]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63 /* WaDisableKillLogic:bxt,skl */
64 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65 ECOCHK_DIS_TLB);
66 }
67
68 static void skl_init_clock_gating(struct drm_device *dev)
69 {
70 struct drm_i915_private *dev_priv = dev->dev_private;
71
72 gen9_init_clock_gating(dev);
73
74 if (INTEL_REVID(dev) <= SKL_REVID_B0) {
75 /*
76 * WaDisableSDEUnitClockGating:skl
77 * WaSetGAPSunitClckGateDisable:skl
78 */
79 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
80 GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
81 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
82
83 /* WaDisableVFUnitClockGating:skl */
84 I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
85 GEN6_VFUNIT_CLOCK_GATE_DISABLE);
86 }
87
88 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
89 /* WaDisableHDCInvalidation:skl */
90 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
91 BDW_DISABLE_HDC_INVALIDATION);
92
93 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
94 I915_WRITE(FF_SLICE_CS_CHICKEN2,
95 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
96 }
97
98 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
99 * involving this register should also be added to WA batch as required.
100 */
101 if (INTEL_REVID(dev) <= SKL_REVID_E0)
102 /* WaDisableLSQCROPERFforOCL:skl */
103 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
104 GEN8_LQSC_RO_PERF_DIS);
105
106 /* WaEnableGapsTsvCreditFix:skl */
107 if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
108 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
109 GEN9_GAPS_TSV_CREDIT_DISABLE));
110 }
111 }
112
113 static void bxt_init_clock_gating(struct drm_device *dev)
114 {
115 struct drm_i915_private *dev_priv = dev->dev_private;
116
117 gen9_init_clock_gating(dev);
118
119 /*
120 * FIXME:
121 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
122 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
123 */
124 /* WaDisableSDEUnitClockGating:bxt */
125 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
127 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
128
129 /* FIXME: apply on A0 only */
130 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
131 }
132
133 static void i915_pineview_get_mem_freq(struct drm_device *dev)
134 {
135 struct drm_i915_private *dev_priv = dev->dev_private;
136 u32 tmp;
137
138 tmp = I915_READ(CLKCFG);
139
140 switch (tmp & CLKCFG_FSB_MASK) {
141 case CLKCFG_FSB_533:
142 dev_priv->fsb_freq = 533; /* 133*4 */
143 break;
144 case CLKCFG_FSB_800:
145 dev_priv->fsb_freq = 800; /* 200*4 */
146 break;
147 case CLKCFG_FSB_667:
148 dev_priv->fsb_freq = 667; /* 167*4 */
149 break;
150 case CLKCFG_FSB_400:
151 dev_priv->fsb_freq = 400; /* 100*4 */
152 break;
153 }
154
155 switch (tmp & CLKCFG_MEM_MASK) {
156 case CLKCFG_MEM_533:
157 dev_priv->mem_freq = 533;
158 break;
159 case CLKCFG_MEM_667:
160 dev_priv->mem_freq = 667;
161 break;
162 case CLKCFG_MEM_800:
163 dev_priv->mem_freq = 800;
164 break;
165 }
166
167 /* detect pineview DDR3 setting */
168 tmp = I915_READ(CSHRDDR3CTL);
169 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
170 }
171
172 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
173 {
174 struct drm_i915_private *dev_priv = dev->dev_private;
175 u16 ddrpll, csipll;
176
177 ddrpll = I915_READ16(DDRMPLL1);
178 csipll = I915_READ16(CSIPLL0);
179
180 switch (ddrpll & 0xff) {
181 case 0xc:
182 dev_priv->mem_freq = 800;
183 break;
184 case 0x10:
185 dev_priv->mem_freq = 1066;
186 break;
187 case 0x14:
188 dev_priv->mem_freq = 1333;
189 break;
190 case 0x18:
191 dev_priv->mem_freq = 1600;
192 break;
193 default:
194 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
195 ddrpll & 0xff);
196 dev_priv->mem_freq = 0;
197 break;
198 }
199
200 dev_priv->ips.r_t = dev_priv->mem_freq;
201
202 switch (csipll & 0x3ff) {
203 case 0x00c:
204 dev_priv->fsb_freq = 3200;
205 break;
206 case 0x00e:
207 dev_priv->fsb_freq = 3733;
208 break;
209 case 0x010:
210 dev_priv->fsb_freq = 4266;
211 break;
212 case 0x012:
213 dev_priv->fsb_freq = 4800;
214 break;
215 case 0x014:
216 dev_priv->fsb_freq = 5333;
217 break;
218 case 0x016:
219 dev_priv->fsb_freq = 5866;
220 break;
221 case 0x018:
222 dev_priv->fsb_freq = 6400;
223 break;
224 default:
225 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
226 csipll & 0x3ff);
227 dev_priv->fsb_freq = 0;
228 break;
229 }
230
231 if (dev_priv->fsb_freq == 3200) {
232 dev_priv->ips.c_m = 0;
233 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
234 dev_priv->ips.c_m = 1;
235 } else {
236 dev_priv->ips.c_m = 2;
237 }
238 }
239
240 static const struct cxsr_latency cxsr_latency_table[] = {
241 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
242 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
243 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
244 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
245 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
246
247 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
248 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
249 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
250 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
251 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
252
253 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
254 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
255 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
256 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
257 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
258
259 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
260 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
261 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
262 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
263 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
264
265 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
266 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
267 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
268 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
269 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
270
271 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
272 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
273 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
274 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
275 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
276 };
277
278 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
279 int is_ddr3,
280 int fsb,
281 int mem)
282 {
283 const struct cxsr_latency *latency;
284 int i;
285
286 if (fsb == 0 || mem == 0)
287 return NULL;
288
289 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
290 latency = &cxsr_latency_table[i];
291 if (is_desktop == latency->is_desktop &&
292 is_ddr3 == latency->is_ddr3 &&
293 fsb == latency->fsb_freq && mem == latency->mem_freq)
294 return latency;
295 }
296
297 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
298
299 return NULL;
300 }
301
302 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
303 {
304 u32 val;
305
306 mutex_lock(&dev_priv->rps.hw_lock);
307
308 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
309 if (enable)
310 val &= ~FORCE_DDR_HIGH_FREQ;
311 else
312 val |= FORCE_DDR_HIGH_FREQ;
313 val &= ~FORCE_DDR_LOW_FREQ;
314 val |= FORCE_DDR_FREQ_REQ_ACK;
315 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
316
317 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
318 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
319 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
320
321 mutex_unlock(&dev_priv->rps.hw_lock);
322 }
323
324 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
325 {
326 u32 val;
327
328 mutex_lock(&dev_priv->rps.hw_lock);
329
330 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
331 if (enable)
332 val |= DSP_MAXFIFO_PM5_ENABLE;
333 else
334 val &= ~DSP_MAXFIFO_PM5_ENABLE;
335 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
336
337 mutex_unlock(&dev_priv->rps.hw_lock);
338 }
339
340 #define FW_WM(value, plane) \
341 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
342
343 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
344 {
345 struct drm_device *dev = dev_priv->dev;
346 u32 val;
347
348 if (IS_VALLEYVIEW(dev)) {
349 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
350 POSTING_READ(FW_BLC_SELF_VLV);
351 dev_priv->wm.vlv.cxsr = enable;
352 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
353 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
354 POSTING_READ(FW_BLC_SELF);
355 } else if (IS_PINEVIEW(dev)) {
356 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
357 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
358 I915_WRITE(DSPFW3, val);
359 POSTING_READ(DSPFW3);
360 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
361 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363 I915_WRITE(FW_BLC_SELF, val);
364 POSTING_READ(FW_BLC_SELF);
365 } else if (IS_I915GM(dev)) {
366 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
367 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
368 I915_WRITE(INSTPM, val);
369 POSTING_READ(INSTPM);
370 } else {
371 return;
372 }
373
374 DRM_DEBUG_KMS("memory self-refresh is %s\n",
375 enable ? "enabled" : "disabled");
376 }
377
378
379 /*
380 * Latency for FIFO fetches is dependent on several factors:
381 * - memory configuration (speed, channels)
382 * - chipset
383 * - current MCH state
384 * It can be fairly high in some situations, so here we assume a fairly
385 * pessimal value. It's a tradeoff between extra memory fetches (if we
386 * set this value too high, the FIFO will fetch frequently to stay full)
387 * and power consumption (set it too low to save power and we might see
388 * FIFO underruns and display "flicker").
389 *
390 * A value of 5us seems to be a good balance; safe for very low end
391 * platforms but not overly aggressive on lower latency configs.
392 */
393 static const int pessimal_latency_ns = 5000;
394
395 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
396 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
397
398 static int vlv_get_fifo_size(struct drm_device *dev,
399 enum pipe pipe, int plane)
400 {
401 struct drm_i915_private *dev_priv = dev->dev_private;
402 int sprite0_start, sprite1_start, size;
403
404 switch (pipe) {
405 uint32_t dsparb, dsparb2, dsparb3;
406 case PIPE_A:
407 dsparb = I915_READ(DSPARB);
408 dsparb2 = I915_READ(DSPARB2);
409 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
410 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
411 break;
412 case PIPE_B:
413 dsparb = I915_READ(DSPARB);
414 dsparb2 = I915_READ(DSPARB2);
415 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
416 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
417 break;
418 case PIPE_C:
419 dsparb2 = I915_READ(DSPARB2);
420 dsparb3 = I915_READ(DSPARB3);
421 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
422 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
423 break;
424 default:
425 return 0;
426 }
427
428 switch (plane) {
429 case 0:
430 size = sprite0_start;
431 break;
432 case 1:
433 size = sprite1_start - sprite0_start;
434 break;
435 case 2:
436 size = 512 - 1 - sprite1_start;
437 break;
438 default:
439 return 0;
440 }
441
442 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
443 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
444 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
445 size);
446
447 return size;
448 }
449
450 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453 uint32_t dsparb = I915_READ(DSPARB);
454 int size;
455
456 size = dsparb & 0x7f;
457 if (plane)
458 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
459
460 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
461 plane ? "B" : "A", size);
462
463 return size;
464 }
465
466 static int i830_get_fifo_size(struct drm_device *dev, int plane)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469 uint32_t dsparb = I915_READ(DSPARB);
470 int size;
471
472 size = dsparb & 0x1ff;
473 if (plane)
474 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
475 size >>= 1; /* Convert to cachelines */
476
477 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
478 plane ? "B" : "A", size);
479
480 return size;
481 }
482
483 static int i845_get_fifo_size(struct drm_device *dev, int plane)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486 uint32_t dsparb = I915_READ(DSPARB);
487 int size;
488
489 size = dsparb & 0x7f;
490 size >>= 2; /* Convert to cachelines */
491
492 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
493 plane ? "B" : "A",
494 size);
495
496 return size;
497 }
498
499 /* Pineview has different values for various configs */
500 static const struct intel_watermark_params pineview_display_wm = {
501 .fifo_size = PINEVIEW_DISPLAY_FIFO,
502 .max_wm = PINEVIEW_MAX_WM,
503 .default_wm = PINEVIEW_DFT_WM,
504 .guard_size = PINEVIEW_GUARD_WM,
505 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
506 };
507 static const struct intel_watermark_params pineview_display_hplloff_wm = {
508 .fifo_size = PINEVIEW_DISPLAY_FIFO,
509 .max_wm = PINEVIEW_MAX_WM,
510 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
511 .guard_size = PINEVIEW_GUARD_WM,
512 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
513 };
514 static const struct intel_watermark_params pineview_cursor_wm = {
515 .fifo_size = PINEVIEW_CURSOR_FIFO,
516 .max_wm = PINEVIEW_CURSOR_MAX_WM,
517 .default_wm = PINEVIEW_CURSOR_DFT_WM,
518 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
519 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
520 };
521 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
522 .fifo_size = PINEVIEW_CURSOR_FIFO,
523 .max_wm = PINEVIEW_CURSOR_MAX_WM,
524 .default_wm = PINEVIEW_CURSOR_DFT_WM,
525 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
526 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
527 };
528 static const struct intel_watermark_params g4x_wm_info = {
529 .fifo_size = G4X_FIFO_SIZE,
530 .max_wm = G4X_MAX_WM,
531 .default_wm = G4X_MAX_WM,
532 .guard_size = 2,
533 .cacheline_size = G4X_FIFO_LINE_SIZE,
534 };
535 static const struct intel_watermark_params g4x_cursor_wm_info = {
536 .fifo_size = I965_CURSOR_FIFO,
537 .max_wm = I965_CURSOR_MAX_WM,
538 .default_wm = I965_CURSOR_DFT_WM,
539 .guard_size = 2,
540 .cacheline_size = G4X_FIFO_LINE_SIZE,
541 };
542 static const struct intel_watermark_params valleyview_wm_info = {
543 .fifo_size = VALLEYVIEW_FIFO_SIZE,
544 .max_wm = VALLEYVIEW_MAX_WM,
545 .default_wm = VALLEYVIEW_MAX_WM,
546 .guard_size = 2,
547 .cacheline_size = G4X_FIFO_LINE_SIZE,
548 };
549 static const struct intel_watermark_params valleyview_cursor_wm_info = {
550 .fifo_size = I965_CURSOR_FIFO,
551 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
552 .default_wm = I965_CURSOR_DFT_WM,
553 .guard_size = 2,
554 .cacheline_size = G4X_FIFO_LINE_SIZE,
555 };
556 static const struct intel_watermark_params i965_cursor_wm_info = {
557 .fifo_size = I965_CURSOR_FIFO,
558 .max_wm = I965_CURSOR_MAX_WM,
559 .default_wm = I965_CURSOR_DFT_WM,
560 .guard_size = 2,
561 .cacheline_size = I915_FIFO_LINE_SIZE,
562 };
563 static const struct intel_watermark_params i945_wm_info = {
564 .fifo_size = I945_FIFO_SIZE,
565 .max_wm = I915_MAX_WM,
566 .default_wm = 1,
567 .guard_size = 2,
568 .cacheline_size = I915_FIFO_LINE_SIZE,
569 };
570 static const struct intel_watermark_params i915_wm_info = {
571 .fifo_size = I915_FIFO_SIZE,
572 .max_wm = I915_MAX_WM,
573 .default_wm = 1,
574 .guard_size = 2,
575 .cacheline_size = I915_FIFO_LINE_SIZE,
576 };
577 static const struct intel_watermark_params i830_a_wm_info = {
578 .fifo_size = I855GM_FIFO_SIZE,
579 .max_wm = I915_MAX_WM,
580 .default_wm = 1,
581 .guard_size = 2,
582 .cacheline_size = I830_FIFO_LINE_SIZE,
583 };
584 static const struct intel_watermark_params i830_bc_wm_info = {
585 .fifo_size = I855GM_FIFO_SIZE,
586 .max_wm = I915_MAX_WM/2,
587 .default_wm = 1,
588 .guard_size = 2,
589 .cacheline_size = I830_FIFO_LINE_SIZE,
590 };
591 static const struct intel_watermark_params i845_wm_info = {
592 .fifo_size = I830_FIFO_SIZE,
593 .max_wm = I915_MAX_WM,
594 .default_wm = 1,
595 .guard_size = 2,
596 .cacheline_size = I830_FIFO_LINE_SIZE,
597 };
598
599 /**
600 * intel_calculate_wm - calculate watermark level
601 * @clock_in_khz: pixel clock
602 * @wm: chip FIFO params
603 * @pixel_size: display pixel size
604 * @latency_ns: memory latency for the platform
605 *
606 * Calculate the watermark level (the level at which the display plane will
607 * start fetching from memory again). Each chip has a different display
608 * FIFO size and allocation, so the caller needs to figure that out and pass
609 * in the correct intel_watermark_params structure.
