]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge branch 'for-spi' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65 I915_WRITE(GEN8_CONFIG0,
66 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68 /* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 I915_WRITE(GEN8_CHICKEN_DCPR_1,
70 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 /* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75 DISP_FBC_WM_DIS |
76 DISP_FBC_MEMORY_WAKE);
77
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80 ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85 gen9_init_clock_gating(dev_priv);
86
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91 /*
92 * FIXME:
93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 */
95 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98 /*
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
100 * to stay fully on.
101 */
102 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103 PWM1_GATING_DIS | PWM2_GATING_DIS);
104 }
105
106 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
107 {
108 gen9_init_clock_gating(dev_priv);
109
110 /*
111 * WaDisablePWMClockGating:glk
112 * Backlight PWM may stop in the asserted state, causing backlight
113 * to stay fully on.
114 */
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
117
118 /* WaDDIIOTimeout:glk */
119 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
120 u32 val = I915_READ(CHICKEN_MISC_2);
121 val &= ~(GLK_CL0_PWR_DOWN |
122 GLK_CL1_PWR_DOWN |
123 GLK_CL2_PWR_DOWN);
124 I915_WRITE(CHICKEN_MISC_2, val);
125 }
126
127 }
128
129 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 {
131 u32 tmp;
132
133 tmp = I915_READ(CLKCFG);
134
135 switch (tmp & CLKCFG_FSB_MASK) {
136 case CLKCFG_FSB_533:
137 dev_priv->fsb_freq = 533; /* 133*4 */
138 break;
139 case CLKCFG_FSB_800:
140 dev_priv->fsb_freq = 800; /* 200*4 */
141 break;
142 case CLKCFG_FSB_667:
143 dev_priv->fsb_freq = 667; /* 167*4 */
144 break;
145 case CLKCFG_FSB_400:
146 dev_priv->fsb_freq = 400; /* 100*4 */
147 break;
148 }
149
150 switch (tmp & CLKCFG_MEM_MASK) {
151 case CLKCFG_MEM_533:
152 dev_priv->mem_freq = 533;
153 break;
154 case CLKCFG_MEM_667:
155 dev_priv->mem_freq = 667;
156 break;
157 case CLKCFG_MEM_800:
158 dev_priv->mem_freq = 800;
159 break;
160 }
161
162 /* detect pineview DDR3 setting */
163 tmp = I915_READ(CSHRDDR3CTL);
164 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 {
169 u16 ddrpll, csipll;
170
171 ddrpll = I915_READ16(DDRMPLL1);
172 csipll = I915_READ16(CSIPLL0);
173
174 switch (ddrpll & 0xff) {
175 case 0xc:
176 dev_priv->mem_freq = 800;
177 break;
178 case 0x10:
179 dev_priv->mem_freq = 1066;
180 break;
181 case 0x14:
182 dev_priv->mem_freq = 1333;
183 break;
184 case 0x18:
185 dev_priv->mem_freq = 1600;
186 break;
187 default:
188 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
189 ddrpll & 0xff);
190 dev_priv->mem_freq = 0;
191 break;
192 }
193
194 dev_priv->ips.r_t = dev_priv->mem_freq;
195
196 switch (csipll & 0x3ff) {
197 case 0x00c:
198 dev_priv->fsb_freq = 3200;
199 break;
200 case 0x00e:
201 dev_priv->fsb_freq = 3733;
202 break;
203 case 0x010:
204 dev_priv->fsb_freq = 4266;
205 break;
206 case 0x012:
207 dev_priv->fsb_freq = 4800;
208 break;
209 case 0x014:
210 dev_priv->fsb_freq = 5333;
211 break;
212 case 0x016:
213 dev_priv->fsb_freq = 5866;
214 break;
215 case 0x018:
216 dev_priv->fsb_freq = 6400;
217 break;
218 default:
219 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
220 csipll & 0x3ff);
221 dev_priv->fsb_freq = 0;
222 break;
223 }
224
225 if (dev_priv->fsb_freq == 3200) {
226 dev_priv->ips.c_m = 0;
227 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228 dev_priv->ips.c_m = 1;
229 } else {
230 dev_priv->ips.c_m = 2;
231 }
232 }
233
234 static const struct cxsr_latency cxsr_latency_table[] = {
235 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
236 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
237 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
238 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
239 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
240
241 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
242 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
243 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
244 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
245 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
246
247 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
248 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
249 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
250 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
251 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
252
253 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
254 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
255 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
256 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
257 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
258
259 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
260 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
261 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
262 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
263 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
264
265 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
266 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
267 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
268 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
269 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
270 };
271
272 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
273 bool is_ddr3,
274 int fsb,
275 int mem)
276 {
277 const struct cxsr_latency *latency;
278 int i;
279
280 if (fsb == 0 || mem == 0)
281 return NULL;
282
283 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
284 latency = &cxsr_latency_table[i];
285 if (is_desktop == latency->is_desktop &&
286 is_ddr3 == latency->is_ddr3 &&
287 fsb == latency->fsb_freq && mem == latency->mem_freq)
288 return latency;
289 }
290
291 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
292
293 return NULL;
294 }
295
296 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
297 {
298 u32 val;
299
300 mutex_lock(&dev_priv->rps.hw_lock);
301
302 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
303 if (enable)
304 val &= ~FORCE_DDR_HIGH_FREQ;
305 else
306 val |= FORCE_DDR_HIGH_FREQ;
307 val &= ~FORCE_DDR_LOW_FREQ;
308 val |= FORCE_DDR_FREQ_REQ_ACK;
309 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
310
311 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
312 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
313 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
314
315 mutex_unlock(&dev_priv->rps.hw_lock);
316 }
317
318 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
319 {
320 u32 val;
321
322 mutex_lock(&dev_priv->rps.hw_lock);
323
324 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
325 if (enable)
326 val |= DSP_MAXFIFO_PM5_ENABLE;
327 else
328 val &= ~DSP_MAXFIFO_PM5_ENABLE;
329 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
330
331 mutex_unlock(&dev_priv->rps.hw_lock);
332 }
333
334 #define FW_WM(value, plane) \
335 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
336
337 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338 {
339 bool was_enabled;
340 u32 val;
341
342 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345 POSTING_READ(FW_BLC_SELF_VLV);
346 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349 POSTING_READ(FW_BLC_SELF);
350 } else if (IS_PINEVIEW(dev_priv)) {
351 val = I915_READ(DSPFW3);
352 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
353 if (enable)
354 val |= PINEVIEW_SELF_REFRESH_EN;
355 else
356 val &= ~PINEVIEW_SELF_REFRESH_EN;
357 I915_WRITE(DSPFW3, val);
358 POSTING_READ(DSPFW3);
359 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363 I915_WRITE(FW_BLC_SELF, val);
364 POSTING_READ(FW_BLC_SELF);
365 } else if (IS_I915GM(dev_priv)) {
366 /*
367 * FIXME can't find a bit like this for 915G, and
368 * and yet it does have the related watermark in
369 * FW_BLC_SELF. What's going on?
370 */
371 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
373 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
374 I915_WRITE(INSTPM, val);
375 POSTING_READ(INSTPM);
376 } else {
377 return false;
378 }
379
380 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
381
382 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
383 enableddisabled(enable),
384 enableddisabled(was_enabled));
385
386 return was_enabled;
387 }
388
389 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
390 {
391 bool ret;
392
393 mutex_lock(&dev_priv->wm.wm_mutex);
394 ret = _intel_set_memory_cxsr(dev_priv, enable);
395 dev_priv->wm.vlv.cxsr = enable;
396 mutex_unlock(&dev_priv->wm.wm_mutex);
397
398 return ret;
399 }
400
401 /*
402 * Latency for FIFO fetches is dependent on several factors:
403 * - memory configuration (speed, channels)
404 * - chipset
405 * - current MCH state
406 * It can be fairly high in some situations, so here we assume a fairly
407 * pessimal value. It's a tradeoff between extra memory fetches (if we
408 * set this value too high, the FIFO will fetch frequently to stay full)
409 * and power consumption (set it too low to save power and we might see
410 * FIFO underruns and display "flicker").
411 *
412 * A value of 5us seems to be a good balance; safe for very low end
413 * platforms but not overly aggressive on lower latency configs.
414 */
415 static const int pessimal_latency_ns = 5000;
416
417 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
418 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
419
420 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
421 {
422 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
425 enum pipe pipe = crtc->pipe;
426 int sprite0_start, sprite1_start;
427
428 switch (pipe) {
429 uint32_t dsparb, dsparb2, dsparb3;
430 case PIPE_A:
431 dsparb = I915_READ(DSPARB);
432 dsparb2 = I915_READ(DSPARB2);
433 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
434 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
435 break;
436 case PIPE_B:
437 dsparb = I915_READ(DSPARB);
438 dsparb2 = I915_READ(DSPARB2);
439 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
440 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
441 break;
442 case PIPE_C:
443 dsparb2 = I915_READ(DSPARB2);
444 dsparb3 = I915_READ(DSPARB3);
445 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
446 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
447 break;
448 default:
449 MISSING_CASE(pipe);
450 return;
451 }
452
453 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
454 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
455 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
456 fifo_state->plane[PLANE_CURSOR] = 63;
457
458 DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
459 pipe_name(pipe),
460 fifo_state->plane[PLANE_PRIMARY],
461 fifo_state->plane[PLANE_SPRITE0],
462 fifo_state->plane[PLANE_SPRITE1],
463 fifo_state->plane[PLANE_CURSOR]);
464 }
465
466 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
467 {
468 uint32_t dsparb = I915_READ(DSPARB);
469 int size;
470
471 size = dsparb & 0x7f;
472 if (plane)
473 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
474
475 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
476 plane ? "B" : "A", size);
477
478 return size;
479 }
480
481 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
482 {
483 uint32_t dsparb = I915_READ(DSPARB);
484 int size;
485
486 size = dsparb & 0x1ff;
487 if (plane)
488 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
489 size >>= 1; /* Convert to cachelines */
490
491 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
492 plane ? "B" : "A", size);
493
494 return size;
495 }
496
497 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
498 {
499 uint32_t dsparb = I915_READ(DSPARB);
500 int size;
501
502 size = dsparb & 0x7f;
503 size >>= 2; /* Convert to cachelines */
504
505 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
506 plane ? "B" : "A",
507 size);
508
509 return size;
510 }
511
512 /* Pineview has different values for various configs */
513 static const struct intel_watermark_params pineview_display_wm = {
514 .fifo_size = PINEVIEW_DISPLAY_FIFO,
515 .max_wm = PINEVIEW_MAX_WM,
516 .default_wm = PINEVIEW_DFT_WM,
517 .guard_size = PINEVIEW_GUARD_WM,
518 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params pineview_display_hplloff_wm = {
521 .fifo_size = PINEVIEW_DISPLAY_FIFO,
522 .max_wm = PINEVIEW_MAX_WM,
523 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
524 .guard_size = PINEVIEW_GUARD_WM,
525 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params pineview_cursor_wm = {
528 .fifo_size = PINEVIEW_CURSOR_FIFO,
529 .max_wm = PINEVIEW_CURSOR_MAX_WM,
530 .default_wm = PINEVIEW_CURSOR_DFT_WM,
531 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
532 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
535 .fifo_size = PINEVIEW_CURSOR_FIFO,
536 .max_wm = PINEVIEW_CURSOR_MAX_WM,
537 .default_wm = PINEVIEW_CURSOR_DFT_WM,
538 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
539 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
540 };
541 static const struct intel_watermark_params g4x_wm_info = {
542 .fifo_size = G4X_FIFO_SIZE,
543 .max_wm = G4X_MAX_WM,
544 .default_wm = G4X_MAX_WM,
545 .guard_size = 2,
546 .cacheline_size = G4X_FIFO_LINE_SIZE,
547 };
548 static const struct intel_watermark_params g4x_cursor_wm_info = {
549 .fifo_size = I965_CURSOR_FIFO,
550 .max_wm = I965_CURSOR_MAX_WM,
551 .default_wm = I965_CURSOR_DFT_WM,
552 .guard_size = 2,
553 .cacheline_size = G4X_FIFO_LINE_SIZE,
554 };
555 static const struct intel_watermark_params i965_cursor_wm_info = {
556 .fifo_size = I965_CURSOR_FIFO,
557 .max_wm = I965_CURSOR_MAX_WM,
558 .default_wm = I965_CURSOR_DFT_WM,
559 .guard_size = 2,
560 .cacheline_size = I915_FIFO_LINE_SIZE,
561 };
562 static const struct intel_watermark_params i945_wm_info = {
563 .fifo_size = I945_FIFO_SIZE,
564 .max_wm = I915_MAX_WM,
565 .default_wm = 1,
566 .guard_size = 2,
567 .cacheline_size = I915_FIFO_LINE_SIZE,
568 };
569 static const struct intel_watermark_params i915_wm_info = {
570 .fifo_size = I915_FIFO_SIZE,
571 .max_wm = I915_MAX_WM,
572 .default_wm = 1,
573 .guard_size = 2,
574 .cacheline_size = I915_FIFO_LINE_SIZE,
575 };
576 static const struct intel_watermark_params i830_a_wm_info = {
577 .fifo_size = I855GM_FIFO_SIZE,
578 .max_wm = I915_MAX_WM,
579 .default_wm = 1,
580 .guard_size = 2,
581 .cacheline_size = I830_FIFO_LINE_SIZE,
582 };
583 static const struct intel_watermark_params i830_bc_wm_info = {
584 .fifo_size = I855GM_FIFO_SIZE,
585 .max_wm = I915_MAX_WM/2,
586 .default_wm = 1,
587 .guard_size = 2,
588 .cacheline_size = I830_FIFO_LINE_SIZE,
589 };
590 static const struct intel_watermark_params i845_wm_info = {
591 .fifo_size = I830_FIFO_SIZE,
592 .max_wm = I915_MAX_WM,
593 .default_wm = 1,
594 .guard_size = 2,
595 .cacheline_size = I830_FIFO_LINE_SIZE,
596 };
597
598 /**
599 * intel_calculate_wm - calculate watermark level
600 * @clock_in_khz: pixel clock
601 * @wm: chip FIFO params
602 * @cpp: bytes per pixel
603 * @latency_ns: memory latency for the platform
604 *
605 * Calculate the watermark level (the level at which the display plane will
606 * start fetching from memory again). Each chip has a different display
607 * FIFO size and allocation, so the caller needs to figure that out and pass
608 * in the correct intel_watermark_params structure.
609 *
610 * As the pixel clock runs, the FIFO will be drained at a rate that depends
611 * on the pixel size. When it reaches the watermark level, it'll start
612 * fetching FIFO line sized based chunks from memory until the FIFO fills
613 * past the watermark point. If the FIFO drains completely, a FIFO underrun
614 * will occur, and a display engine hang could result.
615 */
616 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
617 const struct intel_watermark_params *wm,
618 int fifo_size, int cpp,
619 unsigned long latency_ns)
620 {
621 long entries_required, wm_size;
622
623 /*
624 * Note: we need to make sure we don't overflow for various clock &
625 * latency values.
626 * clocks go from a few thousand to several hundred thousand.
627 * latency is usually a few thousand
628 */
629 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
630 1000;
631 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
632
633 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
634
635 wm_size = fifo_size - (entries_required + wm->guard_size);
636
637 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
638
639 /* Don't promote wm_size to unsigned... */
640 if (wm_size > (long)wm->max_wm)
641 wm_size = wm->max_wm;
642 if (wm_size <= 0)
643 wm_size = wm->default_wm;
644
645 /*
646 * Bspec seems to indicate that the value shouldn't be lower than
647 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
648 * Lets go for 8 which is the burst size since certain platforms
649 * already use a hardcoded 8 (which is what the spec says should be
650 * done).
651 */
652 if (wm_size <= 8)
653 wm_size = 8;
654
655 return wm_size;
656 }
657
658 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
659 const struct intel_plane_state *plane_state)
660 {
661 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
662
663 /* FIXME check the 'enable' instead */
664 if (!crtc_state->base.active)
665 return false;
666
667 /*
668 * Treat cursor with fb as always visible since cursor updates
669 * can happen faster than the vrefresh rate, and the current
670 * watermark code doesn't handle that correctly. Cursor updates
671 * which set/clear the fb or change the cursor size are going
672 * to get throttled by intel_legacy_cursor_update() to work
673 * around this problem with the watermark code.
674 */
675 if (plane->id == PLANE_CURSOR)
676 return plane_state->base.fb != NULL;
677 else
678 return plane_state->base.visible;
679 }
680
681 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
682 {
683 struct intel_crtc *crtc, *enabled = NULL;
684
685 for_each_intel_crtc(&dev_priv->drm, crtc) {
686 if (intel_crtc_active(crtc)) {
687 if (enabled)
688 return NULL;
689 enabled = crtc;
690 }
691 }
692
693 return enabled;
694 }
695
696 static void pineview_update_wm(struct intel_crtc *unused_crtc)
697 {
698 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
699 struct intel_crtc *crtc;
700 const struct cxsr_latency *latency;
701 u32 reg;
702 unsigned long wm;
703
704 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
705 dev_priv->is_ddr3,
706 dev_priv->fsb_freq,
707 dev_priv->mem_freq);
708 if (!latency) {
709 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
710 intel_set_memory_cxsr(dev_priv, false);
711 return;
712 }
713
714 crtc = single_enabled_crtc(dev_priv);
715 if (crtc) {
716 const struct drm_display_mode *adjusted_mode =
717 &crtc->config->base.adjusted_mode;
718 const struct drm_framebuffer *fb =
719 crtc->base.primary->state->fb;
720 int cpp = fb->format->cpp[0];
721 int clock = adjusted_mode->crtc_clock;
722
723 /* Display SR */
724 wm = intel_calculate_wm(clock, &pineview_display_wm,
725 pineview_display_wm.fifo_size,
726 cpp, latency->display_sr);
727 reg = I915_READ(DSPFW1);
728 reg &= ~DSPFW_SR_MASK;
729 reg |= FW_WM(wm, SR);
730 I915_WRITE(DSPFW1, reg);
731 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
732
733 /* cursor SR */
734 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
735 pineview_display_wm.fifo_size,
736 cpp, latency->cursor_sr);
737 reg = I915_READ(DSPFW3);
738 reg &= ~DSPFW_CURSOR_SR_MASK;
739 reg |= FW_WM(wm, CURSOR_SR);
740 I915_WRITE(DSPFW3, reg);
741
742 /* Display HPLL off SR */
743 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
744 pineview_display_hplloff_wm.fifo_size,
745 cpp, latency->display_hpll_disable);
746 reg = I915_READ(DSPFW3);
747 reg &= ~DSPFW_HPLL_SR_MASK;
748 reg |= FW_WM(wm, HPLL_SR);
749 I915_WRITE(DSPFW3, reg);
750
751 /* cursor HPLL off SR */
752 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
753 pineview_display_hplloff_wm.fifo_size,
754 cpp, latency->cursor_hpll_disable);
755 reg = I915_READ(DSPFW3);
756 reg &= ~DSPFW_HPLL_CURSOR_MASK;
757 reg |= FW_WM(wm, HPLL_CURSOR);
758 I915_WRITE(DSPFW3, reg);
759 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
760
761 intel_set_memory_cxsr(dev_priv, true);
762 } else {
763 intel_set_memory_cxsr(dev_priv, false);
764 }
765 }
766
767 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
768 int plane,
769 const struct intel_watermark_params *display,
770 int display_latency_ns,
771 const struct intel_watermark_params *cursor,
772 int cursor_latency_ns,
773 int *plane_wm,
774 int *cursor_wm)
775 {
776 struct intel_crtc *crtc;
777 const struct drm_display_mode *adjusted_mode;
778 const struct drm_framebuffer *fb;
779 int htotal, hdisplay, clock, cpp;
780 int line_time_us, line_count;
781 int entries, tlb_miss;
782
783 crtc = intel_get_crtc_for_plane(dev_priv, plane);
784 if (!intel_crtc_active(crtc)) {
785 *cursor_wm = cursor->guard_size;
786 *plane_wm = display->guard_size;
787 return false;
788 }
789
790 adjusted_mode = &crtc->config->base.adjusted_mode;
791 fb = crtc->base.primary->state->fb;
792 clock = adjusted_mode->crtc_clock;
793 htotal = adjusted_mode->crtc_htotal;
794 hdisplay = crtc->config->pipe_src_w;
795 cpp = fb->format->cpp[0];
796
797 /* Use the small buffer method to calculate plane watermark */
798 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
799 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
800 if (tlb_miss > 0)
801 entries += tlb_miss;
802 entries = DIV_ROUND_UP(entries, display->cacheline_size);
803 *plane_wm = entries + display->guard_size;
804 if (*plane_wm > (int)display->max_wm)
805 *plane_wm = display->max_wm;
806
807 /* Use the large buffer method to calculate cursor watermark */
808 line_time_us = max(htotal * 1000 / clock, 1);
809 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
810 entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
811 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
812 if (tlb_miss > 0)
813 entries += tlb_miss;
814 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
815 *cursor_wm = entries + cursor->guard_size;
816 if (*cursor_wm > (int)cursor->max_wm)
817 *cursor_wm = (int)cursor->max_wm;
818
819 return true;
820 }
821
822 /*
823 * Check the wm result.
824 *
825 * If any calculated watermark values is larger than the maximum value that
826 * can be programmed into the associated watermark register, that watermark
827 * must be disabled.
828 */
829 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
830 int display_wm, int cursor_wm,
831 const struct intel_watermark_params *display,
832 const struct intel_watermark_params *cursor)
833 {
834 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
835 display_wm, cursor_wm);
836
837 if (display_wm > display->max_wm) {
838 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
839 display_wm, display->max_wm);
840 return false;
841 }
842
843 if (cursor_wm > cursor->max_wm) {
844 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
845 cursor_wm, cursor->max_wm);
846 return false;
847 }
848
849 if (!(display_wm || cursor_wm)) {
850 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
851 return false;
852 }
853
854 return true;
855 }
856
857 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
858 int plane,
859 int latency_ns,
860 const struct intel_watermark_params *display,
861 const struct intel_watermark_params *cursor,
862 int *display_wm, int *cursor_wm)
863 {
864 struct intel_crtc *crtc;
865 const struct drm_display_mode *adjusted_mode;
866 const struct drm_framebuffer *fb;
867 int hdisplay, htotal, cpp, clock;
868 unsigned long line_time_us;
869 int line_count, line_size;
870 int small, large;
871 int entries;
872
873 if (!latency_ns) {
874 *display_wm = *cursor_wm = 0;
875 return false;
876 }
877
878 crtc = intel_get_crtc_for_plane(dev_priv, plane);
879 adjusted_mode = &crtc->config->base.adjusted_mode;
880 fb = crtc->base.primary->state->fb;
881 clock = adjusted_mode->crtc_clock;
882 htotal = adjusted_mode->crtc_htotal;
883 hdisplay = crtc->config->pipe_src_w;
884 cpp = fb->format->cpp[0];
885
886 line_time_us = max(htotal * 1000 / clock, 1);
887 line_count = (latency_ns / line_time_us + 1000) / 1000;
888 line_size = hdisplay * cpp;
889
890 /* Use the minimum of the small and large buffer method for primary */
891 small = ((clock * cpp / 1000) * latency_ns) / 1000;
892 large = line_count * line_size;
893
894 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
895 *display_wm = entries + display->guard_size;
896
897 /* calculate the self-refresh watermark for display cursor */
898 entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
899 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
900 *cursor_wm = entries + cursor->guard_size;
901
902 return g4x_check_srwm(dev_priv,
903 *display_wm, *cursor_wm,
904 display, cursor);
905 }
906
907 #define FW_WM_VLV(value, plane) \
908 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
909
910 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
911 const struct vlv_wm_values *wm)
912 {
913 enum pipe pipe;
914
915 for_each_pipe(dev_priv, pipe) {
916 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
917
918 I915_WRITE(VLV_DDL(pipe),
919 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
920 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
921 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
922 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
923 }
924
925 /*
926 * Zero the (unused) WM1 watermarks, and also clear all the
927 * high order bits so that there are no out of bounds values
928 * present in the registers during the reprogramming.
929 */
930 I915_WRITE(DSPHOWM, 0);
931 I915_WRITE(DSPHOWM1, 0);
932 I915_WRITE(DSPFW4, 0);
933 I915_WRITE(DSPFW5, 0);
934 I915_WRITE(DSPFW6, 0);
935
936 I915_WRITE(DSPFW1,
937 FW_WM(wm->sr.plane, SR) |
938 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
939 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
940 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
941 I915_WRITE(DSPFW2,
942 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
943 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
944 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
945 I915_WRITE(DSPFW3,
946 FW_WM(wm->sr.cursor, CURSOR_SR));
947
948 if (IS_CHERRYVIEW(dev_priv)) {
949 I915_WRITE(DSPFW7_CHV,
950 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
951 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
952 I915_WRITE(DSPFW8_CHV,
953 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
954 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
955 I915_WRITE(DSPFW9_CHV,
956 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
957 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
958 I915_WRITE(DSPHOWM,
959 FW_WM(wm->sr.plane >> 9, SR_HI) |
960 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
961 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
962 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
963 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
964 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
965 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
966 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
967 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
968 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
969 } else {
970 I915_WRITE(DSPFW7,
971 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
972 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
973 I915_WRITE(DSPHOWM,
974 FW_WM(wm->sr.plane >> 9, SR_HI) |
975 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
976 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
977 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
978 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
979 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
980 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
981 }
982
983 POSTING_READ(DSPFW1);
984 }
985
986 #undef FW_WM_VLV
987
988 /* latency must be in 0.1us units. */
989 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
990 unsigned int pipe_htotal,
991 unsigned int horiz_pixels,
992 unsigned int cpp,
993 unsigned int latency)
994 {
995 unsigned int ret;
996
997 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
998 ret = (ret + 1) * horiz_pixels * cpp;
999 ret = DIV_ROUND_UP(ret, 64);
1000
1001 return ret;
1002 }
1003
1004 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1005 {
1006 /* all latencies in usec */
1007 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1008
1009 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1010
1011 if (IS_CHERRYVIEW(dev_priv)) {
1012 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1013 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1014
1015 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1016 }
1017 }
1018
1019 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1020 const struct intel_plane_state *plane_state,
1021 int level)
1022 {
1023 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1024 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1025 const struct drm_display_mode *adjusted_mode =
1026 &crtc_state->base.adjusted_mode;
1027 int clock, htotal, cpp, width, wm;
1028
1029 if (dev_priv->wm.pri_latency[level] == 0)
1030 return USHRT_MAX;
1031
1032 if (!plane_state->base.visible)
1033 return 0;
1034
1035 cpp = plane_state->base.fb->format->cpp[0];
1036 clock = adjusted_mode->crtc_clock;
1037 htotal = adjusted_mode->crtc_htotal;
1038 width = crtc_state->pipe_src_w;
1039 if (WARN_ON(htotal == 0))
1040 htotal = 1;
1041
1042 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1043 /*
1044 * FIXME the formula gives values that are
1045 * too big for the cursor FIFO, and hence we
1046 * would never be able to use cursors. For
1047 * now just hardcode the watermark.
1048 */
1049 wm = 63;
1050 } else {
1051 wm = vlv_wm_method2(clock, htotal, width, cpp,
1052 dev_priv->wm.pri_latency[level] * 10);
1053 }
1054
1055 return min_t(int, wm, USHRT_MAX);
1056 }
1057
1058 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1059 {
1060 return (active_planes & (BIT(PLANE_SPRITE0) |
1061 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1062 }
1063
1064 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1065 {
1066 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1067 const struct vlv_pipe_wm *raw =
1068 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1069 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1070 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1071 int num_active_planes = hweight32(active_planes);
1072 const int fifo_size = 511;
1073 int fifo_extra, fifo_left = fifo_size;
1074 int sprite0_fifo_extra = 0;
1075 unsigned int total_rate;
1076 enum plane_id plane_id;
1077
1078 /*
1079 * When enabling sprite0 after sprite1 has already been enabled
1080 * we tend to get an underrun unless sprite0 already has some
1081 * FIFO space allcoated. Hence we always allocate at least one
1082 * cacheline for sprite0 whenever sprite1 is enabled.
1083 *
1084 * All other plane enable sequences appear immune to this problem.
1085 */
1086 if (vlv_need_sprite0_fifo_workaround(active_planes))
1087 sprite0_fifo_extra = 1;
1088
1089 total_rate = raw->plane[PLANE_PRIMARY] +
1090 raw->plane[PLANE_SPRITE0] +
1091 raw->plane[PLANE_SPRITE1] +
1092 sprite0_fifo_extra;
1093
1094 if (total_rate > fifo_size)
1095 return -EINVAL;
1096
1097 if (total_rate == 0)
1098 total_rate = 1;
1099
1100 for_each_plane_id_on_crtc(crtc, plane_id) {
1101 unsigned int rate;
1102
1103 if ((active_planes & BIT(plane_id)) == 0) {
1104 fifo_state->plane[plane_id] = 0;
1105 continue;
1106 }
1107
1108 rate = raw->plane[plane_id];
1109 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1110 fifo_left -= fifo_state->plane[plane_id];
1111 }
1112
1113 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1114 fifo_left -= sprite0_fifo_extra;
1115
1116 fifo_state->plane[PLANE_CURSOR] = 63;
1117
1118 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1119
1120 /* spread the remainder evenly */
1121 for_each_plane_id_on_crtc(crtc, plane_id) {
1122 int plane_extra;
1123
1124 if (fifo_left == 0)
1125 break;
1126
1127 if ((active_planes & BIT(plane_id)) == 0)
1128 continue;
1129
1130 plane_extra = min(fifo_extra, fifo_left);
1131 fifo_state->plane[plane_id] += plane_extra;
1132 fifo_left -= plane_extra;
1133 }
1134
1135 WARN_ON(active_planes != 0 && fifo_left != 0);
1136
1137 /* give it all to the first plane if none are active */
1138 if (active_planes == 0) {
1139 WARN_ON(fifo_left != fifo_size);
1140 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1141 }
1142
1143 return 0;
1144 }
1145
1146 static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
1147 {
1148 return dev_priv->wm.max_level + 1;
1149 }
1150
1151 /* mark all levels starting from 'level' as invalid */
1152 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1153 struct vlv_wm_state *wm_state, int level)
1154 {
1155 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1156
1157 for (; level < vlv_num_wm_levels(dev_priv); level++) {
1158 enum plane_id plane_id;
1159
1160 for_each_plane_id_on_crtc(crtc, plane_id)
1161 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1162
1163 wm_state->sr[level].cursor = USHRT_MAX;
1164 wm_state->sr[level].plane = USHRT_MAX;
1165 }
1166 }
1167
1168 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1169 {
1170 if (wm > fifo_size)
1171 return USHRT_MAX;
1172 else
1173 return fifo_size - wm;
1174 }
1175
1176 /*
1177 * Starting from 'level' set all higher
1178 * levels to 'value' in the "raw" watermarks.
