7011 return rp0;
7012 }
7013
7014 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7015 {
7016 u32 val, rpe;
7017
7018 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7019 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7020 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7021 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7022
7023 return rpe;
7024 }
7025
7026 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7027 {
7028 u32 val;
7029
7030 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7031 /*
7032 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7033 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7034 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7035 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7036 * to make sure it matches what Punit accepts.
7037 */
7038 return max_t(u32, val, 0xc0);
7039 }
7040
7041 /* Check that the pctx buffer wasn't move under us. */
7042 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7043 {
7044 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7045
7046 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
7047 dev_priv->vlv_pctx->stolen->start);
7048 }
7049
7050
7051 /* Check that the pcbr address is not empty. */
7052 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7053 {
7054 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7055
7056 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7057 }
7058
7059 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7060 {
7061 struct i915_ggtt *ggtt = &dev_priv->ggtt;
7062 unsigned long pctx_paddr, paddr;
7063 u32 pcbr;
7064 int pctx_size = 32*1024;
7065
7066 pcbr = I915_READ(VLV_PCBR);
7067 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7068 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7069 paddr = (dev_priv->mm.stolen_base +
7070 (ggtt->stolen_size - pctx_size));
7071
7072 pctx_paddr = (paddr & (~4095));
7073 I915_WRITE(VLV_PCBR, pctx_paddr);
7074 }
7075
7076 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7077 }
7078
7079 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7080 {
7081 struct drm_i915_gem_object *pctx;
7082 unsigned long pctx_paddr;
7083 u32 pcbr;
7084 int pctx_size = 24*1024;
7085
7086 pcbr = I915_READ(VLV_PCBR);
7087 if (pcbr) {
7088 /* BIOS set it up already, grab the pre-alloc'd space */
7089 int pcbr_offset;
7090
7091 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7092 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7093 pcbr_offset,
7094 I915_GTT_OFFSET_NONE,
7095 pctx_size);
7096 goto out;
7097 }
7098
7099 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7100
7101 /*
7102 * From the Gunit register HAS:
7103 * The Gfx driver is expected to program this register and ensure
7104 * proper allocation within Gfx stolen memory. For example, this
7105 * register should be programmed such than the PCBR range does not
7106 * overlap with other ranges, such as the frame buffer, protected
7107 * memory, or any other relevant ranges.
7108 */
7109 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7110 if (!pctx) {
7111 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7112 goto out;
7113 }
7114
7115 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
7116 I915_WRITE(VLV_PCBR, pctx_paddr);
7117
7118 out:
7119 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7120 dev_priv->vlv_pctx = pctx;
7121 }
7122
7123 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7124 {
7125 if (WARN_ON(!dev_priv->vlv_pctx))
7126 return;
7127
7128 i915_gem_object_put(dev_priv->vlv_pctx);
7129 dev_priv->vlv_pctx = NULL;
7130 }
7131
7132 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7133 {
7134 dev_priv->gt_pm.rps.gpll_ref_freq =
7135 vlv_get_cck_clock(dev_priv, "GPLL ref",
7136 CCK_GPLL_CLOCK_CONTROL,
7137 dev_priv->czclk_freq);
7138
7139 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7140 dev_priv->gt_pm.rps.gpll_ref_freq);
7141 }
7142
7143 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7144 {
7145 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7146 u32 val;
7147
7148 valleyview_setup_pctx(dev_priv);
7149
7150 vlv_init_gpll_ref_freq(dev_priv);
7151
7152 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7153 switch ((val >> 6) & 3) {
7154 case 0:
7155 case 1:
7156 dev_priv->mem_freq = 800;
7157 break;
7158 case 2:
7159 dev_priv->mem_freq = 1066;
7160 break;
7161 case 3:
7162 dev_priv->mem_freq = 1333;
7163 break;
7164 }
7165 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7166
7167 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7168 rps->rp0_freq = rps->max_freq;
7169 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7170 intel_gpu_freq(dev_priv, rps->max_freq),
7171 rps->max_freq);
7172
7173 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7174 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7175 intel_gpu_freq(dev_priv, rps->efficient_freq),
7176 rps->efficient_freq);
7177
7178 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7179 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7180 intel_gpu_freq(dev_priv, rps->rp1_freq),
7181 rps->rp1_freq);
7182
7183 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7184 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7185 intel_gpu_freq(dev_priv, rps->min_freq),
7186 rps->min_freq);
7187 }
7188
7189 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7190 {
7191 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7192 u32 val;
7193
7194 cherryview_setup_pctx(dev_priv);
7195
7196 vlv_init_gpll_ref_freq(dev_priv);
7197
7198 mutex_lock(&dev_priv->sb_lock);
7199 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7200 mutex_unlock(&dev_priv->sb_lock);
7201
7202 switch ((val >> 2) & 0x7) {
7203 case 3:
7204 dev_priv->mem_freq = 2000;
7205 break;
7206 default:
7207 dev_priv->mem_freq = 1600;
7208 break;
7209 }
7210 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7211
7212 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7213 rps->rp0_freq = rps->max_freq;
7214 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7215 intel_gpu_freq(dev_priv, rps->max_freq),
7216 rps->max_freq);
7217
7218 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7219 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7220 intel_gpu_freq(dev_priv, rps->efficient_freq),
7221 rps->efficient_freq);
7222
7223 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7224 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7225 intel_gpu_freq(dev_priv, rps->rp1_freq),
7226 rps->rp1_freq);
7227
7228 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7229 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7230 intel_gpu_freq(dev_priv, rps->min_freq),
7231 rps->min_freq);
7232
7233 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7234 rps->min_freq) & 1,
7235 "Odd GPU freq values\n");
7236 }
7237
7238 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7239 {
7240 valleyview_cleanup_pctx(dev_priv);
7241 }
7242
7243 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7244 {
7245 struct intel_engine_cs *engine;
7246 enum intel_engine_id id;
7247 u32 gtfifodbg, rc6_mode = 0, pcbr;
7248
7249 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7250 GT_FIFO_FREE_ENTRIES_CHV);
7251 if (gtfifodbg) {
7252 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7253 gtfifodbg);
7254 I915_WRITE(GTFIFODBG, gtfifodbg);
7255 }
7256
7257 cherryview_check_pctx(dev_priv);
7258
7259 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7260 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7261 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7262
7263 /* Disable RC states. */
7264 I915_WRITE(GEN6_RC_CONTROL, 0);
7265
7266 /* 2a: Program RC6 thresholds.*/
7267 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7268 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7269 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7270
7271 for_each_engine(engine, dev_priv, id)
7272 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7273 I915_WRITE(GEN6_RC_SLEEP, 0);
7274
7275 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7276 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7277
7278 /* Allows RC6 residency counter to work */
7279 I915_WRITE(VLV_COUNTER_CONTROL,
7280 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7281 VLV_MEDIA_RC6_COUNT_EN |
7282 VLV_RENDER_RC6_COUNT_EN));
7283
7284 /* For now we assume BIOS is allocating and populating the PCBR */
7285 pcbr = I915_READ(VLV_PCBR);
7286
7287 /* 3: Enable RC6 */
7288 if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7289 (pcbr >> VLV_PCBR_ADDR_SHIFT))
7290 rc6_mode = GEN7_RC_CTL_TO_MODE;
7291
7292 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7293
7294 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7295 }
7296
7297 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7298 {
7299 u32 val;
7300
7301 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7302
7303 /* 1: Program defaults and thresholds for RPS*/
7304 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7305 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7306 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7307 I915_WRITE(GEN6_RP_UP_EI, 66000);
7308 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7309
7310 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7311
7312 /* 2: Enable RPS */