610 *
611 * As the pixel clock runs, the FIFO will be drained at a rate that depends
612 * on the pixel size. When it reaches the watermark level, it'll start
613 * fetching FIFO line sized based chunks from memory until the FIFO fills
614 * past the watermark point. If the FIFO drains completely, a FIFO underrun
615 * will occur, and a display engine hang could result.
616 */
617 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
618 const struct intel_watermark_params *wm,
619 int fifo_size,
620 int pixel_size,
621 unsigned long latency_ns)
622 {
623 long entries_required, wm_size;
624
625 /*
626 * Note: we need to make sure we don't overflow for various clock &
627 * latency values.
628 * clocks go from a few thousand to several hundred thousand.
629 * latency is usually a few thousand
630 */
631 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
632 1000;
633 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
634
635 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
636
637 wm_size = fifo_size - (entries_required + wm->guard_size);
638
639 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
640
641 /* Don't promote wm_size to unsigned... */
642 if (wm_size > (long)wm->max_wm)
643 wm_size = wm->max_wm;
644 if (wm_size <= 0)
645 wm_size = wm->default_wm;
646
647 /*
648 * Bspec seems to indicate that the value shouldn't be lower than
649 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
650 * Lets go for 8 which is the burst size since certain platforms
651 * already use a hardcoded 8 (which is what the spec says should be
652 * done).
653 */
654 if (wm_size <= 8)
655 wm_size = 8;
656
657 return wm_size;
658 }
659
660 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
661 {
662 struct drm_crtc *crtc, *enabled = NULL;
663
664 for_each_crtc(dev, crtc) {
665 if (intel_crtc_active(crtc)) {
666 if (enabled)
667 return NULL;
668 enabled = crtc;
669 }
670 }
671
672 return enabled;
673 }
674
675 static void pineview_update_wm(struct drm_crtc *unused_crtc)
676 {
677 struct drm_device *dev = unused_crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 struct drm_crtc *crtc;
680 const struct cxsr_latency *latency;
681 u32 reg;
682 unsigned long wm;
683
684 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
685 dev_priv->fsb_freq, dev_priv->mem_freq);
686 if (!latency) {
687 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
688 intel_set_memory_cxsr(dev_priv, false);
689 return;
690 }
691
692 crtc = single_enabled_crtc(dev);
693 if (crtc) {
694 const struct drm_display_mode *adjusted_mode;
695 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
696 int clock;
697
698 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
699 clock = adjusted_mode->crtc_clock;
700
701 /* Display SR */
702 wm = intel_calculate_wm(clock, &pineview_display_wm,
703 pineview_display_wm.fifo_size,
704 pixel_size, latency->display_sr);
705 reg = I915_READ(DSPFW1);
706 reg &= ~DSPFW_SR_MASK;
707 reg |= FW_WM(wm, SR);
708 I915_WRITE(DSPFW1, reg);
709 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
710
711 /* cursor SR */
712 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
713 pineview_display_wm.fifo_size,
714 pixel_size, latency->cursor_sr);
715 reg = I915_READ(DSPFW3);
716 reg &= ~DSPFW_CURSOR_SR_MASK;
717 reg |= FW_WM(wm, CURSOR_SR);
718 I915_WRITE(DSPFW3, reg);
719
720 /* Display HPLL off SR */
721 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
722 pineview_display_hplloff_wm.fifo_size,
723 pixel_size, latency->display_hpll_disable);
724 reg = I915_READ(DSPFW3);
725 reg &= ~DSPFW_HPLL_SR_MASK;
726 reg |= FW_WM(wm, HPLL_SR);
727 I915_WRITE(DSPFW3, reg);
728
729 /* cursor HPLL off SR */
730 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
731 pineview_display_hplloff_wm.fifo_size,
732 pixel_size, latency->cursor_hpll_disable);
733 reg = I915_READ(DSPFW3);
734 reg &= ~DSPFW_HPLL_CURSOR_MASK;
735 reg |= FW_WM(wm, HPLL_CURSOR);
736 I915_WRITE(DSPFW3, reg);
737 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
738
739 intel_set_memory_cxsr(dev_priv, true);
740 } else {
741 intel_set_memory_cxsr(dev_priv, false);
742 }
743 }
744
745 static bool g4x_compute_wm0(struct drm_device *dev,
746 int plane,
747 const struct intel_watermark_params *display,
748 int display_latency_ns,
749 const struct intel_watermark_params *cursor,
750 int cursor_latency_ns,
751 int *plane_wm,
752 int *cursor_wm)
753 {
754 struct drm_crtc *crtc;
755 const struct drm_display_mode *adjusted_mode;
756 int htotal, hdisplay, clock, pixel_size;
757 int line_time_us, line_count;
758 int entries, tlb_miss;
759
760 crtc = intel_get_crtc_for_plane(dev, plane);
761 if (!intel_crtc_active(crtc)) {
762 *cursor_wm = cursor->guard_size;
763 *plane_wm = display->guard_size;
764 return false;
765 }
766
767 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
768 clock = adjusted_mode->crtc_clock;
769 htotal = adjusted_mode->crtc_htotal;
770 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
771 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
772
773 /* Use the small buffer method to calculate plane watermark */
774 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
775 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
776 if (tlb_miss > 0)
777 entries += tlb_miss;
778 entries = DIV_ROUND_UP(entries, display->cacheline_size);
779 *plane_wm = entries + display->guard_size;
780 if (*plane_wm > (int)display->max_wm)
781 *plane_wm = display->max_wm;
782
783 /* Use the large buffer method to calculate cursor watermark */
784 line_time_us = max(htotal * 1000 / clock, 1);
785 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
786 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
787 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
788 if (tlb_miss > 0)
789 entries += tlb_miss;
790 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
791 *cursor_wm = entries + cursor->guard_size;
792 if (*cursor_wm > (int)cursor->max_wm)
793 *cursor_wm = (int)cursor->max_wm;
794
795 return true;
796 }
797
798 /*
799 * Check the wm result.
800 *
801 * If any calculated watermark values is larger than the maximum value that
802 * can be programmed into the associated watermark register, that watermark
803 * must be disabled.
804 */
805 static bool g4x_check_srwm(struct drm_device *dev,
806 int display_wm, int cursor_wm,
807 const struct intel_watermark_params *display,
808 const struct intel_watermark_params *cursor)
809 {
810 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
811 display_wm, cursor_wm);
812
813 if (display_wm > display->max_wm) {
814 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
815 display_wm, display->max_wm);
816 return false;
817 }
818
819 if (cursor_wm > cursor->max_wm) {
820 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
821 cursor_wm, cursor->max_wm);
822 return false;
823 }
824
825 if (!(display_wm || cursor_wm)) {
826 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
827 return false;
828 }
829
830 return true;
831 }
832
833 static bool g4x_compute_srwm(struct drm_device *dev,
834 int plane,
835 int latency_ns,
836 const struct intel_watermark_params *display,
837 const struct intel_watermark_params *cursor,
838 int *display_wm, int *cursor_wm)
839 {
840 struct drm_crtc *crtc;
841 const struct drm_display_mode *adjusted_mode;
842 int hdisplay, htotal, pixel_size, clock;
843 unsigned long line_time_us;
844 int line_count, line_size;
845 int small, large;
846 int entries;
847
848 if (!latency_ns) {
849 *display_wm = *cursor_wm = 0;
850 return false;
851 }
852
853 crtc = intel_get_crtc_for_plane(dev, plane);
854 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
855 clock = adjusted_mode->crtc_clock;
856 htotal = adjusted_mode->crtc_htotal;
857 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
858 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
859
860 line_time_us = max(htotal * 1000 / clock, 1);
861 line_count = (latency_ns / line_time_us + 1000) / 1000;
862 line_size = hdisplay * pixel_size;
863
864 /* Use the minimum of the small and large buffer method for primary */
865 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
866 large = line_count * line_size;
867
868 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
869 *display_wm = entries + display->guard_size;
870
871 /* calculate the self-refresh watermark for display cursor */
872 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
873 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
874 *cursor_wm = entries + cursor->guard_size;
875
876 return g4x_check_srwm(dev,
877 *display_wm, *cursor_wm,
878 display, cursor);
879 }
880
881 #define FW_WM_VLV(value, plane) \
882 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
883
884 static void vlv_write_wm_values(struct intel_crtc *crtc,
885 const struct vlv_wm_values *wm)
886 {
887 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
888 enum pipe pipe = crtc->pipe;
889
890 I915_WRITE(VLV_DDL(pipe),
891 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
892 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
893 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
894 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
895
896 I915_WRITE(DSPFW1,
897 FW_WM(wm->sr.plane, SR) |
898 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
899 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
900 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
901 I915_WRITE(DSPFW2,
902 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
903 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
904 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
905 I915_WRITE(DSPFW3,
906 FW_WM(wm->sr.cursor, CURSOR_SR));
907
908 if (IS_CHERRYVIEW(dev_priv)) {
909 I915_WRITE(DSPFW7_CHV,
910 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
911 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
912 I915_WRITE(DSPFW8_CHV,
913 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
914 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
915 I915_WRITE(DSPFW9_CHV,
916 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
917 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
918 I915_WRITE(DSPHOWM,
919 FW_WM(wm->sr.plane >> 9, SR_HI) |
920 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
921 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
922 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
923 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
924 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
925 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
926 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
927 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
928 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
929 } else {
930 I915_WRITE(DSPFW7,
931 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
932 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
933 I915_WRITE(DSPHOWM,
934 FW_WM(wm->sr.plane >> 9, SR_HI) |
935 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
936 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
937 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
938 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
939 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
940 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
941 }
942
943 /* zero (unused) WM1 watermarks */
944 I915_WRITE(DSPFW4, 0);
945 I915_WRITE(DSPFW5, 0);
946 I915_WRITE(DSPFW6, 0);
947 I915_WRITE(DSPHOWM1, 0);
948
949 POSTING_READ(DSPFW1);
950 }
951
952 #undef FW_WM_VLV
953
954 enum vlv_wm_level {
955 VLV_WM_LEVEL_PM2,
956 VLV_WM_LEVEL_PM5,
957 VLV_WM_LEVEL_DDR_DVFS,
958 };
959
960 /* latency must be in 0.1us units. */
961 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
962 unsigned int pipe_htotal,
963 unsigned int horiz_pixels,
964 unsigned int bytes_per_pixel,
965 unsigned int latency)
966 {
967 unsigned int ret;
968
969 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
970 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
971 ret = DIV_ROUND_UP(ret, 64);
972
973 return ret;
974 }
975
976 static void vlv_setup_wm_latency(struct drm_device *dev)
977 {
978 struct drm_i915_private *dev_priv = dev->dev_private;
979
980 /* all latencies in usec */
981 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
982
983 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
984
985 if (IS_CHERRYVIEW(dev_priv)) {
986 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
987 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
988
989 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
990 }
991 }
992
993 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
994 struct intel_crtc *crtc,
995 const struct intel_plane_state *state,
996 int level)
997 {
998 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
999 int clock, htotal, pixel_size, width, wm;
1000
1001 if (dev_priv->wm.pri_latency[level] == 0)
1002 return USHRT_MAX;
1003
1004 if (!state->visible)
1005 return 0;
1006
1007 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008 clock = crtc->config->base.adjusted_mode.crtc_clock;
1009 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1010 width = crtc->config->pipe_src_w;
1011 if (WARN_ON(htotal == 0))
1012 htotal = 1;
1013
1014 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1015 /*
1016 * FIXME the formula gives values that are
1017 * too big for the cursor FIFO, and hence we
1018 * would never be able to use cursors. For
1019 * now just hardcode the watermark.