1179 */
1180 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1181 int level, enum plane_id plane_id, u16 value)
1182 {
1183 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1184 int num_levels = vlv_num_wm_levels(dev_priv);
1185 bool dirty = false;
1186
1187 for (; level < num_levels; level++) {
1188 struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1189
1190 dirty |= raw->plane[plane_id] != value;
1191 raw->plane[plane_id] = value;
1192 }
1193
1194 return dirty;
1195 }
1196
1197 static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1198 const struct intel_plane_state *plane_state)
1199 {
1200 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1201 enum plane_id plane_id = plane->id;
1202 int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1203 int level;
1204 bool dirty = false;
1205
1206 if (!plane_state->base.visible) {
1207 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1208 goto out;
1209 }
1210
1211 for (level = 0; level < num_levels; level++) {
1212 struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1213 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1214 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1215
1216 if (wm > max_wm)
1217 break;
1218
1219 dirty |= raw->plane[plane_id] != wm;
1220 raw->plane[plane_id] = wm;
1221 }
1222
1223 /* mark all higher levels as invalid */
1224 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1225
1226 out:
1227 if (dirty)
1228 DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
1229 plane->base.name,
1230 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1231 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1232 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1233
1234 return dirty;
1235 }
1236
1237 static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1238 enum plane_id plane_id, int level)
1239 {
1240 const struct vlv_pipe_wm *raw =
1241 &crtc_state->wm.vlv.raw[level];
1242 const struct vlv_fifo_state *fifo_state =
1243 &crtc_state->wm.vlv.fifo_state;
1244
1245 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1246 }
1247
1248 static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1249 {
1250 return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1251 vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1252 vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1253 vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1254 }
1255
1256 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1257 {
1258 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1259 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1260 struct intel_atomic_state *state =
1261 to_intel_atomic_state(crtc_state->base.state);
1262 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1263 const struct vlv_fifo_state *fifo_state =
1264 &crtc_state->wm.vlv.fifo_state;
1265 int num_active_planes = hweight32(crtc_state->active_planes &
1266 ~BIT(PLANE_CURSOR));
1267 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1268 struct intel_plane_state *plane_state;
1269 struct intel_plane *plane;
1270 enum plane_id plane_id;
1271 int level, ret, i;
1272 unsigned int dirty = 0;
1273
1274 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1275 const struct intel_plane_state *old_plane_state =
1276 to_intel_plane_state(plane->base.state);
1277
1278 if (plane_state->base.crtc != &crtc->base &&
1279 old_plane_state->base.crtc != &crtc->base)
1280 continue;
1281
1282 if (vlv_plane_wm_compute(crtc_state, plane_state))
1283 dirty |= BIT(plane->id);
1284 }
1285
1286 /*
1287 * DSPARB registers may have been reset due to the
1288 * power well being turned off. Make sure we restore
1289 * them to a consistent state even if no primary/sprite
1290 * planes are initially active.
1291 */
1292 if (needs_modeset)
1293 crtc_state->fifo_changed = true;
1294
1295 if (!dirty)
1296 return 0;
1297
1298 /* cursor changes don't warrant a FIFO recompute */
1299 if (dirty & ~BIT(PLANE_CURSOR)) {
1300 const struct intel_crtc_state *old_crtc_state =
1301 to_intel_crtc_state(crtc->base.state);
1302 const struct vlv_fifo_state *old_fifo_state =
1303 &old_crtc_state->wm.vlv.fifo_state;
1304
1305 ret = vlv_compute_fifo(crtc_state);
1306 if (ret)
1307 return ret;
1308
1309 if (needs_modeset ||
1310 memcmp(old_fifo_state, fifo_state,
1311 sizeof(*fifo_state)) != 0)
1312 crtc_state->fifo_changed = true;
1313 }
1314
1315 /* initially allow all levels */
1316 wm_state->num_levels = vlv_num_wm_levels(dev_priv);
1317 /*
1318 * Note that enabling cxsr with no primary/sprite planes
1319 * enabled can wedge the pipe. Hence we only allow cxsr
1320 * with exactly one enabled primary/sprite plane.
1321 */
1322 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1323
1324 for (level = 0; level < wm_state->num_levels; level++) {
1325 const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1326 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1327
1328 if (!vlv_crtc_wm_is_valid(crtc_state, level))
1329 break;
1330
1331 for_each_plane_id_on_crtc(crtc, plane_id) {
1332 wm_state->wm[level].plane[plane_id] =
1333 vlv_invert_wm_value(raw->plane[plane_id],
1334 fifo_state->plane[plane_id]);
1335 }
1336
1337 wm_state->sr[level].plane =
1338 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1339 raw->plane[PLANE_SPRITE0],
1340 raw->plane[PLANE_SPRITE1]),
1341 sr_fifo_size);
1342
1343 wm_state->sr[level].cursor =
1344 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1345 63);
1346 }
1347
1348 if (level == 0)
1349 return -EINVAL;
1350
1351 /* limit to only levels we can actually handle */
1352 wm_state->num_levels = level;
1353
1354 /* invalidate the higher levels */
1355 vlv_invalidate_wms(crtc, wm_state, level);
1356
1357 return 0;
1358 }
1359
1360 #define VLV_FIFO(plane, value) \
1361 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1362
1363 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1364 struct intel_crtc_state *crtc_state)
1365 {
1366 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1367 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1368 const struct vlv_fifo_state *fifo_state =
1369 &crtc_state->wm.vlv.fifo_state;
1370 int sprite0_start, sprite1_start, fifo_size;
1371
1372 if (!crtc_state->fifo_changed)
1373 return;
1374
1375 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1376 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1377 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1378
1379 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1380 WARN_ON(fifo_size != 511);
1381
1382 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1383
1384 /*
1385 * uncore.lock serves a double purpose here. It allows us to
1386 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1387 * it protects the DSPARB registers from getting clobbered by
1388 * parallel updates from multiple pipes.
1389 *
1390 * intel_pipe_update_start() has already disabled interrupts
1391 * for us, so a plain spin_lock() is sufficient here.
1392 */
1393 spin_lock(&dev_priv->uncore.lock);
1394
1395 switch (crtc->pipe) {
1396 uint32_t dsparb, dsparb2, dsparb3;
1397 case PIPE_A:
1398 dsparb = I915_READ_FW(DSPARB);
1399 dsparb2 = I915_READ_FW(DSPARB2);
1400
1401 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1402 VLV_FIFO(SPRITEB, 0xff));
1403 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1404 VLV_FIFO(SPRITEB, sprite1_start));
1405
1406 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1407 VLV_FIFO(SPRITEB_HI, 0x1));
1408 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1409 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1410
1411 I915_WRITE_FW(DSPARB, dsparb);
1412 I915_WRITE_FW(DSPARB2, dsparb2);
1413 break;
1414 case PIPE_B:
1415 dsparb = I915_READ_FW(DSPARB);
1416 dsparb2 = I915_READ_FW(DSPARB2);
1417
1418 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1419 VLV_FIFO(SPRITED, 0xff));
1420 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1421 VLV_FIFO(SPRITED, sprite1_start));
1422
1423 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1424 VLV_FIFO(SPRITED_HI, 0xff));
1425 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1426 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1427
1428 I915_WRITE_FW(DSPARB, dsparb);
1429 I915_WRITE_FW(DSPARB2, dsparb2);
1430 break;
1431 case PIPE_C:
1432 dsparb3 = I915_READ_FW(DSPARB3);
1433 dsparb2 = I915_READ_FW(DSPARB2);
1434
1435 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1436 VLV_FIFO(SPRITEF, 0xff));
1437 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1438 VLV_FIFO(SPRITEF, sprite1_start));
1439
1440 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1441 VLV_FIFO(SPRITEF_HI, 0xff));
1442 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1443 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1444
1445 I915_WRITE_FW(DSPARB3, dsparb3);
1446 I915_WRITE_FW(DSPARB2, dsparb2);
1447 break;
1448 default:
1449 break;
1450 }
1451
1452 POSTING_READ_FW(DSPARB);
1453
1454 spin_unlock(&dev_priv->uncore.lock);
1455 }
1456
1457 #undef VLV_FIFO
1458
1459 static int vlv_compute_intermediate_wm(struct drm_device *dev,
1460 struct intel_crtc *crtc,
1461 struct intel_crtc_state *crtc_state)
1462 {
1463 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
1464 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
1465 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
1466 int level;
1467
1468 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1469 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1470 !crtc_state->disable_cxsr;
1471
1472 for (level = 0; level < intermediate->num_levels; level++) {
1473 enum plane_id plane_id;
1474
1475 for_each_plane_id_on_crtc(crtc, plane_id) {
1476 intermediate->wm[level].plane[plane_id] =
1477 min(optimal->wm[level].plane[plane_id],
1478 active->wm[level].plane[plane_id]);
1479 }
1480
1481 intermediate->sr[level].plane = min(optimal->sr[level].plane,
1482 active->sr[level].plane);
1483 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1484 active->sr[level].cursor);
1485 }
1486
1487 vlv_invalidate_wms(crtc, intermediate, level);
1488
1489 /*
1490 * If our intermediate WM are identical to the final WM, then we can
1491 * omit the post-vblank programming; only update if it's different.
1492 */
1493 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1494 crtc_state->wm.need_postvbl_update = true;
1495
1496 return 0;
1497 }
1498
1499 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1500 struct vlv_wm_values *wm)
1501 {
1502 struct intel_crtc *crtc;
1503 int num_active_crtcs = 0;
1504
1505 wm->level = dev_priv->wm.max_level;
1506 wm->cxsr = true;
1507
1508 for_each_intel_crtc(&dev_priv->drm, crtc) {
1509 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1510
1511 if (!crtc->active)
1512 continue;
1513
1514 if (!wm_state->cxsr)
1515 wm->cxsr = false;
1516
1517 num_active_crtcs++;
1518 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1519 }
1520
1521 if (num_active_crtcs != 1)
1522 wm->cxsr = false;
1523
1524 if (num_active_crtcs > 1)
1525 wm->level = VLV_WM_LEVEL_PM2;
1526
1527 for_each_intel_crtc(&dev_priv->drm, crtc) {
1528 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1529 enum pipe pipe = crtc->pipe;
1530
1531 wm->pipe[pipe] = wm_state->wm[wm->level];
1532 if (crtc->active && wm->cxsr)
1533 wm->sr = wm_state->sr[wm->level];
1534
1535 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1536 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1537 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1538 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1539 }
1540 }
1541
1542 static bool is_disabling(int old, int new, int threshold)
1543 {
1544 return old >= threshold && new < threshold;
1545 }
1546
1547 static bool is_enabling(int old, int new, int threshold)
1548 {
1549 return old < threshold && new >= threshold;
1550 }
1551
1552 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1553 {
1554 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
1555 struct vlv_wm_values new_wm = {};
1556
1557 vlv_merge_wm(dev_priv, &new_wm);
1558
1559 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1560 return;
1561
1562 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1563 chv_set_memory_dvfs(dev_priv, false);
1564
1565 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1566 chv_set_memory_pm5(dev_priv, false);
1567
1568 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1569 _intel_set_memory_cxsr(dev_priv, false);
1570
1571 vlv_write_wm_values(dev_priv, &new_wm);
1572
1573 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1574 _intel_set_memory_cxsr(dev_priv, true);
1575
1576 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1577 chv_set_memory_pm5(dev_priv, true);
1578
1579 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1580 chv_set_memory_dvfs(dev_priv, true);
1581
1582 *old_wm = new_wm;
1583 }
1584
1585 static void vlv_initial_watermarks(struct intel_atomic_state *state,
1586 struct intel_crtc_state *crtc_state)
1587 {
1588 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1589 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1590
1591 mutex_lock(&dev_priv->wm.wm_mutex);
1592 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
1593 vlv_program_watermarks(dev_priv);
1594 mutex_unlock(&dev_priv->wm.wm_mutex);
1595 }
1596
1597 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
1598 struct intel_crtc_state *crtc_state)
1599 {
1600 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1602
1603 if (!crtc_state->wm.need_postvbl_update)
1604 return;
1605
1606 mutex_lock(&dev_priv->wm.wm_mutex);
1607 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1608 vlv_program_watermarks(dev_priv);
1609 mutex_unlock(&dev_priv->wm.wm_mutex);
1610 }
1611
1612 #define single_plane_enabled(mask) is_power_of_2(mask)
1613
1614 static void g4x_update_wm(struct intel_crtc *crtc)
1615 {
1616 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1617 static const int sr_latency_ns = 12000;
1618 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1619 int plane_sr, cursor_sr;
1620 unsigned int enabled = 0;
1621 bool cxsr_enabled;
1622
1623 if (g4x_compute_wm0(dev_priv, PIPE_A,
1624 &g4x_wm_info, pessimal_latency_ns,
1625 &g4x_cursor_wm_info, pessimal_latency_ns,
1626 &planea_wm, &cursora_wm))
1627 enabled |= 1 << PIPE_A;
1628
1629 if (g4x_compute_wm0(dev_priv, PIPE_B,
1630 &g4x_wm_info, pessimal_latency_ns,
1631 &g4x_cursor_wm_info, pessimal_latency_ns,
1632 &planeb_wm, &cursorb_wm))
1633 enabled |= 1 << PIPE_B;
1634
1635 if (single_plane_enabled(enabled) &&
1636 g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1637 sr_latency_ns,
1638 &g4x_wm_info,
1639 &g4x_cursor_wm_info,
1640 &plane_sr, &cursor_sr)) {
1641 cxsr_enabled = true;
1642 } else {
1643 cxsr_enabled = false;
1644 intel_set_memory_cxsr(dev_priv, false);
1645 plane_sr = cursor_sr = 0;
1646 }
1647
1648 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1649 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1650 planea_wm, cursora_wm,
1651 planeb_wm, cursorb_wm,
1652 plane_sr, cursor_sr);
1653
1654 I915_WRITE(DSPFW1,
1655 FW_WM(plane_sr, SR) |
1656 FW_WM(cursorb_wm, CURSORB) |
1657 FW_WM(planeb_wm, PLANEB) |
1658 FW_WM(planea_wm, PLANEA));
1659 I915_WRITE(DSPFW2,
1660 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1661 FW_WM(cursora_wm, CURSORA));
1662 /* HPLL off in SR has some issues on G4x... disable it */
1663 I915_WRITE(DSPFW3,
1664 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1665 FW_WM(cursor_sr, CURSOR_SR));
1666
1667 if (cxsr_enabled)
1668 intel_set_memory_cxsr(dev_priv, true);
1669 }
1670
1671 static void i965_update_wm(struct intel_crtc *unused_crtc)
1672 {
1673 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1674 struct intel_crtc *crtc;
1675 int srwm = 1;
1676 int cursor_sr = 16;
1677 bool cxsr_enabled;
1678
1679 /* Calc sr entries for one plane configs */
1680 crtc = single_enabled_crtc(dev_priv);
1681 if (crtc) {
1682 /* self-refresh has much higher latency */
1683 static const int sr_latency_ns = 12000;
1684 const struct drm_display_mode *adjusted_mode =
1685 &crtc->config->base.adjusted_mode;
1686 const struct drm_framebuffer *fb =
1687 crtc->base.primary->state->fb;
1688 int clock = adjusted_mode->crtc_clock;
1689 int htotal = adjusted_mode->crtc_htotal;
1690 int hdisplay = crtc->config->pipe_src_w;
1691 int cpp = fb->format->cpp[0];
1692 unsigned long line_time_us;
1693 int entries;
1694
1695 line_time_us = max(htotal * 1000 / clock, 1);
1696
1697 /* Use ns/us then divide to preserve precision */
1698 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1699 cpp * hdisplay;
1700 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1701 srwm = I965_FIFO_SIZE - entries;
1702 if (srwm < 0)
1703 srwm = 1;
1704 srwm &= 0x1ff;
1705 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1706 entries, srwm);
1707
1708 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1709 cpp * crtc->base.cursor->state->crtc_w;
1710 entries = DIV_ROUND_UP(entries,
1711 i965_cursor_wm_info.cacheline_size);
1712 cursor_sr = i965_cursor_wm_info.fifo_size -
1713 (entries + i965_cursor_wm_info.guard_size);
1714
1715 if (cursor_sr > i965_cursor_wm_info.max_wm)
1716 cursor_sr = i965_cursor_wm_info.max_wm;
1717
1718 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1719 "cursor %d\n", srwm, cursor_sr);
1720
1721 cxsr_enabled = true;
1722 } else {
1723 cxsr_enabled = false;
1724 /* Turn off self refresh if both pipes are enabled */
1725 intel_set_memory_cxsr(dev_priv, false);
1726 }
1727
1728 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1729 srwm);
1730
1731 /* 965 has limitations... */
1732 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1733 FW_WM(8, CURSORB) |
1734 FW_WM(8, PLANEB) |
1735 FW_WM(8, PLANEA));
1736 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1737 FW_WM(8, PLANEC_OLD));
1738 /* update cursor SR watermark */
1739 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1740
1741 if (cxsr_enabled)
1742 intel_set_memory_cxsr(dev_priv, true);
1743 }
1744
1745 #undef FW_WM
1746
1747 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1748 {
1749 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1750 const struct intel_watermark_params *wm_info;
1751 uint32_t fwater_lo;
1752 uint32_t fwater_hi;
1753 int cwm, srwm = 1;
1754 int fifo_size;
1755 int planea_wm, planeb_wm;
1756 struct intel_crtc *crtc, *enabled = NULL;
1757
1758 if (IS_I945GM(dev_priv))
1759 wm_info = &i945_wm_info;
1760 else if (!IS_GEN2(dev_priv))
1761 wm_info = &i915_wm_info;
1762 else
1763 wm_info = &i830_a_wm_info;
1764
1765 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1766 crtc = intel_get_crtc_for_plane(dev_priv, 0);
1767 if (intel_crtc_active(crtc)) {
1768 const struct drm_display_mode *adjusted_mode =
1769 &crtc->config->base.adjusted_mode;
1770 const struct drm_framebuffer *fb =
1771 crtc->base.primary->state->fb;
1772 int cpp;
1773
1774 if (IS_GEN2(dev_priv))
1775 cpp = 4;
1776 else
1777 cpp = fb->format->cpp[0];
1778
1779 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1780 wm_info, fifo_size, cpp,
1781 pessimal_latency_ns);
1782 enabled = crtc;
1783 } else {
1784 planea_wm = fifo_size - wm_info->guard_size;
1785 if (planea_wm > (long)wm_info->max_wm)
1786 planea_wm = wm_info->max_wm;
1787 }
1788
1789 if (IS_GEN2(dev_priv))
1790 wm_info = &i830_bc_wm_info;
1791
1792 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1793 crtc = intel_get_crtc_for_plane(dev_priv, 1);
1794 if (intel_crtc_active(crtc)) {
1795 const struct drm_display_mode *adjusted_mode =
1796 &crtc->config->base.adjusted_mode;
1797 const struct drm_framebuffer *fb =
1798 crtc->base.primary->state->fb;
1799 int cpp;
1800
1801 if (IS_GEN2(dev_priv))
1802 cpp = 4;
1803 else
1804 cpp = fb->format->cpp[0];
1805
1806 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1807 wm_info, fifo_size, cpp,
1808 pessimal_latency_ns);
1809 if (enabled == NULL)
1810 enabled = crtc;
1811 else
1812 enabled = NULL;
1813 } else {
1814 planeb_wm = fifo_size - wm_info->guard_size;
1815 if (planeb_wm > (long)wm_info->max_wm)
1816 planeb_wm = wm_info->max_wm;
1817 }
1818
1819 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1820
1821 if (IS_I915GM(dev_priv) && enabled) {
1822 struct drm_i915_gem_object *obj;
1823
1824 obj = intel_fb_obj(enabled->base.primary->state->fb);
1825
1826 /* self-refresh seems busted with untiled */
1827 if (!i915_gem_object_is_tiled(obj))
1828 enabled = NULL;
1829 }
1830
1831 /*
1832 * Overlay gets an aggressive default since video jitter is bad.
1833 */
1834 cwm = 2;
1835
1836 /* Play safe and disable self-refresh before adjusting watermarks. */
1837 intel_set_memory_cxsr(dev_priv, false);
1838
1839 /* Calc sr entries for one plane configs */
1840 if (HAS_FW_BLC(dev_priv) && enabled) {
1841 /* self-refresh has much higher latency */
1842 static const int sr_latency_ns = 6000;
1843 const struct drm_display_mode *adjusted_mode =
1844 &enabled->config->base.adjusted_mode;
1845 const struct drm_framebuffer *fb =
1846 enabled->base.primary->state->fb;
1847 int clock = adjusted_mode->crtc_clock;
1848 int htotal = adjusted_mode->crtc_htotal;
1849 int hdisplay = enabled->config->pipe_src_w;
1850 int cpp;
1851 unsigned long line_time_us;
1852 int entries;
1853
1854 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1855 cpp = 4;
1856 else
1857 cpp = fb->format->cpp[0];
1858
1859 line_time_us = max(htotal * 1000 / clock, 1);
1860
1861 /* Use ns/us then divide to preserve precision */
1862 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1863 cpp * hdisplay;
1864 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1865 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1866 srwm = wm_info->fifo_size - entries;
1867 if (srwm < 0)
1868 srwm = 1;
1869
1870 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1871 I915_WRITE(FW_BLC_SELF,
1872 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1873 else
1874 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1875 }
1876
1877 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1878 planea_wm, planeb_wm, cwm, srwm);
1879
1880 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1881 fwater_hi = (cwm & 0x1f);
1882
1883 /* Set request length to 8 cachelines per fetch */
1884 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1885 fwater_hi = fwater_hi | (1 << 8);
1886
1887 I915_WRITE(FW_BLC, fwater_lo);
1888 I915_WRITE(FW_BLC2, fwater_hi);
1889
1890 if (enabled)
1891 intel_set_memory_cxsr(dev_priv, true);
1892 }
1893
1894 static void i845_update_wm(struct intel_crtc *unused_crtc)
1895 {
1896 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1897 struct intel_crtc *crtc;
1898 const struct drm_display_mode *adjusted_mode;
1899 uint32_t fwater_lo;
1900 int planea_wm;
1901
1902 crtc = single_enabled_crtc(dev_priv);
1903 if (crtc == NULL)
1904 return;
1905
1906 adjusted_mode = &crtc->config->base.adjusted_mode;
1907 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1908 &i845_wm_info,
1909 dev_priv->display.get_fifo_size(dev_priv, 0),
1910 4, pessimal_latency_ns);
1911 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1912 fwater_lo |= (3<<8) | planea_wm;
1913
1914 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1915
1916 I915_WRITE(FW_BLC, fwater_lo);
1917 }
1918
1919 /* latency must be in 0.1us units. */
1920 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1921 {
1922 uint64_t ret;
1923
1924 if (WARN(latency == 0, "Latency value missing\n"))
1925 return UINT_MAX;
1926
1927 ret = (uint64_t) pixel_rate * cpp * latency;
1928 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1929
1930 return ret;
1931 }
1932
1933 /* latency must be in 0.1us units. */
1934 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1935 uint32_t horiz_pixels, uint8_t cpp,
1936 uint32_t latency)
1937 {
1938 uint32_t ret;
1939
1940 if (WARN(latency == 0, "Latency value missing\n"))
1941 return UINT_MAX;
1942 if (WARN_ON(!pipe_htotal))
1943 return UINT_MAX;
1944
1945 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1946 ret = (ret + 1) * horiz_pixels * cpp;
1947 ret = DIV_ROUND_UP(ret, 64) + 2;
1948 return ret;
1949 }
1950
1951 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1952 uint8_t cpp)
1953 {
1954 /*
1955 * Neither of these should be possible since this function shouldn't be
1956 * called if the CRTC is off or the plane is invisible. But let's be
1957 * extra paranoid to avoid a potential divide-by-zero if we screw up
1958 * elsewhere in the driver.
1959 */
1960 if (WARN_ON(!cpp))
1961 return 0;
1962 if (WARN_ON(!horiz_pixels))
1963 return 0;
1964
1965 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1966 }
1967
1968 struct ilk_wm_maximums {
1969 uint16_t pri;
1970 uint16_t spr;
1971 uint16_t cur;
1972 uint16_t fbc;
1973 };
1974
1975 /*
1976 * For both WM_PIPE and WM_LP.
1977 * mem_value must be in 0.1us units.
1978 */
1979 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1980 const struct intel_plane_state *pstate,
1981 uint32_t mem_value,
1982 bool is_lp)
1983 {
1984 uint32_t method1, method2;
1985 int cpp;
1986
1987 if (!intel_wm_plane_visible(cstate, pstate))
1988 return 0;
1989
1990 cpp = pstate->base.fb->format->cpp[0];
1991
1992 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1993
1994 if (!is_lp)
1995 return method1;
1996
1997 method2 = ilk_wm_method2(cstate->pixel_rate,
1998 cstate->base.adjusted_mode.crtc_htotal,
1999 drm_rect_width(&pstate->base.dst),
2000 cpp, mem_value);
2001
2002 return min(method1, method2);
2003 }
2004
2005 /*
2006 * For both WM_PIPE and WM_LP.
2007 * mem_value must be in 0.1us units.
2008 */
2009 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2010 const struct intel_plane_state *pstate,
2011 uint32_t mem_value)
2012 {
2013 uint32_t method1, method2;
2014 int cpp;
2015
2016 if (!intel_wm_plane_visible(cstate, pstate))
2017 return 0;
2018
2019 cpp = pstate->base.fb->format->cpp[0];
2020
2021 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2022 method2 = ilk_wm_method2(cstate->pixel_rate,
2023 cstate->base.adjusted_mode.crtc_htotal,
2024 drm_rect_width(&pstate->base.dst),
2025 cpp, mem_value);
2026 return min(method1, method2);
2027 }
2028
2029 /*
2030 * For both WM_PIPE and WM_LP.
2031 * mem_value must be in 0.1us units.
2032 */
2033 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2034 const struct intel_plane_state *pstate,
2035 uint32_t mem_value)
2036 {
2037 int cpp;
2038
2039 if (!intel_wm_plane_visible(cstate, pstate))
2040 return 0;
2041
2042 cpp = pstate->base.fb->format->cpp[0];
2043
2044 return ilk_wm_method2(cstate->pixel_rate,
2045 cstate->base.adjusted_mode.crtc_htotal,
2046 pstate->base.crtc_w, cpp, mem_value);
2047 }
2048
2049 /* Only for WM_LP. */
2050 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2051 const struct intel_plane_state *pstate,
2052 uint32_t pri_val)
2053 {
2054 int cpp;
2055
2056 if (!intel_wm_plane_visible(cstate, pstate))
2057 return 0;
2058
2059 cpp = pstate->base.fb->format->cpp[0];
2060
2061 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2062 }
2063
2064 static unsigned int
2065 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2066 {
2067 if (INTEL_GEN(dev_priv) >= 8)
2068 return 3072;
2069 else if (INTEL_GEN(dev_priv) >= 7)
2070 return 768;
2071 else
2072 return 512;
2073 }
2074
2075 static unsigned int
2076 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2077 int level, bool is_sprite)
2078 {
2079 if (INTEL_GEN(dev_priv) >= 8)
2080 /* BDW primary/sprite plane watermarks */
2081 return level == 0 ? 255 : 2047;
2082 else if (INTEL_GEN(dev_priv) >= 7)
2083 /* IVB/HSW primary/sprite plane watermarks */
2084 return level == 0 ? 127 : 1023;
2085 else if (!is_sprite)
2086 /* ILK/SNB primary plane watermarks */
2087 return level == 0 ? 127 : 511;
2088 else
2089 /* ILK/SNB sprite plane watermarks */
2090 return level == 0 ? 63 : 255;
2091 }
2092
2093 static unsigned int
2094 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2095 {
2096 if (INTEL_GEN(dev_priv) >= 7)
2097 return level == 0 ? 63 : 255;
2098 else
2099 return level == 0 ? 31 : 63;
2100 }
2101
2102 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2103 {
2104 if (INTEL_GEN(dev_priv) >= 8)
2105 return 31;
2106 else
2107 return 15;
2108 }
2109
2110 /* Calculate the maximum primary/sprite plane watermark */
2111 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2112 int level,
2113 const struct intel_wm_config *config,
2114 enum intel_ddb_partitioning ddb_partitioning,
2115 bool is_sprite)
2116 {
2117 struct drm_i915_private *dev_priv = to_i915(dev);
2118 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2119
2120 /* if sprites aren't enabled, sprites get nothing */
2121 if (is_sprite && !config->sprites_enabled)
2122 return 0;
2123
2124 /* HSW allows LP1+ watermarks even with multiple pipes */
2125 if (level == 0 || config->num_pipes_active > 1) {
2126 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2127
2128 /*
2129 * For some reason the non self refresh
2130 * FIFO size is only half of the self
2131 * refresh FIFO size on ILK/SNB.