7313 I915_WRITE(GEN6_RP_CONTROL,
7314 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7315 GEN6_RP_MEDIA_IS_GFX |
7316 GEN6_RP_ENABLE |
7317 GEN6_RP_UP_BUSY_AVG |
7318 GEN6_RP_DOWN_IDLE_AVG);
7319
7320 /* Setting Fixed Bias */
7321 val = VLV_OVERRIDE_EN |
7322 VLV_SOC_TDP_EN |
7323 CHV_BIAS_CPU_50_SOC_50;
7324 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7325
7326 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7327
7328 /* RPS code assumes GPLL is used */
7329 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7330
7331 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7332 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7333
7334 reset_rps(dev_priv, valleyview_set_rps);
7335
7336 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7337 }
7338
7339 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7340 {
7341 struct intel_engine_cs *engine;
7342 enum intel_engine_id id;
7343 u32 gtfifodbg, rc6_mode = 0;
7344
7345 valleyview_check_pctx(dev_priv);
7346
7347 gtfifodbg = I915_READ(GTFIFODBG);
7348 if (gtfifodbg) {
7349 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7350 gtfifodbg);
7351 I915_WRITE(GTFIFODBG, gtfifodbg);
7352 }
7353
7354 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7355
7356 /* Disable RC states. */
7357 I915_WRITE(GEN6_RC_CONTROL, 0);
7358
7359 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7360 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7361 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7362
7363 for_each_engine(engine, dev_priv, id)
7364 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7365
7366 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7367
7368 /* Allows RC6 residency counter to work */
7369 I915_WRITE(VLV_COUNTER_CONTROL,
7370 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7371 VLV_MEDIA_RC0_COUNT_EN |
7372 VLV_RENDER_RC0_COUNT_EN |
7373 VLV_MEDIA_RC6_COUNT_EN |
7374 VLV_RENDER_RC6_COUNT_EN));
7375
7376 if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7377 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7378
7379 intel_print_rc6_info(dev_priv, rc6_mode);
7380
7381 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7382
7383 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7384 }
7385
7386 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7387 {
7388 u32 val;
7389
7390 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7391
7392 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7393 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7394 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7395 I915_WRITE(GEN6_RP_UP_EI, 66000);
7396 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7397
7398 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7399
7400 I915_WRITE(GEN6_RP_CONTROL,
7401 GEN6_RP_MEDIA_TURBO |
7402 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7403 GEN6_RP_MEDIA_IS_GFX |
7404 GEN6_RP_ENABLE |
7405 GEN6_RP_UP_BUSY_AVG |
7406 GEN6_RP_DOWN_IDLE_CONT);
7407
7408 /* Setting Fixed Bias */
7409 val = VLV_OVERRIDE_EN |
7410 VLV_SOC_TDP_EN |
7411 VLV_BIAS_CPU_125_SOC_875;
7412 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7413
7414 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7415
7416 /* RPS code assumes GPLL is used */
7417 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7418
7419 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7420 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7421
7422 reset_rps(dev_priv, valleyview_set_rps);
7423
7424 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7425 }
7426
7427 static unsigned long intel_pxfreq(u32 vidfreq)
7428 {
7429 unsigned long freq;
7430 int div = (vidfreq & 0x3f0000) >> 16;
7431 int post = (vidfreq & 0x3000) >> 12;
7432 int pre = (vidfreq & 0x7);
7433
7434 if (!pre)
7435 return 0;
7436
7437 freq = ((div * 133333) / ((1<<post) * pre));
7438
7439 return freq;
7440 }
7441
7442 static const struct cparams {
7443 u16 i;
7444 u16 t;
7445 u16 m;
7446 u16 c;
7447 } cparams[] = {
7448 { 1, 1333, 301, 28664 },
7449 { 1, 1066, 294, 24460 },
7450 { 1, 800, 294, 25192 },
7451 { 0, 1333, 276, 27605 },
7452 { 0, 1066, 276, 27605 },
7453 { 0, 800, 231, 23784 },
7454 };
7455
7456 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7457 {
7458 u64 total_count, diff, ret;
7459 u32 count1, count2, count3, m = 0, c = 0;
7460 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7461 int i;
7462
7463 lockdep_assert_held(&mchdev_lock);
7464
7465 diff1 = now - dev_priv->ips.last_time1;
7466
7467 /* Prevent division-by-zero if we are asking too fast.
7468 * Also, we don't get interesting results if we are polling
7469 * faster than once in 10ms, so just return the saved value
7470 * in such cases.
7471 */
7472 if (diff1 <= 10)
7473 return dev_priv->ips.chipset_power;
7474
7475 count1 = I915_READ(DMIEC);
7476 count2 = I915_READ(DDREC);
7477 count3 = I915_READ(CSIEC);
7478
7479 total_count = count1 + count2 + count3;
7480
7481 /* FIXME: handle per-counter overflow */
7482 if (total_count < dev_priv->ips.last_count1) {
7483 diff = ~0UL - dev_priv->ips.last_count1;
7484 diff += total_count;
7485 } else {
7486 diff = total_count - dev_priv->ips.last_count1;
7487 }
7488
7489 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7490 if (cparams[i].i == dev_priv->ips.c_m &&
7491 cparams[i].t == dev_priv->ips.r_t) {
7492 m = cparams[i].m;
7493 c = cparams[i].c;
7494 break;
7495 }
7496 }
7497
7498 diff = div_u64(diff, diff1);
7499 ret = ((m * diff) + c);
7500 ret = div_u64(ret, 10);
7501
7502 dev_priv->ips.last_count1 = total_count;
7503 dev_priv->ips.last_time1 = now;
7504
7505 dev_priv->ips.chipset_power = ret;
7506
7507 return ret;
7508 }
7509
7510 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7511 {
7512 unsigned long val;
7513
7514 if (INTEL_INFO(dev_priv)->gen != 5)
7515 return 0;
7516
7517 spin_lock_irq(&mchdev_lock);
7518
7519 val = __i915_chipset_val(dev_priv);
7520
7521 spin_unlock_irq(&mchdev_lock);
7522
7523 return val;
7524 }
7525
7526 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7527 {
7528 unsigned long m, x, b;
7529 u32 tsfs;
7530
7531 tsfs = I915_READ(TSFS);
7532
7533 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7534 x = I915_READ8(TR1);
7535
7536 b = tsfs & TSFS_INTR_MASK;
7537
7538 return ((m * x) / 127) - b;
7539 }
7540
7541 static int _pxvid_to_vd(u8 pxvid)
7542 {
7543 if (pxvid == 0)
7544 return 0;
7545
7546 if (pxvid >= 8 && pxvid < 31)
7547 pxvid = 31;
7548
7549 return (pxvid + 2) * 125;
7550 }
7551
7552 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7553 {
7554 const int vd = _pxvid_to_vd(pxvid);
7555 const int vm = vd - 1125;
7556
7557 if (INTEL_INFO(dev_priv)->is_mobile)
7558 return vm > 0 ? vm : 0;
7559
7560 return vd;
7561 }
7562
7563 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7564 {
7565 u64 now, diff, diffms;
7566 u32 count;
7567
7568 lockdep_assert_held(&mchdev_lock);
7569
7570 now = ktime_get_raw_ns();
7571 diffms = now - dev_priv->ips.last_time2;
7572 do_div(diffms, NSEC_PER_MSEC);
7573
7574 /* Don't divide by 0 */
7575 if (!diffms)
7576 return;
7577
7578 count = I915_READ(GFXEC);
7579
7580 if (count < dev_priv->ips.last_count2) {
7581 diff = ~0UL - dev_priv->ips.last_count2;
7582 diff += count;
7583 } else {
7584 diff = count - dev_priv->ips.last_count2;
7585 }
7586
7587 dev_priv->ips.last_count2 = count;
7588 dev_priv->ips.last_time2 = now;
7589
7590 /* More magic constants... */
7591 diff = diff * 1181;
7592 diff = div_u64(diff, diffms * 10);
7593 dev_priv->ips.gfx_power = diff;
7594 }
7595
7596 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7597 {
7598 if (INTEL_INFO(dev_priv)->gen != 5)
7599 return;
7600
7601 spin_lock_irq(&mchdev_lock);
7602
7603 __i915_update_gfx_val(dev_priv);
7604
7605 spin_unlock_irq(&mchdev_lock);
7606 }
7607
7608 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7609 {
7610 unsigned long t, corr, state1, corr2, state2;
7611 u32 pxvid, ext_v;
7612
7613 lockdep_assert_held(&mchdev_lock);
7614
7615 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7616 pxvid = (pxvid >> 24) & 0x7f;
7617 ext_v = pvid_to_extvid(dev_priv, pxvid);
7618
7619 state1 = ext_v;
7620
7621 t = i915_mch_val(dev_priv);
7622
7623 /* Revel in the empirically derived constants */
7624
7625 /* Correction factor in 1/100000 units */
7626 if (t > 80)
7627 corr = ((t * 2349) + 135940);
7628 else if (t >= 50)
7629 corr = ((t * 964) + 29317);
7630 else /* < 50 */
7631 corr = ((t * 301) + 1004);
7632
7633 corr = corr * ((150142 * state1) / 10000 - 78642);
7634 corr /= 100000;
7635 corr2 = (corr * dev_priv->ips.corr);
7636
7637 state2 = (corr2 * state1) / 10000;
7638 state2 /= 100; /* convert to mW */
7639
7640 __i915_update_gfx_val(dev_priv);
7641
7642 return dev_priv->ips.gfx_power + state2;
7643 }
7644
7645 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7646 {
7647 unsigned long val;
7648
7649 if (INTEL_INFO(dev_priv)->gen != 5)
7650 return 0;
7651
7652 spin_lock_irq(&mchdev_lock);
7653
7654 val = __i915_gfx_val(dev_priv);
7655
7656 spin_unlock_irq(&mchdev_lock);
7657
7658 return val;
7659 }
7660
7661 /**
7662 * i915_read_mch_val - return value for IPS use
7663 *
7664 * Calculate and return a value for the IPS driver to use when deciding whether
7665 * we have thermal and power headroom to increase CPU or GPU power budget.