1020 */
1021 wm = 63;
1022 } else {
1023 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1024 dev_priv->wm.pri_latency[level] * 10);
1025 }
1026
1027 return min_t(int, wm, USHRT_MAX);
1028 }
1029
1030 static void vlv_compute_fifo(struct intel_crtc *crtc)
1031 {
1032 struct drm_device *dev = crtc->base.dev;
1033 struct vlv_wm_state *wm_state = &crtc->wm_state;
1034 struct intel_plane *plane;
1035 unsigned int total_rate = 0;
1036 const int fifo_size = 512 - 1;
1037 int fifo_extra, fifo_left = fifo_size;
1038
1039 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040 struct intel_plane_state *state =
1041 to_intel_plane_state(plane->base.state);
1042
1043 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1044 continue;
1045
1046 if (state->visible) {
1047 wm_state->num_active_planes++;
1048 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1049 }
1050 }
1051
1052 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1053 struct intel_plane_state *state =
1054 to_intel_plane_state(plane->base.state);
1055 unsigned int rate;
1056
1057 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1058 plane->wm.fifo_size = 63;
1059 continue;
1060 }
1061
1062 if (!state->visible) {
1063 plane->wm.fifo_size = 0;
1064 continue;
1065 }
1066
1067 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1068 plane->wm.fifo_size = fifo_size * rate / total_rate;
1069 fifo_left -= plane->wm.fifo_size;
1070 }
1071
1072 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1073
1074 /* spread the remainder evenly */
1075 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1076 int plane_extra;
1077
1078 if (fifo_left == 0)
1079 break;
1080
1081 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1082 continue;
1083
1084 /* give it all to the first plane if none are active */
1085 if (plane->wm.fifo_size == 0 &&
1086 wm_state->num_active_planes)
1087 continue;
1088
1089 plane_extra = min(fifo_extra, fifo_left);
1090 plane->wm.fifo_size += plane_extra;
1091 fifo_left -= plane_extra;
1092 }
1093
1094 WARN_ON(fifo_left != 0);
1095 }
1096
1097 static void vlv_invert_wms(struct intel_crtc *crtc)
1098 {
1099 struct vlv_wm_state *wm_state = &crtc->wm_state;
1100 int level;
1101
1102 for (level = 0; level < wm_state->num_levels; level++) {
1103 struct drm_device *dev = crtc->base.dev;
1104 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1105 struct intel_plane *plane;
1106
1107 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1108 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1109
1110 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1111 switch (plane->base.type) {
1112 int sprite;
1113 case DRM_PLANE_TYPE_CURSOR:
1114 wm_state->wm[level].cursor = plane->wm.fifo_size -
1115 wm_state->wm[level].cursor;
1116 break;
1117 case DRM_PLANE_TYPE_PRIMARY:
1118 wm_state->wm[level].primary = plane->wm.fifo_size -
1119 wm_state->wm[level].primary;
1120 break;
1121 case DRM_PLANE_TYPE_OVERLAY:
1122 sprite = plane->plane;
1123 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1124 wm_state->wm[level].sprite[sprite];
1125 break;
1126 }
1127 }
1128 }
1129 }
1130
1131 static void vlv_compute_wm(struct intel_crtc *crtc)
1132 {
1133 struct drm_device *dev = crtc->base.dev;
1134 struct vlv_wm_state *wm_state = &crtc->wm_state;
1135 struct intel_plane *plane;
1136 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1137 int level;
1138
1139 memset(wm_state, 0, sizeof(*wm_state));
1140
1141 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1142 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1143
1144 wm_state->num_active_planes = 0;
1145
1146 vlv_compute_fifo(crtc);
1147
1148 if (wm_state->num_active_planes != 1)
1149 wm_state->cxsr = false;
1150
1151 if (wm_state->cxsr) {
1152 for (level = 0; level < wm_state->num_levels; level++) {
1153 wm_state->sr[level].plane = sr_fifo_size;
1154 wm_state->sr[level].cursor = 63;
1155 }
1156 }
1157
1158 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1159 struct intel_plane_state *state =
1160 to_intel_plane_state(plane->base.state);
1161
1162 if (!state->visible)
1163 continue;
1164
1165 /* normal watermarks */
1166 for (level = 0; level < wm_state->num_levels; level++) {
1167 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1168 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1169
1170 /* hack */
1171 if (WARN_ON(level == 0 && wm > max_wm))
1172 wm = max_wm;
1173
1174 if (wm > plane->wm.fifo_size)
1175 break;
1176
1177 switch (plane->base.type) {
1178 int sprite;
1179 case DRM_PLANE_TYPE_CURSOR:
1180 wm_state->wm[level].cursor = wm;
1181 break;
1182 case DRM_PLANE_TYPE_PRIMARY:
1183 wm_state->wm[level].primary = wm;
1184 break;
1185 case DRM_PLANE_TYPE_OVERLAY:
1186 sprite = plane->plane;
1187 wm_state->wm[level].sprite[sprite] = wm;
1188 break;
1189 }
1190 }
1191
1192 wm_state->num_levels = level;
1193
1194 if (!wm_state->cxsr)
1195 continue;
1196
1197 /* maxfifo watermarks */
1198 switch (plane->base.type) {
1199 int sprite, level;
1200 case DRM_PLANE_TYPE_CURSOR:
1201 for (level = 0; level < wm_state->num_levels; level++)
1202 wm_state->sr[level].cursor =
1203 wm_state->sr[level].cursor;
1204 break;
1205 case DRM_PLANE_TYPE_PRIMARY:
1206 for (level = 0; level < wm_state->num_levels; level++)
1207 wm_state->sr[level].plane =
1208 min(wm_state->sr[level].plane,
1209 wm_state->wm[level].primary);
1210 break;
1211 case DRM_PLANE_TYPE_OVERLAY:
1212 sprite = plane->plane;
1213 for (level = 0; level < wm_state->num_levels; level++)
1214 wm_state->sr[level].plane =
1215 min(wm_state->sr[level].plane,
1216 wm_state->wm[level].sprite[sprite]);
1217 break;
1218 }
1219 }
1220
1221 /* clear any (partially) filled invalid levels */
1222 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1223 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1224 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1225 }
1226
1227 vlv_invert_wms(crtc);
1228 }
1229
1230 #define VLV_FIFO(plane, value) \
1231 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1232
1233 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1234 {
1235 struct drm_device *dev = crtc->base.dev;
1236 struct drm_i915_private *dev_priv = to_i915(dev);
1237 struct intel_plane *plane;
1238 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1239
1240 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1241 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1242 WARN_ON(plane->wm.fifo_size != 63);
1243 continue;
1244 }
1245
1246 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1247 sprite0_start = plane->wm.fifo_size;
1248 else if (plane->plane == 0)
1249 sprite1_start = sprite0_start + plane->wm.fifo_size;
1250 else
1251 fifo_size = sprite1_start + plane->wm.fifo_size;
1252 }
1253
1254 WARN_ON(fifo_size != 512 - 1);
1255
1256 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1257 pipe_name(crtc->pipe), sprite0_start,
1258 sprite1_start, fifo_size);
1259
1260 switch (crtc->pipe) {
1261 uint32_t dsparb, dsparb2, dsparb3;
1262 case PIPE_A:
1263 dsparb = I915_READ(DSPARB);
1264 dsparb2 = I915_READ(DSPARB2);
1265
1266 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1267 VLV_FIFO(SPRITEB, 0xff));
1268 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1269 VLV_FIFO(SPRITEB, sprite1_start));
1270
1271 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1272 VLV_FIFO(SPRITEB_HI, 0x1));
1273 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1274 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1275
1276 I915_WRITE(DSPARB, dsparb);
1277 I915_WRITE(DSPARB2, dsparb2);
1278 break;
1279 case PIPE_B:
1280 dsparb = I915_READ(DSPARB);
1281 dsparb2 = I915_READ(DSPARB2);
1282
1283 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1284 VLV_FIFO(SPRITED, 0xff));
1285 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1286 VLV_FIFO(SPRITED, sprite1_start));
1287
1288 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1289 VLV_FIFO(SPRITED_HI, 0xff));
1290 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1291 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1292
1293 I915_WRITE(DSPARB, dsparb);
1294 I915_WRITE(DSPARB2, dsparb2);
1295 break;
1296 case PIPE_C:
1297 dsparb3 = I915_READ(DSPARB3);
1298 dsparb2 = I915_READ(DSPARB2);
1299
1300 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1301 VLV_FIFO(SPRITEF, 0xff));
1302 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1303 VLV_FIFO(SPRITEF, sprite1_start));
1304
1305 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1306 VLV_FIFO(SPRITEF_HI, 0xff));
1307 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1308 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1309
1310 I915_WRITE(DSPARB3, dsparb3);
1311 I915_WRITE(DSPARB2, dsparb2);
1312 break;
1313 default:
1314 break;
1315 }
1316 }
1317
1318 #undef VLV_FIFO
1319
1320 static void vlv_merge_wm(struct drm_device *dev,
1321 struct vlv_wm_values *wm)
1322 {
1323 struct intel_crtc *crtc;
1324 int num_active_crtcs = 0;
1325
1326 wm->level = to_i915(dev)->wm.max_level;
1327 wm->cxsr = true;
1328
1329 for_each_intel_crtc(dev, crtc) {
1330 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1331
1332 if (!crtc->active)
1333 continue;
1334
1335 if (!wm_state->cxsr)
1336 wm->cxsr = false;
1337
1338 num_active_crtcs++;
1339 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1340 }
1341
1342 if (num_active_crtcs != 1)
1343 wm->cxsr = false;
1344
1345 if (num_active_crtcs > 1)
1346 wm->level = VLV_WM_LEVEL_PM2;
1347
1348 for_each_intel_crtc(dev, crtc) {
1349 struct vlv_wm_state *wm_state = &crtc->wm_state;
1350 enum pipe pipe = crtc->pipe;
1351
1352 if (!crtc->active)
1353 continue;
1354
1355 wm->pipe[pipe] = wm_state->wm[wm->level];
1356 if (wm->cxsr)
1357 wm->sr = wm_state->sr[wm->level];
1358
1359 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1360 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1361 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1362 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1363 }
1364 }
1365
1366 static void vlv_update_wm(struct drm_crtc *crtc)
1367 {
1368 struct drm_device *dev = crtc->dev;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1371 enum pipe pipe = intel_crtc->pipe;
1372 struct vlv_wm_values wm = {};
1373
1374 vlv_compute_wm(intel_crtc);
1375 vlv_merge_wm(dev, &wm);
1376
1377 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1378 /* FIXME should be part of crtc atomic commit */
1379 vlv_pipe_set_fifo_size(intel_crtc);
1380 return;
1381 }
1382
1383 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1384 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1385 chv_set_memory_dvfs(dev_priv, false);
1386
1387 if (wm.level < VLV_WM_LEVEL_PM5 &&
1388 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1389 chv_set_memory_pm5(dev_priv, false);
1390
1391 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1392 intel_set_memory_cxsr(dev_priv, false);
1393
1394 /* FIXME should be part of crtc atomic commit */
1395 vlv_pipe_set_fifo_size(intel_crtc);
1396
1397 vlv_write_wm_values(intel_crtc, &wm);
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1400 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1401 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1402 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1403 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1404
1405 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1406 intel_set_memory_cxsr(dev_priv, true);
1407
1408 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1409 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1410 chv_set_memory_pm5(dev_priv, true);
1411
1412 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1413 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1414 chv_set_memory_dvfs(dev_priv, true);
1415
1416 dev_priv->wm.vlv = wm;
1417 }
1418
1419 #define single_plane_enabled(mask) is_power_of_2(mask)
1420