2132 */
2133 if (INTEL_GEN(dev_priv) <= 6)
2134 fifo_size /= 2;
2135 }
2136
2137 if (config->sprites_enabled) {
2138 /* level 0 is always calculated with 1:1 split */
2139 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2140 if (is_sprite)
2141 fifo_size *= 5;
2142 fifo_size /= 6;
2143 } else {
2144 fifo_size /= 2;
2145 }
2146 }
2147
2148 /* clamp to max that the registers can hold */
2149 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2150 }
2151
2152 /* Calculate the maximum cursor plane watermark */
2153 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2154 int level,
2155 const struct intel_wm_config *config)
2156 {
2157 /* HSW LP1+ watermarks w/ multiple pipes */
2158 if (level > 0 && config->num_pipes_active > 1)
2159 return 64;
2160
2161 /* otherwise just report max that registers can hold */
2162 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2163 }
2164
2165 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2166 int level,
2167 const struct intel_wm_config *config,
2168 enum intel_ddb_partitioning ddb_partitioning,
2169 struct ilk_wm_maximums *max)
2170 {
2171 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2172 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2173 max->cur = ilk_cursor_wm_max(dev, level, config);
2174 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2175 }
2176
2177 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2178 int level,
2179 struct ilk_wm_maximums *max)
2180 {
2181 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2182 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2183 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2184 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2185 }
2186
2187 static bool ilk_validate_wm_level(int level,
2188 const struct ilk_wm_maximums *max,
2189 struct intel_wm_level *result)
2190 {
2191 bool ret;
2192
2193 /* already determined to be invalid? */
2194 if (!result->enable)
2195 return false;
2196
2197 result->enable = result->pri_val <= max->pri &&
2198 result->spr_val <= max->spr &&
2199 result->cur_val <= max->cur;
2200
2201 ret = result->enable;
2202
2203 /*
2204 * HACK until we can pre-compute everything,
2205 * and thus fail gracefully if LP0 watermarks
2206 * are exceeded...
2207 */
2208 if (level == 0 && !result->enable) {
2209 if (result->pri_val > max->pri)
2210 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2211 level, result->pri_val, max->pri);
2212 if (result->spr_val > max->spr)
2213 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2214 level, result->spr_val, max->spr);
2215 if (result->cur_val > max->cur)
2216 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2217 level, result->cur_val, max->cur);
2218
2219 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2220 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2221 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2222 result->enable = true;
2223 }
2224
2225 return ret;
2226 }
2227
2228 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2229 const struct intel_crtc *intel_crtc,
2230 int level,
2231 struct intel_crtc_state *cstate,
2232 struct intel_plane_state *pristate,
2233 struct intel_plane_state *sprstate,
2234 struct intel_plane_state *curstate,
2235 struct intel_wm_level *result)
2236 {
2237 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2238 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2239 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2240
2241 /* WM1+ latency values stored in 0.5us units */
2242 if (level > 0) {
2243 pri_latency *= 5;
2244 spr_latency *= 5;
2245 cur_latency *= 5;
2246 }
2247
2248 if (pristate) {
2249 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2250 pri_latency, level);
2251 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2252 }
2253
2254 if (sprstate)
2255 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2256
2257 if (curstate)
2258 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2259
2260 result->enable = true;
2261 }
2262
2263 static uint32_t
2264 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2265 {
2266 const struct intel_atomic_state *intel_state =
2267 to_intel_atomic_state(cstate->base.state);
2268 const struct drm_display_mode *adjusted_mode =
2269 &cstate->base.adjusted_mode;
2270 u32 linetime, ips_linetime;
2271
2272 if (!cstate->base.active)
2273 return 0;
2274 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2275 return 0;
2276 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2277 return 0;
2278
2279 /* The WM are computed with base on how long it takes to fill a single
2280 * row at the given clock rate, multiplied by 8.
2281 * */
2282 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2283 adjusted_mode->crtc_clock);
2284 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2285 intel_state->cdclk.logical.cdclk);
2286
2287 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2288 PIPE_WM_LINETIME_TIME(linetime);
2289 }
2290
2291 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2292 uint16_t wm[8])
2293 {
2294 if (IS_GEN9(dev_priv)) {
2295 uint32_t val;
2296 int ret, i;
2297 int level, max_level = ilk_wm_max_level(dev_priv);
2298
2299 /* read the first set of memory latencies[0:3] */
2300 val = 0; /* data0 to be programmed to 0 for first set */
2301 mutex_lock(&dev_priv->rps.hw_lock);
2302 ret = sandybridge_pcode_read(dev_priv,
2303 GEN9_PCODE_READ_MEM_LATENCY,
2304 &val);
2305 mutex_unlock(&dev_priv->rps.hw_lock);
2306
2307 if (ret) {
2308 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2309 return;
2310 }
2311
2312 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2313 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2314 GEN9_MEM_LATENCY_LEVEL_MASK;
2315 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2316 GEN9_MEM_LATENCY_LEVEL_MASK;
2317 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2318 GEN9_MEM_LATENCY_LEVEL_MASK;
2319
2320 /* read the second set of memory latencies[4:7] */
2321 val = 1; /* data0 to be programmed to 1 for second set */
2322 mutex_lock(&dev_priv->rps.hw_lock);
2323 ret = sandybridge_pcode_read(dev_priv,
2324 GEN9_PCODE_READ_MEM_LATENCY,
2325 &val);
2326 mutex_unlock(&dev_priv->rps.hw_lock);
2327 if (ret) {
2328 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2329 return;
2330 }
2331
2332 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2333 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2334 GEN9_MEM_LATENCY_LEVEL_MASK;
2335 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2336 GEN9_MEM_LATENCY_LEVEL_MASK;
2337 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2338 GEN9_MEM_LATENCY_LEVEL_MASK;
2339
2340 /*
2341 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2342 * need to be disabled. We make sure to sanitize the values out
2343 * of the punit to satisfy this requirement.
2344 */
2345 for (level = 1; level <= max_level; level++) {
2346 if (wm[level] == 0) {
2347 for (i = level + 1; i <= max_level; i++)
2348 wm[i] = 0;
2349 break;
2350 }
2351 }
2352
2353 /*
2354 * WaWmMemoryReadLatency:skl,glk
2355 *
2356 * punit doesn't take into account the read latency so we need
2357 * to add 2us to the various latency levels we retrieve from the
2358 * punit when level 0 response data us 0us.
2359 */
2360 if (wm[0] == 0) {
2361 wm[0] += 2;
2362 for (level = 1; level <= max_level; level++) {
2363 if (wm[level] == 0)
2364 break;
2365 wm[level] += 2;
2366 }
2367 }
2368
2369 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2370 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2371
2372 wm[0] = (sskpd >> 56) & 0xFF;
2373 if (wm[0] == 0)
2374 wm[0] = sskpd & 0xF;
2375 wm[1] = (sskpd >> 4) & 0xFF;
2376 wm[2] = (sskpd >> 12) & 0xFF;
2377 wm[3] = (sskpd >> 20) & 0x1FF;
2378 wm[4] = (sskpd >> 32) & 0x1FF;
2379 } else if (INTEL_GEN(dev_priv) >= 6) {
2380 uint32_t sskpd = I915_READ(MCH_SSKPD);
2381
2382 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2383 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2384 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2385 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2386 } else if (INTEL_GEN(dev_priv) >= 5) {
2387 uint32_t mltr = I915_READ(MLTR_ILK);
2388
2389 /* ILK primary LP0 latency is 700 ns */
2390 wm[0] = 7;
2391 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2392 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2393 }
2394 }
2395
2396 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2397 uint16_t wm[5])
2398 {
2399 /* ILK sprite LP0 latency is 1300 ns */
2400 if (IS_GEN5(dev_priv))
2401 wm[0] = 13;
2402 }
2403
2404 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2405 uint16_t wm[5])
2406 {
2407 /* ILK cursor LP0 latency is 1300 ns */
2408 if (IS_GEN5(dev_priv))
2409 wm[0] = 13;
2410
2411 /* WaDoubleCursorLP3Latency:ivb */
2412 if (IS_IVYBRIDGE(dev_priv))
2413 wm[3] *= 2;
2414 }
2415
2416 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2417 {
2418 /* how many WM levels are we expecting */
2419 if (INTEL_GEN(dev_priv) >= 9)
2420 return 7;
2421 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2422 return 4;
2423 else if (INTEL_GEN(dev_priv) >= 6)
2424 return 3;
2425 else
2426 return 2;
2427 }
2428
2429 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2430 const char *name,
2431 const uint16_t wm[8])
2432 {
2433 int level, max_level = ilk_wm_max_level(dev_priv);
2434
2435 for (level = 0; level <= max_level; level++) {
2436 unsigned int latency = wm[level];
2437
2438 if (latency == 0) {
2439 DRM_ERROR("%s WM%d latency not provided\n",
2440 name, level);
2441 continue;
2442 }
2443
2444 /*
2445 * - latencies are in us on gen9.
2446 * - before then, WM1+ latency values are in 0.5us units
2447 */
2448 if (IS_GEN9(dev_priv))
2449 latency *= 10;
2450 else if (level > 0)
2451 latency *= 5;
2452
2453 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2454 name, level, wm[level],
2455 latency / 10, latency % 10);
2456 }
2457 }
2458
2459 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2460 uint16_t wm[5], uint16_t min)
2461 {
2462 int level, max_level = ilk_wm_max_level(dev_priv);
2463
2464 if (wm[0] >= min)
2465 return false;
2466
2467 wm[0] = max(wm[0], min);
2468 for (level = 1; level <= max_level; level++)
2469 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2470
2471 return true;
2472 }
2473
2474 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2475 {
2476 bool changed;
2477
2478 /*
2479 * The BIOS provided WM memory latency values are often
2480 * inadequate for high resolution displays. Adjust them.
2481 */
2482 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2483 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2484 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2485
2486 if (!changed)
2487 return;
2488
2489 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2490 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2491 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2492 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2493 }
2494
2495 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2496 {
2497 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2498
2499 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2500 sizeof(dev_priv->wm.pri_latency));
2501 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2502 sizeof(dev_priv->wm.pri_latency));
2503
2504 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2505 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2506
2507 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2508 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2509 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2510
2511 if (IS_GEN6(dev_priv))
2512 snb_wm_latency_quirk(dev_priv);
2513 }
2514
2515 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2516 {
2517 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2518 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2519 }
2520
2521 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2522 struct intel_pipe_wm *pipe_wm)
2523 {
2524 /* LP0 watermark maximums depend on this pipe alone */
2525 const struct intel_wm_config config = {
2526 .num_pipes_active = 1,
2527 .sprites_enabled = pipe_wm->sprites_enabled,
2528 .sprites_scaled = pipe_wm->sprites_scaled,
2529 };
2530 struct ilk_wm_maximums max;
2531
2532 /* LP0 watermarks always use 1/2 DDB partitioning */
2533 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2534
2535 /* At least LP0 must be valid */
2536 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2537 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2538 return false;
2539 }
2540
2541 return true;
2542 }
2543
2544 /* Compute new watermarks for the pipe */
2545 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2546 {
2547 struct drm_atomic_state *state = cstate->base.state;
2548 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2549 struct intel_pipe_wm *pipe_wm;
2550 struct drm_device *dev = state->dev;
2551 const struct drm_i915_private *dev_priv = to_i915(dev);
2552 struct intel_plane *intel_plane;
2553 struct intel_plane_state *pristate = NULL;
2554 struct intel_plane_state *sprstate = NULL;
2555 struct intel_plane_state *curstate = NULL;
2556 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2557 struct ilk_wm_maximums max;
2558
2559 pipe_wm = &cstate->wm.ilk.optimal;
2560
2561 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2562 struct intel_plane_state *ps;
2563
2564 ps = intel_atomic_get_existing_plane_state(state,
2565 intel_plane);
2566 if (!ps)
2567 continue;
2568
2569 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2570 pristate = ps;
2571 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2572 sprstate = ps;
2573 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2574 curstate = ps;
2575 }
2576
2577 pipe_wm->pipe_enabled = cstate->base.active;
2578 if (sprstate) {
2579 pipe_wm->sprites_enabled = sprstate->base.visible;
2580 pipe_wm->sprites_scaled = sprstate->base.visible &&
2581 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2582 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2583 }
2584
2585 usable_level = max_level;
2586
2587 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2588 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2589 usable_level = 1;
2590
2591 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2592 if (pipe_wm->sprites_scaled)
2593 usable_level = 0;
2594
2595 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2596 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2597
2598 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2599 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2600
2601 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2602 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2603
2604 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2605 return -EINVAL;
2606
2607 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2608
2609 for (level = 1; level <= max_level; level++) {
2610 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2611
2612 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2613 pristate, sprstate, curstate, wm);
2614
2615 /*
2616 * Disable any watermark level that exceeds the
2617 * register maximums since such watermarks are
2618 * always invalid.
2619 */
2620 if (level > usable_level)
2621 continue;
2622
2623 if (ilk_validate_wm_level(level, &max, wm))
2624 pipe_wm->wm[level] = *wm;
2625 else
2626 usable_level = level;
2627 }
2628
2629 return 0;
2630 }
2631
2632 /*
2633 * Build a set of 'intermediate' watermark values that satisfy both the old
2634 * state and the new state. These can be programmed to the hardware
2635 * immediately.
2636 */
2637 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2638 struct intel_crtc *intel_crtc,
2639 struct intel_crtc_state *newstate)
2640 {
2641 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2642 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2643 int level, max_level = ilk_wm_max_level(to_i915(dev));
2644
2645 /*
2646 * Start with the final, target watermarks, then combine with the
2647 * currently active watermarks to get values that are safe both before
2648 * and after the vblank.
2649 */
2650 *a = newstate->wm.ilk.optimal;
2651 a->pipe_enabled |= b->pipe_enabled;
2652 a->sprites_enabled |= b->sprites_enabled;
2653 a->sprites_scaled |= b->sprites_scaled;
2654
2655 for (level = 0; level <= max_level; level++) {
2656 struct intel_wm_level *a_wm = &a->wm[level];
2657 const struct intel_wm_level *b_wm = &b->wm[level];
2658
2659 a_wm->enable &= b_wm->enable;
2660 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2661 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2662 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2663 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2664 }
2665
2666 /*
2667 * We need to make sure that these merged watermark values are
2668 * actually a valid configuration themselves. If they're not,
2669 * there's no safe way to transition from the old state to
2670 * the new state, so we need to fail the atomic transaction.
2671 */
2672 if (!ilk_validate_pipe_wm(dev, a))
2673 return -EINVAL;
2674
2675 /*
2676 * If our intermediate WM are identical to the final WM, then we can
2677 * omit the post-vblank programming; only update if it's different.
2678 */
2679 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
2680 newstate->wm.need_postvbl_update = true;
2681
2682 return 0;
2683 }
2684
2685 /*
2686 * Merge the watermarks from all active pipes for a specific level.
2687 */
2688 static void ilk_merge_wm_level(struct drm_device *dev,
2689 int level,
2690 struct intel_wm_level *ret_wm)
2691 {
2692 const struct intel_crtc *intel_crtc;
2693
2694 ret_wm->enable = true;
2695
2696 for_each_intel_crtc(dev, intel_crtc) {
2697 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2698 const struct intel_wm_level *wm = &active->wm[level];
2699
2700 if (!active->pipe_enabled)
2701 continue;
2702
2703 /*
2704 * The watermark values may have been used in the past,
2705 * so we must maintain them in the registers for some
2706 * time even if the level is now disabled.
2707 */
2708 if (!wm->enable)
2709 ret_wm->enable = false;
2710
2711 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2712 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2713 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2714 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2715 }
2716 }
2717
2718 /*
2719 * Merge all low power watermarks for all active pipes.
2720 */
2721 static void ilk_wm_merge(struct drm_device *dev,
2722 const struct intel_wm_config *config,
2723 const struct ilk_wm_maximums *max,
2724 struct intel_pipe_wm *merged)
2725 {
2726 struct drm_i915_private *dev_priv = to_i915(dev);
2727 int level, max_level = ilk_wm_max_level(dev_priv);
2728 int last_enabled_level = max_level;
2729
2730 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2731 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2732 config->num_pipes_active > 1)
2733 last_enabled_level = 0;
2734
2735 /* ILK: FBC WM must be disabled always */
2736 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2737
2738 /* merge each WM1+ level */
2739 for (level = 1; level <= max_level; level++) {
2740 struct intel_wm_level *wm = &merged->wm[level];
2741
2742 ilk_merge_wm_level(dev, level, wm);
2743
2744 if (level > last_enabled_level)
2745 wm->enable = false;
2746 else if (!ilk_validate_wm_level(level, max, wm))
2747 /* make sure all following levels get disabled */
2748 last_enabled_level = level - 1;
2749
2750 /*
2751 * The spec says it is preferred to disable
2752 * FBC WMs instead of disabling a WM level.
2753 */
2754 if (wm->fbc_val > max->fbc) {
2755 if (wm->enable)
2756 merged->fbc_wm_enabled = false;
2757 wm->fbc_val = 0;
2758 }
2759 }
2760
2761 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2762 /*
2763 * FIXME this is racy. FBC might get enabled later.
2764 * What we should check here is whether FBC can be
2765 * enabled sometime later.
2766 */
2767 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2768 intel_fbc_is_active(dev_priv)) {
2769 for (level = 2; level <= max_level; level++) {
2770 struct intel_wm_level *wm = &merged->wm[level];
2771
2772 wm->enable = false;
2773 }
2774 }
2775 }
2776
2777 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2778 {
2779 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2780 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2781 }
2782
2783 /* The value we need to program into the WM_LPx latency field */
2784 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2785 {
2786 struct drm_i915_private *dev_priv = to_i915(dev);
2787
2788 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2789 return 2 * level;
2790 else
2791 return dev_priv->wm.pri_latency[level];
2792 }
2793
2794 static void ilk_compute_wm_results(struct drm_device *dev,
2795 const struct intel_pipe_wm *merged,
2796 enum intel_ddb_partitioning partitioning,
2797 struct ilk_wm_values *results)
2798 {
2799 struct drm_i915_private *dev_priv = to_i915(dev);
2800 struct intel_crtc *intel_crtc;
2801 int level, wm_lp;
2802
2803 results->enable_fbc_wm = merged->fbc_wm_enabled;
2804 results->partitioning = partitioning;
2805
2806 /* LP1+ register values */
2807 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2808 const struct intel_wm_level *r;
2809
2810 level = ilk_wm_lp_to_level(wm_lp, merged);
2811
2812 r = &merged->wm[level];
2813
2814 /*
2815 * Maintain the watermark values even if the level is
2816 * disabled. Doing otherwise could cause underruns.
2817 */
2818 results->wm_lp[wm_lp - 1] =
2819 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2820 (r->pri_val << WM1_LP_SR_SHIFT) |
2821 r->cur_val;
2822
2823 if (r->enable)
2824 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2825
2826 if (INTEL_GEN(dev_priv) >= 8)
2827 results->wm_lp[wm_lp - 1] |=
2828 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2829 else
2830 results->wm_lp[wm_lp - 1] |=
2831 r->fbc_val << WM1_LP_FBC_SHIFT;
2832
2833 /*
2834 * Always set WM1S_LP_EN when spr_val != 0, even if the
2835 * level is disabled. Doing otherwise could cause underruns.
2836 */
2837 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2838 WARN_ON(wm_lp != 1);
2839 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2840 } else
2841 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2842 }
2843
2844 /* LP0 register values */
2845 for_each_intel_crtc(dev, intel_crtc) {
2846 enum pipe pipe = intel_crtc->pipe;
2847 const struct intel_wm_level *r =
2848 &intel_crtc->wm.active.ilk.wm[0];
2849
2850 if (WARN_ON(!r->enable))
2851 continue;
2852
2853 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2854
2855 results->wm_pipe[pipe] =
2856 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2857 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2858 r->cur_val;
2859 }
2860 }
2861
2862 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2863 * case both are at the same level. Prefer r1 in case they're the same. */
2864 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2865 struct intel_pipe_wm *r1,
2866 struct intel_pipe_wm *r2)
2867 {
2868 int level, max_level = ilk_wm_max_level(to_i915(dev));
2869 int level1 = 0, level2 = 0;
2870
2871 for (level = 1; level <= max_level; level++) {
2872 if (r1->wm[level].enable)
2873 level1 = level;
2874 if (r2->wm[level].enable)
2875 level2 = level;
2876 }
2877
2878 if (level1 == level2) {
2879 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2880 return r2;
2881 else
2882 return r1;
2883 } else if (level1 > level2) {
2884 return r1;
2885 } else {
2886 return r2;
2887 }
2888 }
2889
2890 /* dirty bits used to track which watermarks need changes */
2891 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2892 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2893 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2894 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2895 #define WM_DIRTY_FBC (1 << 24)
2896 #define WM_DIRTY_DDB (1 << 25)
2897
2898 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2899 const struct ilk_wm_values *old,
2900 const struct ilk_wm_values *new)
2901 {
2902 unsigned int dirty = 0;
2903 enum pipe pipe;
2904 int wm_lp;
2905
2906 for_each_pipe(dev_priv, pipe) {
2907 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2908 dirty |= WM_DIRTY_LINETIME(pipe);
2909 /* Must disable LP1+ watermarks too */
2910 dirty |= WM_DIRTY_LP_ALL;
2911 }
2912
2913 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2914 dirty |= WM_DIRTY_PIPE(pipe);
2915 /* Must disable LP1+ watermarks too */
2916 dirty |= WM_DIRTY_LP_ALL;
2917 }
2918 }
2919
2920 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2921 dirty |= WM_DIRTY_FBC;
2922 /* Must disable LP1+ watermarks too */
2923 dirty |= WM_DIRTY_LP_ALL;
2924 }
2925
2926 if (old->partitioning != new->partitioning) {
2927 dirty |= WM_DIRTY_DDB;
2928 /* Must disable LP1+ watermarks too */
2929 dirty |= WM_DIRTY_LP_ALL;
2930 }
2931
2932 /* LP1+ watermarks already deemed dirty, no need to continue */
2933 if (dirty & WM_DIRTY_LP_ALL)
2934 return dirty;
2935
2936 /* Find the lowest numbered LP1+ watermark in need of an update... */
2937 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2938 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2939 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2940 break;
2941 }
2942
2943 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2944 for (; wm_lp <= 3; wm_lp++)
2945 dirty |= WM_DIRTY_LP(wm_lp);
2946
2947 return dirty;
2948 }
2949
2950 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2951 unsigned int dirty)
2952 {
2953 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2954 bool changed = false;
2955
2956 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2957 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2958 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2959 changed = true;
2960 }
2961 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2962 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2963 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2964 changed = true;
2965 }
2966 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2967 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2968 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2969 changed = true;
2970 }
2971
2972 /*
2973 * Don't touch WM1S_LP_EN here.
2974 * Doing so could cause underruns.
2975 */
2976
2977 return changed;
2978 }
2979
2980 /*
2981 * The spec says we shouldn't write when we don't need, because every write
2982 * causes WMs to be re-evaluated, expending some power.
2983 */
2984 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2985 struct ilk_wm_values *results)
2986 {
2987 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2988 unsigned int dirty;
2989 uint32_t val;
2990
2991 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2992 if (!dirty)
2993 return;
2994
2995 _ilk_disable_lp_wm(dev_priv, dirty);
2996
2997 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2998 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2999 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3000 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3001 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3002 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3003
3004 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3005 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3006 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3007 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3008 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3009 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3010
3011 if (dirty & WM_DIRTY_DDB) {
3012 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3013 val = I915_READ(WM_MISC);
3014 if (results->partitioning == INTEL_DDB_PART_1_2)
3015 val &= ~WM_MISC_DATA_PARTITION_5_6;
3016 else
3017 val |= WM_MISC_DATA_PARTITION_5_6;
3018 I915_WRITE(WM_MISC, val);
3019 } else {
3020 val = I915_READ(DISP_ARB_CTL2);
3021 if (results->partitioning == INTEL_DDB_PART_1_2)
3022 val &= ~DISP_DATA_PARTITION_5_6;
3023 else
3024 val |= DISP_DATA_PARTITION_5_6;
3025 I915_WRITE(DISP_ARB_CTL2, val);
3026 }
3027 }
3028
3029 if (dirty & WM_DIRTY_FBC) {
3030 val = I915_READ(DISP_ARB_CTL);
3031 if (results->enable_fbc_wm)
3032 val &= ~DISP_FBC_WM_DIS;
3033 else
3034 val |= DISP_FBC_WM_DIS;
3035 I915_WRITE(DISP_ARB_CTL, val);
3036 }
3037
3038 if (dirty & WM_DIRTY_LP(1) &&
3039 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3040 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3041
3042 if (INTEL_GEN(dev_priv) >= 7) {
3043 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3044 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3045 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3046 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3047 }
3048
3049 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3050 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3051 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3052 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3053 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3054 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3055
3056 dev_priv->wm.hw = *results;
3057 }
3058
3059 bool ilk_disable_lp_wm(struct drm_device *dev)
3060 {
3061 struct drm_i915_private *dev_priv = to_i915(dev);
3062
3063 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3064 }
3065
3066 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
3067
3068 /*
3069 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3070 * so assume we'll always need it in order to avoid underruns.
3071 */
3072 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3073 {
3074 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3075
3076 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3077 return true;
3078
3079 return false;
3080 }
3081
3082 static bool
3083 intel_has_sagv(struct drm_i915_private *dev_priv)
3084 {
3085 if (IS_KABYLAKE(dev_priv))
3086 return true;
3087
3088 if (IS_SKYLAKE(dev_priv) &&
3089 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3090 return true;
3091
3092 return false;
3093 }
3094
3095 /*
3096 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3097 * depending on power and performance requirements. The display engine access
3098 * to system memory is blocked during the adjustment time. Because of the
3099 * blocking time, having this enabled can cause full system hangs and/or pipe
3100 * underruns if we don't meet all of the following requirements:
3101 *
3102 * - <= 1 pipe enabled
3103 * - All planes can enable watermarks for latencies >= SAGV engine block time
3104 * - We're not using an interlaced display configuration
3105 */
3106 int
3107 intel_enable_sagv(struct drm_i915_private *dev_priv)
3108 {
3109 int ret;
3110
3111 if (!intel_has_sagv(dev_priv))
3112 return 0;
3113
3114 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3115 return 0;
3116
3117 DRM_DEBUG_KMS("Enabling the SAGV\n");
3118 mutex_lock(&dev_priv->rps.hw_lock);
3119
3120 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3121 GEN9_SAGV_ENABLE);
3122
3123 /* We don't need to wait for the SAGV when enabling */
3124 mutex_unlock(&dev_priv->rps.hw_lock);
3125
3126 /*
3127 * Some skl systems, pre-release machines in particular,
3128 * don't actually have an SAGV.
3129 */
3130 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3131 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3132 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3133 return 0;
3134 } else if (ret < 0) {
3135 DRM_ERROR("Failed to enable the SAGV\n");
3136 return ret;
3137 }
3138
3139 dev_priv->sagv_status = I915_SAGV_ENABLED;
3140 return 0;
3141 }
3142
3143 int
3144 intel_disable_sagv(struct drm_i915_private *dev_priv)
3145 {
3146 int ret;
3147
3148 if (!intel_has_sagv(dev_priv))
3149 return 0;
3150
3151 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3152 return 0;
3153
3154 DRM_DEBUG_KMS("Disabling the SAGV\n");
3155 mutex_lock(&dev_priv->rps.hw_lock);
3156
3157 /* bspec says to keep retrying for at least 1 ms */
3158 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3159 GEN9_SAGV_DISABLE,
3160 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3161 1);
3162 mutex_unlock(&dev_priv->rps.hw_lock);
3163
3164 /*
3165 * Some skl systems, pre-release machines in particular,
3166 * don't actually have an SAGV.
3167 */
3168 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3169 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3170 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3171 return 0;
3172 } else if (ret < 0) {
3173 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3174 return ret;
3175 }
3176
3177 dev_priv->sagv_status = I915_SAGV_DISABLED;
3178 return 0;
3179 }
3180
3181 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3182 {
3183 struct drm_device *dev = state->dev;
3184 struct drm_i915_private *dev_priv = to_i915(dev);
3185 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3186 struct intel_crtc *crtc;
3187 struct intel_plane *plane;
3188 struct intel_crtc_state *cstate;
3189 enum pipe pipe;
3190 int level, latency;
3191
3192 if (!intel_has_sagv(dev_priv))
3193 return false;
3194
3195 /*
3196 * SKL workaround: bspec recommends we disable the SAGV when we have
3197 * more then one pipe enabled
3198 *
3199 * If there are no active CRTCs, no additional checks need be performed
3200 */
3201 if (hweight32(intel_state->active_crtcs) == 0)
3202 return true;
3203 else if (hweight32(intel_state->active_crtcs) > 1)
3204 return false;
3205
3206 /* Since we're now guaranteed to only have one active CRTC... */
3207 pipe = ffs(intel_state->active_crtcs) - 1;
3208 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3209 cstate = to_intel_crtc_state(crtc->base.state);
3210
3211 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3212 return false;
3213
3214 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3215 struct skl_plane_wm *wm =
3216 &cstate->wm.skl.optimal.planes[plane->id];
3217
3218 /* Skip this plane if it's not enabled */
3219 if (!wm->wm[0].plane_en)
3220 continue;
3221
3222 /* Find the highest enabled wm level for this plane */
3223 for (level = ilk_wm_max_level(dev_priv);
3224 !wm->wm[level].plane_en; --level)
3225 { }
3226
3227 latency = dev_priv->wm.skl_latency[level];
3228
3229 if (skl_needs_memory_bw_wa(intel_state) &&
3230 plane->base.state->fb->modifier ==
3231 I915_FORMAT_MOD_X_TILED)
3232 latency += 15;
3233
3234 /*
3235 * If any of the planes on this pipe don't enable wm levels
3236 * that incur memory latencies higher then 30µs we can't enable
3237 * the SAGV
3238 */
3239 if (latency < SKL_SAGV_BLOCK_TIME)
3240 return false;
3241 }
3242
3243 return true;
3244 }
3245
3246 static void
3247 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3248 const struct intel_crtc_state *cstate,
3249 struct skl_ddb_entry *alloc, /* out */
3250 int *num_active /* out */)
3251 {
3252 struct drm_atomic_state *state = cstate->base.state;
3253 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3254 struct drm_i915_private *dev_priv = to_i915(dev);
3255 struct drm_crtc *for_crtc = cstate->base.crtc;
3256 unsigned int pipe_size, ddb_size;
3257 int nth_active_pipe;
3258
3259 if (WARN_ON(!state) || !cstate->base.active) {
3260 alloc->start = 0;
3261 alloc->end = 0;
3262 *num_active = hweight32(dev_priv->active_crtcs);
3263 return;
3264 }
3265
3266 if (intel_state->active_pipe_changes)
3267 *num_active = hweight32(intel_state->active_crtcs);
3268 else
3269 *num_active = hweight32(dev_priv->active_crtcs);
3270
3271 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3272 WARN_ON(ddb_size == 0);
3273
3274 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3275
3276 /*
3277 * If the state doesn't change the active CRTC's, then there's
3278 * no need to recalculate; the existing pipe allocation limits
3279 * should remain unchanged. Note that we're safe from racing
3280 * commits since any racing commit that changes the active CRTC
3281 * list would need to grab _all_ crtc locks, including the one
3282 * we currently hold.