7666 */
7667 unsigned long i915_read_mch_val(void)
7668 {
7669 struct drm_i915_private *dev_priv;
7670 unsigned long chipset_val, graphics_val, ret = 0;
7671
7672 spin_lock_irq(&mchdev_lock);
7673 if (!i915_mch_dev)
7674 goto out_unlock;
7675 dev_priv = i915_mch_dev;
7676
7677 chipset_val = __i915_chipset_val(dev_priv);
7678 graphics_val = __i915_gfx_val(dev_priv);
7679
7680 ret = chipset_val + graphics_val;
7681
7682 out_unlock:
7683 spin_unlock_irq(&mchdev_lock);
7684
7685 return ret;
7686 }
7687 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7688
7689 /**
7690 * i915_gpu_raise - raise GPU frequency limit
7691 *
7692 * Raise the limit; IPS indicates we have thermal headroom.
7693 */
7694 bool i915_gpu_raise(void)
7695 {
7696 struct drm_i915_private *dev_priv;
7697 bool ret = true;
7698
7699 spin_lock_irq(&mchdev_lock);
7700 if (!i915_mch_dev) {
7701 ret = false;
7702 goto out_unlock;
7703 }
7704 dev_priv = i915_mch_dev;
7705
7706 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7707 dev_priv->ips.max_delay--;
7708
7709 out_unlock:
7710 spin_unlock_irq(&mchdev_lock);
7711
7712 return ret;
7713 }
7714 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7715
7716 /**
7717 * i915_gpu_lower - lower GPU frequency limit
7718 *
7719 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7720 * frequency maximum.
7721 */
7722 bool i915_gpu_lower(void)
7723 {
7724 struct drm_i915_private *dev_priv;
7725 bool ret = true;
7726
7727 spin_lock_irq(&mchdev_lock);
7728 if (!i915_mch_dev) {
7729 ret = false;
7730 goto out_unlock;
7731 }
7732 dev_priv = i915_mch_dev;
7733
7734 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7735 dev_priv->ips.max_delay++;
7736
7737 out_unlock:
7738 spin_unlock_irq(&mchdev_lock);
7739
7740 return ret;
7741 }
7742 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7743
7744 /**
7745 * i915_gpu_busy - indicate GPU business to IPS
7746 *
7747 * Tell the IPS driver whether or not the GPU is busy.
7748 */
7749 bool i915_gpu_busy(void)
7750 {
7751 bool ret = false;
7752
7753 spin_lock_irq(&mchdev_lock);
7754 if (i915_mch_dev)
7755 ret = i915_mch_dev->gt.awake;
7756 spin_unlock_irq(&mchdev_lock);
7757
7758 return ret;
7759 }
7760 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7761
7762 /**
7763 * i915_gpu_turbo_disable - disable graphics turbo
7764 *
7765 * Disable graphics turbo by resetting the max frequency and setting the
7766 * current frequency to the default.
7767 */
7768 bool i915_gpu_turbo_disable(void)
7769 {
7770 struct drm_i915_private *dev_priv;
7771 bool ret = true;
7772
7773 spin_lock_irq(&mchdev_lock);
7774 if (!i915_mch_dev) {
7775 ret = false;
7776 goto out_unlock;
7777 }
7778 dev_priv = i915_mch_dev;
7779
7780 dev_priv->ips.max_delay = dev_priv->ips.fstart;
7781
7782 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7783 ret = false;
7784
7785 out_unlock:
7786 spin_unlock_irq(&mchdev_lock);
7787
7788 return ret;
7789 }
7790 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7791
7792 /**
7793 * Tells the intel_ips driver that the i915 driver is now loaded, if
7794 * IPS got loaded first.
7795 *
7796 * This awkward dance is so that neither module has to depend on the
7797 * other in order for IPS to do the appropriate communication of
7798 * GPU turbo limits to i915.
7799 */
7800 static void
7801 ips_ping_for_i915_load(void)
7802 {
7803 void (*link)(void);
7804
7805 link = symbol_get(ips_link_to_i915_driver);
7806 if (link) {
7807 link();
7808 symbol_put(ips_link_to_i915_driver);
7809 }
7810 }
7811
7812 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7813 {
7814 /* We only register the i915 ips part with intel-ips once everything is
7815 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7816 spin_lock_irq(&mchdev_lock);
7817 i915_mch_dev = dev_priv;
7818 spin_unlock_irq(&mchdev_lock);
7819
7820 ips_ping_for_i915_load();
7821 }
7822
7823 void intel_gpu_ips_teardown(void)
7824 {
7825 spin_lock_irq(&mchdev_lock);
7826 i915_mch_dev = NULL;
7827 spin_unlock_irq(&mchdev_lock);
7828 }
7829
7830 static void intel_init_emon(struct drm_i915_private *dev_priv)
7831 {
7832 u32 lcfuse;
7833 u8 pxw[16];
7834 int i;
7835
7836 /* Disable to program */
7837 I915_WRITE(ECR, 0);
7838 POSTING_READ(ECR);
7839
7840 /* Program energy weights for various events */
7841 I915_WRITE(SDEW, 0x15040d00);
7842 I915_WRITE(CSIEW0, 0x007f0000);
7843 I915_WRITE(CSIEW1, 0x1e220004);
7844 I915_WRITE(CSIEW2, 0x04000004);
7845
7846 for (i = 0; i < 5; i++)
7847 I915_WRITE(PEW(i), 0);
7848 for (i = 0; i < 3; i++)
7849 I915_WRITE(DEW(i), 0);
7850
7851 /* Program P-state weights to account for frequency power adjustment */
7852 for (i = 0; i < 16; i++) {
7853 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7854 unsigned long freq = intel_pxfreq(pxvidfreq);
7855 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7856 PXVFREQ_PX_SHIFT;
7857 unsigned long val;
7858
7859 val = vid * vid;
7860 val *= (freq / 1000);
7861 val *= 255;
7862 val /= (127*127*900);
7863 if (val > 0xff)
7864 DRM_ERROR("bad pxval: %ld\n", val);
7865 pxw[i] = val;
7866 }
7867 /* Render standby states get 0 weight */
7868 pxw[14] = 0;
7869 pxw[15] = 0;
7870
7871 for (i = 0; i < 4; i++) {
7872 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7873 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7874 I915_WRITE(PXW(i), val);
7875 }
7876
7877 /* Adjust magic regs to magic values (more experimental results) */
7878 I915_WRITE(OGW0, 0);
7879 I915_WRITE(OGW1, 0);
7880 I915_WRITE(EG0, 0x00007f00);
7881 I915_WRITE(EG1, 0x0000000e);
7882 I915_WRITE(EG2, 0x000e0000);
7883 I915_WRITE(EG3, 0x68000300);
7884 I915_WRITE(EG4, 0x42000000);
7885 I915_WRITE(EG5, 0x00140031);
7886 I915_WRITE(EG6, 0);
7887 I915_WRITE(EG7, 0);
7888
7889 for (i = 0; i < 8; i++)
7890 I915_WRITE(PXWL(i), 0);
7891
7892 /* Enable PMON + select events */
7893 I915_WRITE(ECR, 0x80000019);
7894
7895 lcfuse = I915_READ(LCFUSE02);
7896
7897 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7898 }
7899
7900 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7901 {
7902 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7903
7904 /*
7905 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7906 * requirement.
7907 */
7908 if (!i915_modparams.enable_rc6) {
7909 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7910 intel_runtime_pm_get(dev_priv);
7911 }
7912
7913 mutex_lock(&dev_priv->drm.struct_mutex);
7914 mutex_lock(&dev_priv->pcu_lock);
7915
7916 /* Initialize RPS limits (for userspace) */
7917 if (IS_CHERRYVIEW(dev_priv))
7918 cherryview_init_gt_powersave(dev_priv);
7919 else if (IS_VALLEYVIEW(dev_priv))
7920 valleyview_init_gt_powersave(dev_priv);
7921 else if (INTEL_GEN(dev_priv) >= 6)
7922 gen6_init_rps_frequencies(dev_priv);
7923
7924 /* Derive initial user preferences/limits from the hardware limits */
7925 rps->idle_freq = rps->min_freq;
7926 rps->cur_freq = rps->idle_freq;
7927
7928 rps->max_freq_softlimit = rps->max_freq;
7929 rps->min_freq_softlimit = rps->min_freq;
7930
7931 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7932 rps->min_freq_softlimit =
7933 max_t(int,
7934 rps->efficient_freq,
7935 intel_freq_opcode(dev_priv, 450));
7936
7937 /* After setting max-softlimit, find the overclock max freq */
7938 if (IS_GEN6(dev_priv) ||
7939 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7940 u32 params = 0;
7941
7942 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7943 if (params & BIT(31)) { /* OC supported */
7944 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7945 (rps->max_freq & 0xff) * 50,
7946 (params & 0xff) * 50);
7947 rps->max_freq = params & 0xff;
7948 }
7949 }
7950
7951 /* Finally allow us to boost to max by default */
7952 rps->boost_freq = rps->max_freq;
7953
7954 mutex_unlock(&dev_priv->pcu_lock);
7955 mutex_unlock(&dev_priv->drm.struct_mutex);
7956
7957 intel_autoenable_gt_powersave(dev_priv);
7958 }
7959
7960 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7961 {
7962 if (IS_VALLEYVIEW(dev_priv))
7963 valleyview_cleanup_gt_powersave(dev_priv);
7964
7965 if (!i915_modparams.enable_rc6)
7966 intel_runtime_pm_put(dev_priv);
7967 }
7968
7969 /**
7970 * intel_suspend_gt_powersave - suspend PM work and helper threads
7971 * @dev_priv: i915 device
7972 *
7973 * We don't want to disable RC6 or other features here, we just want
7974 * to make sure any work we've queued has finished and won't bother
7975 * us while we're suspended.