1421 static void g4x_update_wm(struct drm_crtc *crtc)
1422 {
1423 struct drm_device *dev = crtc->dev;
1424 static const int sr_latency_ns = 12000;
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1427 int plane_sr, cursor_sr;
1428 unsigned int enabled = 0;
1429 bool cxsr_enabled;
1430
1431 if (g4x_compute_wm0(dev, PIPE_A,
1432 &g4x_wm_info, pessimal_latency_ns,
1433 &g4x_cursor_wm_info, pessimal_latency_ns,
1434 &planea_wm, &cursora_wm))
1435 enabled |= 1 << PIPE_A;
1436
1437 if (g4x_compute_wm0(dev, PIPE_B,
1438 &g4x_wm_info, pessimal_latency_ns,
1439 &g4x_cursor_wm_info, pessimal_latency_ns,
1440 &planeb_wm, &cursorb_wm))
1441 enabled |= 1 << PIPE_B;
1442
1443 if (single_plane_enabled(enabled) &&
1444 g4x_compute_srwm(dev, ffs(enabled) - 1,
1445 sr_latency_ns,
1446 &g4x_wm_info,
1447 &g4x_cursor_wm_info,
1448 &plane_sr, &cursor_sr)) {
1449 cxsr_enabled = true;
1450 } else {
1451 cxsr_enabled = false;
1452 intel_set_memory_cxsr(dev_priv, false);
1453 plane_sr = cursor_sr = 0;
1454 }
1455
1456 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1457 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1458 planea_wm, cursora_wm,
1459 planeb_wm, cursorb_wm,
1460 plane_sr, cursor_sr);
1461
1462 I915_WRITE(DSPFW1,
1463 FW_WM(plane_sr, SR) |
1464 FW_WM(cursorb_wm, CURSORB) |
1465 FW_WM(planeb_wm, PLANEB) |
1466 FW_WM(planea_wm, PLANEA));
1467 I915_WRITE(DSPFW2,
1468 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1469 FW_WM(cursora_wm, CURSORA));
1470 /* HPLL off in SR has some issues on G4x... disable it */
1471 I915_WRITE(DSPFW3,
1472 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1473 FW_WM(cursor_sr, CURSOR_SR));
1474
1475 if (cxsr_enabled)
1476 intel_set_memory_cxsr(dev_priv, true);
1477 }
1478
1479 static void i965_update_wm(struct drm_crtc *unused_crtc)
1480 {
1481 struct drm_device *dev = unused_crtc->dev;
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483 struct drm_crtc *crtc;
1484 int srwm = 1;
1485 int cursor_sr = 16;
1486 bool cxsr_enabled;
1487
1488 /* Calc sr entries for one plane configs */
1489 crtc = single_enabled_crtc(dev);
1490 if (crtc) {
1491 /* self-refresh has much higher latency */
1492 static const int sr_latency_ns = 12000;
1493 const struct drm_display_mode *adjusted_mode =
1494 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1495 int clock = adjusted_mode->crtc_clock;
1496 int htotal = adjusted_mode->crtc_htotal;
1497 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1498 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1499 unsigned long line_time_us;
1500 int entries;
1501
1502 line_time_us = max(htotal * 1000 / clock, 1);
1503
1504 /* Use ns/us then divide to preserve precision */
1505 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1506 pixel_size * hdisplay;
1507 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1508 srwm = I965_FIFO_SIZE - entries;
1509 if (srwm < 0)
1510 srwm = 1;
1511 srwm &= 0x1ff;
1512 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1513 entries, srwm);
1514
1515 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1516 pixel_size * crtc->cursor->state->crtc_w;
1517 entries = DIV_ROUND_UP(entries,
1518 i965_cursor_wm_info.cacheline_size);
1519 cursor_sr = i965_cursor_wm_info.fifo_size -
1520 (entries + i965_cursor_wm_info.guard_size);
1521
1522 if (cursor_sr > i965_cursor_wm_info.max_wm)
1523 cursor_sr = i965_cursor_wm_info.max_wm;
1524
1525 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1526 "cursor %d\n", srwm, cursor_sr);
1527
1528 cxsr_enabled = true;
1529 } else {
1530 cxsr_enabled = false;
1531 /* Turn off self refresh if both pipes are enabled */
1532 intel_set_memory_cxsr(dev_priv, false);
1533 }
1534
1535 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1536 srwm);
1537
1538 /* 965 has limitations... */
1539 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1540 FW_WM(8, CURSORB) |
1541 FW_WM(8, PLANEB) |
1542 FW_WM(8, PLANEA));
1543 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1544 FW_WM(8, PLANEC_OLD));
1545 /* update cursor SR watermark */
1546 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1547
1548 if (cxsr_enabled)
1549 intel_set_memory_cxsr(dev_priv, true);
1550 }
1551
1552 #undef FW_WM
1553
1554 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1555 {
1556 struct drm_device *dev = unused_crtc->dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 const struct intel_watermark_params *wm_info;
1559 uint32_t fwater_lo;
1560 uint32_t fwater_hi;
1561 int cwm, srwm = 1;
1562 int fifo_size;
1563 int planea_wm, planeb_wm;
1564 struct drm_crtc *crtc, *enabled = NULL;
1565
1566 if (IS_I945GM(dev))
1567 wm_info = &i945_wm_info;
1568 else if (!IS_GEN2(dev))
1569 wm_info = &i915_wm_info;
1570 else
1571 wm_info = &i830_a_wm_info;
1572
1573 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1574 crtc = intel_get_crtc_for_plane(dev, 0);
1575 if (intel_crtc_active(crtc)) {
1576 const struct drm_display_mode *adjusted_mode;
1577 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1578 if (IS_GEN2(dev))
1579 cpp = 4;
1580
1581 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1582 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1583 wm_info, fifo_size, cpp,
1584 pessimal_latency_ns);
1585 enabled = crtc;
1586 } else {
1587 planea_wm = fifo_size - wm_info->guard_size;
1588 if (planea_wm > (long)wm_info->max_wm)
1589 planea_wm = wm_info->max_wm;
1590 }
1591
1592 if (IS_GEN2(dev))
1593 wm_info = &i830_bc_wm_info;
1594
1595 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1596 crtc = intel_get_crtc_for_plane(dev, 1);
1597 if (intel_crtc_active(crtc)) {
1598 const struct drm_display_mode *adjusted_mode;
1599 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1600 if (IS_GEN2(dev))
1601 cpp = 4;
1602
1603 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1604 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1605 wm_info, fifo_size, cpp,
1606 pessimal_latency_ns);
1607 if (enabled == NULL)
1608 enabled = crtc;
1609 else
1610 enabled = NULL;
1611 } else {
1612 planeb_wm = fifo_size - wm_info->guard_size;
1613 if (planeb_wm > (long)wm_info->max_wm)
1614 planeb_wm = wm_info->max_wm;
1615 }
1616
1617 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1618
1619 if (IS_I915GM(dev) && enabled) {
1620 struct drm_i915_gem_object *obj;
1621
1622 obj = intel_fb_obj(enabled->primary->state->fb);
1623
1624 /* self-refresh seems busted with untiled */
1625 if (obj->tiling_mode == I915_TILING_NONE)
1626 enabled = NULL;
1627 }
1628
1629 /*
1630 * Overlay gets an aggressive default since video jitter is bad.
1631 */
1632 cwm = 2;
1633
1634 /* Play safe and disable self-refresh before adjusting watermarks. */
1635 intel_set_memory_cxsr(dev_priv, false);
1636
1637 /* Calc sr entries for one plane configs */
1638 if (HAS_FW_BLC(dev) && enabled) {
1639 /* self-refresh has much higher latency */
1640 static const int sr_latency_ns = 6000;
1641 const struct drm_display_mode *adjusted_mode =
1642 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1643 int clock = adjusted_mode->crtc_clock;
1644 int htotal = adjusted_mode->crtc_htotal;
1645 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1646 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1647 unsigned long line_time_us;
1648 int entries;
1649
1650 line_time_us = max(htotal * 1000 / clock, 1);
1651
1652 /* Use ns/us then divide to preserve precision */
1653 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1654 pixel_size * hdisplay;
1655 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1656 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1657 srwm = wm_info->fifo_size - entries;
1658 if (srwm < 0)
1659 srwm = 1;
1660
1661 if (IS_I945G(dev) || IS_I945GM(dev))
1662 I915_WRITE(FW_BLC_SELF,
1663 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1664 else if (IS_I915GM(dev))
1665 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1666 }
1667
1668 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1669 planea_wm, planeb_wm, cwm, srwm);
1670
1671 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1672 fwater_hi = (cwm & 0x1f);
1673
1674 /* Set request length to 8 cachelines per fetch */
1675 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1676 fwater_hi = fwater_hi | (1 << 8);
1677
1678 I915_WRITE(FW_BLC, fwater_lo);
1679 I915_WRITE(FW_BLC2, fwater_hi);
1680
1681 if (enabled)
1682 intel_set_memory_cxsr(dev_priv, true);
1683 }
1684
1685 static void i845_update_wm(struct drm_crtc *unused_crtc)
1686 {
1687 struct drm_device *dev = unused_crtc->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct drm_crtc *crtc;
1690 const struct drm_display_mode *adjusted_mode;
1691 uint32_t fwater_lo;
1692 int planea_wm;
1693
1694 crtc = single_enabled_crtc(dev);
1695 if (crtc == NULL)
1696 return;
1697
1698 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1699 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1700 &i845_wm_info,
1701 dev_priv->display.get_fifo_size(dev, 0),
1702 4, pessimal_latency_ns);
1703 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1704 fwater_lo |= (3<<8) | planea_wm;
1705
1706 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1707
1708 I915_WRITE(FW_BLC, fwater_lo);
1709 }
1710
1711 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1712 {
1713 uint32_t pixel_rate;
1714
1715 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1716
1717 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1718 * adjust the pixel_rate here. */
1719
1720 if (pipe_config->pch_pfit.enabled) {
1721 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1722 uint32_t pfit_size = pipe_config->pch_pfit.size;
1723
1724 pipe_w = pipe_config->pipe_src_w;
1725 pipe_h = pipe_config->pipe_src_h;
1726
1727 pfit_w = (pfit_size >> 16) & 0xFFFF;
1728 pfit_h = pfit_size & 0xFFFF;
1729 if (pipe_w < pfit_w)
1730 pipe_w = pfit_w;
1731 if (pipe_h < pfit_h)
1732 pipe_h = pfit_h;
1733
1734 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1735 pfit_w * pfit_h);
1736 }
1737
1738 return pixel_rate;
1739 }
1740
1741 /* latency must be in 0.1us units. */
1742 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1743 uint32_t latency)
1744 {
1745 uint64_t ret;
1746
1747 if (WARN(latency == 0, "Latency value missing\n"))
1748 return UINT_MAX;
1749
1750 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1751 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1752
1753 return ret;
1754 }
1755
1756 /* latency must be in 0.1us units. */
1757 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1758 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1759 uint32_t latency)
1760 {
1761 uint32_t ret;
1762
1763 if (WARN(latency == 0, "Latency value missing\n"))
1764 return UINT_MAX;
1765
1766 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1767 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1768 ret = DIV_ROUND_UP(ret, 64) + 2;
1769 return ret;
1770 }
1771
1772 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1773 uint8_t bytes_per_pixel)
1774 {
1775 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1776 }
1777
1778 struct skl_pipe_wm_parameters {
1779 bool active;
1780 uint32_t pipe_htotal;
1781 uint32_t pixel_rate; /* in KHz */
1782 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1783 struct intel_plane_wm_parameters cursor;
1784 };
1785
1786 struct ilk_pipe_wm_parameters {
1787 bool active;
1788 uint32_t pipe_htotal;
1789 uint32_t pixel_rate;
1790 struct intel_plane_wm_parameters pri;
1791 struct intel_plane_wm_parameters spr;
1792 struct intel_plane_wm_parameters cur;
1793 };
1794
1795 struct ilk_wm_maximums {
1796 uint16_t pri;
1797 uint16_t spr;
1798 uint16_t cur;
1799 uint16_t fbc;
1800 };
1801
1802 /* used in computing the new watermarks state */
1803 struct intel_wm_config {
1804 unsigned int num_pipes_active;
1805 bool sprites_enabled;
1806 bool sprites_scaled;
1807 };
1808
1809 /*
1810 * For both WM_PIPE and WM_LP.