3283 */
3284 if (!intel_state->active_pipe_changes) {
3285 /*
3286 * alloc may be cleared by clear_intel_crtc_state,
3287 * copy from old state to be sure
3288 */
3289 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3290 return;
3291 }
3292
3293 nth_active_pipe = hweight32(intel_state->active_crtcs &
3294 (drm_crtc_mask(for_crtc) - 1));
3295 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3296 alloc->start = nth_active_pipe * ddb_size / *num_active;
3297 alloc->end = alloc->start + pipe_size;
3298 }
3299
3300 static unsigned int skl_cursor_allocation(int num_active)
3301 {
3302 if (num_active == 1)
3303 return 32;
3304
3305 return 8;
3306 }
3307
3308 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3309 {
3310 entry->start = reg & 0x3ff;
3311 entry->end = (reg >> 16) & 0x3ff;
3312 if (entry->end)
3313 entry->end += 1;
3314 }
3315
3316 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3317 struct skl_ddb_allocation *ddb /* out */)
3318 {
3319 struct intel_crtc *crtc;
3320
3321 memset(ddb, 0, sizeof(*ddb));
3322
3323 for_each_intel_crtc(&dev_priv->drm, crtc) {
3324 enum intel_display_power_domain power_domain;
3325 enum plane_id plane_id;
3326 enum pipe pipe = crtc->pipe;
3327
3328 power_domain = POWER_DOMAIN_PIPE(pipe);
3329 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3330 continue;
3331
3332 for_each_plane_id_on_crtc(crtc, plane_id) {
3333 u32 val;
3334
3335 if (plane_id != PLANE_CURSOR)
3336 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3337 else
3338 val = I915_READ(CUR_BUF_CFG(pipe));
3339
3340 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3341 }
3342
3343 intel_display_power_put(dev_priv, power_domain);
3344 }
3345 }
3346
3347 /*
3348 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3349 * The bspec defines downscale amount as:
3350 *
3351 * """
3352 * Horizontal down scale amount = maximum[1, Horizontal source size /
3353 * Horizontal destination size]
3354 * Vertical down scale amount = maximum[1, Vertical source size /
3355 * Vertical destination size]
3356 * Total down scale amount = Horizontal down scale amount *
3357 * Vertical down scale amount
3358 * """
3359 *
3360 * Return value is provided in 16.16 fixed point form to retain fractional part.
3361 * Caller should take care of dividing & rounding off the value.
3362 */
3363 static uint32_t
3364 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3365 const struct intel_plane_state *pstate)
3366 {
3367 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3368 uint32_t downscale_h, downscale_w;
3369 uint32_t src_w, src_h, dst_w, dst_h;
3370
3371 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3372 return DRM_PLANE_HELPER_NO_SCALING;
3373
3374 /* n.b., src is 16.16 fixed point, dst is whole integer */
3375 if (plane->id == PLANE_CURSOR) {
3376 /*
3377 * Cursors only support 0/180 degree rotation,
3378 * hence no need to account for rotation here.
3379 */
3380 src_w = pstate->base.src_w;
3381 src_h = pstate->base.src_h;
3382 dst_w = pstate->base.crtc_w;
3383 dst_h = pstate->base.crtc_h;
3384 } else {
3385 /*
3386 * Src coordinates are already rotated by 270 degrees for
3387 * the 90/270 degree plane rotation cases (to match the
3388 * GTT mapping), hence no need to account for rotation here.
3389 */
3390 src_w = drm_rect_width(&pstate->base.src);
3391 src_h = drm_rect_height(&pstate->base.src);
3392 dst_w = drm_rect_width(&pstate->base.dst);
3393 dst_h = drm_rect_height(&pstate->base.dst);
3394 }
3395
3396 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3397 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3398
3399 /* Provide result in 16.16 fixed point */
3400 return (uint64_t)downscale_w * downscale_h >> 16;
3401 }
3402
3403 static unsigned int
3404 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3405 const struct drm_plane_state *pstate,
3406 int y)
3407 {
3408 struct intel_plane *plane = to_intel_plane(pstate->plane);
3409 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3410 uint32_t down_scale_amount, data_rate;
3411 uint32_t width = 0, height = 0;
3412 struct drm_framebuffer *fb;
3413 u32 format;
3414
3415 if (!intel_pstate->base.visible)
3416 return 0;
3417
3418 fb = pstate->fb;
3419 format = fb->format->format;
3420
3421 if (plane->id == PLANE_CURSOR)
3422 return 0;
3423 if (y && format != DRM_FORMAT_NV12)
3424 return 0;
3425
3426 /*
3427 * Src coordinates are already rotated by 270 degrees for
3428 * the 90/270 degree plane rotation cases (to match the
3429 * GTT mapping), hence no need to account for rotation here.
3430 */
3431 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3432 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3433
3434 /* for planar format */
3435 if (format == DRM_FORMAT_NV12) {
3436 if (y) /* y-plane data rate */
3437 data_rate = width * height *
3438 fb->format->cpp[0];
3439 else /* uv-plane data rate */
3440 data_rate = (width / 2) * (height / 2) *
3441 fb->format->cpp[1];
3442 } else {
3443 /* for packed formats */
3444 data_rate = width * height * fb->format->cpp[0];
3445 }
3446
3447 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3448
3449 return (uint64_t)data_rate * down_scale_amount >> 16;
3450 }
3451
3452 /*
3453 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3454 * a 8192x4096@32bpp framebuffer:
3455 * 3 * 4096 * 8192 * 4 < 2^32
3456 */
3457 static unsigned int
3458 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3459 unsigned *plane_data_rate,
3460 unsigned *plane_y_data_rate)
3461 {
3462 struct drm_crtc_state *cstate = &intel_cstate->base;
3463 struct drm_atomic_state *state = cstate->state;
3464 struct drm_plane *plane;
3465 const struct drm_plane_state *pstate;
3466 unsigned int total_data_rate = 0;
3467
3468 if (WARN_ON(!state))
3469 return 0;
3470
3471 /* Calculate and cache data rate for each plane */
3472 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3473 enum plane_id plane_id = to_intel_plane(plane)->id;
3474 unsigned int rate;
3475
3476 /* packed/uv */
3477 rate = skl_plane_relative_data_rate(intel_cstate,
3478 pstate, 0);
3479 plane_data_rate[plane_id] = rate;
3480
3481 total_data_rate += rate;
3482
3483 /* y-plane */
3484 rate = skl_plane_relative_data_rate(intel_cstate,
3485 pstate, 1);
3486 plane_y_data_rate[plane_id] = rate;
3487
3488 total_data_rate += rate;
3489 }
3490
3491 return total_data_rate;
3492 }
3493
3494 static uint16_t
3495 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3496 const int y)
3497 {
3498 struct drm_framebuffer *fb = pstate->fb;
3499 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3500 uint32_t src_w, src_h;
3501 uint32_t min_scanlines = 8;
3502 uint8_t plane_bpp;
3503
3504 if (WARN_ON(!fb))
3505 return 0;
3506
3507 /* For packed formats, no y-plane, return 0 */
3508 if (y && fb->format->format != DRM_FORMAT_NV12)
3509 return 0;
3510
3511 /* For Non Y-tile return 8-blocks */
3512 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3513 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3514 return 8;
3515
3516 /*
3517 * Src coordinates are already rotated by 270 degrees for
3518 * the 90/270 degree plane rotation cases (to match the
3519 * GTT mapping), hence no need to account for rotation here.
3520 */
3521 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3522 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3523
3524 /* Halve UV plane width and height for NV12 */
3525 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3526 src_w /= 2;
3527 src_h /= 2;
3528 }
3529
3530 if (fb->format->format == DRM_FORMAT_NV12 && !y)
3531 plane_bpp = fb->format->cpp[1];
3532 else
3533 plane_bpp = fb->format->cpp[0];
3534
3535 if (drm_rotation_90_or_270(pstate->rotation)) {
3536 switch (plane_bpp) {
3537 case 1:
3538 min_scanlines = 32;
3539 break;
3540 case 2:
3541 min_scanlines = 16;
3542 break;
3543 case 4:
3544 min_scanlines = 8;
3545 break;
3546 case 8:
3547 min_scanlines = 4;
3548 break;
3549 default:
3550 WARN(1, "Unsupported pixel depth %u for rotation",
3551 plane_bpp);
3552 min_scanlines = 32;
3553 }
3554 }
3555
3556 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3557 }
3558
3559 static void
3560 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3561 uint16_t *minimum, uint16_t *y_minimum)
3562 {
3563 const struct drm_plane_state *pstate;
3564 struct drm_plane *plane;
3565
3566 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3567 enum plane_id plane_id = to_intel_plane(plane)->id;
3568
3569 if (plane_id == PLANE_CURSOR)
3570 continue;
3571
3572 if (!pstate->visible)
3573 continue;
3574
3575 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
3576 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3577 }
3578
3579 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3580 }
3581
3582 static int
3583 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3584 struct skl_ddb_allocation *ddb /* out */)
3585 {
3586 struct drm_atomic_state *state = cstate->base.state;
3587 struct drm_crtc *crtc = cstate->base.crtc;
3588 struct drm_device *dev = crtc->dev;
3589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3590 enum pipe pipe = intel_crtc->pipe;
3591 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3592 uint16_t alloc_size, start;
3593 uint16_t minimum[I915_MAX_PLANES] = {};
3594 uint16_t y_minimum[I915_MAX_PLANES] = {};
3595 unsigned int total_data_rate;
3596 enum plane_id plane_id;
3597 int num_active;
3598 unsigned plane_data_rate[I915_MAX_PLANES] = {};
3599 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3600
3601 /* Clear the partitioning for disabled planes. */
3602 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3603 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3604
3605 if (WARN_ON(!state))
3606 return 0;
3607
3608 if (!cstate->base.active) {
3609 alloc->start = alloc->end = 0;
3610 return 0;
3611 }
3612
3613 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3614 alloc_size = skl_ddb_entry_size(alloc);
3615 if (alloc_size == 0) {
3616 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3617 return 0;
3618 }
3619
3620 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3621
3622 /*
3623 * 1. Allocate the mininum required blocks for each active plane
3624 * and allocate the cursor, it doesn't require extra allocation
3625 * proportional to the data rate.
3626 */
3627
3628 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3629 alloc_size -= minimum[plane_id];
3630 alloc_size -= y_minimum[plane_id];
3631 }
3632
3633 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3634 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3635
3636 /*
3637 * 2. Distribute the remaining space in proportion to the amount of
3638 * data each plane needs to fetch from memory.
3639 *
3640 * FIXME: we may not allocate every single block here.
3641 */
3642 total_data_rate = skl_get_total_relative_data_rate(cstate,
3643 plane_data_rate,
3644 plane_y_data_rate);
3645 if (total_data_rate == 0)
3646 return 0;
3647
3648 start = alloc->start;
3649 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3650 unsigned int data_rate, y_data_rate;
3651 uint16_t plane_blocks, y_plane_blocks = 0;
3652
3653 if (plane_id == PLANE_CURSOR)
3654 continue;
3655
3656 data_rate = plane_data_rate[plane_id];
3657
3658 /*
3659 * allocation for (packed formats) or (uv-plane part of planar format):
3660 * promote the expression to 64 bits to avoid overflowing, the
3661 * result is < available as data_rate / total_data_rate < 1
3662 */
3663 plane_blocks = minimum[plane_id];
3664 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3665 total_data_rate);
3666
3667 /* Leave disabled planes at (0,0) */
3668 if (data_rate) {
3669 ddb->plane[pipe][plane_id].start = start;
3670 ddb->plane[pipe][plane_id].end = start + plane_blocks;
3671 }
3672
3673 start += plane_blocks;
3674
3675 /*
3676 * allocation for y_plane part of planar format:
3677 */
3678 y_data_rate = plane_y_data_rate[plane_id];
3679
3680 y_plane_blocks = y_minimum[plane_id];
3681 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3682 total_data_rate);
3683
3684 if (y_data_rate) {
3685 ddb->y_plane[pipe][plane_id].start = start;
3686 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3687 }
3688
3689 start += y_plane_blocks;
3690 }
3691
3692 return 0;
3693 }
3694
3695 /*
3696 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3697 * for the read latency) and cpp should always be <= 8, so that
3698 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3699 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3700 */
3701 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
3702 uint32_t latency)
3703 {
3704 uint32_t wm_intermediate_val;
3705 uint_fixed_16_16_t ret;
3706
3707 if (latency == 0)
3708 return FP_16_16_MAX;
3709
3710 wm_intermediate_val = latency * pixel_rate * cpp;
3711 ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3712 return ret;
3713 }
3714
3715 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
3716 uint32_t pipe_htotal,
3717 uint32_t latency,
3718 uint_fixed_16_16_t plane_blocks_per_line)
3719 {
3720 uint32_t wm_intermediate_val;
3721 uint_fixed_16_16_t ret;
3722
3723 if (latency == 0)
3724 return FP_16_16_MAX;
3725
3726 wm_intermediate_val = latency * pixel_rate;
3727 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
3728 pipe_htotal * 1000);
3729 ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3730 return ret;
3731 }
3732
3733 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3734 struct intel_plane_state *pstate)
3735 {
3736 uint64_t adjusted_pixel_rate;
3737 uint64_t downscale_amount;
3738 uint64_t pixel_rate;
3739
3740 /* Shouldn't reach here on disabled planes... */
3741 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3742 return 0;
3743
3744 /*
3745 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3746 * with additional adjustments for plane-specific scaling.
3747 */
3748 adjusted_pixel_rate = cstate->pixel_rate;
3749 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
3750
3751 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3752 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3753
3754 return pixel_rate;
3755 }
3756
3757 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3758 struct intel_crtc_state *cstate,
3759 struct intel_plane_state *intel_pstate,
3760 uint16_t ddb_allocation,
3761 int level,
3762 uint16_t *out_blocks, /* out */
3763 uint8_t *out_lines, /* out */
3764 bool *enabled /* out */)
3765 {
3766 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
3767 struct drm_plane_state *pstate = &intel_pstate->base;
3768 struct drm_framebuffer *fb = pstate->fb;
3769 uint32_t latency = dev_priv->wm.skl_latency[level];
3770 uint_fixed_16_16_t method1, method2;
3771 uint_fixed_16_16_t plane_blocks_per_line;
3772 uint_fixed_16_16_t selected_result;
3773 uint32_t interm_pbpl;
3774 uint32_t plane_bytes_per_line;
3775 uint32_t res_blocks, res_lines;
3776 uint8_t cpp;
3777 uint32_t width = 0, height = 0;
3778 uint32_t plane_pixel_rate;
3779 uint_fixed_16_16_t y_tile_minimum;
3780 uint32_t y_min_scanlines;
3781 struct intel_atomic_state *state =
3782 to_intel_atomic_state(cstate->base.state);
3783 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3784 bool y_tiled, x_tiled;
3785
3786 if (latency == 0 ||
3787 !intel_wm_plane_visible(cstate, intel_pstate)) {
3788 *enabled = false;
3789 return 0;
3790 }
3791
3792 y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3793 fb->modifier == I915_FORMAT_MOD_Yf_TILED;
3794 x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
3795
3796 /* Display WA #1141: kbl. */
3797 if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
3798 latency += 4;
3799
3800 if (apply_memory_bw_wa && x_tiled)
3801 latency += 15;
3802
3803 if (plane->id == PLANE_CURSOR) {
3804 width = intel_pstate->base.crtc_w;
3805 height = intel_pstate->base.crtc_h;
3806 } else {
3807 /*
3808 * Src coordinates are already rotated by 270 degrees for
3809 * the 90/270 degree plane rotation cases (to match the
3810 * GTT mapping), hence no need to account for rotation here.
3811 */
3812 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3813 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3814 }
3815
3816 cpp = fb->format->cpp[0];
3817 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3818
3819 if (drm_rotation_90_or_270(pstate->rotation)) {
3820 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3821 fb->format->cpp[1] :
3822 fb->format->cpp[0];
3823
3824 switch (cpp) {
3825 case 1:
3826 y_min_scanlines = 16;
3827 break;
3828 case 2:
3829 y_min_scanlines = 8;
3830 break;
3831 case 4:
3832 y_min_scanlines = 4;
3833 break;
3834 default:
3835 MISSING_CASE(cpp);
3836 return -EINVAL;
3837 }
3838 } else {
3839 y_min_scanlines = 4;
3840 }
3841
3842 if (apply_memory_bw_wa)
3843 y_min_scanlines *= 2;
3844
3845 plane_bytes_per_line = width * cpp;
3846 if (y_tiled) {
3847 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
3848 y_min_scanlines, 512);
3849 plane_blocks_per_line =
3850 fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3851 } else if (x_tiled) {
3852 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
3853 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3854 } else {
3855 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3856 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3857 }
3858
3859 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3860 method2 = skl_wm_method2(plane_pixel_rate,
3861 cstate->base.adjusted_mode.crtc_htotal,
3862 latency,
3863 plane_blocks_per_line);
3864
3865 y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
3866 plane_blocks_per_line);
3867
3868 if (y_tiled) {
3869 selected_result = max_fixed_16_16(method2, y_tile_minimum);
3870 } else {
3871 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3872 (plane_bytes_per_line / 512 < 1))
3873 selected_result = method2;
3874 else if ((ddb_allocation /
3875 fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
3876 selected_result = min_fixed_16_16(method1, method2);
3877 else
3878 selected_result = method1;
3879 }
3880
3881 res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
3882 res_lines = DIV_ROUND_UP(selected_result.val,
3883 plane_blocks_per_line.val);
3884
3885 if (level >= 1 && level <= 7) {
3886 if (y_tiled) {
3887 res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3888 res_lines += y_min_scanlines;
3889 } else {
3890 res_blocks++;
3891 }
3892 }
3893
3894 if (res_blocks >= ddb_allocation || res_lines > 31) {
3895 *enabled = false;
3896
3897 /*
3898 * If there are no valid level 0 watermarks, then we can't
3899 * support this display configuration.
3900 */
3901 if (level) {
3902 return 0;
3903 } else {
3904 struct drm_plane *plane = pstate->plane;
3905
3906 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3907 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3908 plane->base.id, plane->name,
3909 res_blocks, ddb_allocation, res_lines);
3910 return -EINVAL;
3911 }
3912 }
3913
3914 *out_blocks = res_blocks;
3915 *out_lines = res_lines;
3916 *enabled = true;
3917
3918 return 0;
3919 }
3920
3921 static int
3922 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3923 struct skl_ddb_allocation *ddb,
3924 struct intel_crtc_state *cstate,
3925 struct intel_plane *intel_plane,
3926 int level,
3927 struct skl_wm_level *result)
3928 {
3929 struct drm_atomic_state *state = cstate->base.state;
3930 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3931 struct drm_plane *plane = &intel_plane->base;
3932 struct intel_plane_state *intel_pstate = NULL;
3933 uint16_t ddb_blocks;
3934 enum pipe pipe = intel_crtc->pipe;
3935 int ret;
3936
3937 if (state)
3938 intel_pstate =
3939 intel_atomic_get_existing_plane_state(state,
3940 intel_plane);
3941
3942 /*
3943 * Note: If we start supporting multiple pending atomic commits against
3944 * the same planes/CRTC's in the future, plane->state will no longer be
3945 * the correct pre-state to use for the calculations here and we'll
3946 * need to change where we get the 'unchanged' plane data from.
3947 *
3948 * For now this is fine because we only allow one queued commit against
3949 * a CRTC. Even if the plane isn't modified by this transaction and we
3950 * don't have a plane lock, we still have the CRTC's lock, so we know
3951 * that no other transactions are racing with us to update it.
3952 */
3953 if (!intel_pstate)
3954 intel_pstate = to_intel_plane_state(plane->state);
3955
3956 WARN_ON(!intel_pstate->base.fb);
3957
3958 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3959
3960 ret = skl_compute_plane_wm(dev_priv,
3961 cstate,
3962 intel_pstate,
3963 ddb_blocks,
3964 level,
3965 &result->plane_res_b,
3966 &result->plane_res_l,
3967 &result->plane_en);
3968 if (ret)
3969 return ret;
3970
3971 return 0;
3972 }
3973
3974 static uint32_t
3975 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3976 {
3977 struct drm_atomic_state *state = cstate->base.state;
3978 struct drm_i915_private *dev_priv = to_i915(state->dev);
3979 uint32_t pixel_rate;
3980 uint32_t linetime_wm;
3981
3982 if (!cstate->base.active)
3983 return 0;
3984
3985 pixel_rate = cstate->pixel_rate;
3986
3987 if (WARN_ON(pixel_rate == 0))
3988 return 0;
3989
3990 linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
3991 1000, pixel_rate);
3992
3993 /* Display WA #1135: bxt. */
3994 if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
3995 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
3996
3997 return linetime_wm;
3998 }
3999
4000 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4001 struct skl_wm_level *trans_wm /* out */)
4002 {
4003 if (!cstate->base.active)
4004 return;
4005
4006 /* Until we know more, just disable transition WMs */
4007 trans_wm->plane_en = false;
4008 }
4009
4010 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4011 struct skl_ddb_allocation *ddb,
4012 struct skl_pipe_wm *pipe_wm)
4013 {
4014 struct drm_device *dev = cstate->base.crtc->dev;
4015 const struct drm_i915_private *dev_priv = to_i915(dev);
4016 struct intel_plane *intel_plane;
4017 struct skl_plane_wm *wm;
4018 int level, max_level = ilk_wm_max_level(dev_priv);
4019 int ret;
4020
4021 /*
4022 * We'll only calculate watermarks for planes that are actually
4023 * enabled, so make sure all other planes are set as disabled.
4024 */
4025 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4026
4027 for_each_intel_plane_mask(&dev_priv->drm,
4028 intel_plane,
4029 cstate->base.plane_mask) {
4030 wm = &pipe_wm->planes[intel_plane->id];
4031
4032 for (level = 0; level <= max_level; level++) {
4033 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
4034 intel_plane, level,
4035 &wm->wm[level]);
4036 if (ret)
4037 return ret;
4038 }
4039 skl_compute_transition_wm(cstate, &wm->trans_wm);
4040 }
4041 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4042
4043 return 0;
4044 }
4045
4046 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4047 i915_reg_t reg,
4048 const struct skl_ddb_entry *entry)
4049 {
4050 if (entry->end)
4051 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4052 else
4053 I915_WRITE(reg, 0);
4054 }
4055
4056 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4057 i915_reg_t reg,
4058 const struct skl_wm_level *level)
4059 {
4060 uint32_t val = 0;
4061
4062 if (level->plane_en) {
4063 val |= PLANE_WM_EN;
4064 val |= level->plane_res_b;
4065 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4066 }
4067
4068 I915_WRITE(reg, val);
4069 }
4070
4071 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4072 const struct skl_plane_wm *wm,
4073 const struct skl_ddb_allocation *ddb,
4074 enum plane_id plane_id)
4075 {
4076 struct drm_crtc *crtc = &intel_crtc->base;
4077 struct drm_device *dev = crtc->dev;
4078 struct drm_i915_private *dev_priv = to_i915(dev);
4079 int level, max_level = ilk_wm_max_level(dev_priv);
4080 enum pipe pipe = intel_crtc->pipe;
4081
4082 for (level = 0; level <= max_level; level++) {
4083 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4084 &wm->wm[level]);
4085 }
4086 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4087 &wm->trans_wm);
4088
4089 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4090 &ddb->plane[pipe][plane_id]);
4091 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4092 &ddb->y_plane[pipe][plane_id]);
4093 }
4094
4095 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4096 const struct skl_plane_wm *wm,
4097 const struct skl_ddb_allocation *ddb)
4098 {
4099 struct drm_crtc *crtc = &intel_crtc->base;
4100 struct drm_device *dev = crtc->dev;
4101 struct drm_i915_private *dev_priv = to_i915(dev);
4102 int level, max_level = ilk_wm_max_level(dev_priv);
4103 enum pipe pipe = intel_crtc->pipe;
4104
4105 for (level = 0; level <= max_level; level++) {
4106 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4107 &wm->wm[level]);
4108 }
4109 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4110
4111 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4112 &ddb->plane[pipe][PLANE_CURSOR]);
4113 }
4114
4115 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4116 const struct skl_wm_level *l2)
4117 {
4118 if (l1->plane_en != l2->plane_en)
4119 return false;
4120
4121 /* If both planes aren't enabled, the rest shouldn't matter */
4122 if (!l1->plane_en)
4123 return true;
4124
4125 return (l1->plane_res_l == l2->plane_res_l &&
4126 l1->plane_res_b == l2->plane_res_b);
4127 }
4128
4129 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4130 const struct skl_ddb_entry *b)
4131 {
4132 return a->start < b->end && b->start < a->end;
4133 }
4134
4135 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4136 const struct skl_ddb_entry *ddb,
4137 int ignore)
4138 {
4139 int i;
4140
4141 for (i = 0; i < I915_MAX_PIPES; i++)
4142 if (i != ignore && entries[i] &&
4143 skl_ddb_entries_overlap(ddb, entries[i]))
4144 return true;
4145
4146 return false;
4147 }
4148
4149 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4150 const struct skl_pipe_wm *old_pipe_wm,
4151 struct skl_pipe_wm *pipe_wm, /* out */
4152 struct skl_ddb_allocation *ddb, /* out */
4153 bool *changed /* out */)
4154 {
4155 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4156 int ret;
4157
4158 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4159 if (ret)
4160 return ret;
4161
4162 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4163 *changed = false;
4164 else
4165 *changed = true;
4166
4167 return 0;
4168 }
4169
4170 static uint32_t
4171 pipes_modified(struct drm_atomic_state *state)
4172 {
4173 struct drm_crtc *crtc;
4174 struct drm_crtc_state *cstate;
4175 uint32_t i, ret = 0;
4176
4177 for_each_new_crtc_in_state(state, crtc, cstate, i)
4178 ret |= drm_crtc_mask(crtc);
4179
4180 return ret;
4181 }
4182
4183 static int
4184 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4185 {
4186 struct drm_atomic_state *state = cstate->base.state;
4187 struct drm_device *dev = state->dev;
4188 struct drm_crtc *crtc = cstate->base.crtc;
4189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190 struct drm_i915_private *dev_priv = to_i915(dev);
4191 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4192 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4193 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4194 struct drm_plane_state *plane_state;
4195 struct drm_plane *plane;
4196 enum pipe pipe = intel_crtc->pipe;
4197
4198 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4199
4200 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4201 enum plane_id plane_id = to_intel_plane(plane)->id;
4202
4203 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4204 &new_ddb->plane[pipe][plane_id]) &&
4205 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4206 &new_ddb->y_plane[pipe][plane_id]))
4207 continue;
4208
4209 plane_state = drm_atomic_get_plane_state(state, plane);
4210 if (IS_ERR(plane_state))
4211 return PTR_ERR(plane_state);
4212 }
4213
4214 return 0;
4215 }
4216
4217 static int
4218 skl_compute_ddb(struct drm_atomic_state *state)
4219 {
4220 struct drm_device *dev = state->dev;
4221 struct drm_i915_private *dev_priv = to_i915(dev);
4222 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4223 struct intel_crtc *intel_crtc;
4224 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4225 uint32_t realloc_pipes = pipes_modified(state);
4226 int ret;
4227
4228 /*
4229 * If this is our first atomic update following hardware readout,
4230 * we can't trust the DDB that the BIOS programmed for us. Let's
4231 * pretend that all pipes switched active status so that we'll
4232 * ensure a full DDB recompute.
4233 */
4234 if (dev_priv->wm.distrust_bios_wm) {
4235 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4236 state->acquire_ctx);
4237 if (ret)
4238 return ret;
4239
4240 intel_state->active_pipe_changes = ~0;
4241
4242 /*
4243 * We usually only initialize intel_state->active_crtcs if we
4244 * we're doing a modeset; make sure this field is always
4245 * initialized during the sanitization process that happens
4246 * on the first commit too.
4247 */
4248 if (!intel_state->modeset)
4249 intel_state->active_crtcs = dev_priv->active_crtcs;
4250 }
4251
4252 /*
4253 * If the modeset changes which CRTC's are active, we need to
4254 * recompute the DDB allocation for *all* active pipes, even
4255 * those that weren't otherwise being modified in any way by this
4256 * atomic commit. Due to the shrinking of the per-pipe allocations
4257 * when new active CRTC's are added, it's possible for a pipe that
4258 * we were already using and aren't changing at all here to suddenly
4259 * become invalid if its DDB needs exceeds its new allocation.
4260 *
4261 * Note that if we wind up doing a full DDB recompute, we can't let
4262 * any other display updates race with this transaction, so we need
4263 * to grab the lock on *all* CRTC's.