7976 */
7977 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7978 {
7979 if (INTEL_GEN(dev_priv) < 6)
7980 return;
7981
7982 if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
7983 intel_runtime_pm_put(dev_priv);
7984
7985 /* gen6_rps_idle() will be called later to disable interrupts */
7986 }
7987
7988 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7989 {
7990 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7991 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7992 intel_disable_gt_powersave(dev_priv);
7993
7994 gen6_reset_rps_interrupts(dev_priv);
7995 }
7996
7997 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
7998 {
7999 lockdep_assert_held(&i915->pcu_lock);
8000
8001 if (!i915->gt_pm.llc_pstate.enabled)
8002 return;
8003
8004 /* Currently there is no HW configuration to be done to disable. */
8005
8006 i915->gt_pm.llc_pstate.enabled = false;
8007 }
8008
8009 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8010 {
8011 lockdep_assert_held(&dev_priv->pcu_lock);
8012
8013 if (!dev_priv->gt_pm.rc6.enabled)
8014 return;
8015
8016 if (INTEL_GEN(dev_priv) >= 9)
8017 gen9_disable_rc6(dev_priv);
8018 else if (IS_CHERRYVIEW(dev_priv))
8019 cherryview_disable_rc6(dev_priv);
8020 else if (IS_VALLEYVIEW(dev_priv))
8021 valleyview_disable_rc6(dev_priv);
8022 else if (INTEL_GEN(dev_priv) >= 6)
8023 gen6_disable_rc6(dev_priv);
8024
8025 dev_priv->gt_pm.rc6.enabled = false;
8026 }
8027
8028 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8029 {
8030 lockdep_assert_held(&dev_priv->pcu_lock);
8031
8032 if (!dev_priv->gt_pm.rps.enabled)
8033 return;
8034
8035 if (INTEL_GEN(dev_priv) >= 9)
8036 gen9_disable_rps(dev_priv);
8037 else if (IS_CHERRYVIEW(dev_priv))
8038 cherryview_disable_rps(dev_priv);
8039 else if (IS_VALLEYVIEW(dev_priv))
8040 valleyview_disable_rps(dev_priv);
8041 else if (INTEL_GEN(dev_priv) >= 6)
8042 gen6_disable_rps(dev_priv);
8043 else if (IS_IRONLAKE_M(dev_priv))
8044 ironlake_disable_drps(dev_priv);
8045
8046 dev_priv->gt_pm.rps.enabled = false;
8047 }
8048
8049 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8050 {
8051 mutex_lock(&dev_priv->pcu_lock);
8052
8053 intel_disable_rc6(dev_priv);
8054 intel_disable_rps(dev_priv);
8055 if (HAS_LLC(dev_priv))
8056 intel_disable_llc_pstate(dev_priv);
8057
8058 mutex_unlock(&dev_priv->pcu_lock);
8059 }
8060
8061 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8062 {
8063 lockdep_assert_held(&i915->pcu_lock);
8064
8065 if (i915->gt_pm.llc_pstate.enabled)
8066 return;
8067
8068 gen6_update_ring_freq(i915);
8069
8070 i915->gt_pm.llc_pstate.enabled = true;
8071 }
8072
8073 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8074 {
8075 lockdep_assert_held(&dev_priv->pcu_lock);
8076
8077 if (dev_priv->gt_pm.rc6.enabled)
8078 return;
8079
8080 if (IS_CHERRYVIEW(dev_priv))
8081 cherryview_enable_rc6(dev_priv);
8082 else if (IS_VALLEYVIEW(dev_priv))
8083 valleyview_enable_rc6(dev_priv);
8084 else if (INTEL_GEN(dev_priv) >= 9)
8085 gen9_enable_rc6(dev_priv);
8086 else if (IS_BROADWELL(dev_priv))
8087 gen8_enable_rc6(dev_priv);
8088 else if (INTEL_GEN(dev_priv) >= 6)
8089 gen6_enable_rc6(dev_priv);
8090
8091 dev_priv->gt_pm.rc6.enabled = true;
8092 }
8093
8094 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8095 {
8096 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8097
8098 lockdep_assert_held(&dev_priv->pcu_lock);
8099
8100 if (rps->enabled)
8101 return;
8102
8103 if (IS_CHERRYVIEW(dev_priv)) {
8104 cherryview_enable_rps(dev_priv);
8105 } else if (IS_VALLEYVIEW(dev_priv)) {
8106 valleyview_enable_rps(dev_priv);
8107 } else if (INTEL_GEN(dev_priv) >= 9) {
8108 gen9_enable_rps(dev_priv);
8109 } else if (IS_BROADWELL(dev_priv)) {
8110 gen8_enable_rps(dev_priv);
8111 } else if (INTEL_GEN(dev_priv) >= 6) {
8112 gen6_enable_rps(dev_priv);
8113 } else if (IS_IRONLAKE_M(dev_priv)) {
8114 ironlake_enable_drps(dev_priv);
8115 intel_init_emon(dev_priv);
8116 }
8117
8118 WARN_ON(rps->max_freq < rps->min_freq);
8119 WARN_ON(rps->idle_freq > rps->max_freq);
8120
8121 WARN_ON(rps->efficient_freq < rps->min_freq);
8122 WARN_ON(rps->efficient_freq > rps->max_freq);
8123
8124 rps->enabled = true;
8125 }
8126
8127 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8128 {
8129 /* Powersaving is controlled by the host when inside a VM */
8130 if (intel_vgpu_active(dev_priv))
8131 return;
8132
8133 mutex_lock(&dev_priv->pcu_lock);
8134
8135 intel_enable_rc6(dev_priv);
8136 intel_enable_rps(dev_priv);
8137 if (HAS_LLC(dev_priv))
8138 intel_enable_llc_pstate(dev_priv);
8139
8140 mutex_unlock(&dev_priv->pcu_lock);
8141 }
8142
8143 static void __intel_autoenable_gt_powersave(struct work_struct *work)
8144 {
8145 struct drm_i915_private *dev_priv =
8146 container_of(work,
8147 typeof(*dev_priv),
8148 gt_pm.autoenable_work.work);
8149 struct intel_engine_cs *rcs;
8150 struct drm_i915_gem_request *req;
8151
8152 rcs = dev_priv->engine[RCS];
8153 if (rcs->last_retired_context)
8154 goto out;
8155
8156 if (!rcs->init_context)
8157 goto out;
8158
8159 mutex_lock(&dev_priv->drm.struct_mutex);
8160
8161 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
8162 if (IS_ERR(req))
8163 goto unlock;
8164
8165 if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8166 rcs->init_context(req);
8167
8168 /* Mark the device busy, calling intel_enable_gt_powersave() */
8169 i915_add_request(req);
8170
8171 unlock:
8172 mutex_unlock(&dev_priv->drm.struct_mutex);
8173 out:
8174 intel_runtime_pm_put(dev_priv);
8175 }
8176
8177 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
8178 {
8179 if (IS_IRONLAKE_M(dev_priv)) {
8180 ironlake_enable_drps(dev_priv);
8181 intel_init_emon(dev_priv);
8182 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
8183 /*
8184 * PCU communication is slow and this doesn't need to be
8185 * done at any specific time, so do this out of our fast path
8186 * to make resume and init faster.
8187 *
8188 * We depend on the HW RC6 power context save/restore
8189 * mechanism when entering D3 through runtime PM suspend. So
8190 * disable RPM until RPS/RC6 is properly setup. We can only
8191 * get here via the driver load/system resume/runtime resume
8192 * paths, so the _noresume version is enough (and in case of
8193 * runtime resume it's necessary).
8194 */
8195 if (queue_delayed_work(dev_priv->wq,
8196 &dev_priv->gt_pm.autoenable_work,
8197 round_jiffies_up_relative(HZ)))
8198 intel_runtime_pm_get_noresume(dev_priv);
8199 }
8200 }
8201
8202 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8203 {
8204 /*
8205 * On Ibex Peak and Cougar Point, we need to disable clock
8206 * gating for the panel power sequencer or it will fail to
8207 * start up when no ports are active.