1811 * mem_value must be in 0.1us units.
1812 */
1813 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1814 uint32_t mem_value,
1815 bool is_lp)
1816 {
1817 uint32_t method1, method2;
1818
1819 if (!params->active || !params->pri.enabled)
1820 return 0;
1821
1822 method1 = ilk_wm_method1(params->pixel_rate,
1823 params->pri.bytes_per_pixel,
1824 mem_value);
1825
1826 if (!is_lp)
1827 return method1;
1828
1829 method2 = ilk_wm_method2(params->pixel_rate,
1830 params->pipe_htotal,
1831 params->pri.horiz_pixels,
1832 params->pri.bytes_per_pixel,
1833 mem_value);
1834
1835 return min(method1, method2);
1836 }
1837
1838 /*
1839 * For both WM_PIPE and WM_LP.
1840 * mem_value must be in 0.1us units.
1841 */
1842 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1843 uint32_t mem_value)
1844 {
1845 uint32_t method1, method2;
1846
1847 if (!params->active || !params->spr.enabled)
1848 return 0;
1849
1850 method1 = ilk_wm_method1(params->pixel_rate,
1851 params->spr.bytes_per_pixel,
1852 mem_value);
1853 method2 = ilk_wm_method2(params->pixel_rate,
1854 params->pipe_htotal,
1855 params->spr.horiz_pixels,
1856 params->spr.bytes_per_pixel,
1857 mem_value);
1858 return min(method1, method2);
1859 }
1860
1861 /*
1862 * For both WM_PIPE and WM_LP.
1863 * mem_value must be in 0.1us units.
1864 */
1865 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1866 uint32_t mem_value)
1867 {
1868 if (!params->active || !params->cur.enabled)
1869 return 0;
1870
1871 return ilk_wm_method2(params->pixel_rate,
1872 params->pipe_htotal,
1873 params->cur.horiz_pixels,
1874 params->cur.bytes_per_pixel,
1875 mem_value);
1876 }
1877
1878 /* Only for WM_LP. */
1879 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1880 uint32_t pri_val)
1881 {
1882 if (!params->active || !params->pri.enabled)
1883 return 0;
1884
1885 return ilk_wm_fbc(pri_val,
1886 params->pri.horiz_pixels,
1887 params->pri.bytes_per_pixel);
1888 }
1889
1890 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1891 {
1892 if (INTEL_INFO(dev)->gen >= 8)
1893 return 3072;
1894 else if (INTEL_INFO(dev)->gen >= 7)
1895 return 768;
1896 else
1897 return 512;
1898 }
1899
1900 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1901 int level, bool is_sprite)
1902 {
1903 if (INTEL_INFO(dev)->gen >= 8)
1904 /* BDW primary/sprite plane watermarks */
1905 return level == 0 ? 255 : 2047;
1906 else if (INTEL_INFO(dev)->gen >= 7)
1907 /* IVB/HSW primary/sprite plane watermarks */
1908 return level == 0 ? 127 : 1023;
1909 else if (!is_sprite)
1910 /* ILK/SNB primary plane watermarks */
1911 return level == 0 ? 127 : 511;
1912 else
1913 /* ILK/SNB sprite plane watermarks */
1914 return level == 0 ? 63 : 255;
1915 }
1916
1917 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1918 int level)
1919 {
1920 if (INTEL_INFO(dev)->gen >= 7)
1921 return level == 0 ? 63 : 255;
1922 else
1923 return level == 0 ? 31 : 63;
1924 }
1925
1926 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1927 {
1928 if (INTEL_INFO(dev)->gen >= 8)
1929 return 31;
1930 else
1931 return 15;
1932 }
1933
1934 /* Calculate the maximum primary/sprite plane watermark */
1935 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1936 int level,
1937 const struct intel_wm_config *config,
1938 enum intel_ddb_partitioning ddb_partitioning,
1939 bool is_sprite)
1940 {
1941 unsigned int fifo_size = ilk_display_fifo_size(dev);
1942
1943 /* if sprites aren't enabled, sprites get nothing */
1944 if (is_sprite && !config->sprites_enabled)
1945 return 0;
1946
1947 /* HSW allows LP1+ watermarks even with multiple pipes */
1948 if (level == 0 || config->num_pipes_active > 1) {
1949 fifo_size /= INTEL_INFO(dev)->num_pipes;
1950
1951 /*
1952 * For some reason the non self refresh
1953 * FIFO size is only half of the self
1954 * refresh FIFO size on ILK/SNB.
1955 */
1956 if (INTEL_INFO(dev)->gen <= 6)
1957 fifo_size /= 2;
1958 }
1959
1960 if (config->sprites_enabled) {
1961 /* level 0 is always calculated with 1:1 split */
1962 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1963 if (is_sprite)
1964 fifo_size *= 5;
1965 fifo_size /= 6;
1966 } else {
1967 fifo_size /= 2;
1968 }
1969 }
1970
1971 /* clamp to max that the registers can hold */
1972 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1973 }
1974
1975 /* Calculate the maximum cursor plane watermark */
1976 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1977 int level,
1978 const struct intel_wm_config *config)
1979 {
1980 /* HSW LP1+ watermarks w/ multiple pipes */
1981 if (level > 0 && config->num_pipes_active > 1)
1982 return 64;
1983
1984 /* otherwise just report max that registers can hold */
1985 return ilk_cursor_wm_reg_max(dev, level);
1986 }
1987
1988 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1989 int level,
1990 const struct intel_wm_config *config,
1991 enum intel_ddb_partitioning ddb_partitioning,
1992 struct ilk_wm_maximums *max)
1993 {
1994 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1995 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1996 max->cur = ilk_cursor_wm_max(dev, level, config);
1997 max->fbc = ilk_fbc_wm_reg_max(dev);
1998 }
1999
2000 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2001 int level,
2002 struct ilk_wm_maximums *max)
2003 {
2004 max->pri = ilk_plane_wm_reg_max(dev, level, false);
2005 max->spr = ilk_plane_wm_reg_max(dev, level, true);
2006 max->cur = ilk_cursor_wm_reg_max(dev, level);
2007 max->fbc = ilk_fbc_wm_reg_max(dev);
2008 }
2009
2010 static bool ilk_validate_wm_level(int level,
2011 const struct ilk_wm_maximums *max,
2012 struct intel_wm_level *result)
2013 {
2014 bool ret;
2015
2016 /* already determined to be invalid? */
2017 if (!result->enable)
2018 return false;
2019
2020 result->enable = result->pri_val <= max->pri &&
2021 result->spr_val <= max->spr &&
2022 result->cur_val <= max->cur;
2023
2024 ret = result->enable;
2025
2026 /*
2027 * HACK until we can pre-compute everything,
2028 * and thus fail gracefully if LP0 watermarks
2029 * are exceeded...
2030 */
2031 if (level == 0 && !result->enable) {
2032 if (result->pri_val > max->pri)
2033 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2034 level, result->pri_val, max->pri);
2035 if (result->spr_val > max->spr)
2036 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2037 level, result->spr_val, max->spr);
2038 if (result->cur_val > max->cur)
2039 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2040 level, result->cur_val, max->cur);
2041
2042 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2043 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2044 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2045 result->enable = true;
2046 }
2047
2048 return ret;
2049 }
2050
2051 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2052 int level,
2053 const struct ilk_pipe_wm_parameters *p,
2054 struct intel_wm_level *result)
2055 {
2056 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2057 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2058 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2059
2060 /* WM1+ latency values stored in 0.5us units */
2061 if (level > 0) {
2062 pri_latency *= 5;
2063 spr_latency *= 5;
2064 cur_latency *= 5;
2065 }
2066
2067 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2068 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2069 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2070 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2071 result->enable = true;
2072 }
2073
2074 static uint32_t
2075 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2076 {
2077 struct drm_i915_private *dev_priv = dev->dev_private;
2078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2079 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
2080 u32 linetime, ips_linetime;
2081
2082 if (!intel_crtc->active)
2083 return 0;
2084
2085 /* The WM are computed with base on how long it takes to fill a single
2086 * row at the given clock rate, multiplied by 8.
2087 * */
2088 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2089 mode->crtc_clock);
2090 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2091 dev_priv->cdclk_freq);
2092
2093 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2094 PIPE_WM_LINETIME_TIME(linetime);
2095 }
2096
2097 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2098 {
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100
2101 if (IS_GEN9(dev)) {
2102 uint32_t val;
2103 int ret, i;
2104 int level, max_level = ilk_wm_max_level(dev);
2105
2106 /* read the first set of memory latencies[0:3] */
2107 val = 0; /* data0 to be programmed to 0 for first set */
2108 mutex_lock(&dev_priv->rps.hw_lock);
2109 ret = sandybridge_pcode_read(dev_priv,
2110 GEN9_PCODE_READ_MEM_LATENCY,
2111 &val);
2112 mutex_unlock(&dev_priv->rps.hw_lock);
2113
2114 if (ret) {
2115 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2116 return;
2117 }
2118
2119 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2120 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2121 GEN9_MEM_LATENCY_LEVEL_MASK;
2122 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2123 GEN9_MEM_LATENCY_LEVEL_MASK;
2124 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2125 GEN9_MEM_LATENCY_LEVEL_MASK;
2126
2127 /* read the second set of memory latencies[4:7] */
2128 val = 1; /* data0 to be programmed to 1 for second set */
2129 mutex_lock(&dev_priv->rps.hw_lock);
2130 ret = sandybridge_pcode_read(dev_priv,
2131 GEN9_PCODE_READ_MEM_LATENCY,
2132 &val);
2133 mutex_unlock(&dev_priv->rps.hw_lock);
2134 if (ret) {
2135 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2136 return;
2137 }
2138
2139 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2140 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2141 GEN9_MEM_LATENCY_LEVEL_MASK;
2142 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2143 GEN9_MEM_LATENCY_LEVEL_MASK;
2144 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2145 GEN9_MEM_LATENCY_LEVEL_MASK;
2146
2147 /*
2148 * WaWmMemoryReadLatency:skl
2149 *
2150 * punit doesn't take into account the read latency so we need
2151 * to add 2us to the various latency levels we retrieve from
2152 * the punit.
2153 * - W0 is a bit special in that it's the only level that
2154 * can't be disabled if we want to have display working, so
2155 * we always add 2us there.
2156 * - For levels >=1, punit returns 0us latency when they are
2157 * disabled, so we respect that and don't add 2us then
2158 *
2159 * Additionally, if a level n (n > 1) has a 0us latency, all
2160 * levels m (m >= n) need to be disabled. We make sure to
2161 * sanitize the values out of the punit to satisfy this
2162 * requirement.