4264 */
4265 if (intel_state->active_pipe_changes) {
4266 realloc_pipes = ~0;
4267 intel_state->wm_results.dirty_pipes = ~0;
4268 }
4269
4270 /*
4271 * We're not recomputing for the pipes not included in the commit, so
4272 * make sure we start with the current state.
4273 */
4274 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4275
4276 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4277 struct intel_crtc_state *cstate;
4278
4279 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4280 if (IS_ERR(cstate))
4281 return PTR_ERR(cstate);
4282
4283 ret = skl_allocate_pipe_ddb(cstate, ddb);
4284 if (ret)
4285 return ret;
4286
4287 ret = skl_ddb_add_affected_planes(cstate);
4288 if (ret)
4289 return ret;
4290 }
4291
4292 return 0;
4293 }
4294
4295 static void
4296 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4297 struct skl_wm_values *src,
4298 enum pipe pipe)
4299 {
4300 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4301 sizeof(dst->ddb.y_plane[pipe]));
4302 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4303 sizeof(dst->ddb.plane[pipe]));
4304 }
4305
4306 static void
4307 skl_print_wm_changes(const struct drm_atomic_state *state)
4308 {
4309 const struct drm_device *dev = state->dev;
4310 const struct drm_i915_private *dev_priv = to_i915(dev);
4311 const struct intel_atomic_state *intel_state =
4312 to_intel_atomic_state(state);
4313 const struct drm_crtc *crtc;
4314 const struct drm_crtc_state *cstate;
4315 const struct intel_plane *intel_plane;
4316 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4317 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4318 int i;
4319
4320 for_each_new_crtc_in_state(state, crtc, cstate, i) {
4321 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322 enum pipe pipe = intel_crtc->pipe;
4323
4324 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4325 enum plane_id plane_id = intel_plane->id;
4326 const struct skl_ddb_entry *old, *new;
4327
4328 old = &old_ddb->plane[pipe][plane_id];
4329 new = &new_ddb->plane[pipe][plane_id];
4330
4331 if (skl_ddb_entry_equal(old, new))
4332 continue;
4333
4334 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4335 intel_plane->base.base.id,
4336 intel_plane->base.name,
4337 old->start, old->end,
4338 new->start, new->end);
4339 }
4340 }
4341 }
4342
4343 static int
4344 skl_compute_wm(struct drm_atomic_state *state)
4345 {
4346 struct drm_crtc *crtc;
4347 struct drm_crtc_state *cstate;
4348 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4349 struct skl_wm_values *results = &intel_state->wm_results;
4350 struct drm_device *dev = state->dev;
4351 struct skl_pipe_wm *pipe_wm;
4352 bool changed = false;
4353 int ret, i;
4354
4355 /*
4356 * When we distrust bios wm we always need to recompute to set the
4357 * expected DDB allocations for each CRTC.
4358 */
4359 if (to_i915(dev)->wm.distrust_bios_wm)
4360 changed = true;
4361
4362 /*
4363 * If this transaction isn't actually touching any CRTC's, don't
4364 * bother with watermark calculation. Note that if we pass this
4365 * test, we're guaranteed to hold at least one CRTC state mutex,
4366 * which means we can safely use values like dev_priv->active_crtcs
4367 * since any racing commits that want to update them would need to
4368 * hold _all_ CRTC state mutexes.
4369 */
4370 for_each_new_crtc_in_state(state, crtc, cstate, i)
4371 changed = true;
4372
4373 if (!changed)
4374 return 0;
4375
4376 /* Clear all dirty flags */
4377 results->dirty_pipes = 0;
4378
4379 ret = skl_compute_ddb(state);
4380 if (ret)
4381 return ret;
4382
4383 /*
4384 * Calculate WM's for all pipes that are part of this transaction.
4385 * Note that the DDB allocation above may have added more CRTC's that
4386 * weren't otherwise being modified (and set bits in dirty_pipes) if
4387 * pipe allocations had to change.
4388 *
4389 * FIXME: Now that we're doing this in the atomic check phase, we
4390 * should allow skl_update_pipe_wm() to return failure in cases where
4391 * no suitable watermark values can be found.
4392 */
4393 for_each_new_crtc_in_state(state, crtc, cstate, i) {
4394 struct intel_crtc_state *intel_cstate =
4395 to_intel_crtc_state(cstate);
4396 const struct skl_pipe_wm *old_pipe_wm =
4397 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4398
4399 pipe_wm = &intel_cstate->wm.skl.optimal;
4400 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4401 &results->ddb, &changed);
4402 if (ret)
4403 return ret;
4404
4405 if (changed)
4406 results->dirty_pipes |= drm_crtc_mask(crtc);
4407
4408 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4409 /* This pipe's WM's did not change */
4410 continue;
4411
4412 intel_cstate->update_wm_pre = true;
4413 }
4414
4415 skl_print_wm_changes(state);
4416
4417 return 0;
4418 }
4419
4420 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4421 struct intel_crtc_state *cstate)
4422 {
4423 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4424 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4425 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4426 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4427 enum pipe pipe = crtc->pipe;
4428 enum plane_id plane_id;
4429
4430 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4431 return;
4432
4433 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4434
4435 for_each_plane_id_on_crtc(crtc, plane_id) {
4436 if (plane_id != PLANE_CURSOR)
4437 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4438 ddb, plane_id);
4439 else
4440 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4441 ddb);
4442 }
4443 }
4444
4445 static void skl_initial_wm(struct intel_atomic_state *state,
4446 struct intel_crtc_state *cstate)
4447 {
4448 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4449 struct drm_device *dev = intel_crtc->base.dev;
4450 struct drm_i915_private *dev_priv = to_i915(dev);
4451 struct skl_wm_values *results = &state->wm_results;
4452 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4453 enum pipe pipe = intel_crtc->pipe;
4454
4455 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4456 return;
4457
4458 mutex_lock(&dev_priv->wm.wm_mutex);
4459
4460 if (cstate->base.active_changed)
4461 skl_atomic_update_crtc_wm(state, cstate);
4462
4463 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4464
4465 mutex_unlock(&dev_priv->wm.wm_mutex);
4466 }
4467
4468 static void ilk_compute_wm_config(struct drm_device *dev,
4469 struct intel_wm_config *config)
4470 {
4471 struct intel_crtc *crtc;
4472
4473 /* Compute the currently _active_ config */
4474 for_each_intel_crtc(dev, crtc) {
4475 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4476
4477 if (!wm->pipe_enabled)
4478 continue;
4479
4480 config->sprites_enabled |= wm->sprites_enabled;
4481 config->sprites_scaled |= wm->sprites_scaled;
4482 config->num_pipes_active++;
4483 }
4484 }
4485
4486 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4487 {
4488 struct drm_device *dev = &dev_priv->drm;
4489 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4490 struct ilk_wm_maximums max;
4491 struct intel_wm_config config = {};
4492 struct ilk_wm_values results = {};
4493 enum intel_ddb_partitioning partitioning;
4494
4495 ilk_compute_wm_config(dev, &config);
4496
4497 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4498 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4499
4500 /* 5/6 split only in single pipe config on IVB+ */
4501 if (INTEL_GEN(dev_priv) >= 7 &&
4502 config.num_pipes_active == 1 && config.sprites_enabled) {
4503 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4504 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4505
4506 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4507 } else {
4508 best_lp_wm = &lp_wm_1_2;
4509 }
4510
4511 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4512 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4513
4514 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4515
4516 ilk_write_wm_values(dev_priv, &results);
4517 }
4518
4519 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4520 struct intel_crtc_state *cstate)
4521 {
4522 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4523 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4524
4525 mutex_lock(&dev_priv->wm.wm_mutex);
4526 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4527 ilk_program_watermarks(dev_priv);
4528 mutex_unlock(&dev_priv->wm.wm_mutex);
4529 }
4530
4531 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4532 struct intel_crtc_state *cstate)
4533 {
4534 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4535 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4536
4537 mutex_lock(&dev_priv->wm.wm_mutex);
4538 if (cstate->wm.need_postvbl_update) {
4539 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4540 ilk_program_watermarks(dev_priv);
4541 }
4542 mutex_unlock(&dev_priv->wm.wm_mutex);
4543 }
4544
4545 static inline void skl_wm_level_from_reg_val(uint32_t val,
4546 struct skl_wm_level *level)
4547 {
4548 level->plane_en = val & PLANE_WM_EN;
4549 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4550 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4551 PLANE_WM_LINES_MASK;
4552 }
4553
4554 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4555 struct skl_pipe_wm *out)
4556 {
4557 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4559 enum pipe pipe = intel_crtc->pipe;
4560 int level, max_level;
4561 enum plane_id plane_id;
4562 uint32_t val;
4563
4564 max_level = ilk_wm_max_level(dev_priv);
4565
4566 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4567 struct skl_plane_wm *wm = &out->planes[plane_id];
4568
4569 for (level = 0; level <= max_level; level++) {
4570 if (plane_id != PLANE_CURSOR)
4571 val = I915_READ(PLANE_WM(pipe, plane_id, level));
4572 else
4573 val = I915_READ(CUR_WM(pipe, level));
4574
4575 skl_wm_level_from_reg_val(val, &wm->wm[level]);
4576 }
4577
4578 if (plane_id != PLANE_CURSOR)
4579 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4580 else
4581 val = I915_READ(CUR_WM_TRANS(pipe));
4582
4583 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4584 }
4585
4586 if (!intel_crtc->active)
4587 return;
4588
4589 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4590 }
4591
4592 void skl_wm_get_hw_state(struct drm_device *dev)
4593 {
4594 struct drm_i915_private *dev_priv = to_i915(dev);
4595 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4596 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4597 struct drm_crtc *crtc;
4598 struct intel_crtc *intel_crtc;
4599 struct intel_crtc_state *cstate;
4600
4601 skl_ddb_get_hw_state(dev_priv, ddb);
4602 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4603 intel_crtc = to_intel_crtc(crtc);
4604 cstate = to_intel_crtc_state(crtc->state);
4605
4606 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4607
4608 if (intel_crtc->active)
4609 hw->dirty_pipes |= drm_crtc_mask(crtc);
4610 }
4611
4612 if (dev_priv->active_crtcs) {
4613 /* Fully recompute DDB on first atomic commit */
4614 dev_priv->wm.distrust_bios_wm = true;
4615 } else {
4616 /* Easy/common case; just sanitize DDB now if everything off */
4617 memset(ddb, 0, sizeof(*ddb));
4618 }
4619 }
4620
4621 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4622 {
4623 struct drm_device *dev = crtc->dev;
4624 struct drm_i915_private *dev_priv = to_i915(dev);
4625 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4627 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4628 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4629 enum pipe pipe = intel_crtc->pipe;
4630 static const i915_reg_t wm0_pipe_reg[] = {
4631 [PIPE_A] = WM0_PIPEA_ILK,
4632 [PIPE_B] = WM0_PIPEB_ILK,
4633 [PIPE_C] = WM0_PIPEC_IVB,
4634 };
4635
4636 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4637 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4638 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4639
4640 memset(active, 0, sizeof(*active));
4641
4642 active->pipe_enabled = intel_crtc->active;
4643
4644 if (active->pipe_enabled) {
4645 u32 tmp = hw->wm_pipe[pipe];
4646
4647 /*
4648 * For active pipes LP0 watermark is marked as
4649 * enabled, and LP1+ watermaks as disabled since
4650 * we can't really reverse compute them in case
4651 * multiple pipes are active.
4652 */
4653 active->wm[0].enable = true;
4654 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4655 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4656 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4657 active->linetime = hw->wm_linetime[pipe];
4658 } else {
4659 int level, max_level = ilk_wm_max_level(dev_priv);
4660
4661 /*
4662 * For inactive pipes, all watermark levels
4663 * should be marked as enabled but zeroed,
4664 * which is what we'd compute them to.
4665 */
4666 for (level = 0; level <= max_level; level++)
4667 active->wm[level].enable = true;
4668 }
4669
4670 intel_crtc->wm.active.ilk = *active;
4671 }
4672
4673 #define _FW_WM(value, plane) \
4674 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4675 #define _FW_WM_VLV(value, plane) \
4676 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4677
4678 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4679 struct vlv_wm_values *wm)
4680 {
4681 enum pipe pipe;
4682 uint32_t tmp;
4683
4684 for_each_pipe(dev_priv, pipe) {
4685 tmp = I915_READ(VLV_DDL(pipe));
4686
4687 wm->ddl[pipe].plane[PLANE_PRIMARY] =
4688 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4689 wm->ddl[pipe].plane[PLANE_CURSOR] =
4690 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4691 wm->ddl[pipe].plane[PLANE_SPRITE0] =
4692 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4693 wm->ddl[pipe].plane[PLANE_SPRITE1] =
4694 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4695 }
4696
4697 tmp = I915_READ(DSPFW1);
4698 wm->sr.plane = _FW_WM(tmp, SR);
4699 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
4700 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
4701 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4702
4703 tmp = I915_READ(DSPFW2);
4704 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
4705 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
4706 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4707
4708 tmp = I915_READ(DSPFW3);
4709 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4710
4711 if (IS_CHERRYVIEW(dev_priv)) {
4712 tmp = I915_READ(DSPFW7_CHV);
4713 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4714 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4715
4716 tmp = I915_READ(DSPFW8_CHV);
4717 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
4718 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4719
4720 tmp = I915_READ(DSPFW9_CHV);
4721 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
4722 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4723
4724 tmp = I915_READ(DSPHOWM);
4725 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4726 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4727 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4728 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
4729 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4730 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4731 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4732 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4733 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4734 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4735 } else {
4736 tmp = I915_READ(DSPFW7);
4737 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4738 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4739
4740 tmp = I915_READ(DSPHOWM);
4741 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4742 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4743 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4744 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4745 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4746 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4747 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4748 }
4749 }
4750
4751 #undef _FW_WM
4752 #undef _FW_WM_VLV
4753
4754 void vlv_wm_get_hw_state(struct drm_device *dev)
4755 {
4756 struct drm_i915_private *dev_priv = to_i915(dev);
4757 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4758 struct intel_crtc *crtc;
4759 u32 val;
4760
4761 vlv_read_wm_values(dev_priv, wm);
4762
4763 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4764 wm->level = VLV_WM_LEVEL_PM2;
4765
4766 if (IS_CHERRYVIEW(dev_priv)) {
4767 mutex_lock(&dev_priv->rps.hw_lock);
4768
4769 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4770 if (val & DSP_MAXFIFO_PM5_ENABLE)
4771 wm->level = VLV_WM_LEVEL_PM5;
4772
4773 /*
4774 * If DDR DVFS is disabled in the BIOS, Punit
4775 * will never ack the request. So if that happens
4776 * assume we don't have to enable/disable DDR DVFS
4777 * dynamically. To test that just set the REQ_ACK
4778 * bit to poke the Punit, but don't change the
4779 * HIGH/LOW bits so that we don't actually change
4780 * the current state.
4781 */
4782 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4783 val |= FORCE_DDR_FREQ_REQ_ACK;
4784 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4785
4786 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4787 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4788 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4789 "assuming DDR DVFS is disabled\n");
4790 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4791 } else {
4792 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4793 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4794 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4795 }
4796
4797 mutex_unlock(&dev_priv->rps.hw_lock);
4798 }
4799
4800 for_each_intel_crtc(dev, crtc) {
4801 struct intel_crtc_state *crtc_state =
4802 to_intel_crtc_state(crtc->base.state);
4803 struct vlv_wm_state *active = &crtc->wm.active.vlv;
4804 const struct vlv_fifo_state *fifo_state =
4805 &crtc_state->wm.vlv.fifo_state;
4806 enum pipe pipe = crtc->pipe;
4807 enum plane_id plane_id;
4808 int level;
4809
4810 vlv_get_fifo_size(crtc_state);
4811
4812 active->num_levels = wm->level + 1;
4813 active->cxsr = wm->cxsr;
4814
4815 for (level = 0; level < active->num_levels; level++) {
4816 struct vlv_pipe_wm *raw =
4817 &crtc_state->wm.vlv.raw[level];
4818
4819 active->sr[level].plane = wm->sr.plane;
4820 active->sr[level].cursor = wm->sr.cursor;
4821
4822 for_each_plane_id_on_crtc(crtc, plane_id) {
4823 active->wm[level].plane[plane_id] =
4824 wm->pipe[pipe].plane[plane_id];
4825
4826 raw->plane[plane_id] =
4827 vlv_invert_wm_value(active->wm[level].plane[plane_id],
4828 fifo_state->plane[plane_id]);
4829 }
4830 }
4831
4832 for_each_plane_id_on_crtc(crtc, plane_id)
4833 vlv_raw_plane_wm_set(crtc_state, level,
4834 plane_id, USHRT_MAX);
4835 vlv_invalidate_wms(crtc, active, level);
4836
4837 crtc_state->wm.vlv.optimal = *active;
4838 crtc_state->wm.vlv.intermediate = *active;
4839
4840 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4841 pipe_name(pipe),
4842 wm->pipe[pipe].plane[PLANE_PRIMARY],
4843 wm->pipe[pipe].plane[PLANE_CURSOR],
4844 wm->pipe[pipe].plane[PLANE_SPRITE0],
4845 wm->pipe[pipe].plane[PLANE_SPRITE1]);
4846 }
4847
4848 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4849 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4850 }
4851
4852 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
4853 {
4854 struct intel_plane *plane;
4855 struct intel_crtc *crtc;
4856
4857 mutex_lock(&dev_priv->wm.wm_mutex);
4858
4859 for_each_intel_plane(&dev_priv->drm, plane) {
4860 struct intel_crtc *crtc =
4861 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
4862 struct intel_crtc_state *crtc_state =
4863 to_intel_crtc_state(crtc->base.state);
4864 struct intel_plane_state *plane_state =
4865 to_intel_plane_state(plane->base.state);
4866 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
4867 const struct vlv_fifo_state *fifo_state =
4868 &crtc_state->wm.vlv.fifo_state;
4869 enum plane_id plane_id = plane->id;
4870 int level;
4871
4872 if (plane_state->base.visible)
4873 continue;
4874
4875 for (level = 0; level < wm_state->num_levels; level++) {
4876 struct vlv_pipe_wm *raw =
4877 &crtc_state->wm.vlv.raw[level];
4878
4879 raw->plane[plane_id] = 0;
4880
4881 wm_state->wm[level].plane[plane_id] =
4882 vlv_invert_wm_value(raw->plane[plane_id],
4883 fifo_state->plane[plane_id]);
4884 }
4885 }
4886
4887 for_each_intel_crtc(&dev_priv->drm, crtc) {
4888 struct intel_crtc_state *crtc_state =
4889 to_intel_crtc_state(crtc->base.state);
4890
4891 crtc_state->wm.vlv.intermediate =
4892 crtc_state->wm.vlv.optimal;
4893 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4894 }
4895
4896 vlv_program_watermarks(dev_priv);
4897
4898 mutex_unlock(&dev_priv->wm.wm_mutex);
4899 }
4900
4901 void ilk_wm_get_hw_state(struct drm_device *dev)
4902 {
4903 struct drm_i915_private *dev_priv = to_i915(dev);
4904 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4905 struct drm_crtc *crtc;
4906
4907 for_each_crtc(dev, crtc)
4908 ilk_pipe_wm_get_hw_state(crtc);
4909
4910 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4911 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4912 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4913
4914 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4915 if (INTEL_GEN(dev_priv) >= 7) {
4916 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4917 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4918 }
4919
4920 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4921 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4922 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4923 else if (IS_IVYBRIDGE(dev_priv))
4924 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4925 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4926
4927 hw->enable_fbc_wm =
4928 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4929 }
4930
4931 /**
4932 * intel_update_watermarks - update FIFO watermark values based on current modes
4933 *
4934 * Calculate watermark values for the various WM regs based on current mode
4935 * and plane configuration.
4936 *
4937 * There are several cases to deal with here:
4938 * - normal (i.e. non-self-refresh)
4939 * - self-refresh (SR) mode
4940 * - lines are large relative to FIFO size (buffer can hold up to 2)
4941 * - lines are small relative to FIFO size (buffer can hold more than 2
4942 * lines), so need to account for TLB latency
4943 *
4944 * The normal calculation is:
4945 * watermark = dotclock * bytes per pixel * latency
4946 * where latency is platform & configuration dependent (we assume pessimal
4947 * values here).
4948 *
4949 * The SR calculation is:
4950 * watermark = (trunc(latency/line time)+1) * surface width *
4951 * bytes per pixel
4952 * where
4953 * line time = htotal / dotclock
4954 * surface width = hdisplay for normal plane and 64 for cursor
4955 * and latency is assumed to be high, as above.
4956 *
4957 * The final value programmed to the register should always be rounded up,
4958 * and include an extra 2 entries to account for clock crossings.
4959 *
4960 * We don't use the sprite, so we can ignore that. And on Crestline we have
4961 * to set the non-SR watermarks to 8.
4962 */
4963 void intel_update_watermarks(struct intel_crtc *crtc)
4964 {
4965 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4966
4967 if (dev_priv->display.update_wm)
4968 dev_priv->display.update_wm(crtc);
4969 }
4970
4971 /*
4972 * Lock protecting IPS related data structures
4973 */
4974 DEFINE_SPINLOCK(mchdev_lock);
4975
4976 /* Global for IPS driver to get at the current i915 device. Protected by
4977 * mchdev_lock. */
4978 static struct drm_i915_private *i915_mch_dev;
4979
4980 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4981 {
4982 u16 rgvswctl;
4983
4984 lockdep_assert_held(&mchdev_lock);
4985
4986 rgvswctl = I915_READ16(MEMSWCTL);
4987 if (rgvswctl & MEMCTL_CMD_STS) {
4988 DRM_DEBUG("gpu busy, RCS change rejected\n");
4989 return false; /* still busy with another command */
4990 }
4991
4992 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4993 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4994 I915_WRITE16(MEMSWCTL, rgvswctl);
4995 POSTING_READ16(MEMSWCTL);
4996
4997 rgvswctl |= MEMCTL_CMD_STS;
4998 I915_WRITE16(MEMSWCTL, rgvswctl);
4999
5000 return true;
5001 }
5002
5003 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5004 {
5005 u32 rgvmodectl;
5006 u8 fmax, fmin, fstart, vstart;
5007
5008 spin_lock_irq(&mchdev_lock);
5009
5010 rgvmodectl = I915_READ(MEMMODECTL);
5011
5012 /* Enable temp reporting */
5013 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5014 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5015
5016 /* 100ms RC evaluation intervals */
5017 I915_WRITE(RCUPEI, 100000);
5018 I915_WRITE(RCDNEI, 100000);
5019
5020 /* Set max/min thresholds to 90ms and 80ms respectively */
5021 I915_WRITE(RCBMAXAVG, 90000);
5022 I915_WRITE(RCBMINAVG, 80000);
5023
5024 I915_WRITE(MEMIHYST, 1);
5025
5026 /* Set up min, max, and cur for interrupt handling */
5027 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5028 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5029 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5030 MEMMODE_FSTART_SHIFT;
5031
5032 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5033 PXVFREQ_PX_SHIFT;
5034
5035 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5036 dev_priv->ips.fstart = fstart;
5037
5038 dev_priv->ips.max_delay = fstart;
5039 dev_priv->ips.min_delay = fmin;
5040 dev_priv->ips.cur_delay = fstart;
5041
5042 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5043 fmax, fmin, fstart);
5044
5045 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5046
5047 /*
5048 * Interrupts will be enabled in ironlake_irq_postinstall
5049 */
5050
5051 I915_WRITE(VIDSTART, vstart);
5052 POSTING_READ(VIDSTART);
5053
5054 rgvmodectl |= MEMMODE_SWMODE_EN;
5055 I915_WRITE(MEMMODECTL, rgvmodectl);
5056
5057 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5058 DRM_ERROR("stuck trying to change perf mode\n");
5059 mdelay(1);
5060
5061 ironlake_set_drps(dev_priv, fstart);
5062
5063 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5064 I915_READ(DDREC) + I915_READ(CSIEC);
5065 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5066 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5067 dev_priv->ips.last_time2 = ktime_get_raw_ns();
5068
5069 spin_unlock_irq(&mchdev_lock);
5070 }
5071
5072 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5073 {
5074 u16 rgvswctl;
5075
5076 spin_lock_irq(&mchdev_lock);
5077
5078 rgvswctl = I915_READ16(MEMSWCTL);
5079
5080 /* Ack interrupts, disable EFC interrupt */
5081 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5082 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5083 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5084 I915_WRITE(DEIIR, DE_PCU_EVENT);
5085 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5086
5087 /* Go back to the starting frequency */
5088 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5089 mdelay(1);
5090 rgvswctl |= MEMCTL_CMD_STS;
5091 I915_WRITE(MEMSWCTL, rgvswctl);
5092 mdelay(1);
5093
5094 spin_unlock_irq(&mchdev_lock);
5095 }
5096
5097 /* There's a funny hw issue where the hw returns all 0 when reading from
5098 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5099 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5100 * all limits and the gpu stuck at whatever frequency it is at atm).
5101 */
5102 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5103 {
5104 u32 limits;
5105
5106 /* Only set the down limit when we've reached the lowest level to avoid
5107 * getting more interrupts, otherwise leave this clear. This prevents a
5108 * race in the hw when coming out of rc6: There's a tiny window where
5109 * the hw runs at the minimal clock before selecting the desired
5110 * frequency, if the down threshold expires in that window we will not
5111 * receive a down interrupt. */
5112 if (IS_GEN9(dev_priv)) {
5113 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5114 if (val <= dev_priv->rps.min_freq_softlimit)
5115 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5116 } else {
5117 limits = dev_priv->rps.max_freq_softlimit << 24;
5118 if (val <= dev_priv->rps.min_freq_softlimit)
5119 limits |= dev_priv->rps.min_freq_softlimit << 16;
5120 }
5121
5122 return limits;
5123 }
5124
5125 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5126 {
5127 int new_power;
5128 u32 threshold_up = 0, threshold_down = 0; /* in % */
5129 u32 ei_up = 0, ei_down = 0;
5130
5131 new_power = dev_priv->rps.power;
5132 switch (dev_priv->rps.power) {
5133 case LOW_POWER:
5134 if (val > dev_priv->rps.efficient_freq + 1 &&
5135 val > dev_priv->rps.cur_freq)
5136 new_power = BETWEEN;
5137 break;
5138
5139 case BETWEEN:
5140 if (val <= dev_priv->rps.efficient_freq &&
5141 val < dev_priv->rps.cur_freq)
5142 new_power = LOW_POWER;
5143 else if (val >= dev_priv->rps.rp0_freq &&
5144 val > dev_priv->rps.cur_freq)
5145 new_power = HIGH_POWER;
5146 break;
5147
5148 case HIGH_POWER:
5149 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5150 val < dev_priv->rps.cur_freq)
5151 new_power = BETWEEN;
5152 break;
5153 }
5154 /* Max/min bins are special */
5155 if (val <= dev_priv->rps.min_freq_softlimit)
5156 new_power = LOW_POWER;
5157 if (val >= dev_priv->rps.max_freq_softlimit)
5158 new_power = HIGH_POWER;
5159 if (new_power == dev_priv->rps.power)
5160 return;
5161
5162 /* Note the units here are not exactly 1us, but 1280ns. */
5163 switch (new_power) {
5164 case LOW_POWER:
5165 /* Upclock if more than 95% busy over 16ms */
5166 ei_up = 16000;
5167 threshold_up = 95;
5168
5169 /* Downclock if less than 85% busy over 32ms */
5170 ei_down = 32000;
5171 threshold_down = 85;
5172 break;
5173
5174 case BETWEEN:
5175 /* Upclock if more than 90% busy over 13ms */
5176 ei_up = 13000;
5177 threshold_up = 90;
5178
5179 /* Downclock if less than 75% busy over 32ms */
5180 ei_down = 32000;
5181 threshold_down = 75;
5182 break;
5183
5184 case HIGH_POWER:
5185 /* Upclock if more than 85% busy over 10ms */
5186 ei_up = 10000;
5187 threshold_up = 85;
5188
5189 /* Downclock if less than 60% busy over 32ms */
5190 ei_down = 32000;
5191 threshold_down = 60;
5192 break;
5193 }
5194
5195 /* When byt can survive without system hang with dynamic
5196 * sw freq adjustments, this restriction can be lifted.
5197 */
5198 if (IS_VALLEYVIEW(dev_priv))
5199 goto skip_hw_write;
5200
5201 I915_WRITE(GEN6_RP_UP_EI,
5202 GT_INTERVAL_FROM_US(dev_priv, ei_up));
5203 I915_WRITE(GEN6_RP_UP_THRESHOLD,
5204 GT_INTERVAL_FROM_US(dev_priv,
5205 ei_up * threshold_up / 100));
5206
5207 I915_WRITE(GEN6_RP_DOWN_EI,
5208 GT_INTERVAL_FROM_US(dev_priv, ei_down));
5209 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5210 GT_INTERVAL_FROM_US(dev_priv,
5211 ei_down * threshold_down / 100));
5212
5213 I915_WRITE(GEN6_RP_CONTROL,
5214 GEN6_RP_MEDIA_TURBO |
5215 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5216 GEN6_RP_MEDIA_IS_GFX |
5217 GEN6_RP_ENABLE |
5218 GEN6_RP_UP_BUSY_AVG |
5219 GEN6_RP_DOWN_IDLE_AVG);
5220
5221 skip_hw_write:
5222 dev_priv->rps.power = new_power;
5223 dev_priv->rps.up_threshold = threshold_up;
5224 dev_priv->rps.down_threshold = threshold_down;
5225 dev_priv->rps.last_adj = 0;
5226 }
5227
5228 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5229 {
5230 u32 mask = 0;
5231
5232 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5233 if (val > dev_priv->rps.min_freq_softlimit)
5234 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5235 if (val < dev_priv->rps.max_freq_softlimit)
5236 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5237
5238 mask &= dev_priv->pm_rps_events;
5239
5240 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5241 }
5242
5243 /* gen6_set_rps is called to update the frequency request, but should also be
5244 * called when the range (min_delay and max_delay) is modified so that we can
5245 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5246 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5247 {
5248 /* min/max delay may still have been modified so be sure to
5249 * write the limits value.