8208 */
8209 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8210 }
8211
8212 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8213 {
8214 enum pipe pipe;
8215
8216 for_each_pipe(dev_priv, pipe) {
8217 I915_WRITE(DSPCNTR(pipe),
8218 I915_READ(DSPCNTR(pipe)) |
8219 DISPPLANE_TRICKLE_FEED_DISABLE);
8220
8221 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8222 POSTING_READ(DSPSURF(pipe));
8223 }
8224 }
8225
8226 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8227 {
8228 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8229
8230 /*
8231 * Required for FBC
8232 * WaFbcDisableDpfcClockGating:ilk
8233 */
8234 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8235 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8236 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8237
8238 I915_WRITE(PCH_3DCGDIS0,
8239 MARIUNIT_CLOCK_GATE_DISABLE |
8240 SVSMUNIT_CLOCK_GATE_DISABLE);
8241 I915_WRITE(PCH_3DCGDIS1,
8242 VFMUNIT_CLOCK_GATE_DISABLE);
8243
8244 /*
8245 * According to the spec the following bits should be set in
8246 * order to enable memory self-refresh
8247 * The bit 22/21 of 0x42004
8248 * The bit 5 of 0x42020
8249 * The bit 15 of 0x45000
8250 */
8251 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8252 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8253 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8254 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8255 I915_WRITE(DISP_ARB_CTL,
8256 (I915_READ(DISP_ARB_CTL) |
8257 DISP_FBC_WM_DIS));
8258
8259 /*
8260 * Based on the document from hardware guys the following bits
8261 * should be set unconditionally in order to enable FBC.
8262 * The bit 22 of 0x42000
8263 * The bit 22 of 0x42004
8264 * The bit 7,8,9 of 0x42020.
8265 */
8266 if (IS_IRONLAKE_M(dev_priv)) {
8267 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8268 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8269 I915_READ(ILK_DISPLAY_CHICKEN1) |
8270 ILK_FBCQ_DIS);
8271 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8272 I915_READ(ILK_DISPLAY_CHICKEN2) |
8273 ILK_DPARB_GATE);
8274 }
8275
8276 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8277
8278 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8279 I915_READ(ILK_DISPLAY_CHICKEN2) |
8280 ILK_ELPIN_409_SELECT);
8281 I915_WRITE(_3D_CHICKEN2,
8282 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8283 _3D_CHICKEN2_WM_READ_PIPELINED);
8284
8285 /* WaDisableRenderCachePipelinedFlush:ilk */
8286 I915_WRITE(CACHE_MODE_0,
8287 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8288
8289 /* WaDisable_RenderCache_OperationalFlush:ilk */
8290 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8291
8292 g4x_disable_trickle_feed(dev_priv);
8293
8294 ibx_init_clock_gating(dev_priv);
8295 }
8296
8297 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8298 {
8299 int pipe;
8300 uint32_t val;
8301
8302 /*
8303 * On Ibex Peak and Cougar Point, we need to disable clock
8304 * gating for the panel power sequencer or it will fail to
8305 * start up when no ports are active.
8306 */
8307 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8308 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8309 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8310 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8311 DPLS_EDP_PPS_FIX_DIS);
8312 /* The below fixes the weird display corruption, a few pixels shifted
8313 * downward, on (only) LVDS of some HP laptops with IVY.
8314 */
8315 for_each_pipe(dev_priv, pipe) {
8316 val = I915_READ(TRANS_CHICKEN2(pipe));
8317 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8318 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8319 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8320 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8321 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8322 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8323 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8324 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8325 }
8326 /* WADP0ClockGatingDisable */
8327 for_each_pipe(dev_priv, pipe) {
8328 I915_WRITE(TRANS_CHICKEN1(pipe),
8329 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8330 }
8331 }
8332
8333 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8334 {
8335 uint32_t tmp;
8336
8337 tmp = I915_READ(MCH_SSKPD);
8338 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8339 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8340 tmp);
8341 }
8342
8343 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8344 {
8345 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8346
8347 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8348
8349 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8350 I915_READ(ILK_DISPLAY_CHICKEN2) |
8351 ILK_ELPIN_409_SELECT);
8352
8353 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8354 I915_WRITE(_3D_CHICKEN,
8355 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8356
8357 /* WaDisable_RenderCache_OperationalFlush:snb */
8358 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8359
8360 /*
8361 * BSpec recoomends 8x4 when MSAA is used,
8362 * however in practice 16x4 seems fastest.
8363 *
8364 * Note that PS/WM thread counts depend on the WIZ hashing
8365 * disable bit, which we don't touch here, but it's good
8366 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8367 */
8368 I915_WRITE(GEN6_GT_MODE,
8369 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8370
8371 I915_WRITE(CACHE_MODE_0,
8372 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8373
8374 I915_WRITE(GEN6_UCGCTL1,
8375 I915_READ(GEN6_UCGCTL1) |
8376 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8377 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8378
8379 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8380 * gating disable must be set. Failure to set it results in
8381 * flickering pixels due to Z write ordering failures after
8382 * some amount of runtime in the Mesa "fire" demo, and Unigine
8383 * Sanctuary and Tropics, and apparently anything else with
8384 * alpha test or pixel discard.
8385 *
8386 * According to the spec, bit 11 (RCCUNIT) must also be set,
8387 * but we didn't debug actual testcases to find it out.
8388 *
8389 * WaDisableRCCUnitClockGating:snb
8390 * WaDisableRCPBUnitClockGating:snb
8391 */
8392 I915_WRITE(GEN6_UCGCTL2,
8393 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8394 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8395
8396 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8397 I915_WRITE(_3D_CHICKEN3,
8398 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8399
8400 /*
8401 * Bspec says:
8402 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8403 * 3DSTATE_SF number of SF output attributes is more than 16."
8404 */
8405 I915_WRITE(_3D_CHICKEN3,
8406 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8407
8408 /*
8409 * According to the spec the following bits should be
8410 * set in order to enable memory self-refresh and fbc:
8411 * The bit21 and bit22 of 0x42000
8412 * The bit21 and bit22 of 0x42004
8413 * The bit5 and bit7 of 0x42020
8414 * The bit14 of 0x70180
8415 * The bit14 of 0x71180
8416 *
8417 * WaFbcAsynchFlipDisableFbcQueue:snb
8418 */
8419 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8420 I915_READ(ILK_DISPLAY_CHICKEN1) |
8421 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8422 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8423 I915_READ(ILK_DISPLAY_CHICKEN2) |
8424 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8425 I915_WRITE(ILK_DSPCLK_GATE_D,
8426 I915_READ(ILK_DSPCLK_GATE_D) |
8427 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8428 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8429
8430 g4x_disable_trickle_feed(dev_priv);
8431
8432 cpt_init_clock_gating(dev_priv);
8433
8434 gen6_check_mch_setup(dev_priv);
8435 }
8436
8437 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8438 {
8439 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8440
8441 /*
8442 * WaVSThreadDispatchOverride:ivb,vlv
8443 *
8444 * This actually overrides the dispatch
8445 * mode for all thread types.
8446 */
8447 reg &= ~GEN7_FF_SCHED_MASK;
8448 reg |= GEN7_FF_TS_SCHED_HW;
8449 reg |= GEN7_FF_VS_SCHED_HW;
8450 reg |= GEN7_FF_DS_SCHED_HW;
8451
8452 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8453 }
8454
8455 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8456 {
8457 /*
8458 * TODO: this bit should only be enabled when really needed, then
8459 * disabled when not needed anymore in order to save power.
8460 */
8461 if (HAS_PCH_LPT_LP(dev_priv))
8462 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8463 I915_READ(SOUTH_DSPCLK_GATE_D) |
8464 PCH_LP_PARTITION_LEVEL_DISABLE);
8465
8466 /* WADPOClockGatingDisable:hsw */
8467 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8468 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8469 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8470 }
8471
8472 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8473 {
8474 if (HAS_PCH_LPT_LP(dev_priv)) {
8475 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8476
8477 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8478 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8479 }
8480 }
8481
8482 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8483 int general_prio_credits,
8484 int high_prio_credits)
8485 {
8486 u32 misccpctl;
8487 u32 val;
8488
8489 /* WaTempDisableDOPClkGating:bdw */
8490 misccpctl = I915_READ(GEN7_MISCCPCTL);
8491 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8492
8493 val = I915_READ(GEN8_L3SQCREG1);
8494 val &= ~L3_PRIO_CREDITS_MASK;
8495 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8496 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8497 I915_WRITE(GEN8_L3SQCREG1, val);
8498
8499 /*
8500 * Wait at least 100 clocks before re-enabling clock gating.
8501 * See the definition of L3SQCREG1 in BSpec.