2163 */
2164 wm[0] += 2;
2165 for (level = 1; level <= max_level; level++)
2166 if (wm[level] != 0)
2167 wm[level] += 2;
2168 else {
2169 for (i = level + 1; i <= max_level; i++)
2170 wm[i] = 0;
2171
2172 break;
2173 }
2174 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2175 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2176
2177 wm[0] = (sskpd >> 56) & 0xFF;
2178 if (wm[0] == 0)
2179 wm[0] = sskpd & 0xF;
2180 wm[1] = (sskpd >> 4) & 0xFF;
2181 wm[2] = (sskpd >> 12) & 0xFF;
2182 wm[3] = (sskpd >> 20) & 0x1FF;
2183 wm[4] = (sskpd >> 32) & 0x1FF;
2184 } else if (INTEL_INFO(dev)->gen >= 6) {
2185 uint32_t sskpd = I915_READ(MCH_SSKPD);
2186
2187 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2188 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2189 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2190 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2191 } else if (INTEL_INFO(dev)->gen >= 5) {
2192 uint32_t mltr = I915_READ(MLTR_ILK);
2193
2194 /* ILK primary LP0 latency is 700 ns */
2195 wm[0] = 7;
2196 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2197 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2198 }
2199 }
2200
2201 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2202 {
2203 /* ILK sprite LP0 latency is 1300 ns */
2204 if (INTEL_INFO(dev)->gen == 5)
2205 wm[0] = 13;
2206 }
2207
2208 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2209 {
2210 /* ILK cursor LP0 latency is 1300 ns */
2211 if (INTEL_INFO(dev)->gen == 5)
2212 wm[0] = 13;
2213
2214 /* WaDoubleCursorLP3Latency:ivb */
2215 if (IS_IVYBRIDGE(dev))
2216 wm[3] *= 2;
2217 }
2218
2219 int ilk_wm_max_level(const struct drm_device *dev)
2220 {
2221 /* how many WM levels are we expecting */
2222 if (INTEL_INFO(dev)->gen >= 9)
2223 return 7;
2224 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2225 return 4;
2226 else if (INTEL_INFO(dev)->gen >= 6)
2227 return 3;
2228 else
2229 return 2;
2230 }
2231
2232 static void intel_print_wm_latency(struct drm_device *dev,
2233 const char *name,
2234 const uint16_t wm[8])
2235 {
2236 int level, max_level = ilk_wm_max_level(dev);
2237
2238 for (level = 0; level <= max_level; level++) {
2239 unsigned int latency = wm[level];
2240
2241 if (latency == 0) {
2242 DRM_ERROR("%s WM%d latency not provided\n",
2243 name, level);
2244 continue;
2245 }
2246
2247 /*
2248 * - latencies are in us on gen9.
2249 * - before then, WM1+ latency values are in 0.5us units
2250 */
2251 if (IS_GEN9(dev))
2252 latency *= 10;
2253 else if (level > 0)
2254 latency *= 5;
2255
2256 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2257 name, level, wm[level],
2258 latency / 10, latency % 10);
2259 }
2260 }
2261
2262 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2263 uint16_t wm[5], uint16_t min)
2264 {
2265 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2266
2267 if (wm[0] >= min)
2268 return false;
2269
2270 wm[0] = max(wm[0], min);
2271 for (level = 1; level <= max_level; level++)
2272 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2273
2274 return true;
2275 }
2276
2277 static void snb_wm_latency_quirk(struct drm_device *dev)
2278 {
2279 struct drm_i915_private *dev_priv = dev->dev_private;
2280 bool changed;
2281
2282 /*
2283 * The BIOS provided WM memory latency values are often
2284 * inadequate for high resolution displays. Adjust them.
2285 */
2286 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2287 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2288 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2289
2290 if (!changed)
2291 return;
2292
2293 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2294 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2295 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2296 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2297 }
2298
2299 static void ilk_setup_wm_latency(struct drm_device *dev)
2300 {
2301 struct drm_i915_private *dev_priv = dev->dev_private;
2302
2303 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2304
2305 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2306 sizeof(dev_priv->wm.pri_latency));
2307 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2308 sizeof(dev_priv->wm.pri_latency));
2309
2310 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2311 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2312
2313 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2314 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2315 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2316
2317 if (IS_GEN6(dev))
2318 snb_wm_latency_quirk(dev);
2319 }
2320
2321 static void skl_setup_wm_latency(struct drm_device *dev)
2322 {
2323 struct drm_i915_private *dev_priv = dev->dev_private;
2324
2325 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2326 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2327 }
2328
2329 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2330 struct ilk_pipe_wm_parameters *p)
2331 {
2332 struct drm_device *dev = crtc->dev;
2333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2334 enum pipe pipe = intel_crtc->pipe;
2335 struct drm_plane *plane;
2336
2337 if (!intel_crtc->active)
2338 return;
2339
2340 p->active = true;
2341 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2342 p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2343
2344 if (crtc->primary->state->fb)
2345 p->pri.bytes_per_pixel =
2346 crtc->primary->state->fb->bits_per_pixel / 8;
2347 else
2348 p->pri.bytes_per_pixel = 4;
2349
2350 p->cur.bytes_per_pixel = 4;
2351 /*
2352 * TODO: for now, assume primary and cursor planes are always enabled.
2353 * Setting them to false makes the screen flicker.
2354 */
2355 p->pri.enabled = true;
2356 p->cur.enabled = true;
2357
2358 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2359 p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2360
2361 drm_for_each_legacy_plane(plane, dev) {
2362 struct intel_plane *intel_plane = to_intel_plane(plane);
2363
2364 if (intel_plane->pipe == pipe) {
2365 p->spr = intel_plane->wm;
2366 break;
2367 }
2368 }
2369 }
2370
2371 static void ilk_compute_wm_config(struct drm_device *dev,
2372 struct intel_wm_config *config)
2373 {
2374 struct intel_crtc *intel_crtc;
2375
2376 /* Compute the currently _active_ config */
2377 for_each_intel_crtc(dev, intel_crtc) {
2378 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2379
2380 if (!wm->pipe_enabled)
2381 continue;
2382
2383 config->sprites_enabled |= wm->sprites_enabled;
2384 config->sprites_scaled |= wm->sprites_scaled;
2385 config->num_pipes_active++;
2386 }
2387 }
2388
2389 /* Compute new watermarks for the pipe */
2390 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2391 const struct ilk_pipe_wm_parameters *params,
2392 struct intel_pipe_wm *pipe_wm)
2393 {
2394 struct drm_device *dev = crtc->dev;
2395 const struct drm_i915_private *dev_priv = dev->dev_private;
2396 int level, max_level = ilk_wm_max_level(dev);
2397 /* LP0 watermark maximums depend on this pipe alone */
2398 struct intel_wm_config config = {
2399 .num_pipes_active = 1,
2400 .sprites_enabled = params->spr.enabled,
2401 .sprites_scaled = params->spr.scaled,
2402 };
2403 struct ilk_wm_maximums max;
2404
2405 pipe_wm->pipe_enabled = params->active;
2406 pipe_wm->sprites_enabled = params->spr.enabled;
2407 pipe_wm->sprites_scaled = params->spr.scaled;
2408
2409 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2410 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2411 max_level = 1;
2412
2413 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2414 if (params->spr.scaled)
2415 max_level = 0;
2416
2417 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2418
2419 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2420 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2421
2422 /* LP0 watermarks always use 1/2 DDB partitioning */
2423 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2424
2425 /* At least LP0 must be valid */
2426 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2427 return false;
2428
2429 ilk_compute_wm_reg_maximums(dev, 1, &max);
2430
2431 for (level = 1; level <= max_level; level++) {
2432 struct intel_wm_level wm = {};
2433
2434 ilk_compute_wm_level(dev_priv, level, params, &wm);
2435
2436 /*
2437 * Disable any watermark level that exceeds the
2438 * register maximums since such watermarks are
2439 * always invalid.
2440 */
2441 if (!ilk_validate_wm_level(level, &max, &wm))
2442 break;
2443
2444 pipe_wm->wm[level] = wm;
2445 }
2446
2447 return true;
2448 }
2449
2450 /*
2451 * Merge the watermarks from all active pipes for a specific level.
2452 */
2453 static void ilk_merge_wm_level(struct drm_device *dev,
2454 int level,
2455 struct intel_wm_level *ret_wm)
2456 {
2457 const struct intel_crtc *intel_crtc;
2458
2459 ret_wm->enable = true;
2460
2461 for_each_intel_crtc(dev, intel_crtc) {
2462 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2463 const struct intel_wm_level *wm = &active->wm[level];
2464
2465 if (!active->pipe_enabled)
2466 continue;
2467
2468 /*
2469 * The watermark values may have been used in the past,
2470 * so we must maintain them in the registers for some
2471 * time even if the level is now disabled.
2472 */
2473 if (!wm->enable)
2474 ret_wm->enable = false;
2475
2476 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2477 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2478 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2479 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2480 }
2481 }
2482
2483 /*
2484 * Merge all low power watermarks for all active pipes.
2485 */
2486 static void ilk_wm_merge(struct drm_device *dev,
2487 const struct intel_wm_config *config,
2488 const struct ilk_wm_maximums *max,
2489 struct intel_pipe_wm *merged)
2490 {
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 int level, max_level = ilk_wm_max_level(dev);
2493 int last_enabled_level = max_level;
2494
2495 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2496 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2497 config->num_pipes_active > 1)
2498 return;
2499
2500 /* ILK: FBC WM must be disabled always */
2501 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2502
2503 /* merge each WM1+ level */
2504 for (level = 1; level <= max_level; level++) {
2505 struct intel_wm_level *wm = &merged->wm[level];
2506
2507 ilk_merge_wm_level(dev, level, wm);
2508
2509 if (level > last_enabled_level)
2510 wm->enable = false;
2511 else if (!ilk_validate_wm_level(level, max, wm))
2512 /* make sure all following levels get disabled */
2513 last_enabled_level = level - 1;
2514
2515 /*
2516 * The spec says it is preferred to disable
2517 * FBC WMs instead of disabling a WM level.
2518 */
2519 if (wm->fbc_val > max->fbc) {
2520 if (wm->enable)
2521 merged->fbc_wm_enabled = false;
2522 wm->fbc_val = 0;
2523 }
2524 }
2525
2526 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2527 /*
2528 * FIXME this is racy. FBC might get enabled later.
2529 * What we should check here is whether FBC can be
2530 * enabled sometime later.
2531 */
2532 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2533 intel_fbc_enabled(dev_priv)) {
2534 for (level = 2; level <= max_level; level++) {
2535 struct intel_wm_level *wm = &merged->wm[level];
2536
2537 wm->enable = false;
2538 }
2539 }
2540 }
2541
2542 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2543 {
2544 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2545 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2546 }
2547
2548 /* The value we need to program into the WM_LPx latency field */
2549 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2550 {
2551 struct drm_i915_private *dev_priv = dev->dev_private;
2552
2553 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2554 return 2 * level;
2555 else
2556 return dev_priv->wm.pri_latency[level];
2557 }
2558
2559 static void ilk_compute_wm_results(struct drm_device *dev,
2560 const struct intel_pipe_wm *merged,
2561 enum intel_ddb_partitioning partitioning,
2562 struct ilk_wm_values *results)
2563 {
2564 struct intel_crtc *intel_crtc;
2565 int level, wm_lp;
2566
2567 results->enable_fbc_wm = merged->fbc_wm_enabled;
2568 results->partitioning = partitioning;
2569
2570 /* LP1+ register values */
2571 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2572 const struct intel_wm_level *r;
2573
2574 level = ilk_wm_lp_to_level(wm_lp, merged);
2575
2576 r = &merged->wm[level];
2577
2578 /*
2579 * Maintain the watermark values even if the level is
2580 * disabled. Doing otherwise could cause underruns.
2581 */
2582 results->wm_lp[wm_lp - 1] =
2583 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2584 (r->pri_val << WM1_LP_SR_SHIFT) |
2585 r->cur_val;
2586
2587 if (r->enable)
2588 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2589
2590 if (INTEL_INFO(dev)->gen >= 8)
2591 results->wm_lp[wm_lp - 1] |=
2592 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2593 else
2594 results->wm_lp[wm_lp - 1] |=
2595 r->fbc_val << WM1_LP_FBC_SHIFT;
2596
2597 /*
2598 * Always set WM1S_LP_EN when spr_val != 0, even if the
2599 * level is disabled. Doing otherwise could cause underruns.