5250 */
5251 if (val != dev_priv->rps.cur_freq) {
5252 gen6_set_rps_thresholds(dev_priv, val);
5253
5254 if (IS_GEN9(dev_priv))
5255 I915_WRITE(GEN6_RPNSWREQ,
5256 GEN9_FREQUENCY(val));
5257 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5258 I915_WRITE(GEN6_RPNSWREQ,
5259 HSW_FREQUENCY(val));
5260 else
5261 I915_WRITE(GEN6_RPNSWREQ,
5262 GEN6_FREQUENCY(val) |
5263 GEN6_OFFSET(0) |
5264 GEN6_AGGRESSIVE_TURBO);
5265 }
5266
5267 /* Make sure we continue to get interrupts
5268 * until we hit the minimum or maximum frequencies.
5269 */
5270 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5271 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5272
5273 dev_priv->rps.cur_freq = val;
5274 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5275
5276 return 0;
5277 }
5278
5279 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5280 {
5281 int err;
5282
5283 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5284 "Odd GPU freq value\n"))
5285 val &= ~1;
5286
5287 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5288
5289 if (val != dev_priv->rps.cur_freq) {
5290 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5291 if (err)
5292 return err;
5293
5294 gen6_set_rps_thresholds(dev_priv, val);
5295 }
5296
5297 dev_priv->rps.cur_freq = val;
5298 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5299
5300 return 0;
5301 }
5302
5303 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5304 *
5305 * * If Gfx is Idle, then
5306 * 1. Forcewake Media well.
5307 * 2. Request idle freq.
5308 * 3. Release Forcewake of Media well.
5309 */
5310 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5311 {
5312 u32 val = dev_priv->rps.idle_freq;
5313 int err;
5314
5315 if (dev_priv->rps.cur_freq <= val)
5316 return;
5317
5318 /* The punit delays the write of the frequency and voltage until it
5319 * determines the GPU is awake. During normal usage we don't want to
5320 * waste power changing the frequency if the GPU is sleeping (rc6).
5321 * However, the GPU and driver is now idle and we do not want to delay
5322 * switching to minimum voltage (reducing power whilst idle) as we do
5323 * not expect to be woken in the near future and so must flush the
5324 * change by waking the device.
5325 *
5326 * We choose to take the media powerwell (either would do to trick the
5327 * punit into committing the voltage change) as that takes a lot less
5328 * power than the render powerwell.
5329 */
5330 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5331 err = valleyview_set_rps(dev_priv, val);
5332 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5333
5334 if (err)
5335 DRM_ERROR("Failed to set RPS for idle\n");
5336 }
5337
5338 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5339 {
5340 mutex_lock(&dev_priv->rps.hw_lock);
5341 if (dev_priv->rps.enabled) {
5342 u8 freq;
5343
5344 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5345 gen6_rps_reset_ei(dev_priv);
5346 I915_WRITE(GEN6_PMINTRMSK,
5347 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5348
5349 gen6_enable_rps_interrupts(dev_priv);
5350
5351 /* Use the user's desired frequency as a guide, but for better
5352 * performance, jump directly to RPe as our starting frequency.
5353 */
5354 freq = max(dev_priv->rps.cur_freq,
5355 dev_priv->rps.efficient_freq);
5356
5357 if (intel_set_rps(dev_priv,
5358 clamp(freq,
5359 dev_priv->rps.min_freq_softlimit,
5360 dev_priv->rps.max_freq_softlimit)))
5361 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5362 }
5363 mutex_unlock(&dev_priv->rps.hw_lock);
5364 }
5365
5366 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5367 {
5368 /* Flush our bottom-half so that it does not race with us
5369 * setting the idle frequency and so that it is bounded by
5370 * our rpm wakeref. And then disable the interrupts to stop any
5371 * futher RPS reclocking whilst we are asleep.
5372 */
5373 gen6_disable_rps_interrupts(dev_priv);
5374
5375 mutex_lock(&dev_priv->rps.hw_lock);
5376 if (dev_priv->rps.enabled) {
5377 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5378 vlv_set_rps_idle(dev_priv);
5379 else
5380 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5381 dev_priv->rps.last_adj = 0;
5382 I915_WRITE(GEN6_PMINTRMSK,
5383 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5384 }
5385 mutex_unlock(&dev_priv->rps.hw_lock);
5386
5387 spin_lock(&dev_priv->rps.client_lock);
5388 while (!list_empty(&dev_priv->rps.clients))
5389 list_del_init(dev_priv->rps.clients.next);
5390 spin_unlock(&dev_priv->rps.client_lock);
5391 }
5392
5393 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5394 struct intel_rps_client *rps,
5395 unsigned long submitted)
5396 {
5397 /* This is intentionally racy! We peek at the state here, then
5398 * validate inside the RPS worker.
5399 */
5400 if (!(dev_priv->gt.awake &&
5401 dev_priv->rps.enabled &&
5402 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5403 return;
5404
5405 /* Force a RPS boost (and don't count it against the client) if
5406 * the GPU is severely congested.
5407 */
5408 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5409 rps = NULL;
5410
5411 spin_lock(&dev_priv->rps.client_lock);
5412 if (rps == NULL || list_empty(&rps->link)) {
5413 spin_lock_irq(&dev_priv->irq_lock);
5414 if (dev_priv->rps.interrupts_enabled) {
5415 dev_priv->rps.client_boost = true;
5416 schedule_work(&dev_priv->rps.work);
5417 }
5418 spin_unlock_irq(&dev_priv->irq_lock);
5419
5420 if (rps != NULL) {
5421 list_add(&rps->link, &dev_priv->rps.clients);
5422 rps->boosts++;
5423 } else
5424 dev_priv->rps.boosts++;
5425 }
5426 spin_unlock(&dev_priv->rps.client_lock);
5427 }
5428
5429 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5430 {
5431 int err;
5432
5433 lockdep_assert_held(&dev_priv->rps.hw_lock);
5434 GEM_BUG_ON(val > dev_priv->rps.max_freq);
5435 GEM_BUG_ON(val < dev_priv->rps.min_freq);
5436
5437 if (!dev_priv->rps.enabled) {
5438 dev_priv->rps.cur_freq = val;
5439 return 0;
5440 }
5441
5442 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5443 err = valleyview_set_rps(dev_priv, val);
5444 else
5445 err = gen6_set_rps(dev_priv, val);
5446
5447 return err;
5448 }
5449
5450 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5451 {
5452 I915_WRITE(GEN6_RC_CONTROL, 0);
5453 I915_WRITE(GEN9_PG_ENABLE, 0);
5454 }
5455
5456 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5457 {
5458 I915_WRITE(GEN6_RP_CONTROL, 0);
5459 }
5460
5461 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5462 {
5463 I915_WRITE(GEN6_RC_CONTROL, 0);
5464 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5465 I915_WRITE(GEN6_RP_CONTROL, 0);
5466 }
5467
5468 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5469 {
5470 I915_WRITE(GEN6_RC_CONTROL, 0);
5471 }
5472
5473 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5474 {
5475 /* we're doing forcewake before Disabling RC6,
5476 * This what the BIOS expects when going into suspend */
5477 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5478
5479 I915_WRITE(GEN6_RC_CONTROL, 0);
5480
5481 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5482 }
5483
5484 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5485 {
5486 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5487 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5488 mode = GEN6_RC_CTL_RC6_ENABLE;
5489 else
5490 mode = 0;
5491 }
5492 if (HAS_RC6p(dev_priv))
5493 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5494 "RC6 %s RC6p %s RC6pp %s\n",
5495 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5496 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5497 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5498
5499 else
5500 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5501 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5502 }
5503
5504 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5505 {
5506 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5507 bool enable_rc6 = true;
5508 unsigned long rc6_ctx_base;
5509 u32 rc_ctl;
5510 int rc_sw_target;
5511
5512 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5513 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5514 RC_SW_TARGET_STATE_SHIFT;
5515 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5516 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5517 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5518 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5519 rc_sw_target);
5520
5521 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5522 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5523 enable_rc6 = false;
5524 }
5525
5526 /*
5527 * The exact context size is not known for BXT, so assume a page size
5528 * for this check.
5529 */
5530 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5531 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5532 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5533 ggtt->stolen_reserved_size))) {
5534 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5535 enable_rc6 = false;
5536 }
5537
5538 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5539 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5540 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5541 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5542 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5543 enable_rc6 = false;
5544 }
5545
5546 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5547 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5548 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5549 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5550 enable_rc6 = false;
5551 }
5552
5553 if (!I915_READ(GEN6_GFXPAUSE)) {
5554 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5555 enable_rc6 = false;
5556 }
5557
5558 if (!I915_READ(GEN8_MISC_CTRL0)) {
5559 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5560 enable_rc6 = false;
5561 }
5562
5563 return enable_rc6;
5564 }
5565
5566 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5567 {
5568 /* No RC6 before Ironlake and code is gone for ilk. */
5569 if (INTEL_INFO(dev_priv)->gen < 6)
5570 return 0;
5571
5572 if (!enable_rc6)
5573 return 0;
5574
5575 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5576 DRM_INFO("RC6 disabled by BIOS\n");
5577 return 0;
5578 }
5579
5580 /* Respect the kernel parameter if it is set */
5581 if (enable_rc6 >= 0) {
5582 int mask;
5583
5584 if (HAS_RC6p(dev_priv))
5585 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5586 INTEL_RC6pp_ENABLE;
5587 else
5588 mask = INTEL_RC6_ENABLE;
5589
5590 if ((enable_rc6 & mask) != enable_rc6)
5591 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5592 "(requested %d, valid %d)\n",
5593 enable_rc6 & mask, enable_rc6, mask);
5594
5595 return enable_rc6 & mask;
5596 }
5597
5598 if (IS_IVYBRIDGE(dev_priv))
5599 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5600
5601 return INTEL_RC6_ENABLE;
5602 }
5603
5604 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5605 {
5606 /* All of these values are in units of 50MHz */
5607
5608 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5609 if (IS_GEN9_LP(dev_priv)) {
5610 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5611 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5612 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5613 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5614 } else {
5615 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5616 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5617 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5618 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5619 }
5620 /* hw_max = RP0 until we check for overclocking */
5621 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5622
5623 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5624 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5625 IS_GEN9_BC(dev_priv)) {
5626 u32 ddcc_status = 0;
5627
5628 if (sandybridge_pcode_read(dev_priv,
5629 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5630 &ddcc_status) == 0)
5631 dev_priv->rps.efficient_freq =
5632 clamp_t(u8,
5633 ((ddcc_status >> 8) & 0xff),
5634 dev_priv->rps.min_freq,
5635 dev_priv->rps.max_freq);
5636 }
5637
5638 if (IS_GEN9_BC(dev_priv)) {
5639 /* Store the frequency values in 16.66 MHZ units, which is
5640 * the natural hardware unit for SKL
5641 */
5642 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5643 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5644 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5645 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5646 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5647 }
5648 }
5649
5650 static void reset_rps(struct drm_i915_private *dev_priv,
5651 int (*set)(struct drm_i915_private *, u8))
5652 {
5653 u8 freq = dev_priv->rps.cur_freq;
5654
5655 /* force a reset */
5656 dev_priv->rps.power = -1;
5657 dev_priv->rps.cur_freq = -1;
5658
5659 if (set(dev_priv, freq))
5660 DRM_ERROR("Failed to reset RPS to initial values\n");
5661 }
5662
5663 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5664 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5665 {
5666 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5667
5668 /* Program defaults and thresholds for RPS*/
5669 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5670 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5671
5672 /* 1 second timeout*/
5673 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5674 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5675
5676 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5677
5678 /* Leaning on the below call to gen6_set_rps to program/setup the
5679 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5680 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5681 reset_rps(dev_priv, gen6_set_rps);
5682
5683 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5684 }
5685
5686 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5687 {
5688 struct intel_engine_cs *engine;
5689 enum intel_engine_id id;
5690 uint32_t rc6_mask = 0;
5691
5692 /* 1a: Software RC state - RC0 */
5693 I915_WRITE(GEN6_RC_STATE, 0);
5694
5695 /* 1b: Get forcewake during program sequence. Although the driver
5696 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5697 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5698
5699 /* 2a: Disable RC states. */
5700 I915_WRITE(GEN6_RC_CONTROL, 0);
5701
5702 /* 2b: Program RC6 thresholds.*/
5703
5704 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5705 if (IS_SKYLAKE(dev_priv))
5706 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5707 else
5708 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5709 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5710 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5711 for_each_engine(engine, dev_priv, id)
5712 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5713
5714 if (HAS_GUC(dev_priv))
5715 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5716
5717 I915_WRITE(GEN6_RC_SLEEP, 0);
5718
5719 /* 2c: Program Coarse Power Gating Policies. */
5720 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5721 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5722
5723 /* 3a: Enable RC6 */
5724 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5725 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5726 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5727 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5728 I915_WRITE(GEN6_RC_CONTROL,
5729 GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
5730
5731 /*
5732 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5733 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5734 */
5735 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5736 I915_WRITE(GEN9_PG_ENABLE, 0);
5737 else
5738 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5739 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5740
5741 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5742 }
5743
5744 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5745 {
5746 struct intel_engine_cs *engine;
5747 enum intel_engine_id id;
5748 uint32_t rc6_mask = 0;
5749
5750 /* 1a: Software RC state - RC0 */
5751 I915_WRITE(GEN6_RC_STATE, 0);
5752
5753 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5754 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5755 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5756
5757 /* 2a: Disable RC states. */
5758 I915_WRITE(GEN6_RC_CONTROL, 0);
5759
5760 /* 2b: Program RC6 thresholds.*/
5761 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5762 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5763 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5764 for_each_engine(engine, dev_priv, id)
5765 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5766 I915_WRITE(GEN6_RC_SLEEP, 0);
5767 if (IS_BROADWELL(dev_priv))
5768 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5769 else
5770 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5771
5772 /* 3: Enable RC6 */
5773 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5774 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5775 intel_print_rc6_info(dev_priv, rc6_mask);
5776 if (IS_BROADWELL(dev_priv))
5777 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5778 GEN7_RC_CTL_TO_MODE |
5779 rc6_mask);
5780 else
5781 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5782 GEN6_RC_CTL_EI_MODE(1) |
5783 rc6_mask);
5784
5785 /* 4 Program defaults and thresholds for RPS*/
5786 I915_WRITE(GEN6_RPNSWREQ,
5787 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5788 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5789 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5790 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5791 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5792
5793 /* Docs recommend 900MHz, and 300 MHz respectively */
5794 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5795 dev_priv->rps.max_freq_softlimit << 24 |
5796 dev_priv->rps.min_freq_softlimit << 16);
5797
5798 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5799 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5800 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5801 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5802
5803 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5804
5805 /* 5: Enable RPS */
5806 I915_WRITE(GEN6_RP_CONTROL,
5807 GEN6_RP_MEDIA_TURBO |
5808 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5809 GEN6_RP_MEDIA_IS_GFX |
5810 GEN6_RP_ENABLE |
5811 GEN6_RP_UP_BUSY_AVG |
5812 GEN6_RP_DOWN_IDLE_AVG);
5813
5814 /* 6: Ring frequency + overclocking (our driver does this later */
5815
5816 reset_rps(dev_priv, gen6_set_rps);
5817
5818 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5819 }
5820
5821 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5822 {
5823 struct intel_engine_cs *engine;
5824 enum intel_engine_id id;
5825 u32 rc6vids, rc6_mask = 0;
5826 u32 gtfifodbg;
5827 int rc6_mode;
5828 int ret;
5829
5830 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5831
5832 /* Here begins a magic sequence of register writes to enable
5833 * auto-downclocking.
5834 *
5835 * Perhaps there might be some value in exposing these to
5836 * userspace...
5837 */
5838 I915_WRITE(GEN6_RC_STATE, 0);
5839
5840 /* Clear the DBG now so we don't confuse earlier errors */
5841 gtfifodbg = I915_READ(GTFIFODBG);
5842 if (gtfifodbg) {
5843 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5844 I915_WRITE(GTFIFODBG, gtfifodbg);
5845 }
5846
5847 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5848
5849 /* disable the counters and set deterministic thresholds */
5850 I915_WRITE(GEN6_RC_CONTROL, 0);
5851
5852 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5853 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5854 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5855 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5856 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5857
5858 for_each_engine(engine, dev_priv, id)
5859 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5860
5861 I915_WRITE(GEN6_RC_SLEEP, 0);
5862 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5863 if (IS_IVYBRIDGE(dev_priv))
5864 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5865 else
5866 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5867 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5868 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5869
5870 /* Check if we are enabling RC6 */
5871 rc6_mode = intel_enable_rc6();
5872 if (rc6_mode & INTEL_RC6_ENABLE)
5873 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5874
5875 /* We don't use those on Haswell */
5876 if (!IS_HASWELL(dev_priv)) {
5877 if (rc6_mode & INTEL_RC6p_ENABLE)
5878 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5879
5880 if (rc6_mode & INTEL_RC6pp_ENABLE)
5881 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5882 }
5883
5884 intel_print_rc6_info(dev_priv, rc6_mask);
5885
5886 I915_WRITE(GEN6_RC_CONTROL,
5887 rc6_mask |
5888 GEN6_RC_CTL_EI_MODE(1) |
5889 GEN6_RC_CTL_HW_ENABLE);
5890
5891 /* Power down if completely idle for over 50ms */
5892 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5893 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5894
5895 reset_rps(dev_priv, gen6_set_rps);
5896
5897 rc6vids = 0;
5898 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5899 if (IS_GEN6(dev_priv) && ret) {
5900 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5901 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5902 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5903 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5904 rc6vids &= 0xffff00;
5905 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5906 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5907 if (ret)
5908 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5909 }
5910
5911 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5912 }
5913
5914 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5915 {
5916 int min_freq = 15;
5917 unsigned int gpu_freq;
5918 unsigned int max_ia_freq, min_ring_freq;
5919 unsigned int max_gpu_freq, min_gpu_freq;
5920 int scaling_factor = 180;
5921 struct cpufreq_policy *policy;
5922
5923 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5924
5925 policy = cpufreq_cpu_get(0);
5926 if (policy) {
5927 max_ia_freq = policy->cpuinfo.max_freq;
5928 cpufreq_cpu_put(policy);
5929 } else {
5930 /*
5931 * Default to measured freq if none found, PCU will ensure we
5932 * don't go over
5933 */
5934 max_ia_freq = tsc_khz;
5935 }
5936
5937 /* Convert from kHz to MHz */
5938 max_ia_freq /= 1000;
5939
5940 min_ring_freq = I915_READ(DCLK) & 0xf;
5941 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5942 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5943
5944 if (IS_GEN9_BC(dev_priv)) {
5945 /* Convert GT frequency to 50 HZ units */
5946 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5947 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5948 } else {
5949 min_gpu_freq = dev_priv->rps.min_freq;
5950 max_gpu_freq = dev_priv->rps.max_freq;
5951 }
5952
5953 /*
5954 * For each potential GPU frequency, load a ring frequency we'd like
5955 * to use for memory access. We do this by specifying the IA frequency
5956 * the PCU should use as a reference to determine the ring frequency.
5957 */
5958 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5959 int diff = max_gpu_freq - gpu_freq;
5960 unsigned int ia_freq = 0, ring_freq = 0;
5961
5962 if (IS_GEN9_BC(dev_priv)) {
5963 /*
5964 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5965 * No floor required for ring frequency on SKL.
5966 */
5967 ring_freq = gpu_freq;
5968 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5969 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5970 ring_freq = max(min_ring_freq, gpu_freq);
5971 } else if (IS_HASWELL(dev_priv)) {
5972 ring_freq = mult_frac(gpu_freq, 5, 4);
5973 ring_freq = max(min_ring_freq, ring_freq);
5974 /* leave ia_freq as the default, chosen by cpufreq */
5975 } else {
5976 /* On older processors, there is no separate ring
5977 * clock domain, so in order to boost the bandwidth
5978 * of the ring, we need to upclock the CPU (ia_freq).
5979 *
5980 * For GPU frequencies less than 750MHz,
5981 * just use the lowest ring freq.
5982 */
5983 if (gpu_freq < min_freq)
5984 ia_freq = 800;
5985 else
5986 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5987 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5988 }
5989
5990 sandybridge_pcode_write(dev_priv,
5991 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5992 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5993 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5994 gpu_freq);
5995 }
5996 }
5997
5998 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5999 {
6000 u32 val, rp0;
6001
6002 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6003
6004 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6005 case 8:
6006 /* (2 * 4) config */
6007 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6008 break;
6009 case 12:
6010 /* (2 * 6) config */
6011 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6012 break;
6013 case 16:
6014 /* (2 * 8) config */
6015 default:
6016 /* Setting (2 * 8) Min RP0 for any other combination */
6017 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6018 break;
6019 }
6020
6021 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6022
6023 return rp0;
6024 }
6025
6026 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6027 {
6028 u32 val, rpe;
6029
6030 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6031 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6032
6033 return rpe;
6034 }
6035
6036 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6037 {
6038 u32 val, rp1;
6039
6040 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6041 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6042
6043 return rp1;
6044 }
6045
6046 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6047 {
6048 u32 val, rpn;
6049
6050 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6051 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6052 FB_GFX_FREQ_FUSE_MASK);
6053
6054 return rpn;
6055 }
6056
6057 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6058 {
6059 u32 val, rp1;
6060
6061 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6062
6063 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6064
6065 return rp1;
6066 }
6067
6068 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6069 {
6070 u32 val, rp0;
6071
6072 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6073
6074 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6075 /* Clamp to max */
6076 rp0 = min_t(u32, rp0, 0xea);
6077
6078 return rp0;
6079 }
6080
6081 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6082 {
6083 u32 val, rpe;
6084
6085 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6086 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6087 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6088 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6089
6090 return rpe;
6091 }
6092
6093 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6094 {
6095 u32 val;
6096
6097 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6098 /*
6099 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6100 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6101 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6102 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6103 * to make sure it matches what Punit accepts.
6104 */
6105 return max_t(u32, val, 0xc0);
6106 }
6107
6108 /* Check that the pctx buffer wasn't move under us. */
6109 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6110 {
6111 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6112
6113 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6114 dev_priv->vlv_pctx->stolen->start);
6115 }
6116
6117
6118 /* Check that the pcbr address is not empty. */
6119 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6120 {
6121 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6122
6123 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6124 }
6125
6126 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6127 {
6128 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6129 unsigned long pctx_paddr, paddr;
6130 u32 pcbr;
6131 int pctx_size = 32*1024;
6132
6133 pcbr = I915_READ(VLV_PCBR);
6134 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6135 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6136 paddr = (dev_priv->mm.stolen_base +
6137 (ggtt->stolen_size - pctx_size));
6138
6139 pctx_paddr = (paddr & (~4095));
6140 I915_WRITE(VLV_PCBR, pctx_paddr);
6141 }
6142
6143 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6144 }
6145
6146 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6147 {
6148 struct drm_i915_gem_object *pctx;
6149 unsigned long pctx_paddr;
6150 u32 pcbr;
6151 int pctx_size = 24*1024;
6152
6153 pcbr = I915_READ(VLV_PCBR);
6154 if (pcbr) {
6155 /* BIOS set it up already, grab the pre-alloc'd space */
6156 int pcbr_offset;
6157
6158 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6159 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6160 pcbr_offset,
6161 I915_GTT_OFFSET_NONE,
6162 pctx_size);
6163 goto out;
6164 }
6165
6166 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6167
6168 /*
6169 * From the Gunit register HAS:
6170 * The Gfx driver is expected to program this register and ensure
6171 * proper allocation within Gfx stolen memory. For example, this
6172 * register should be programmed such than the PCBR range does not
6173 * overlap with other ranges, such as the frame buffer, protected
6174 * memory, or any other relevant ranges.
6175 */
6176 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6177 if (!pctx) {
6178 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6179 goto out;
6180 }
6181
6182 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6183 I915_WRITE(VLV_PCBR, pctx_paddr);
6184
6185 out:
6186 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6187 dev_priv->vlv_pctx = pctx;
6188 }
6189
6190 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6191 {
6192 if (WARN_ON(!dev_priv->vlv_pctx))
6193 return;
6194
6195 i915_gem_object_put(dev_priv->vlv_pctx);
6196 dev_priv->vlv_pctx = NULL;
6197 }
6198
6199 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6200 {
6201 dev_priv->rps.gpll_ref_freq =
6202 vlv_get_cck_clock(dev_priv, "GPLL ref",
6203 CCK_GPLL_CLOCK_CONTROL,
6204 dev_priv->czclk_freq);
6205
6206 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6207 dev_priv->rps.gpll_ref_freq);
6208 }
6209
6210 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6211 {
6212 u32 val;
6213
6214 valleyview_setup_pctx(dev_priv);
6215
6216 vlv_init_gpll_ref_freq(dev_priv);
6217
6218 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6219 switch ((val >> 6) & 3) {
6220 case 0:
6221 case 1:
6222 dev_priv->mem_freq = 800;
6223 break;
6224 case 2:
6225 dev_priv->mem_freq = 1066;
6226 break;
6227 case 3:
6228 dev_priv->mem_freq = 1333;
6229 break;
6230 }
6231 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6232
6233 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6234 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6235 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6236 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6237 dev_priv->rps.max_freq);
6238
6239 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6240 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6241 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6242 dev_priv->rps.efficient_freq);
6243
6244 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6245 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6246 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6247 dev_priv->rps.rp1_freq);
6248
6249 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6250 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6251 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6252 dev_priv->rps.min_freq);
6253 }
6254
6255 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6256 {
6257 u32 val;
6258
6259 cherryview_setup_pctx(dev_priv);
6260
6261 vlv_init_gpll_ref_freq(dev_priv);
6262
6263 mutex_lock(&dev_priv->sb_lock);
6264 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6265 mutex_unlock(&dev_priv->sb_lock);
6266
6267 switch ((val >> 2) & 0x7) {
6268 case 3:
6269 dev_priv->mem_freq = 2000;
6270 break;
6271 default:
6272 dev_priv->mem_freq = 1600;
6273 break;
6274 }
6275 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6276
6277 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
6278 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6279 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6280 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6281 dev_priv->rps.max_freq);
6282
6283 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
6284 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6285 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6286 dev_priv->rps.efficient_freq);
6287
6288 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
6289 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6290 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6291 dev_priv->rps.rp1_freq);
6292
6293 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6294 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6295 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6296 dev_priv->rps.min_freq);
6297
6298 WARN_ONCE((dev_priv->rps.max_freq |
6299 dev_priv->rps.efficient_freq |
6300 dev_priv->rps.rp1_freq |
6301 dev_priv->rps.min_freq) & 1,
6302 "Odd GPU freq values\n");
6303 }
6304
6305 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6306 {
6307 valleyview_cleanup_pctx(dev_priv);
6308 }
6309
6310 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6311 {
6312 struct intel_engine_cs *engine;
6313 enum intel_engine_id id;
6314 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6315
6316 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6317
6318 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6319 GT_FIFO_FREE_ENTRIES_CHV);
6320 if (gtfifodbg) {
6321 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6322 gtfifodbg);
6323 I915_WRITE(GTFIFODBG, gtfifodbg);
6324 }
6325
6326 cherryview_check_pctx(dev_priv);
6327
6328 /* 1a & 1b: Get forcewake during program sequence. Although the driver
6329 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6330 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6331
6332 /* Disable RC states. */
6333 I915_WRITE(GEN6_RC_CONTROL, 0);
6334
6335 /* 2a: Program RC6 thresholds.*/
6336 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6337 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6338 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6339
6340 for_each_engine(engine, dev_priv, id)
6341 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6342 I915_WRITE(GEN6_RC_SLEEP, 0);
6343
6344 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6345 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6346
6347 /* allows RC6 residency counter to work */
6348 I915_WRITE(VLV_COUNTER_CONTROL,
6349 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6350 VLV_MEDIA_RC6_COUNT_EN |
6351 VLV_RENDER_RC6_COUNT_EN));
6352
6353 /* For now we assume BIOS is allocating and populating the PCBR */
6354 pcbr = I915_READ(VLV_PCBR);
6355
6356 /* 3: Enable RC6 */
6357 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6358 (pcbr >> VLV_PCBR_ADDR_SHIFT))
6359 rc6_mode = GEN7_RC_CTL_TO_MODE;
6360
6361 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6362
6363 /* 4 Program defaults and thresholds for RPS*/
6364 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6365 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6366 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6367 I915_WRITE(GEN6_RP_UP_EI, 66000);
6368 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6369
6370 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6371
6372 /* 5: Enable RPS */
6373 I915_WRITE(GEN6_RP_CONTROL,
6374 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6375 GEN6_RP_MEDIA_IS_GFX |
6376 GEN6_RP_ENABLE |
6377 GEN6_RP_UP_BUSY_AVG |
6378 GEN6_RP_DOWN_IDLE_AVG);
6379
6380 /* Setting Fixed Bias */
6381 val = VLV_OVERRIDE_EN |
6382 VLV_SOC_TDP_EN |
6383 CHV_BIAS_CPU_50_SOC_50;
6384 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6385
6386 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6387
6388 /* RPS code assumes GPLL is used */
6389 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6390
6391 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6392 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6393
6394 reset_rps(dev_priv, valleyview_set_rps);
6395
6396 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6397 }
6398
6399 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6400 {
6401 struct intel_engine_cs *engine;
6402 enum intel_engine_id id;
6403 u32 gtfifodbg, val, rc6_mode = 0;
6404
6405 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6406
6407 valleyview_check_pctx(dev_priv);
6408
6409 gtfifodbg = I915_READ(GTFIFODBG);
6410 if (gtfifodbg) {
6411 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6412 gtfifodbg);
6413 I915_WRITE(GTFIFODBG, gtfifodbg);
6414 }
6415
6416 /* If VLV, Forcewake all wells, else re-direct to regular path */
6417 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6418
6419 /* Disable RC states. */
6420 I915_WRITE(GEN6_RC_CONTROL, 0);
6421
6422 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6423 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6424 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6425 I915_WRITE(GEN6_RP_UP_EI, 66000);
6426 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6427
6428 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6429
6430 I915_WRITE(GEN6_RP_CONTROL,
6431 GEN6_RP_MEDIA_TURBO |
6432 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6433 GEN6_RP_MEDIA_IS_GFX |
6434 GEN6_RP_ENABLE |
6435 GEN6_RP_UP_BUSY_AVG |
6436 GEN6_RP_DOWN_IDLE_CONT);
6437
6438 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6439 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6440 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6441
6442 for_each_engine(engine, dev_priv, id)
6443 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6444
6445 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6446
6447 /* allows RC6 residency counter to work */
6448 I915_WRITE(VLV_COUNTER_CONTROL,
6449 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6450 VLV_MEDIA_RC0_COUNT_EN |
6451 VLV_RENDER_RC0_COUNT_EN |
6452 VLV_MEDIA_RC6_COUNT_EN |
6453 VLV_RENDER_RC6_COUNT_EN));
6454
6455 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6456 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6457
6458 intel_print_rc6_info(dev_priv, rc6_mode);
6459
6460 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6461
6462 /* Setting Fixed Bias */
6463 val = VLV_OVERRIDE_EN |
6464 VLV_SOC_TDP_EN |
6465 VLV_BIAS_CPU_125_SOC_875;
6466 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6467
6468 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6469
6470 /* RPS code assumes GPLL is used */
6471 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6472
6473 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6474 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6475
6476 reset_rps(dev_priv, valleyview_set_rps);
6477
6478 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6479 }
6480
6481 static unsigned long intel_pxfreq(u32 vidfreq)
6482 {
6483 unsigned long freq;
6484 int div = (vidfreq & 0x3f0000) >> 16;
6485 int post = (vidfreq & 0x3000) >> 12;
6486 int pre = (vidfreq & 0x7);
6487
6488 if (!pre)
6489 return 0;
6490
6491 freq = ((div * 133333) / ((1<<post) * pre));
6492
6493 return freq;
6494 }
6495
6496 static const struct cparams {
6497 u16 i;
6498 u16 t;
6499 u16 m;
6500 u16 c;
6501 } cparams[] = {
6502 { 1, 1333, 301, 28664 },
6503 { 1, 1066, 294, 24460 },
6504 { 1, 800, 294, 25192 },
6505 { 0, 1333, 276, 27605 },
6506 { 0, 1066, 276, 27605 },
6507 { 0, 800, 231, 23784 },
6508 };
6509
6510 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6511 {
6512 u64 total_count, diff, ret;
6513 u32 count1, count2, count3, m = 0, c = 0;
6514 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6515 int i;
6516
6517 lockdep_assert_held(&mchdev_lock);
6518
6519 diff1 = now - dev_priv->ips.last_time1;
6520
6521 /* Prevent division-by-zero if we are asking too fast.