8502 */
8503 POSTING_READ(GEN8_L3SQCREG1);
8504 udelay(1);
8505 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8506 }
8507
8508 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8509 {
8510 if (!HAS_PCH_CNP(dev_priv))
8511 return;
8512
8513 /* Wa #1181 */
8514 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8515 CNP_PWM_CGE_GATING_DISABLE);
8516 }
8517
8518 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8519 {
8520 u32 val;
8521 cnp_init_clock_gating(dev_priv);
8522
8523 /* This is not an Wa. Enable for better image quality */
8524 I915_WRITE(_3D_CHICKEN3,
8525 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8526
8527 /* WaEnableChickenDCPR:cnl */
8528 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8529 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8530
8531 /* WaFbcWakeMemOn:cnl */
8532 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8533 DISP_FBC_MEMORY_WAKE);
8534
8535 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8536 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8537 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
8538 I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
8539 SARBUNIT_CLKGATE_DIS);
8540
8541 /* Display WA #1133: WaFbcSkipSegments:cnl */
8542 val = I915_READ(ILK_DPFC_CHICKEN);
8543 val &= ~GLK_SKIP_SEG_COUNT_MASK;
8544 val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
8545 I915_WRITE(ILK_DPFC_CHICKEN, val);
8546 }
8547
8548 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8549 {
8550 cnp_init_clock_gating(dev_priv);
8551 gen9_init_clock_gating(dev_priv);
8552
8553 /* WaFbcNukeOnHostModify:cfl */
8554 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8555 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8556 }
8557
8558 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8559 {
8560 gen9_init_clock_gating(dev_priv);
8561
8562 /* WaDisableSDEUnitClockGating:kbl */
8563 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8564 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8565 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8566
8567 /* WaDisableGamClockGating:kbl */
8568 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8569 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8570 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8571
8572 /* WaFbcNukeOnHostModify:kbl */
8573 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8574 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8575 }
8576
8577 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8578 {
8579 gen9_init_clock_gating(dev_priv);
8580
8581 /* WAC6entrylatency:skl */
8582 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8583 FBC_LLC_FULLY_OPEN);
8584
8585 /* WaFbcNukeOnHostModify:skl */
8586 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8587 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8588 }
8589
8590 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8591 {
8592 /* The GTT cache must be disabled if the system is using 2M pages. */
8593 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8594 I915_GTT_PAGE_SIZE_2M);
8595 enum pipe pipe;
8596
8597 /* WaSwitchSolVfFArbitrationPriority:bdw */
8598 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8599
8600 /* WaPsrDPAMaskVBlankInSRD:bdw */
8601 I915_WRITE(CHICKEN_PAR1_1,
8602 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8603
8604 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8605 for_each_pipe(dev_priv, pipe) {
8606 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8607 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8608 BDW_DPRS_MASK_VBLANK_SRD);
8609 }
8610
8611 /* WaVSRefCountFullforceMissDisable:bdw */
8612 /* WaDSRefCountFullforceMissDisable:bdw */
8613 I915_WRITE(GEN7_FF_THREAD_MODE,
8614 I915_READ(GEN7_FF_THREAD_MODE) &
8615 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8616
8617 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8618 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8619
8620 /* WaDisableSDEUnitClockGating:bdw */
8621 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8622 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8623
8624 /* WaProgramL3SqcReg1Default:bdw */
8625 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8626
8627 /* WaGttCachingOffByDefault:bdw */
8628 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8629
8630 /* WaKVMNotificationOnConfigChange:bdw */
8631 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8632 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8633
8634 lpt_init_clock_gating(dev_priv);
8635
8636 /* WaDisableDopClockGating:bdw
8637 *
8638 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8639 * clock gating.
8640 */
8641 I915_WRITE(GEN6_UCGCTL1,
8642 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8643 }
8644
8645 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8646 {
8647 /* L3 caching of data atomics doesn't work -- disable it. */
8648 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8649 I915_WRITE(HSW_ROW_CHICKEN3,
8650 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8651
8652 /* This is required by WaCatErrorRejectionIssue:hsw */
8653 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8654 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8655 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8656
8657 /* WaVSRefCountFullforceMissDisable:hsw */
8658 I915_WRITE(GEN7_FF_THREAD_MODE,
8659 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8660
8661 /* WaDisable_RenderCache_OperationalFlush:hsw */
8662 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8663
8664 /* enable HiZ Raw Stall Optimization */
8665 I915_WRITE(CACHE_MODE_0_GEN7,
8666 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8667
8668 /* WaDisable4x2SubspanOptimization:hsw */
8669 I915_WRITE(CACHE_MODE_1,
8670 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8671
8672 /*
8673 * BSpec recommends 8x4 when MSAA is used,
8674 * however in practice 16x4 seems fastest.
8675 *
8676 * Note that PS/WM thread counts depend on the WIZ hashing
8677 * disable bit, which we don't touch here, but it's good
8678 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8679 */
8680 I915_WRITE(GEN7_GT_MODE,
8681 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8682
8683 /* WaSampleCChickenBitEnable:hsw */
8684 I915_WRITE(HALF_SLICE_CHICKEN3,
8685 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8686
8687 /* WaSwitchSolVfFArbitrationPriority:hsw */
8688 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8689
8690 lpt_init_clock_gating(dev_priv);
8691 }
8692
8693 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8694 {
8695 uint32_t snpcr;
8696
8697 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8698
8699 /* WaDisableEarlyCull:ivb */
8700 I915_WRITE(_3D_CHICKEN3,
8701 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8702
8703 /* WaDisableBackToBackFlipFix:ivb */
8704 I915_WRITE(IVB_CHICKEN3,
8705 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8706 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8707
8708 /* WaDisablePSDDualDispatchEnable:ivb */
8709 if (IS_IVB_GT1(dev_priv))
8710 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8711 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8712
8713 /* WaDisable_RenderCache_OperationalFlush:ivb */
8714 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8715
8716 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8717 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8718 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8719
8720 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8721 I915_WRITE(GEN7_L3CNTLREG1,
8722 GEN7_WA_FOR_GEN7_L3_CONTROL);
8723 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8724 GEN7_WA_L3_CHICKEN_MODE);
8725 if (IS_IVB_GT1(dev_priv))
8726 I915_WRITE(GEN7_ROW_CHICKEN2,
8727 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8728 else {
8729 /* must write both registers */
8730 I915_WRITE(GEN7_ROW_CHICKEN2,
8731 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8732 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8733 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8734 }
8735
8736 /* WaForceL3Serialization:ivb */
8737 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8738 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8739
8740 /*
8741 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8742 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8743 */
8744 I915_WRITE(GEN6_UCGCTL2,
8745 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8746
8747 /* This is required by WaCatErrorRejectionIssue:ivb */
8748 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8749 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8750 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8751
8752 g4x_disable_trickle_feed(dev_priv);
8753
8754 gen7_setup_fixed_func_scheduler(dev_priv);
8755
8756 if (0) { /* causes HiZ corruption on ivb:gt1 */
8757 /* enable HiZ Raw Stall Optimization */
8758 I915_WRITE(CACHE_MODE_0_GEN7,
8759 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8760 }
8761
8762 /* WaDisable4x2SubspanOptimization:ivb */
8763 I915_WRITE(CACHE_MODE_1,
8764 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8765
8766 /*
8767 * BSpec recommends 8x4 when MSAA is used,
8768 * however in practice 16x4 seems fastest.
8769 *
8770 * Note that PS/WM thread counts depend on the WIZ hashing
8771 * disable bit, which we don't touch here, but it's good
8772 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8773 */
8774 I915_WRITE(GEN7_GT_MODE,
8775 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8776
8777 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8778 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8779 snpcr |= GEN6_MBC_SNPCR_MED;
8780 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8781
8782 if (!HAS_PCH_NOP(dev_priv))
8783 cpt_init_clock_gating(dev_priv);
8784
8785 gen6_check_mch_setup(dev_priv);
8786 }
8787
8788 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8789 {
8790 /* WaDisableEarlyCull:vlv */
8791 I915_WRITE(_3D_CHICKEN3,
8792 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8793
8794 /* WaDisableBackToBackFlipFix:vlv */
8795 I915_WRITE(IVB_CHICKEN3,
8796 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8797 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8798
8799 /* WaPsdDispatchEnable:vlv */
8800 /* WaDisablePSDDualDispatchEnable:vlv */
8801 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8802 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8803 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8804
8805 /* WaDisable_RenderCache_OperationalFlush:vlv */
8806 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8807
8808 /* WaForceL3Serialization:vlv */
8809 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8810 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8811
8812 /* WaDisableDopClockGating:vlv */
8813 I915_WRITE(GEN7_ROW_CHICKEN2,
8814 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8815
8816 /* This is required by WaCatErrorRejectionIssue:vlv */
8817 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8818 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8819 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8820
8821 gen7_setup_fixed_func_scheduler(dev_priv);
8822
8823 /*
8824 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8825 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8826 */
8827 I915_WRITE(GEN6_UCGCTL2,
8828 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8829
8830 /* WaDisableL3Bank2xClockGate:vlv
8831 * Disabling L3 clock gating- MMIO 940c[25] = 1
8832 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8833 I915_WRITE(GEN7_UCGCTL4,
8834 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8835
8836 /*
8837 * BSpec says this must be set, even though
8838 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8839 */
8840 I915_WRITE(CACHE_MODE_1,
8841 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8842
8843 /*
8844 * BSpec recommends 8x4 when MSAA is used,
8845 * however in practice 16x4 seems fastest.
8846 *
8847 * Note that PS/WM thread counts depend on the WIZ hashing
8848 * disable bit, which we don't touch here, but it's good
8849 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8850 */
8851 I915_WRITE(GEN7_GT_MODE,
8852 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8853
8854 /*
8855 * WaIncreaseL3CreditsForVLVB0:vlv
8856 * This is the hardware default actually.
8857 */
8858 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8859
8860 /*
8861 * WaDisableVLVClockGating_VBIIssue:vlv
8862 * Disable clock gating on th GCFG unit to prevent a delay
8863 * in the reporting of vblank events.