2600 */
2601 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2602 WARN_ON(wm_lp != 1);
2603 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2604 } else
2605 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2606 }
2607
2608 /* LP0 register values */
2609 for_each_intel_crtc(dev, intel_crtc) {
2610 enum pipe pipe = intel_crtc->pipe;
2611 const struct intel_wm_level *r =
2612 &intel_crtc->wm.active.wm[0];
2613
2614 if (WARN_ON(!r->enable))
2615 continue;
2616
2617 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2618
2619 results->wm_pipe[pipe] =
2620 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2621 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2622 r->cur_val;
2623 }
2624 }
2625
2626 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2627 * case both are at the same level. Prefer r1 in case they're the same. */
2628 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2629 struct intel_pipe_wm *r1,
2630 struct intel_pipe_wm *r2)
2631 {
2632 int level, max_level = ilk_wm_max_level(dev);
2633 int level1 = 0, level2 = 0;
2634
2635 for (level = 1; level <= max_level; level++) {
2636 if (r1->wm[level].enable)
2637 level1 = level;
2638 if (r2->wm[level].enable)
2639 level2 = level;
2640 }
2641
2642 if (level1 == level2) {
2643 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2644 return r2;
2645 else
2646 return r1;
2647 } else if (level1 > level2) {
2648 return r1;
2649 } else {
2650 return r2;
2651 }
2652 }
2653
2654 /* dirty bits used to track which watermarks need changes */
2655 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2656 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2657 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2658 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2659 #define WM_DIRTY_FBC (1 << 24)
2660 #define WM_DIRTY_DDB (1 << 25)
2661
2662 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2663 const struct ilk_wm_values *old,
2664 const struct ilk_wm_values *new)
2665 {
2666 unsigned int dirty = 0;
2667 enum pipe pipe;
2668 int wm_lp;
2669
2670 for_each_pipe(dev_priv, pipe) {
2671 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2672 dirty |= WM_DIRTY_LINETIME(pipe);
2673 /* Must disable LP1+ watermarks too */
2674 dirty |= WM_DIRTY_LP_ALL;
2675 }
2676
2677 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2678 dirty |= WM_DIRTY_PIPE(pipe);
2679 /* Must disable LP1+ watermarks too */
2680 dirty |= WM_DIRTY_LP_ALL;
2681 }
2682 }
2683
2684 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2685 dirty |= WM_DIRTY_FBC;
2686 /* Must disable LP1+ watermarks too */
2687 dirty |= WM_DIRTY_LP_ALL;
2688 }
2689
2690 if (old->partitioning != new->partitioning) {
2691 dirty |= WM_DIRTY_DDB;
2692 /* Must disable LP1+ watermarks too */
2693 dirty |= WM_DIRTY_LP_ALL;
2694 }
2695
2696 /* LP1+ watermarks already deemed dirty, no need to continue */
2697 if (dirty & WM_DIRTY_LP_ALL)
2698 return dirty;
2699
2700 /* Find the lowest numbered LP1+ watermark in need of an update... */
2701 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2702 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2703 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2704 break;
2705 }
2706
2707 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2708 for (; wm_lp <= 3; wm_lp++)
2709 dirty |= WM_DIRTY_LP(wm_lp);
2710
2711 return dirty;
2712 }
2713
2714 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2715 unsigned int dirty)
2716 {
2717 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2718 bool changed = false;
2719
2720 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2721 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2722 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2723 changed = true;
2724 }
2725 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2726 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2727 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2728 changed = true;
2729 }
2730 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2731 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2732 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2733 changed = true;
2734 }
2735
2736 /*
2737 * Don't touch WM1S_LP_EN here.
2738 * Doing so could cause underruns.
2739 */
2740
2741 return changed;
2742 }
2743
2744 /*
2745 * The spec says we shouldn't write when we don't need, because every write
2746 * causes WMs to be re-evaluated, expending some power.
2747 */
2748 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2749 struct ilk_wm_values *results)
2750 {
2751 struct drm_device *dev = dev_priv->dev;
2752 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2753 unsigned int dirty;
2754 uint32_t val;
2755
2756 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2757 if (!dirty)
2758 return;
2759
2760 _ilk_disable_lp_wm(dev_priv, dirty);
2761
2762 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2763 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2764 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2765 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2766 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2767 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2768
2769 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2770 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2771 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2772 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2773 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2774 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2775
2776 if (dirty & WM_DIRTY_DDB) {
2777 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2778 val = I915_READ(WM_MISC);
2779 if (results->partitioning == INTEL_DDB_PART_1_2)
2780 val &= ~WM_MISC_DATA_PARTITION_5_6;
2781 else
2782 val |= WM_MISC_DATA_PARTITION_5_6;
2783 I915_WRITE(WM_MISC, val);
2784 } else {
2785 val = I915_READ(DISP_ARB_CTL2);
2786 if (results->partitioning == INTEL_DDB_PART_1_2)
2787 val &= ~DISP_DATA_PARTITION_5_6;
2788 else
2789 val |= DISP_DATA_PARTITION_5_6;
2790 I915_WRITE(DISP_ARB_CTL2, val);
2791 }
2792 }
2793
2794 if (dirty & WM_DIRTY_FBC) {
2795 val = I915_READ(DISP_ARB_CTL);
2796 if (results->enable_fbc_wm)
2797 val &= ~DISP_FBC_WM_DIS;
2798 else
2799 val |= DISP_FBC_WM_DIS;
2800 I915_WRITE(DISP_ARB_CTL, val);
2801 }
2802
2803 if (dirty & WM_DIRTY_LP(1) &&
2804 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2805 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2806
2807 if (INTEL_INFO(dev)->gen >= 7) {
2808 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2809 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2810 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2811 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2812 }
2813
2814 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2815 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2816 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2817 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2818 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2819 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2820
2821 dev_priv->wm.hw = *results;
2822 }
2823
2824 static bool ilk_disable_lp_wm(struct drm_device *dev)
2825 {
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827
2828 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2829 }
2830
2831 /*
2832 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2833 * different active planes.
2834 */
2835
2836 #define SKL_DDB_SIZE 896 /* in blocks */
2837 #define BXT_DDB_SIZE 512
2838
2839 static void
2840 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2841 struct drm_crtc *for_crtc,
2842 const struct intel_wm_config *config,
2843 const struct skl_pipe_wm_parameters *params,
2844 struct skl_ddb_entry *alloc /* out */)
2845 {
2846 struct drm_crtc *crtc;
2847 unsigned int pipe_size, ddb_size;
2848 int nth_active_pipe;
2849
2850 if (!params->active) {
2851 alloc->start = 0;
2852 alloc->end = 0;
2853 return;
2854 }
2855
2856 if (IS_BROXTON(dev))
2857 ddb_size = BXT_DDB_SIZE;
2858 else
2859 ddb_size = SKL_DDB_SIZE;
2860
2861 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2862
2863 nth_active_pipe = 0;
2864 for_each_crtc(dev, crtc) {
2865 if (!to_intel_crtc(crtc)->active)
2866 continue;
2867
2868 if (crtc == for_crtc)
2869 break;
2870
2871 nth_active_pipe++;
2872 }
2873
2874 pipe_size = ddb_size / config->num_pipes_active;
2875 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2876 alloc->end = alloc->start + pipe_size;
2877 }
2878
2879 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2880 {
2881 if (config->num_pipes_active == 1)
2882 return 32;
2883
2884 return 8;
2885 }
2886
2887 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2888 {
2889 entry->start = reg & 0x3ff;
2890 entry->end = (reg >> 16) & 0x3ff;
2891 if (entry->end)
2892 entry->end += 1;
2893 }
2894
2895 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2896 struct skl_ddb_allocation *ddb /* out */)
2897 {
2898 enum pipe pipe;
2899 int plane;
2900 u32 val;
2901
2902 for_each_pipe(dev_priv, pipe) {
2903 for_each_plane(dev_priv, pipe, plane) {
2904 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2905 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2906 val);
2907 }
2908
2909 val = I915_READ(CUR_BUF_CFG(pipe));
2910 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2911 }
2912 }
2913
2914 static unsigned int
2915 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2916 {
2917
2918 /* for planar format */
2919 if (p->y_bytes_per_pixel) {
2920 if (y) /* y-plane data rate */
2921 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2922 else /* uv-plane data rate */
2923 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2924 }
2925
2926 /* for packed formats */
2927 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2928 }
2929
2930 /*
2931 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2932 * a 8192x4096@32bpp framebuffer:
2933 * 3 * 4096 * 8192 * 4 < 2^32
2934 */
2935 static unsigned int
2936 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2937 const struct skl_pipe_wm_parameters *params)
2938 {
2939 unsigned int total_data_rate = 0;
2940 int plane;
2941
2942 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2943 const struct intel_plane_wm_parameters *p;
2944
2945 p = &params->plane[plane];
2946 if (!p->enabled)
2947 continue;
2948
2949 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2950 if (p->y_bytes_per_pixel) {
2951 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2952 }
2953 }
2954
2955 return total_data_rate;
2956 }
2957
2958 static void
2959 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2960 const struct intel_wm_config *config,
2961 const struct skl_pipe_wm_parameters *params,
2962 struct skl_ddb_allocation *ddb /* out */)
2963 {
2964 struct drm_device *dev = crtc->dev;
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2967 enum pipe pipe = intel_crtc->pipe;
2968 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2969 uint16_t alloc_size, start, cursor_blocks;
2970 uint16_t minimum[I915_MAX_PLANES];
2971 uint16_t y_minimum[I915_MAX_PLANES];
2972 unsigned int total_data_rate;
2973 int plane;
2974
2975 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2976 alloc_size = skl_ddb_entry_size(alloc);
2977 if (alloc_size == 0) {
2978 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2979 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2980 return;
2981 }
2982
2983 cursor_blocks = skl_cursor_allocation(config);
2984 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2985 ddb->cursor[pipe].end = alloc->end;
2986
2987 alloc_size -= cursor_blocks;
2988 alloc->end -= cursor_blocks;
2989
2990 /* 1. Allocate the mininum required blocks for each active plane */
2991 for_each_plane(dev_priv, pipe, plane) {
2992 const struct intel_plane_wm_parameters *p;
2993
2994 p = &params->plane[plane];
2995 if (!p->enabled)
2996 continue;
2997
2998 minimum[plane] = 8;
2999 alloc_size -= minimum[plane];
3000 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
3001 alloc_size -= y_minimum[plane];
3002 }
3003
3004 /*
3005 * 2. Distribute the remaining space in proportion to the amount of
3006 * data each plane needs to fetch from memory.
3007 *
3008 * FIXME: we may not allocate every single block here.