6522 * Also, we don't get interesting results if we are polling
6523 * faster than once in 10ms, so just return the saved value
6524 * in such cases.
6525 */
6526 if (diff1 <= 10)
6527 return dev_priv->ips.chipset_power;
6528
6529 count1 = I915_READ(DMIEC);
6530 count2 = I915_READ(DDREC);
6531 count3 = I915_READ(CSIEC);
6532
6533 total_count = count1 + count2 + count3;
6534
6535 /* FIXME: handle per-counter overflow */
6536 if (total_count < dev_priv->ips.last_count1) {
6537 diff = ~0UL - dev_priv->ips.last_count1;
6538 diff += total_count;
6539 } else {
6540 diff = total_count - dev_priv->ips.last_count1;
6541 }
6542
6543 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6544 if (cparams[i].i == dev_priv->ips.c_m &&
6545 cparams[i].t == dev_priv->ips.r_t) {
6546 m = cparams[i].m;
6547 c = cparams[i].c;
6548 break;
6549 }
6550 }
6551
6552 diff = div_u64(diff, diff1);
6553 ret = ((m * diff) + c);
6554 ret = div_u64(ret, 10);
6555
6556 dev_priv->ips.last_count1 = total_count;
6557 dev_priv->ips.last_time1 = now;
6558
6559 dev_priv->ips.chipset_power = ret;
6560
6561 return ret;
6562 }
6563
6564 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6565 {
6566 unsigned long val;
6567
6568 if (INTEL_INFO(dev_priv)->gen != 5)
6569 return 0;
6570
6571 spin_lock_irq(&mchdev_lock);
6572
6573 val = __i915_chipset_val(dev_priv);
6574
6575 spin_unlock_irq(&mchdev_lock);
6576
6577 return val;
6578 }
6579
6580 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6581 {
6582 unsigned long m, x, b;
6583 u32 tsfs;
6584
6585 tsfs = I915_READ(TSFS);
6586
6587 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6588 x = I915_READ8(TR1);
6589
6590 b = tsfs & TSFS_INTR_MASK;
6591
6592 return ((m * x) / 127) - b;
6593 }
6594
6595 static int _pxvid_to_vd(u8 pxvid)
6596 {
6597 if (pxvid == 0)
6598 return 0;
6599
6600 if (pxvid >= 8 && pxvid < 31)
6601 pxvid = 31;
6602
6603 return (pxvid + 2) * 125;
6604 }
6605
6606 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6607 {
6608 const int vd = _pxvid_to_vd(pxvid);
6609 const int vm = vd - 1125;
6610
6611 if (INTEL_INFO(dev_priv)->is_mobile)
6612 return vm > 0 ? vm : 0;
6613
6614 return vd;
6615 }
6616
6617 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6618 {
6619 u64 now, diff, diffms;
6620 u32 count;
6621
6622 lockdep_assert_held(&mchdev_lock);
6623
6624 now = ktime_get_raw_ns();
6625 diffms = now - dev_priv->ips.last_time2;
6626 do_div(diffms, NSEC_PER_MSEC);
6627
6628 /* Don't divide by 0 */
6629 if (!diffms)
6630 return;
6631
6632 count = I915_READ(GFXEC);
6633
6634 if (count < dev_priv->ips.last_count2) {
6635 diff = ~0UL - dev_priv->ips.last_count2;
6636 diff += count;
6637 } else {
6638 diff = count - dev_priv->ips.last_count2;
6639 }
6640
6641 dev_priv->ips.last_count2 = count;
6642 dev_priv->ips.last_time2 = now;
6643
6644 /* More magic constants... */
6645 diff = diff * 1181;
6646 diff = div_u64(diff, diffms * 10);
6647 dev_priv->ips.gfx_power = diff;
6648 }
6649
6650 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6651 {
6652 if (INTEL_INFO(dev_priv)->gen != 5)
6653 return;
6654
6655 spin_lock_irq(&mchdev_lock);
6656
6657 __i915_update_gfx_val(dev_priv);
6658
6659 spin_unlock_irq(&mchdev_lock);
6660 }
6661
6662 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6663 {
6664 unsigned long t, corr, state1, corr2, state2;
6665 u32 pxvid, ext_v;
6666
6667 lockdep_assert_held(&mchdev_lock);
6668
6669 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6670 pxvid = (pxvid >> 24) & 0x7f;
6671 ext_v = pvid_to_extvid(dev_priv, pxvid);
6672
6673 state1 = ext_v;
6674
6675 t = i915_mch_val(dev_priv);
6676
6677 /* Revel in the empirically derived constants */
6678
6679 /* Correction factor in 1/100000 units */
6680 if (t > 80)
6681 corr = ((t * 2349) + 135940);
6682 else if (t >= 50)
6683 corr = ((t * 964) + 29317);
6684 else /* < 50 */
6685 corr = ((t * 301) + 1004);
6686
6687 corr = corr * ((150142 * state1) / 10000 - 78642);
6688 corr /= 100000;
6689 corr2 = (corr * dev_priv->ips.corr);
6690
6691 state2 = (corr2 * state1) / 10000;
6692 state2 /= 100; /* convert to mW */
6693
6694 __i915_update_gfx_val(dev_priv);
6695
6696 return dev_priv->ips.gfx_power + state2;
6697 }
6698
6699 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6700 {
6701 unsigned long val;
6702
6703 if (INTEL_INFO(dev_priv)->gen != 5)
6704 return 0;
6705
6706 spin_lock_irq(&mchdev_lock);
6707
6708 val = __i915_gfx_val(dev_priv);
6709
6710 spin_unlock_irq(&mchdev_lock);
6711
6712 return val;
6713 }
6714
6715 /**
6716 * i915_read_mch_val - return value for IPS use
6717 *
6718 * Calculate and return a value for the IPS driver to use when deciding whether
6719 * we have thermal and power headroom to increase CPU or GPU power budget.
6720 */
6721 unsigned long i915_read_mch_val(void)
6722 {
6723 struct drm_i915_private *dev_priv;
6724 unsigned long chipset_val, graphics_val, ret = 0;
6725
6726 spin_lock_irq(&mchdev_lock);
6727 if (!i915_mch_dev)
6728 goto out_unlock;
6729 dev_priv = i915_mch_dev;
6730
6731 chipset_val = __i915_chipset_val(dev_priv);
6732 graphics_val = __i915_gfx_val(dev_priv);
6733
6734 ret = chipset_val + graphics_val;
6735
6736 out_unlock:
6737 spin_unlock_irq(&mchdev_lock);
6738
6739 return ret;
6740 }
6741 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6742
6743 /**
6744 * i915_gpu_raise - raise GPU frequency limit
6745 *
6746 * Raise the limit; IPS indicates we have thermal headroom.
6747 */
6748 bool i915_gpu_raise(void)
6749 {
6750 struct drm_i915_private *dev_priv;
6751 bool ret = true;
6752
6753 spin_lock_irq(&mchdev_lock);
6754 if (!i915_mch_dev) {
6755 ret = false;
6756 goto out_unlock;
6757 }
6758 dev_priv = i915_mch_dev;
6759
6760 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6761 dev_priv->ips.max_delay--;
6762
6763 out_unlock:
6764 spin_unlock_irq(&mchdev_lock);
6765
6766 return ret;
6767 }
6768 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6769
6770 /**
6771 * i915_gpu_lower - lower GPU frequency limit
6772 *
6773 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6774 * frequency maximum.
6775 */
6776 bool i915_gpu_lower(void)
6777 {
6778 struct drm_i915_private *dev_priv;
6779 bool ret = true;
6780
6781 spin_lock_irq(&mchdev_lock);
6782 if (!i915_mch_dev) {
6783 ret = false;
6784 goto out_unlock;
6785 }
6786 dev_priv = i915_mch_dev;
6787
6788 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6789 dev_priv->ips.max_delay++;
6790
6791 out_unlock:
6792 spin_unlock_irq(&mchdev_lock);
6793
6794 return ret;
6795 }
6796 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6797
6798 /**
6799 * i915_gpu_busy - indicate GPU business to IPS
6800 *
6801 * Tell the IPS driver whether or not the GPU is busy.
6802 */
6803 bool i915_gpu_busy(void)
6804 {
6805 bool ret = false;
6806
6807 spin_lock_irq(&mchdev_lock);
6808 if (i915_mch_dev)
6809 ret = i915_mch_dev->gt.awake;
6810 spin_unlock_irq(&mchdev_lock);
6811
6812 return ret;
6813 }
6814 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6815
6816 /**
6817 * i915_gpu_turbo_disable - disable graphics turbo
6818 *
6819 * Disable graphics turbo by resetting the max frequency and setting the
6820 * current frequency to the default.
6821 */
6822 bool i915_gpu_turbo_disable(void)
6823 {
6824 struct drm_i915_private *dev_priv;
6825 bool ret = true;
6826
6827 spin_lock_irq(&mchdev_lock);
6828 if (!i915_mch_dev) {
6829 ret = false;
6830 goto out_unlock;
6831 }
6832 dev_priv = i915_mch_dev;
6833
6834 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6835
6836 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6837 ret = false;
6838
6839 out_unlock:
6840 spin_unlock_irq(&mchdev_lock);
6841
6842 return ret;
6843 }
6844 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6845
6846 /**
6847 * Tells the intel_ips driver that the i915 driver is now loaded, if
6848 * IPS got loaded first.
6849 *
6850 * This awkward dance is so that neither module has to depend on the
6851 * other in order for IPS to do the appropriate communication of
6852 * GPU turbo limits to i915.
6853 */
6854 static void
6855 ips_ping_for_i915_load(void)
6856 {
6857 void (*link)(void);
6858
6859 link = symbol_get(ips_link_to_i915_driver);
6860 if (link) {
6861 link();
6862 symbol_put(ips_link_to_i915_driver);
6863 }
6864 }
6865
6866 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6867 {
6868 /* We only register the i915 ips part with intel-ips once everything is
6869 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6870 spin_lock_irq(&mchdev_lock);
6871 i915_mch_dev = dev_priv;
6872 spin_unlock_irq(&mchdev_lock);
6873
6874 ips_ping_for_i915_load();
6875 }
6876
6877 void intel_gpu_ips_teardown(void)
6878 {
6879 spin_lock_irq(&mchdev_lock);
6880 i915_mch_dev = NULL;
6881 spin_unlock_irq(&mchdev_lock);
6882 }
6883
6884 static void intel_init_emon(struct drm_i915_private *dev_priv)
6885 {
6886 u32 lcfuse;
6887 u8 pxw[16];
6888 int i;
6889
6890 /* Disable to program */
6891 I915_WRITE(ECR, 0);
6892 POSTING_READ(ECR);
6893
6894 /* Program energy weights for various events */
6895 I915_WRITE(SDEW, 0x15040d00);
6896 I915_WRITE(CSIEW0, 0x007f0000);
6897 I915_WRITE(CSIEW1, 0x1e220004);
6898 I915_WRITE(CSIEW2, 0x04000004);
6899
6900 for (i = 0; i < 5; i++)
6901 I915_WRITE(PEW(i), 0);
6902 for (i = 0; i < 3; i++)
6903 I915_WRITE(DEW(i), 0);
6904
6905 /* Program P-state weights to account for frequency power adjustment */
6906 for (i = 0; i < 16; i++) {
6907 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6908 unsigned long freq = intel_pxfreq(pxvidfreq);
6909 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6910 PXVFREQ_PX_SHIFT;
6911 unsigned long val;
6912
6913 val = vid * vid;
6914 val *= (freq / 1000);
6915 val *= 255;
6916 val /= (127*127*900);
6917 if (val > 0xff)
6918 DRM_ERROR("bad pxval: %ld\n", val);
6919 pxw[i] = val;
6920 }
6921 /* Render standby states get 0 weight */
6922 pxw[14] = 0;
6923 pxw[15] = 0;
6924
6925 for (i = 0; i < 4; i++) {
6926 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6927 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6928 I915_WRITE(PXW(i), val);
6929 }
6930
6931 /* Adjust magic regs to magic values (more experimental results) */
6932 I915_WRITE(OGW0, 0);
6933 I915_WRITE(OGW1, 0);
6934 I915_WRITE(EG0, 0x00007f00);
6935 I915_WRITE(EG1, 0x0000000e);
6936 I915_WRITE(EG2, 0x000e0000);
6937 I915_WRITE(EG3, 0x68000300);
6938 I915_WRITE(EG4, 0x42000000);
6939 I915_WRITE(EG5, 0x00140031);
6940 I915_WRITE(EG6, 0);
6941 I915_WRITE(EG7, 0);
6942
6943 for (i = 0; i < 8; i++)
6944 I915_WRITE(PXWL(i), 0);
6945
6946 /* Enable PMON + select events */
6947 I915_WRITE(ECR, 0x80000019);
6948
6949 lcfuse = I915_READ(LCFUSE02);
6950
6951 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6952 }
6953
6954 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6955 {
6956 /*
6957 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6958 * requirement.
6959 */
6960 if (!i915.enable_rc6) {
6961 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6962 intel_runtime_pm_get(dev_priv);
6963 }
6964
6965 mutex_lock(&dev_priv->drm.struct_mutex);
6966 mutex_lock(&dev_priv->rps.hw_lock);
6967
6968 /* Initialize RPS limits (for userspace) */
6969 if (IS_CHERRYVIEW(dev_priv))
6970 cherryview_init_gt_powersave(dev_priv);
6971 else if (IS_VALLEYVIEW(dev_priv))
6972 valleyview_init_gt_powersave(dev_priv);
6973 else if (INTEL_GEN(dev_priv) >= 6)
6974 gen6_init_rps_frequencies(dev_priv);
6975
6976 /* Derive initial user preferences/limits from the hardware limits */
6977 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6978 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6979
6980 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6981 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6982
6983 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6984 dev_priv->rps.min_freq_softlimit =
6985 max_t(int,
6986 dev_priv->rps.efficient_freq,
6987 intel_freq_opcode(dev_priv, 450));
6988
6989 /* After setting max-softlimit, find the overclock max freq */
6990 if (IS_GEN6(dev_priv) ||
6991 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6992 u32 params = 0;
6993
6994 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6995 if (params & BIT(31)) { /* OC supported */
6996 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6997 (dev_priv->rps.max_freq & 0xff) * 50,
6998 (params & 0xff) * 50);
6999 dev_priv->rps.max_freq = params & 0xff;
7000 }
7001 }
7002
7003 /* Finally allow us to boost to max by default */
7004 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7005
7006 mutex_unlock(&dev_priv->rps.hw_lock);
7007 mutex_unlock(&dev_priv->drm.struct_mutex);
7008
7009 intel_autoenable_gt_powersave(dev_priv);
7010 }
7011
7012 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7013 {
7014 if (IS_VALLEYVIEW(dev_priv))
7015 valleyview_cleanup_gt_powersave(dev_priv);
7016
7017 if (!i915.enable_rc6)
7018 intel_runtime_pm_put(dev_priv);
7019 }
7020
7021 /**
7022 * intel_suspend_gt_powersave - suspend PM work and helper threads
7023 * @dev_priv: i915 device
7024 *
7025 * We don't want to disable RC6 or other features here, we just want
7026 * to make sure any work we've queued has finished and won't bother
7027 * us while we're suspended.
7028 */
7029 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7030 {
7031 if (INTEL_GEN(dev_priv) < 6)
7032 return;
7033
7034 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7035 intel_runtime_pm_put(dev_priv);
7036
7037 /* gen6_rps_idle() will be called later to disable interrupts */
7038 }
7039
7040 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7041 {
7042 dev_priv->rps.enabled = true; /* force disabling */
7043 intel_disable_gt_powersave(dev_priv);
7044
7045 gen6_reset_rps_interrupts(dev_priv);
7046 }
7047
7048 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7049 {
7050 if (!READ_ONCE(dev_priv->rps.enabled))
7051 return;
7052
7053 mutex_lock(&dev_priv->rps.hw_lock);
7054
7055 if (INTEL_GEN(dev_priv) >= 9) {
7056 gen9_disable_rc6(dev_priv);
7057 gen9_disable_rps(dev_priv);
7058 } else if (IS_CHERRYVIEW(dev_priv)) {
7059 cherryview_disable_rps(dev_priv);
7060 } else if (IS_VALLEYVIEW(dev_priv)) {
7061 valleyview_disable_rps(dev_priv);
7062 } else if (INTEL_GEN(dev_priv) >= 6) {
7063 gen6_disable_rps(dev_priv);
7064 } else if (IS_IRONLAKE_M(dev_priv)) {
7065 ironlake_disable_drps(dev_priv);
7066 }
7067
7068 dev_priv->rps.enabled = false;
7069 mutex_unlock(&dev_priv->rps.hw_lock);
7070 }
7071
7072 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7073 {
7074 /* We shouldn't be disabling as we submit, so this should be less
7075 * racy than it appears!
7076 */
7077 if (READ_ONCE(dev_priv->rps.enabled))
7078 return;
7079
7080 /* Powersaving is controlled by the host when inside a VM */
7081 if (intel_vgpu_active(dev_priv))
7082 return;
7083
7084 mutex_lock(&dev_priv->rps.hw_lock);
7085
7086 if (IS_CHERRYVIEW(dev_priv)) {
7087 cherryview_enable_rps(dev_priv);
7088 } else if (IS_VALLEYVIEW(dev_priv)) {
7089 valleyview_enable_rps(dev_priv);
7090 } else if (INTEL_GEN(dev_priv) >= 9) {
7091 gen9_enable_rc6(dev_priv);
7092 gen9_enable_rps(dev_priv);
7093 if (IS_GEN9_BC(dev_priv))
7094 gen6_update_ring_freq(dev_priv);
7095 } else if (IS_BROADWELL(dev_priv)) {
7096 gen8_enable_rps(dev_priv);
7097 gen6_update_ring_freq(dev_priv);
7098 } else if (INTEL_GEN(dev_priv) >= 6) {
7099 gen6_enable_rps(dev_priv);
7100 gen6_update_ring_freq(dev_priv);
7101 } else if (IS_IRONLAKE_M(dev_priv)) {
7102 ironlake_enable_drps(dev_priv);
7103 intel_init_emon(dev_priv);
7104 }
7105
7106 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7107 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7108
7109 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7110 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7111
7112 dev_priv->rps.enabled = true;
7113 mutex_unlock(&dev_priv->rps.hw_lock);
7114 }
7115
7116 static void __intel_autoenable_gt_powersave(struct work_struct *work)
7117 {
7118 struct drm_i915_private *dev_priv =
7119 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7120 struct intel_engine_cs *rcs;
7121 struct drm_i915_gem_request *req;
7122
7123 if (READ_ONCE(dev_priv->rps.enabled))
7124 goto out;
7125
7126 rcs = dev_priv->engine[RCS];
7127 if (rcs->last_retired_context)
7128 goto out;
7129
7130 if (!rcs->init_context)
7131 goto out;
7132
7133 mutex_lock(&dev_priv->drm.struct_mutex);
7134
7135 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7136 if (IS_ERR(req))
7137 goto unlock;
7138
7139 if (!i915.enable_execlists && i915_switch_context(req) == 0)
7140 rcs->init_context(req);
7141
7142 /* Mark the device busy, calling intel_enable_gt_powersave() */
7143 i915_add_request(req);
7144
7145 unlock:
7146 mutex_unlock(&dev_priv->drm.struct_mutex);
7147 out:
7148 intel_runtime_pm_put(dev_priv);
7149 }
7150
7151 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7152 {
7153 if (READ_ONCE(dev_priv->rps.enabled))
7154 return;
7155
7156 if (IS_IRONLAKE_M(dev_priv)) {
7157 ironlake_enable_drps(dev_priv);
7158 intel_init_emon(dev_priv);
7159 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7160 /*
7161 * PCU communication is slow and this doesn't need to be
7162 * done at any specific time, so do this out of our fast path
7163 * to make resume and init faster.
7164 *
7165 * We depend on the HW RC6 power context save/restore
7166 * mechanism when entering D3 through runtime PM suspend. So
7167 * disable RPM until RPS/RC6 is properly setup. We can only
7168 * get here via the driver load/system resume/runtime resume
7169 * paths, so the _noresume version is enough (and in case of
7170 * runtime resume it's necessary).
7171 */
7172 if (queue_delayed_work(dev_priv->wq,
7173 &dev_priv->rps.autoenable_work,
7174 round_jiffies_up_relative(HZ)))
7175 intel_runtime_pm_get_noresume(dev_priv);
7176 }
7177 }
7178
7179 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7180 {
7181 /*
7182 * On Ibex Peak and Cougar Point, we need to disable clock
7183 * gating for the panel power sequencer or it will fail to
7184 * start up when no ports are active.
7185 */
7186 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7187 }
7188
7189 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7190 {
7191 enum pipe pipe;
7192
7193 for_each_pipe(dev_priv, pipe) {
7194 I915_WRITE(DSPCNTR(pipe),
7195 I915_READ(DSPCNTR(pipe)) |
7196 DISPPLANE_TRICKLE_FEED_DISABLE);
7197
7198 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7199 POSTING_READ(DSPSURF(pipe));
7200 }
7201 }
7202
7203 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7204 {
7205 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7206 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7207 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7208
7209 /*
7210 * Don't touch WM1S_LP_EN here.
7211 * Doing so could cause underruns.
7212 */
7213 }
7214
7215 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7216 {
7217 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7218
7219 /*
7220 * Required for FBC
7221 * WaFbcDisableDpfcClockGating:ilk
7222 */
7223 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7224 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7225 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7226
7227 I915_WRITE(PCH_3DCGDIS0,
7228 MARIUNIT_CLOCK_GATE_DISABLE |
7229 SVSMUNIT_CLOCK_GATE_DISABLE);
7230 I915_WRITE(PCH_3DCGDIS1,
7231 VFMUNIT_CLOCK_GATE_DISABLE);
7232
7233 /*
7234 * According to the spec the following bits should be set in
7235 * order to enable memory self-refresh
7236 * The bit 22/21 of 0x42004
7237 * The bit 5 of 0x42020
7238 * The bit 15 of 0x45000
7239 */
7240 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7241 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7242 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7243 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7244 I915_WRITE(DISP_ARB_CTL,
7245 (I915_READ(DISP_ARB_CTL) |
7246 DISP_FBC_WM_DIS));
7247
7248 ilk_init_lp_watermarks(dev_priv);
7249
7250 /*
7251 * Based on the document from hardware guys the following bits
7252 * should be set unconditionally in order to enable FBC.
7253 * The bit 22 of 0x42000
7254 * The bit 22 of 0x42004
7255 * The bit 7,8,9 of 0x42020.
7256 */
7257 if (IS_IRONLAKE_M(dev_priv)) {
7258 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7259 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7260 I915_READ(ILK_DISPLAY_CHICKEN1) |
7261 ILK_FBCQ_DIS);
7262 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7263 I915_READ(ILK_DISPLAY_CHICKEN2) |
7264 ILK_DPARB_GATE);
7265 }
7266
7267 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7268
7269 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7270 I915_READ(ILK_DISPLAY_CHICKEN2) |
7271 ILK_ELPIN_409_SELECT);
7272 I915_WRITE(_3D_CHICKEN2,
7273 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7274 _3D_CHICKEN2_WM_READ_PIPELINED);
7275
7276 /* WaDisableRenderCachePipelinedFlush:ilk */
7277 I915_WRITE(CACHE_MODE_0,
7278 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7279
7280 /* WaDisable_RenderCache_OperationalFlush:ilk */
7281 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7282
7283 g4x_disable_trickle_feed(dev_priv);
7284
7285 ibx_init_clock_gating(dev_priv);
7286 }
7287
7288 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7289 {
7290 int pipe;
7291 uint32_t val;
7292
7293 /*
7294 * On Ibex Peak and Cougar Point, we need to disable clock
7295 * gating for the panel power sequencer or it will fail to
7296 * start up when no ports are active.
7297 */
7298 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7299 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7300 PCH_CPUNIT_CLOCK_GATE_DISABLE);
7301 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7302 DPLS_EDP_PPS_FIX_DIS);
7303 /* The below fixes the weird display corruption, a few pixels shifted
7304 * downward, on (only) LVDS of some HP laptops with IVY.
7305 */
7306 for_each_pipe(dev_priv, pipe) {
7307 val = I915_READ(TRANS_CHICKEN2(pipe));
7308 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7309 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7310 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7311 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7312 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7313 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7314 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7315 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7316 }
7317 /* WADP0ClockGatingDisable */
7318 for_each_pipe(dev_priv, pipe) {
7319 I915_WRITE(TRANS_CHICKEN1(pipe),
7320 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7321 }
7322 }
7323
7324 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7325 {
7326 uint32_t tmp;
7327
7328 tmp = I915_READ(MCH_SSKPD);
7329 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7330 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7331 tmp);
7332 }
7333
7334 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7335 {
7336 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7337
7338 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7339
7340 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7341 I915_READ(ILK_DISPLAY_CHICKEN2) |
7342 ILK_ELPIN_409_SELECT);
7343
7344 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7345 I915_WRITE(_3D_CHICKEN,
7346 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7347
7348 /* WaDisable_RenderCache_OperationalFlush:snb */
7349 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7350
7351 /*
7352 * BSpec recoomends 8x4 when MSAA is used,
7353 * however in practice 16x4 seems fastest.
7354 *
7355 * Note that PS/WM thread counts depend on the WIZ hashing
7356 * disable bit, which we don't touch here, but it's good
7357 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7358 */
7359 I915_WRITE(GEN6_GT_MODE,
7360 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7361
7362 ilk_init_lp_watermarks(dev_priv);
7363
7364 I915_WRITE(CACHE_MODE_0,
7365 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7366
7367 I915_WRITE(GEN6_UCGCTL1,
7368 I915_READ(GEN6_UCGCTL1) |
7369 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7370 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7371
7372 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7373 * gating disable must be set. Failure to set it results in
7374 * flickering pixels due to Z write ordering failures after
7375 * some amount of runtime in the Mesa "fire" demo, and Unigine
7376 * Sanctuary and Tropics, and apparently anything else with
7377 * alpha test or pixel discard.
7378 *
7379 * According to the spec, bit 11 (RCCUNIT) must also be set,
7380 * but we didn't debug actual testcases to find it out.
7381 *
7382 * WaDisableRCCUnitClockGating:snb
7383 * WaDisableRCPBUnitClockGating:snb
7384 */
7385 I915_WRITE(GEN6_UCGCTL2,
7386 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7387 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7388
7389 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7390 I915_WRITE(_3D_CHICKEN3,
7391 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7392
7393 /*
7394 * Bspec says:
7395 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7396 * 3DSTATE_SF number of SF output attributes is more than 16."