8864 */
8865 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8866 }
8867
8868 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8869 {
8870 /* WaVSRefCountFullforceMissDisable:chv */
8871 /* WaDSRefCountFullforceMissDisable:chv */
8872 I915_WRITE(GEN7_FF_THREAD_MODE,
8873 I915_READ(GEN7_FF_THREAD_MODE) &
8874 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8875
8876 /* WaDisableSemaphoreAndSyncFlipWait:chv */
8877 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8878 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8879
8880 /* WaDisableCSUnitClockGating:chv */
8881 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8882 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8883
8884 /* WaDisableSDEUnitClockGating:chv */
8885 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8886 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8887
8888 /*
8889 * WaProgramL3SqcReg1Default:chv
8890 * See gfxspecs/Related Documents/Performance Guide/
8891 * LSQC Setting Recommendations.
8892 */
8893 gen8_set_l3sqc_credits(dev_priv, 38, 2);
8894
8895 /*
8896 * GTT cache may not work with big pages, so if those
8897 * are ever enabled GTT cache may need to be disabled.
8898 */
8899 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8900 }
8901
8902 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8903 {
8904 uint32_t dspclk_gate;
8905
8906 I915_WRITE(RENCLK_GATE_D1, 0);
8907 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8908 GS_UNIT_CLOCK_GATE_DISABLE |
8909 CL_UNIT_CLOCK_GATE_DISABLE);
8910 I915_WRITE(RAMCLK_GATE_D, 0);
8911 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8912 OVRUNIT_CLOCK_GATE_DISABLE |
8913 OVCUNIT_CLOCK_GATE_DISABLE;
8914 if (IS_GM45(dev_priv))
8915 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8916 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8917
8918 /* WaDisableRenderCachePipelinedFlush */
8919 I915_WRITE(CACHE_MODE_0,
8920 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8921
8922 /* WaDisable_RenderCache_OperationalFlush:g4x */
8923 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8924
8925 g4x_disable_trickle_feed(dev_priv);
8926 }
8927
8928 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8929 {
8930 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8931 I915_WRITE(RENCLK_GATE_D2, 0);
8932 I915_WRITE(DSPCLK_GATE_D, 0);
8933 I915_WRITE(RAMCLK_GATE_D, 0);
8934 I915_WRITE16(DEUC, 0);
8935 I915_WRITE(MI_ARB_STATE,
8936 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8937
8938 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8939 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8940 }
8941
8942 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8943 {
8944 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8945 I965_RCC_CLOCK_GATE_DISABLE |
8946 I965_RCPB_CLOCK_GATE_DISABLE |
8947 I965_ISC_CLOCK_GATE_DISABLE |
8948 I965_FBC_CLOCK_GATE_DISABLE);
8949 I915_WRITE(RENCLK_GATE_D2, 0);
8950 I915_WRITE(MI_ARB_STATE,
8951 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8952
8953 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8954 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8955 }
8956
8957 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8958 {
8959 u32 dstate = I915_READ(D_STATE);
8960
8961 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8962 DSTATE_DOT_CLOCK_GATING;
8963 I915_WRITE(D_STATE, dstate);
8964
8965 if (IS_PINEVIEW(dev_priv))
8966 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8967
8968 /* IIR "flip pending" means done if this bit is set */
8969 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8970
8971 /* interrupts should cause a wake up from C3 */
8972 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8973
8974 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8975 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8976
8977 I915_WRITE(MI_ARB_STATE,
8978 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8979 }
8980
8981 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8982 {
8983 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8984
8985 /* interrupts should cause a wake up from C3 */
8986 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8987 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8988
8989 I915_WRITE(MEM_MODE,
8990 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8991 }
8992
8993 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8994 {
8995 I915_WRITE(MEM_MODE,
8996 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8997 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8998 }
8999
9000 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9001 {
9002 dev_priv->display.init_clock_gating(dev_priv);
9003 }
9004
9005 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9006 {
9007 if (HAS_PCH_LPT(dev_priv))
9008 lpt_suspend_hw(dev_priv);
9009 }
9010
9011 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9012 {
9013 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9014 }
9015
9016 /**
9017 * intel_init_clock_gating_hooks - setup the clock gating hooks
9018 * @dev_priv: device private
9019 *
9020 * Setup the hooks that configure which clocks of a given platform can be
9021 * gated and also apply various GT and display specific workarounds for these
9022 * platforms. Note that some GT specific workarounds are applied separately
9023 * when GPU contexts or batchbuffers start their execution.
9024 */
9025 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9026 {
9027 if (IS_CANNONLAKE(dev_priv))
9028 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9029 else if (IS_COFFEELAKE(dev_priv))
9030 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9031 else if (IS_SKYLAKE(dev_priv))
9032 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9033 else if (IS_KABYLAKE(dev_priv))
9034 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9035 else if (IS_BROXTON(dev_priv))
9036 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9037 else if (IS_GEMINILAKE(dev_priv))
9038 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9039 else if (IS_BROADWELL(dev_priv))
9040 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9041 else if (IS_CHERRYVIEW(dev_priv))
9042 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9043 else if (IS_HASWELL(dev_priv))
9044 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9045 else if (IS_IVYBRIDGE(dev_priv))
9046 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9047 else if (IS_VALLEYVIEW(dev_priv))
9048 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9049 else if (IS_GEN6(dev_priv))
9050 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9051 else if (IS_GEN5(dev_priv))
9052 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9053 else if (IS_G4X(dev_priv))
9054 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9055 else if (IS_I965GM(dev_priv))
9056 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9057 else if (IS_I965G(dev_priv))
9058 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9059 else if (IS_GEN3(dev_priv))
9060 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9061 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9062 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9063 else if (IS_GEN2(dev_priv))
9064 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9065 else {
9066 MISSING_CASE(INTEL_DEVID(dev_priv));
9067 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9068 }
9069 }
9070
9071 /* Set up chip specific power management-related functions */
9072 void intel_init_pm(struct drm_i915_private *dev_priv)
9073 {
9074 intel_fbc_init(dev_priv);
9075
9076 /* For cxsr */
9077 if (IS_PINEVIEW(dev_priv))
9078 i915_pineview_get_mem_freq(dev_priv);
9079 else if (IS_GEN5(dev_priv))
9080 i915_ironlake_get_mem_freq(dev_priv);
9081
9082 /* For FIFO watermark updates */
9083 if (INTEL_GEN(dev_priv) >= 9) {
9084 skl_setup_wm_latency(dev_priv);
9085 dev_priv->display.initial_watermarks = skl_initial_wm;
9086 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9087 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9088 } else if (HAS_PCH_SPLIT(dev_priv)) {
9089 ilk_setup_wm_latency(dev_priv);
9090
9091 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9092 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9093 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9094 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9095 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9096 dev_priv->display.compute_intermediate_wm =
9097 ilk_compute_intermediate_wm;
9098 dev_priv->display.initial_watermarks =
9099 ilk_initial_watermarks;
9100 dev_priv->display.optimize_watermarks =
9101 ilk_optimize_watermarks;
9102 } else {
9103 DRM_DEBUG_KMS("Failed to read display plane latency. "
9104 "Disable CxSR\n");
9105 }
9106 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9107 vlv_setup_wm_latency(dev_priv);
9108 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9109 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9110 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9111 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9112 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9113 } else if (IS_G4X(dev_priv)) {
9114 g4x_setup_wm_latency(dev_priv);
9115 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9116 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9117 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9118 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9119 } else if (IS_PINEVIEW(dev_priv)) {
9120 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9121 dev_priv->is_ddr3,
9122 dev_priv->fsb_freq,
9123 dev_priv->mem_freq)) {
9124 DRM_INFO("failed to find known CxSR latency "
9125 "(found ddr%s fsb freq %d, mem freq %d), "
9126 "disabling CxSR\n",
9127 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9128 dev_priv->fsb_freq, dev_priv->mem_freq);
9129 /* Disable CxSR and never update its watermark again */
9130 intel_set_memory_cxsr(dev_priv, false);
9131 dev_priv->display.update_wm = NULL;
9132 } else
9133 dev_priv->display.update_wm = pineview_update_wm;
9134 } else if (IS_GEN4(dev_priv)) {
9135 dev_priv->display.update_wm = i965_update_wm;
9136 } else if (IS_GEN3(dev_priv)) {
9137 dev_priv->display.update_wm = i9xx_update_wm;
9138 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9139 } else if (IS_GEN2(dev_priv)) {
9140 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9141 dev_priv->display.update_wm = i845_update_wm;
9142 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9143 } else {
9144 dev_priv->display.update_wm = i9xx_update_wm;
9145 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9146 }
9147 } else {
9148 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9149 }
9150 }
9151
9152 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9153 {
9154 uint32_t flags =
9155 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9156
9157 switch (flags) {
9158 case GEN6_PCODE_SUCCESS:
9159 return 0;
9160 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9161 return -ENODEV;
9162 case GEN6_PCODE_ILLEGAL_CMD:
9163 return -ENXIO;
9164 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9165 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9166 return -EOVERFLOW;
9167 case GEN6_PCODE_TIMEOUT:
9168 return -ETIMEDOUT;
9169 default:
9170 MISSING_CASE(flags);
9171 return 0;
9172 }
9173 }
9174
9175 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9176 {
9177 uint32_t flags =
9178 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9179
9180 switch (flags) {
9181 case GEN6_PCODE_SUCCESS:
9182 return 0;
9183 case GEN6_PCODE_ILLEGAL_CMD:
9184 return -ENXIO;
9185 case GEN7_PCODE_TIMEOUT:
9186 return -ETIMEDOUT;
9187 case GEN7_PCODE_ILLEGAL_DATA:
9188 return -EINVAL;
9189 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9190 return -EOVERFLOW;
9191 default:
9192 MISSING_CASE(flags);
9193 return 0;
9194 }
9195 }
9196
9197 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9198 {
9199 int status;
9200
9201 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9202
9203 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9204 * use te fw I915_READ variants to reduce the amount of work
9205 * required when reading/writing.