7397 */
7398 I915_WRITE(_3D_CHICKEN3,
7399 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7400
7401 /*
7402 * According to the spec the following bits should be
7403 * set in order to enable memory self-refresh and fbc:
7404 * The bit21 and bit22 of 0x42000
7405 * The bit21 and bit22 of 0x42004
7406 * The bit5 and bit7 of 0x42020
7407 * The bit14 of 0x70180
7408 * The bit14 of 0x71180
7409 *
7410 * WaFbcAsynchFlipDisableFbcQueue:snb
7411 */
7412 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7413 I915_READ(ILK_DISPLAY_CHICKEN1) |
7414 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7415 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7416 I915_READ(ILK_DISPLAY_CHICKEN2) |
7417 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7418 I915_WRITE(ILK_DSPCLK_GATE_D,
7419 I915_READ(ILK_DSPCLK_GATE_D) |
7420 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7421 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7422
7423 g4x_disable_trickle_feed(dev_priv);
7424
7425 cpt_init_clock_gating(dev_priv);
7426
7427 gen6_check_mch_setup(dev_priv);
7428 }
7429
7430 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7431 {
7432 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7433
7434 /*
7435 * WaVSThreadDispatchOverride:ivb,vlv
7436 *
7437 * This actually overrides the dispatch
7438 * mode for all thread types.
7439 */
7440 reg &= ~GEN7_FF_SCHED_MASK;
7441 reg |= GEN7_FF_TS_SCHED_HW;
7442 reg |= GEN7_FF_VS_SCHED_HW;
7443 reg |= GEN7_FF_DS_SCHED_HW;
7444
7445 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7446 }
7447
7448 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7449 {
7450 /*
7451 * TODO: this bit should only be enabled when really needed, then
7452 * disabled when not needed anymore in order to save power.
7453 */
7454 if (HAS_PCH_LPT_LP(dev_priv))
7455 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7456 I915_READ(SOUTH_DSPCLK_GATE_D) |
7457 PCH_LP_PARTITION_LEVEL_DISABLE);
7458
7459 /* WADPOClockGatingDisable:hsw */
7460 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7461 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7462 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7463 }
7464
7465 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7466 {
7467 if (HAS_PCH_LPT_LP(dev_priv)) {
7468 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7469
7470 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7471 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7472 }
7473 }
7474
7475 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7476 int general_prio_credits,
7477 int high_prio_credits)
7478 {
7479 u32 misccpctl;
7480
7481 /* WaTempDisableDOPClkGating:bdw */
7482 misccpctl = I915_READ(GEN7_MISCCPCTL);
7483 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7484
7485 I915_WRITE(GEN8_L3SQCREG1,
7486 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7487 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7488
7489 /*
7490 * Wait at least 100 clocks before re-enabling clock gating.
7491 * See the definition of L3SQCREG1 in BSpec.
7492 */
7493 POSTING_READ(GEN8_L3SQCREG1);
7494 udelay(1);
7495 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7496 }
7497
7498 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7499 {
7500 gen9_init_clock_gating(dev_priv);
7501
7502 /* WaDisableSDEUnitClockGating:kbl */
7503 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7504 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7505 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7506
7507 /* WaDisableGamClockGating:kbl */
7508 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7509 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7510 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7511
7512 /* WaFbcNukeOnHostModify:kbl */
7513 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7514 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7515 }
7516
7517 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7518 {
7519 gen9_init_clock_gating(dev_priv);
7520
7521 /* WAC6entrylatency:skl */
7522 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7523 FBC_LLC_FULLY_OPEN);
7524
7525 /* WaFbcNukeOnHostModify:skl */
7526 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7527 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7528 }
7529
7530 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7531 {
7532 enum pipe pipe;
7533
7534 ilk_init_lp_watermarks(dev_priv);
7535
7536 /* WaSwitchSolVfFArbitrationPriority:bdw */
7537 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7538
7539 /* WaPsrDPAMaskVBlankInSRD:bdw */
7540 I915_WRITE(CHICKEN_PAR1_1,
7541 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7542
7543 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7544 for_each_pipe(dev_priv, pipe) {
7545 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7546 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7547 BDW_DPRS_MASK_VBLANK_SRD);
7548 }
7549
7550 /* WaVSRefCountFullforceMissDisable:bdw */
7551 /* WaDSRefCountFullforceMissDisable:bdw */
7552 I915_WRITE(GEN7_FF_THREAD_MODE,
7553 I915_READ(GEN7_FF_THREAD_MODE) &
7554 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7555
7556 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7557 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7558
7559 /* WaDisableSDEUnitClockGating:bdw */
7560 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7561 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7562
7563 /* WaProgramL3SqcReg1Default:bdw */
7564 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7565
7566 /*
7567 * WaGttCachingOffByDefault:bdw
7568 * GTT cache may not work with big pages, so if those
7569 * are ever enabled GTT cache may need to be disabled.
7570 */
7571 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7572
7573 /* WaKVMNotificationOnConfigChange:bdw */
7574 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7575 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7576
7577 lpt_init_clock_gating(dev_priv);
7578
7579 /* WaDisableDopClockGating:bdw
7580 *
7581 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7582 * clock gating.
7583 */
7584 I915_WRITE(GEN6_UCGCTL1,
7585 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7586 }
7587
7588 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7589 {
7590 ilk_init_lp_watermarks(dev_priv);
7591
7592 /* L3 caching of data atomics doesn't work -- disable it. */
7593 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7594 I915_WRITE(HSW_ROW_CHICKEN3,
7595 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7596
7597 /* This is required by WaCatErrorRejectionIssue:hsw */
7598 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7599 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7600 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7601
7602 /* WaVSRefCountFullforceMissDisable:hsw */
7603 I915_WRITE(GEN7_FF_THREAD_MODE,
7604 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7605
7606 /* WaDisable_RenderCache_OperationalFlush:hsw */
7607 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7608
7609 /* enable HiZ Raw Stall Optimization */
7610 I915_WRITE(CACHE_MODE_0_GEN7,
7611 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7612
7613 /* WaDisable4x2SubspanOptimization:hsw */
7614 I915_WRITE(CACHE_MODE_1,
7615 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7616
7617 /*
7618 * BSpec recommends 8x4 when MSAA is used,
7619 * however in practice 16x4 seems fastest.
7620 *
7621 * Note that PS/WM thread counts depend on the WIZ hashing
7622 * disable bit, which we don't touch here, but it's good
7623 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7624 */
7625 I915_WRITE(GEN7_GT_MODE,
7626 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7627
7628 /* WaSampleCChickenBitEnable:hsw */
7629 I915_WRITE(HALF_SLICE_CHICKEN3,
7630 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7631
7632 /* WaSwitchSolVfFArbitrationPriority:hsw */
7633 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7634
7635 /* WaRsPkgCStateDisplayPMReq:hsw */
7636 I915_WRITE(CHICKEN_PAR1_1,
7637 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7638
7639 lpt_init_clock_gating(dev_priv);
7640 }
7641
7642 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7643 {
7644 uint32_t snpcr;
7645
7646 ilk_init_lp_watermarks(dev_priv);
7647
7648 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7649
7650 /* WaDisableEarlyCull:ivb */
7651 I915_WRITE(_3D_CHICKEN3,
7652 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7653
7654 /* WaDisableBackToBackFlipFix:ivb */
7655 I915_WRITE(IVB_CHICKEN3,
7656 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7657 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7658
7659 /* WaDisablePSDDualDispatchEnable:ivb */
7660 if (IS_IVB_GT1(dev_priv))
7661 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7662 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7663
7664 /* WaDisable_RenderCache_OperationalFlush:ivb */
7665 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7666
7667 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7668 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7669 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7670
7671 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7672 I915_WRITE(GEN7_L3CNTLREG1,
7673 GEN7_WA_FOR_GEN7_L3_CONTROL);
7674 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7675 GEN7_WA_L3_CHICKEN_MODE);
7676 if (IS_IVB_GT1(dev_priv))
7677 I915_WRITE(GEN7_ROW_CHICKEN2,
7678 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7679 else {
7680 /* must write both registers */
7681 I915_WRITE(GEN7_ROW_CHICKEN2,
7682 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7683 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7684 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7685 }
7686
7687 /* WaForceL3Serialization:ivb */
7688 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7689 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7690
7691 /*
7692 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7693 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7694 */
7695 I915_WRITE(GEN6_UCGCTL2,
7696 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7697
7698 /* This is required by WaCatErrorRejectionIssue:ivb */
7699 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7700 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7701 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7702
7703 g4x_disable_trickle_feed(dev_priv);
7704
7705 gen7_setup_fixed_func_scheduler(dev_priv);
7706
7707 if (0) { /* causes HiZ corruption on ivb:gt1 */
7708 /* enable HiZ Raw Stall Optimization */
7709 I915_WRITE(CACHE_MODE_0_GEN7,
7710 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7711 }
7712
7713 /* WaDisable4x2SubspanOptimization:ivb */
7714 I915_WRITE(CACHE_MODE_1,
7715 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7716
7717 /*
7718 * BSpec recommends 8x4 when MSAA is used,
7719 * however in practice 16x4 seems fastest.
7720 *
7721 * Note that PS/WM thread counts depend on the WIZ hashing
7722 * disable bit, which we don't touch here, but it's good
7723 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7724 */
7725 I915_WRITE(GEN7_GT_MODE,
7726 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7727
7728 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7729 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7730 snpcr |= GEN6_MBC_SNPCR_MED;
7731 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7732
7733 if (!HAS_PCH_NOP(dev_priv))
7734 cpt_init_clock_gating(dev_priv);
7735
7736 gen6_check_mch_setup(dev_priv);
7737 }
7738
7739 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7740 {
7741 /* WaDisableEarlyCull:vlv */
7742 I915_WRITE(_3D_CHICKEN3,
7743 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7744
7745 /* WaDisableBackToBackFlipFix:vlv */
7746 I915_WRITE(IVB_CHICKEN3,
7747 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7748 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7749
7750 /* WaPsdDispatchEnable:vlv */
7751 /* WaDisablePSDDualDispatchEnable:vlv */
7752 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7753 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7754 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7755
7756 /* WaDisable_RenderCache_OperationalFlush:vlv */
7757 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7758
7759 /* WaForceL3Serialization:vlv */
7760 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7761 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7762
7763 /* WaDisableDopClockGating:vlv */
7764 I915_WRITE(GEN7_ROW_CHICKEN2,
7765 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7766
7767 /* This is required by WaCatErrorRejectionIssue:vlv */
7768 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7769 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7770 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7771
7772 gen7_setup_fixed_func_scheduler(dev_priv);
7773
7774 /*
7775 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7776 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7777 */
7778 I915_WRITE(GEN6_UCGCTL2,
7779 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7780
7781 /* WaDisableL3Bank2xClockGate:vlv
7782 * Disabling L3 clock gating- MMIO 940c[25] = 1
7783 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7784 I915_WRITE(GEN7_UCGCTL4,
7785 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7786
7787 /*
7788 * BSpec says this must be set, even though
7789 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7790 */
7791 I915_WRITE(CACHE_MODE_1,
7792 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7793
7794 /*
7795 * BSpec recommends 8x4 when MSAA is used,
7796 * however in practice 16x4 seems fastest.
7797 *
7798 * Note that PS/WM thread counts depend on the WIZ hashing
7799 * disable bit, which we don't touch here, but it's good
7800 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7801 */
7802 I915_WRITE(GEN7_GT_MODE,
7803 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7804
7805 /*
7806 * WaIncreaseL3CreditsForVLVB0:vlv
7807 * This is the hardware default actually.
7808 */
7809 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7810
7811 /*
7812 * WaDisableVLVClockGating_VBIIssue:vlv
7813 * Disable clock gating on th GCFG unit to prevent a delay
7814 * in the reporting of vblank events.
7815 */
7816 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7817 }
7818
7819 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7820 {
7821 /* WaVSRefCountFullforceMissDisable:chv */
7822 /* WaDSRefCountFullforceMissDisable:chv */
7823 I915_WRITE(GEN7_FF_THREAD_MODE,
7824 I915_READ(GEN7_FF_THREAD_MODE) &
7825 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7826
7827 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7828 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7829 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7830
7831 /* WaDisableCSUnitClockGating:chv */
7832 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7833 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7834
7835 /* WaDisableSDEUnitClockGating:chv */
7836 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7837 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7838
7839 /*
7840 * WaProgramL3SqcReg1Default:chv
7841 * See gfxspecs/Related Documents/Performance Guide/
7842 * LSQC Setting Recommendations.
7843 */
7844 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7845
7846 /*
7847 * GTT cache may not work with big pages, so if those
7848 * are ever enabled GTT cache may need to be disabled.
7849 */
7850 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7851 }
7852
7853 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7854 {
7855 uint32_t dspclk_gate;
7856
7857 I915_WRITE(RENCLK_GATE_D1, 0);
7858 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7859 GS_UNIT_CLOCK_GATE_DISABLE |
7860 CL_UNIT_CLOCK_GATE_DISABLE);
7861 I915_WRITE(RAMCLK_GATE_D, 0);
7862 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7863 OVRUNIT_CLOCK_GATE_DISABLE |
7864 OVCUNIT_CLOCK_GATE_DISABLE;
7865 if (IS_GM45(dev_priv))
7866 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7867 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7868
7869 /* WaDisableRenderCachePipelinedFlush */
7870 I915_WRITE(CACHE_MODE_0,
7871 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7872
7873 /* WaDisable_RenderCache_OperationalFlush:g4x */
7874 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7875
7876 g4x_disable_trickle_feed(dev_priv);
7877 }
7878
7879 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7880 {
7881 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7882 I915_WRITE(RENCLK_GATE_D2, 0);
7883 I915_WRITE(DSPCLK_GATE_D, 0);
7884 I915_WRITE(RAMCLK_GATE_D, 0);
7885 I915_WRITE16(DEUC, 0);
7886 I915_WRITE(MI_ARB_STATE,
7887 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7888
7889 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7890 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7891 }
7892
7893 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7894 {
7895 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7896 I965_RCC_CLOCK_GATE_DISABLE |
7897 I965_RCPB_CLOCK_GATE_DISABLE |
7898 I965_ISC_CLOCK_GATE_DISABLE |
7899 I965_FBC_CLOCK_GATE_DISABLE);
7900 I915_WRITE(RENCLK_GATE_D2, 0);
7901 I915_WRITE(MI_ARB_STATE,
7902 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7903
7904 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7905 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7906 }
7907
7908 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7909 {
7910 u32 dstate = I915_READ(D_STATE);
7911
7912 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7913 DSTATE_DOT_CLOCK_GATING;
7914 I915_WRITE(D_STATE, dstate);
7915
7916 if (IS_PINEVIEW(dev_priv))
7917 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7918
7919 /* IIR "flip pending" means done if this bit is set */
7920 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7921
7922 /* interrupts should cause a wake up from C3 */
7923 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7924
7925 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7926 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7927
7928 I915_WRITE(MI_ARB_STATE,
7929 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7930 }
7931
7932 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7933 {
7934 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7935
7936 /* interrupts should cause a wake up from C3 */
7937 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7938 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7939
7940 I915_WRITE(MEM_MODE,
7941 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7942 }
7943
7944 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7945 {
7946 I915_WRITE(MEM_MODE,
7947 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7948 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7949 }
7950
7951 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7952 {
7953 dev_priv->display.init_clock_gating(dev_priv);
7954 }
7955
7956 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7957 {
7958 if (HAS_PCH_LPT(dev_priv))
7959 lpt_suspend_hw(dev_priv);
7960 }
7961
7962 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7963 {
7964 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7965 }
7966
7967 /**
7968 * intel_init_clock_gating_hooks - setup the clock gating hooks
7969 * @dev_priv: device private
7970 *
7971 * Setup the hooks that configure which clocks of a given platform can be
7972 * gated and also apply various GT and display specific workarounds for these
7973 * platforms. Note that some GT specific workarounds are applied separately
7974 * when GPU contexts or batchbuffers start their execution.
7975 */
7976 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7977 {
7978 if (IS_SKYLAKE(dev_priv))
7979 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7980 else if (IS_KABYLAKE(dev_priv))
7981 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7982 else if (IS_BROXTON(dev_priv))
7983 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7984 else if (IS_GEMINILAKE(dev_priv))
7985 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7986 else if (IS_BROADWELL(dev_priv))
7987 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7988 else if (IS_CHERRYVIEW(dev_priv))
7989 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7990 else if (IS_HASWELL(dev_priv))
7991 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7992 else if (IS_IVYBRIDGE(dev_priv))
7993 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7994 else if (IS_VALLEYVIEW(dev_priv))
7995 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7996 else if (IS_GEN6(dev_priv))
7997 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7998 else if (IS_GEN5(dev_priv))
7999 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8000 else if (IS_G4X(dev_priv))
8001 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8002 else if (IS_I965GM(dev_priv))
8003 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8004 else if (IS_I965G(dev_priv))
8005 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8006 else if (IS_GEN3(dev_priv))
8007 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8008 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8009 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8010 else if (IS_GEN2(dev_priv))
8011 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8012 else {
8013 MISSING_CASE(INTEL_DEVID(dev_priv));
8014 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8015 }
8016 }
8017
8018 /* Set up chip specific power management-related functions */
8019 void intel_init_pm(struct drm_i915_private *dev_priv)
8020 {
8021 intel_fbc_init(dev_priv);
8022
8023 /* For cxsr */
8024 if (IS_PINEVIEW(dev_priv))
8025 i915_pineview_get_mem_freq(dev_priv);
8026 else if (IS_GEN5(dev_priv))
8027 i915_ironlake_get_mem_freq(dev_priv);
8028
8029 /* For FIFO watermark updates */
8030 if (INTEL_GEN(dev_priv) >= 9) {
8031 skl_setup_wm_latency(dev_priv);
8032 dev_priv->display.initial_watermarks = skl_initial_wm;
8033 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8034 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8035 } else if (HAS_PCH_SPLIT(dev_priv)) {
8036 ilk_setup_wm_latency(dev_priv);
8037
8038 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8039 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8040 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8041 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8042 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8043 dev_priv->display.compute_intermediate_wm =
8044 ilk_compute_intermediate_wm;
8045 dev_priv->display.initial_watermarks =
8046 ilk_initial_watermarks;
8047 dev_priv->display.optimize_watermarks =
8048 ilk_optimize_watermarks;
8049 } else {
8050 DRM_DEBUG_KMS("Failed to read display plane latency. "
8051 "Disable CxSR\n");
8052 }
8053 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8054 vlv_setup_wm_latency(dev_priv);
8055 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8056 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8057 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8058 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8059 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8060 } else if (IS_PINEVIEW(dev_priv)) {
8061 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8062 dev_priv->is_ddr3,
8063 dev_priv->fsb_freq,
8064 dev_priv->mem_freq)) {
8065 DRM_INFO("failed to find known CxSR latency "
8066 "(found ddr%s fsb freq %d, mem freq %d), "
8067 "disabling CxSR\n",
8068 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8069 dev_priv->fsb_freq, dev_priv->mem_freq);
8070 /* Disable CxSR and never update its watermark again */
8071 intel_set_memory_cxsr(dev_priv, false);
8072 dev_priv->display.update_wm = NULL;
8073 } else
8074 dev_priv->display.update_wm = pineview_update_wm;
8075 } else if (IS_G4X(dev_priv)) {
8076 dev_priv->display.update_wm = g4x_update_wm;
8077 } else if (IS_GEN4(dev_priv)) {
8078 dev_priv->display.update_wm = i965_update_wm;
8079 } else if (IS_GEN3(dev_priv)) {
8080 dev_priv->display.update_wm = i9xx_update_wm;
8081 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8082 } else if (IS_GEN2(dev_priv)) {
8083 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8084 dev_priv->display.update_wm = i845_update_wm;
8085 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8086 } else {
8087 dev_priv->display.update_wm = i9xx_update_wm;
8088 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8089 }
8090 } else {
8091 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8092 }
8093 }
8094
8095 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8096 {
8097 uint32_t flags =
8098 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8099
8100 switch (flags) {
8101 case GEN6_PCODE_SUCCESS:
8102 return 0;
8103 case GEN6_PCODE_UNIMPLEMENTED_CMD:
8104 case GEN6_PCODE_ILLEGAL_CMD:
8105 return -ENXIO;
8106 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8107 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8108 return -EOVERFLOW;
8109 case GEN6_PCODE_TIMEOUT:
8110 return -ETIMEDOUT;
8111 default:
8112 MISSING_CASE(flags);
8113 return 0;
8114 }
8115 }
8116
8117 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8118 {
8119 uint32_t flags =
8120 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8121
8122 switch (flags) {
8123 case GEN6_PCODE_SUCCESS:
8124 return 0;
8125 case GEN6_PCODE_ILLEGAL_CMD:
8126 return -ENXIO;
8127 case GEN7_PCODE_TIMEOUT:
8128 return -ETIMEDOUT;
8129 case GEN7_PCODE_ILLEGAL_DATA:
8130 return -EINVAL;
8131 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8132 return -EOVERFLOW;
8133 default:
8134 MISSING_CASE(flags);
8135 return 0;
8136 }
8137 }
8138
8139 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8140 {
8141 int status;
8142
8143 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8144
8145 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8146 * use te fw I915_READ variants to reduce the amount of work
8147 * required when reading/writing.
8148 */
8149
8150 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8151 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8152 return -EAGAIN;
8153 }
8154
8155 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8156 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8157 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8158
8159 if (intel_wait_for_register_fw(dev_priv,
8160 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8161 500)) {
8162 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8163 return -ETIMEDOUT;
8164 }
8165
8166 *val = I915_READ_FW(GEN6_PCODE_DATA);
8167 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8168
8169 if (INTEL_GEN(dev_priv) > 6)
8170 status = gen7_check_mailbox_status(dev_priv);
8171 else
8172 status = gen6_check_mailbox_status(dev_priv);
8173
8174 if (status) {
8175 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8176 status);
8177 return status;
8178 }
8179
8180 return 0;
8181 }
8182
8183 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8184 u32 mbox, u32 val)
8185 {
8186 int status;
8187
8188 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8189
8190 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8191 * use te fw I915_READ variants to reduce the amount of work
8192 * required when reading/writing.
8193 */
8194
8195 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8196 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8197 return -EAGAIN;
8198 }
8199
8200 I915_WRITE_FW(GEN6_PCODE_DATA, val);
8201 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8202 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8203
8204 if (intel_wait_for_register_fw(dev_priv,
8205 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8206 500)) {
8207 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8208 return -ETIMEDOUT;
8209 }
8210
8211 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8212
8213 if (INTEL_GEN(dev_priv) > 6)
8214 status = gen7_check_mailbox_status(dev_priv);
8215 else
8216 status = gen6_check_mailbox_status(dev_priv);
8217
8218 if (status) {
8219 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8220 status);
8221 return status;
8222 }
8223
8224 return 0;
8225 }
8226
8227 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8228 u32 request, u32 reply_mask, u32 reply,
8229 u32 *status)
8230 {
8231 u32 val = request;
8232
8233 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8234
8235 return *status || ((val & reply_mask) == reply);
8236 }
8237
8238 /**
8239 * skl_pcode_request - send PCODE request until acknowledgment
8240 * @dev_priv: device private
8241 * @mbox: PCODE mailbox ID the request is targeted for
8242 * @request: request ID
8243 * @reply_mask: mask used to check for request acknowledgment
8244 * @reply: value used to check for request acknowledgment
8245 * @timeout_base_ms: timeout for polling with preemption enabled
8246 *
8247 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8248 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8249 * The request is acknowledged once the PCODE reply dword equals @reply after
8250 * applying @reply_mask. Polling is first attempted with preemption enabled
8251 * for @timeout_base_ms and if this times out for another 50 ms with
8252 * preemption disabled.
8253 *
8254 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
8255 * other error as reported by PCODE.
8256 */
8257 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
8258 u32 reply_mask, u32 reply, int timeout_base_ms)
8259 {
8260 u32 status;
8261 int ret;
8262
8263 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8264
8265 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
8266 &status)
8267
8268 /*
8269 * Prime the PCODE by doing a request first. Normally it guarantees
8270 * that a subsequent request, at most @timeout_base_ms later, succeeds.
8271 * _wait_for() doesn't guarantee when its passed condition is evaluated
8272 * first, so send the first request explicitly.
8273 */
8274 if (COND) {
8275 ret = 0;
8276 goto out;
8277 }
8278 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
8279 if (!ret)
8280 goto out;
8281
8282 /*
8283 * The above can time out if the number of requests was low (2 in the
8284 * worst case) _and_ PCODE was busy for some reason even after a
8285 * (queued) request and @timeout_base_ms delay. As a workaround retry
8286 * the poll with preemption disabled to maximize the number of
8287 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8288 * account for interrupts that could reduce the number of these
8289 * requests, and for any quirks of the PCODE firmware that delays
8290 * the request completion.
8291 */
8292 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
8293 WARN_ON_ONCE(timeout_base_ms > 3);
8294 preempt_disable();
8295 ret = wait_for_atomic(COND, 50);
8296 preempt_enable();
8297
8298 out:
8299 return ret ? ret : status;
8300 #undef COND
8301 }
8302
8303 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
8304 {
8305 /*
8306 * N = val - 0xb7
8307 * Slow = Fast = GPLL ref * N
8308 */
8309 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8310 }
8311
8312 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8313 {
8314 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8315 }
8316
8317 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8318 {
8319 /*
8320 * N = val / 2
8321 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8322 */
8323 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8324 }
8325
8326 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8327 {
8328 /* CHV needs even values */
8329 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8330 }
8331
8332 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8333 {
8334 if (IS_GEN9(dev_priv))
8335 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8336 GEN9_FREQ_SCALER);
8337 else if (IS_CHERRYVIEW(dev_priv))
8338 return chv_gpu_freq(dev_priv, val);
8339 else if (IS_VALLEYVIEW(dev_priv))
8340 return byt_gpu_freq(dev_priv, val);
8341 else
8342 return val * GT_FREQUENCY_MULTIPLIER;
8343 }
8344
8345 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8346 {
8347 if (IS_GEN9(dev_priv))
8348 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8349 GT_FREQUENCY_MULTIPLIER);
8350 else if (IS_CHERRYVIEW(dev_priv))
8351 return chv_freq_opcode(dev_priv, val);
8352 else if (IS_VALLEYVIEW(dev_priv))
8353 return byt_freq_opcode(dev_priv, val);
8354 else
8355 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8356 }
8357
8358 struct request_boost {
8359 struct work_struct work;
8360 struct drm_i915_gem_request *req;
8361 };
8362
8363 static void __intel_rps_boost_work(struct work_struct *work)
8364 {
8365 struct request_boost *boost = container_of(work, struct request_boost, work);
8366 struct drm_i915_gem_request *req = boost->req;
8367
8368 if (!i915_gem_request_completed(req))
8369 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8370
8371 i915_gem_request_put(req);
8372 kfree(boost);
8373 }
8374
8375 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8376 {
8377 struct request_boost *boost;
8378
8379 if (req == NULL || INTEL_GEN(req->i915) < 6)
8380 return;
8381
8382 if (i915_gem_request_completed(req))
8383 return;
8384
8385 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8386 if (boost == NULL)
8387 return;
8388
8389 boost->req = i915_gem_request_get(req);
8390
8391 INIT_WORK(&boost->work, __intel_rps_boost_work);
8392 queue_work(req->i915->wq, &boost->work);
8393 }
8394
8395 void intel_pm_setup(struct drm_i915_private *dev_priv)
8396 {
8397 mutex_init(&dev_priv->rps.hw_lock);
8398 spin_lock_init(&dev_priv->rps.client_lock);
8399
8400 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8401 __intel_autoenable_gt_powersave);
8402 INIT_LIST_HEAD(&dev_priv->rps.clients);
8403
8404 dev_priv->pm.suspended = false;
8405 atomic_set(&dev_priv->pm.wakeref_count, 0);
8406 }
8407
8408 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
8409 const i915_reg_t reg)
8410 {
8411 u32 lower, upper, tmp;
8412 int loop = 2;
8413
8414 /* The register accessed do not need forcewake. We borrow
8415 * uncore lock to prevent concurrent access to range reg.
8416 */
8417 spin_lock_irq(&dev_priv->uncore.lock);
8418
8419 /* vlv and chv residency counters are 40 bits in width.
8420 * With a control bit, we can choose between upper or lower
8421 * 32bit window into this counter.
8422 *
8423 * Although we always use the counter in high-range mode elsewhere,
8424 * userspace may attempt to read the value before rc6 is initialised,
8425 * before we have set the default VLV_COUNTER_CONTROL value. So always
8426 * set the high bit to be safe.
8427 */
8428 I915_WRITE_FW(VLV_COUNTER_CONTROL,
8429 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8430 upper = I915_READ_FW(reg);
8431 do {
8432 tmp = upper;
8433
8434 I915_WRITE_FW(VLV_COUNTER_CONTROL,
8435 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
8436 lower = I915_READ_FW(reg);
8437
8438 I915_WRITE_FW(VLV_COUNTER_CONTROL,
8439 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8440 upper = I915_READ_FW(reg);
8441 } while (upper != tmp && --loop);
8442
8443 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
8444 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
8445 * now.
8446 */
8447
8448 spin_unlock_irq(&dev_priv->uncore.lock);
8449
8450 return lower | (u64)upper << 8;
8451 }
8452
8453 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
8454 const i915_reg_t reg)
8455 {
8456 u64 time_hw, units, div;
8457
8458 if (!intel_enable_rc6())
8459 return 0;
8460
8461 intel_runtime_pm_get(dev_priv);
8462
8463 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
8464 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8465 units = 1000;
8466 div = dev_priv->czclk_freq;
8467
8468 time_hw = vlv_residency_raw(dev_priv, reg);
8469 } else if (IS_GEN9_LP(dev_priv)) {
8470 units = 1000;
8471 div = 1200; /* 833.33ns */
8472
8473 time_hw = I915_READ(reg);
8474 } else {
8475 units = 128000; /* 1.28us */
8476 div = 100000;
8477
8478 time_hw = I915_READ(reg);
8479 }
8480
8481 intel_runtime_pm_put(dev_priv);
8482 return DIV_ROUND_UP_ULL(time_hw * units, div);
8483 }