9206 */
9207
9208 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9209 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9210 mbox, __builtin_return_address(0));
9211 return -EAGAIN;
9212 }
9213
9214 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9215 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9216 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9217
9218 if (__intel_wait_for_register_fw(dev_priv,
9219 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9220 500, 0, NULL)) {
9221 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9222 mbox, __builtin_return_address(0));
9223 return -ETIMEDOUT;
9224 }
9225
9226 *val = I915_READ_FW(GEN6_PCODE_DATA);
9227 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9228
9229 if (INTEL_GEN(dev_priv) > 6)
9230 status = gen7_check_mailbox_status(dev_priv);
9231 else
9232 status = gen6_check_mailbox_status(dev_priv);
9233
9234 if (status) {
9235 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9236 mbox, __builtin_return_address(0), status);
9237 return status;
9238 }
9239
9240 return 0;
9241 }
9242
9243 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9244 u32 mbox, u32 val)
9245 {
9246 int status;
9247
9248 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9249
9250 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9251 * use te fw I915_READ variants to reduce the amount of work
9252 * required when reading/writing.
9253 */
9254
9255 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9256 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9257 val, mbox, __builtin_return_address(0));
9258 return -EAGAIN;
9259 }
9260
9261 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9262 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9263 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9264
9265 if (__intel_wait_for_register_fw(dev_priv,
9266 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9267 500, 0, NULL)) {
9268 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9269 val, mbox, __builtin_return_address(0));
9270 return -ETIMEDOUT;
9271 }
9272
9273 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9274
9275 if (INTEL_GEN(dev_priv) > 6)
9276 status = gen7_check_mailbox_status(dev_priv);
9277 else
9278 status = gen6_check_mailbox_status(dev_priv);
9279
9280 if (status) {
9281 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9282 val, mbox, __builtin_return_address(0), status);
9283 return status;
9284 }
9285
9286 return 0;
9287 }
9288
9289 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9290 u32 request, u32 reply_mask, u32 reply,
9291 u32 *status)
9292 {
9293 u32 val = request;
9294
9295 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9296
9297 return *status || ((val & reply_mask) == reply);
9298 }
9299
9300 /**
9301 * skl_pcode_request - send PCODE request until acknowledgment
9302 * @dev_priv: device private
9303 * @mbox: PCODE mailbox ID the request is targeted for
9304 * @request: request ID
9305 * @reply_mask: mask used to check for request acknowledgment
9306 * @reply: value used to check for request acknowledgment
9307 * @timeout_base_ms: timeout for polling with preemption enabled
9308 *
9309 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9310 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9311 * The request is acknowledged once the PCODE reply dword equals @reply after
9312 * applying @reply_mask. Polling is first attempted with preemption enabled
9313 * for @timeout_base_ms and if this times out for another 50 ms with
9314 * preemption disabled.
9315 *
9316 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9317 * other error as reported by PCODE.
9318 */
9319 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9320 u32 reply_mask, u32 reply, int timeout_base_ms)
9321 {
9322 u32 status;
9323 int ret;
9324
9325 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9326
9327 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9328 &status)
9329
9330 /*
9331 * Prime the PCODE by doing a request first. Normally it guarantees
9332 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9333 * _wait_for() doesn't guarantee when its passed condition is evaluated
9334 * first, so send the first request explicitly.
9335 */
9336 if (COND) {
9337 ret = 0;
9338 goto out;
9339 }
9340 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9341 if (!ret)
9342 goto out;
9343
9344 /*
9345 * The above can time out if the number of requests was low (2 in the
9346 * worst case) _and_ PCODE was busy for some reason even after a
9347 * (queued) request and @timeout_base_ms delay. As a workaround retry
9348 * the poll with preemption disabled to maximize the number of
9349 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9350 * account for interrupts that could reduce the number of these
9351 * requests, and for any quirks of the PCODE firmware that delays
9352 * the request completion.
9353 */
9354 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9355 WARN_ON_ONCE(timeout_base_ms > 3);
9356 preempt_disable();
9357 ret = wait_for_atomic(COND, 50);
9358 preempt_enable();
9359
9360 out:
9361 return ret ? ret : status;
9362 #undef COND
9363 }
9364
9365 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9366 {
9367 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9368
9369 /*
9370 * N = val - 0xb7
9371 * Slow = Fast = GPLL ref * N
9372 */
9373 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9374 }
9375
9376 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9377 {
9378 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9379
9380 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9381 }
9382
9383 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9384 {
9385 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9386
9387 /*
9388 * N = val / 2
9389 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9390 */
9391 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9392 }
9393
9394 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9395 {
9396 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9397
9398 /* CHV needs even values */
9399 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9400 }
9401
9402 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9403 {
9404 if (INTEL_GEN(dev_priv) >= 9)
9405 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9406 GEN9_FREQ_SCALER);
9407 else if (IS_CHERRYVIEW(dev_priv))
9408 return chv_gpu_freq(dev_priv, val);
9409 else if (IS_VALLEYVIEW(dev_priv))
9410 return byt_gpu_freq(dev_priv, val);
9411 else
9412 return val * GT_FREQUENCY_MULTIPLIER;
9413 }
9414
9415 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9416 {
9417 if (INTEL_GEN(dev_priv) >= 9)
9418 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9419 GT_FREQUENCY_MULTIPLIER);
9420 else if (IS_CHERRYVIEW(dev_priv))
9421 return chv_freq_opcode(dev_priv, val);
9422 else if (IS_VALLEYVIEW(dev_priv))
9423 return byt_freq_opcode(dev_priv, val);
9424 else
9425 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9426 }
9427
9428 void intel_pm_setup(struct drm_i915_private *dev_priv)
9429 {
9430 mutex_init(&dev_priv->pcu_lock);
9431
9432 INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
9433 __intel_autoenable_gt_powersave);
9434 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9435
9436 dev_priv->runtime_pm.suspended = false;
9437 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9438 }
9439
9440 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9441 const i915_reg_t reg)
9442 {
9443 u32 lower, upper, tmp;
9444 int loop = 2;
9445
9446 /* The register accessed do not need forcewake. We borrow
9447 * uncore lock to prevent concurrent access to range reg.
9448 */
9449 spin_lock_irq(&dev_priv->uncore.lock);
9450
9451 /* vlv and chv residency counters are 40 bits in width.
9452 * With a control bit, we can choose between upper or lower
9453 * 32bit window into this counter.
9454 *
9455 * Although we always use the counter in high-range mode elsewhere,
9456 * userspace may attempt to read the value before rc6 is initialised,
9457 * before we have set the default VLV_COUNTER_CONTROL value. So always
9458 * set the high bit to be safe.
9459 */
9460 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9461 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9462 upper = I915_READ_FW(reg);
9463 do {
9464 tmp = upper;
9465
9466 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9467 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9468 lower = I915_READ_FW(reg);
9469
9470 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9471 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9472 upper = I915_READ_FW(reg);
9473 } while (upper != tmp && --loop);
9474
9475 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9476 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9477 * now.
9478 */
9479
9480 spin_unlock_irq(&dev_priv->uncore.lock);
9481
9482 return lower | (u64)upper << 8;
9483 }
9484
9485 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9486 const i915_reg_t reg)
9487 {
9488 u64 time_hw, units, div;
9489
9490 if (!intel_rc6_enabled())
9491 return 0;
9492
9493 intel_runtime_pm_get(dev_priv);
9494
9495 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9496 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9497 units = 1000;
9498 div = dev_priv->czclk_freq;
9499
9500 time_hw = vlv_residency_raw(dev_priv, reg);
9501 } else if (IS_GEN9_LP(dev_priv)) {
9502 units = 1000;
9503 div = 1200; /* 833.33ns */
9504
9505 time_hw = I915_READ(reg);
9506 } else {
9507 units = 128000; /* 1.28us */
9508 div = 100000;
9509
9510 time_hw = I915_READ(reg);
9511 }
9512
9513 intel_runtime_pm_put(dev_priv);
9514 return DIV_ROUND_UP_ULL(time_hw * units, div);
9515 }