3009 */
3010 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3011
3012 start = alloc->start;
3013 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3014 const struct intel_plane_wm_parameters *p;
3015 unsigned int data_rate, y_data_rate;
3016 uint16_t plane_blocks, y_plane_blocks = 0;
3017
3018 p = &params->plane[plane];
3019 if (!p->enabled)
3020 continue;
3021
3022 data_rate = skl_plane_relative_data_rate(p, 0);
3023
3024 /*
3025 * allocation for (packed formats) or (uv-plane part of planar format):
3026 * promote the expression to 64 bits to avoid overflowing, the
3027 * result is < available as data_rate / total_data_rate < 1
3028 */
3029 plane_blocks = minimum[plane];
3030 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3031 total_data_rate);
3032
3033 ddb->plane[pipe][plane].start = start;
3034 ddb->plane[pipe][plane].end = start + plane_blocks;
3035
3036 start += plane_blocks;
3037
3038 /*
3039 * allocation for y_plane part of planar format:
3040 */
3041 if (p->y_bytes_per_pixel) {
3042 y_data_rate = skl_plane_relative_data_rate(p, 1);
3043 y_plane_blocks = y_minimum[plane];
3044 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3045 total_data_rate);
3046
3047 ddb->y_plane[pipe][plane].start = start;
3048 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3049
3050 start += y_plane_blocks;
3051 }
3052
3053 }
3054
3055 }
3056
3057 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3058 {
3059 /* TODO: Take into account the scalers once we support them */
3060 return config->base.adjusted_mode.crtc_clock;
3061 }
3062
3063 /*
3064 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3065 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3066 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3067 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3068 */
3069 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3070 uint32_t latency)
3071 {
3072 uint32_t wm_intermediate_val, ret;
3073
3074 if (latency == 0)
3075 return UINT_MAX;
3076
3077 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3078 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3079
3080 return ret;
3081 }
3082
3083 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3084 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3085 uint64_t tiling, uint32_t latency)
3086 {
3087 uint32_t ret;
3088 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3089 uint32_t wm_intermediate_val;
3090
3091 if (latency == 0)
3092 return UINT_MAX;
3093
3094 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3095
3096 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3097 tiling == I915_FORMAT_MOD_Yf_TILED) {
3098 plane_bytes_per_line *= 4;
3099 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3100 plane_blocks_per_line /= 4;
3101 } else {
3102 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3103 }
3104
3105 wm_intermediate_val = latency * pixel_rate;
3106 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3107 plane_blocks_per_line;
3108
3109 return ret;
3110 }
3111
3112 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3113 const struct intel_crtc *intel_crtc)
3114 {
3115 struct drm_device *dev = intel_crtc->base.dev;
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3118 enum pipe pipe = intel_crtc->pipe;
3119
3120 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3121 sizeof(new_ddb->plane[pipe])))
3122 return true;
3123
3124 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3125 sizeof(new_ddb->cursor[pipe])))
3126 return true;
3127
3128 return false;
3129 }
3130
3131 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3132 struct intel_wm_config *config)
3133 {
3134 struct drm_crtc *crtc;
3135 struct drm_plane *plane;
3136
3137 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3138 config->num_pipes_active += to_intel_crtc(crtc)->active;
3139
3140 /* FIXME: I don't think we need those two global parameters on SKL */
3141 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3142 struct intel_plane *intel_plane = to_intel_plane(plane);
3143
3144 config->sprites_enabled |= intel_plane->wm.enabled;
3145 config->sprites_scaled |= intel_plane->wm.scaled;
3146 }
3147 }
3148
3149 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3150 struct skl_pipe_wm_parameters *p)
3151 {
3152 struct drm_device *dev = crtc->dev;
3153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3154 enum pipe pipe = intel_crtc->pipe;
3155 struct drm_plane *plane;
3156 struct drm_framebuffer *fb;
3157 int i = 1; /* Index for sprite planes start */
3158
3159 p->active = intel_crtc->active;
3160 if (p->active) {
3161 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3162 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3163
3164 fb = crtc->primary->state->fb;
3165 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3166 if (fb) {
3167 p->plane[0].enabled = true;
3168 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3169 drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
3170 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3171 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3172 p->plane[0].tiling = fb->modifier[0];
3173 } else {
3174 p->plane[0].enabled = false;
3175 p->plane[0].bytes_per_pixel = 0;
3176 p->plane[0].y_bytes_per_pixel = 0;
3177 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3178 }
3179 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3180 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3181 p->plane[0].rotation = crtc->primary->state->rotation;
3182
3183 fb = crtc->cursor->state->fb;
3184 p->cursor.y_bytes_per_pixel = 0;
3185 if (fb) {
3186 p->cursor.enabled = true;
3187 p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3188 p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3189 p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3190 } else {
3191 p->cursor.enabled = false;
3192 p->cursor.bytes_per_pixel = 0;
3193 p->cursor.horiz_pixels = 64;
3194 p->cursor.vert_pixels = 64;
3195 }
3196 }
3197
3198 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3199 struct intel_plane *intel_plane = to_intel_plane(plane);
3200
3201 if (intel_plane->pipe == pipe &&
3202 plane->type == DRM_PLANE_TYPE_OVERLAY)
3203 p->plane[i++] = intel_plane->wm;
3204 }
3205 }
3206
3207 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3208 struct skl_pipe_wm_parameters *p,
3209 struct intel_plane_wm_parameters *p_params,
3210 uint16_t ddb_allocation,
3211 int level,
3212 uint16_t *out_blocks, /* out */
3213 uint8_t *out_lines /* out */)
3214 {
3215 uint32_t latency = dev_priv->wm.skl_latency[level];
3216 uint32_t method1, method2;
3217 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3218 uint32_t res_blocks, res_lines;
3219 uint32_t selected_result;
3220 uint8_t bytes_per_pixel;
3221
3222 if (latency == 0 || !p->active || !p_params->enabled)
3223 return false;
3224
3225 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3226 p_params->y_bytes_per_pixel :
3227 p_params->bytes_per_pixel;
3228 method1 = skl_wm_method1(p->pixel_rate,
3229 bytes_per_pixel,
3230 latency);
3231 method2 = skl_wm_method2(p->pixel_rate,
3232 p->pipe_htotal,
3233 p_params->horiz_pixels,
3234 bytes_per_pixel,
3235 p_params->tiling,
3236 latency);
3237
3238 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3239 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3240
3241 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3242 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3243 uint32_t min_scanlines = 4;
3244 uint32_t y_tile_minimum;
3245 if (intel_rotation_90_or_270(p_params->rotation)) {
3246 switch (p_params->bytes_per_pixel) {
3247 case 1:
3248 min_scanlines = 16;
3249 break;
3250 case 2:
3251 min_scanlines = 8;
3252 break;
3253 case 8:
3254 WARN(1, "Unsupported pixel depth for rotation");
3255 }
3256 }
3257 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3258 selected_result = max(method2, y_tile_minimum);
3259 } else {
3260 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3261 selected_result = min(method1, method2);
3262 else
3263 selected_result = method1;
3264 }
3265
3266 res_blocks = selected_result + 1;
3267 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3268
3269 if (level >= 1 && level <= 7) {
3270 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3271 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3272 res_lines += 4;
3273 else
3274 res_blocks++;
3275 }
3276
3277 if (res_blocks >= ddb_allocation || res_lines > 31)
3278 return false;
3279
3280 *out_blocks = res_blocks;
3281 *out_lines = res_lines;
3282
3283 return true;
3284 }
3285
3286 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3287 struct skl_ddb_allocation *ddb,
3288 struct skl_pipe_wm_parameters *p,
3289 enum pipe pipe,
3290 int level,
3291 int num_planes,
3292 struct skl_wm_level *result)
3293 {
3294 uint16_t ddb_blocks;
3295 int i;
3296
3297 for (i = 0; i < num_planes; i++) {
3298 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3299
3300 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3301 p, &p->plane[i],
3302 ddb_blocks,
3303 level,
3304 &result->plane_res_b[i],
3305 &result->plane_res_l[i]);
3306 }
3307
3308 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3309 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3310 ddb_blocks, level,
3311 &result->cursor_res_b,
3312 &result->cursor_res_l);
3313 }
3314
3315 static uint32_t
3316 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3317 {
3318 if (!to_intel_crtc(crtc)->active)
3319 return 0;
3320
3321 if (WARN_ON(p->pixel_rate == 0))
3322 return 0;
3323
3324 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3325 }
3326
3327 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3328 struct skl_pipe_wm_parameters *params,
3329 struct skl_wm_level *trans_wm /* out */)
3330 {
3331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3332 int i;
3333
3334 if (!params->active)
3335 return;
3336
3337 /* Until we know more, just disable transition WMs */
3338 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3339 trans_wm->plane_en[i] = false;
3340 trans_wm->cursor_en = false;
3341 }
3342
3343 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3344 struct skl_ddb_allocation *ddb,
3345 struct skl_pipe_wm_parameters *params,
3346 struct skl_pipe_wm *pipe_wm)
3347 {
3348 struct drm_device *dev = crtc->dev;
3349 const struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351 int level, max_level = ilk_wm_max_level(dev);
3352
3353 for (level = 0; level <= max_level; level++) {
3354 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3355 level, intel_num_planes(intel_crtc),
3356 &pipe_wm->wm[level]);
3357 }
3358 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3359
3360 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3361 }
3362
3363 static void skl_compute_wm_results(struct drm_device *dev,
3364 struct skl_pipe_wm_parameters *p,
3365 struct skl_pipe_wm *p_wm,
3366 struct skl_wm_values *r,
3367 struct intel_crtc *intel_crtc)
3368 {
3369 int level, max_level = ilk_wm_max_level(dev);
3370 enum pipe pipe = intel_crtc->pipe;
3371 uint32_t temp;
3372 int i;
3373
3374 for (level = 0; level <= max_level; level++) {
3375 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3376 temp = 0;
3377
3378 temp |= p_wm->wm[level].plane_res_l[i] <<
3379 PLANE_WM_LINES_SHIFT;
3380 temp |= p_wm->wm[level].plane_res_b[i];
3381 if (p_wm->wm[level].plane_en[i])
3382 temp |= PLANE_WM_EN;
3383
3384 r->plane[pipe][i][level] = temp;
3385 }
3386
3387 temp = 0;
3388
3389 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3390 temp |= p_wm->wm[level].cursor_res_b;
3391
3392 if (p_wm->wm[level].cursor_en)
3393 temp |= PLANE_WM_EN;
3394
3395 r->cursor[pipe][level] = temp;
3396
3397 }
3398
3399 /* transition WMs */
3400 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3401 temp = 0;
3402 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3403 temp |= p_wm->trans_wm.plane_res_b[i];
3404 if (p_wm->trans_wm.plane_en[i])
3405 temp |= PLANE_WM_EN;
3406
3407 r->plane_trans[pipe][i] = temp;
3408 }
3409
3410 temp = 0;
3411 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3412 temp |= p_wm->trans_wm.cursor_res_b;
3413 if (p_wm->trans_wm.cursor_en)
3414 temp |= PLANE_WM_EN;
3415
3416 r->cursor_trans[pipe] = temp;
3417
3418 r->wm_linetime[pipe] = p_wm->linetime;
3419 }
3420
3421 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3422 const struct skl_ddb_entry *entry)
3423 {
3424 if (entry->end)
3425 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3426 else
3427 I915_WRITE(reg, 0);
3428 }
3429
3430 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3431 const struct skl_wm_values *new)
3432 {
3433 struct drm_device *dev = dev_priv->dev;
3434 struct intel_crtc *crtc;
3435
3436 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3437 int i, level, max_level = ilk_wm_max_level(dev);
3438 enum pipe pipe = crtc->pipe;
3439
3440 if (!new->dirty[pipe])
3441 continue;
3442
3443 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3444
3445 for (level = 0; level <= max_level; level++) {
3446 for (i = 0; i < intel_num_planes(crtc); i++)
3447 I915_WRITE(PLANE_WM(pipe, i, level),
3448 new->plane[pipe][i][level]);
3449 I915_WRITE(CUR_WM(pipe, level),
3450 new->cursor[pipe][level]);
3451 }
3452 for (i = 0; i < intel_num_planes(crtc); i++)
3453 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3454 new->plane_trans[pipe][i]);
3455 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3456
3457 for (i = 0; i < intel_num_planes(crtc); i++) {
3458 skl_ddb_entry_write(dev_priv,
3459 PLANE_BUF_CFG(pipe, i),
3460 &new->ddb.plane[pipe][i]);
3461 skl_ddb_entry_write(dev_priv,
3462 PLANE_NV12_BUF_CFG(pipe, i),
3463 &new->ddb.y_plane[pipe][i]);
3464 }
3465
3466 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3467 &new->ddb.cursor[pipe]);
3468 }
3469 }
3470
3471 /*
3472 * When setting up a new DDB allocation arrangement, we need to correctly
3473 * sequence the times at which the new allocations for the pipes are taken into
3474 * account or we'll have pipes fetching from space previously allocated to
3475 * another pipe.
3476 *
3477 * Roughly the sequence looks like:
3478 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3479 * overlapping with a previous light-up pipe (another way to put it is:
3480 * pipes with their new allocation strickly included into their old ones).
3481 * 2. re-allocate the other pipes that get their allocation reduced
3482 * 3. allocate the pipes having their allocation increased
3483 *
3484 * Steps 1. and 2. are here to take care of the following case:
3485 * - Initially DDB looks like this:
3486 * | B | C |
3487 * - enable pipe A.
3488 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3489 * allocation
3490 * | A | B | C |
3491 *
3492 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3493 */
3494
3495 static void
3496 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3497 {
3498 int plane;
3499
3500 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3501
3502 for_each_plane(dev_priv, pipe, plane) {
3503 I915_WRITE(PLANE_SURF(pipe, plane),
3504 I915_READ(PLANE_SURF(pipe, plane)));
3505 }
3506 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3507 }
3508
3509 static bool
3510 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3511 const struct skl_ddb_allocation *new,
3512 enum pipe pipe)
3513 {
3514 uint16_t old_size, new_size;
3515
3516 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3517 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3518
3519 return old_size != new_size &&
3520 new->pipe[pipe].start >= old->pipe[pipe].start &&
3521 new->pipe[pipe].end <= old->pipe[pipe].end;
3522 }
3523
3524 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3525 struct skl_wm_values *new_values)
3526 {
3527 struct drm_device *dev = dev_priv->dev;
3528 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3529 bool reallocated[I915_MAX_PIPES] = {};
3530 struct intel_crtc *crtc;
3531 enum pipe pipe;
3532
3533 new_ddb = &new_values->ddb;
3534 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3535
3536 /*
3537 * First pass: flush the pipes with the new allocation contained into
3538 * the old space.
3539 *
3540 * We'll wait for the vblank on those pipes to ensure we can safely
3541 * re-allocate the freed space without this pipe fetching from it.
3542 */
3543 for_each_intel_crtc(dev, crtc) {
3544 if (!crtc->active)
3545 continue;
3546
3547 pipe = crtc->pipe;
3548
3549 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3550 continue;
3551
3552 skl_wm_flush_pipe(dev_priv, pipe, 1);
3553 intel_wait_for_vblank(dev, pipe);
3554
3555 reallocated[pipe] = true;
3556 }
3557
3558
3559 /*
3560 * Second pass: flush the pipes that are having their allocation
3561 * reduced, but overlapping with a previous allocation.
3562 *
3563 * Here as well we need to wait for the vblank to make sure the freed
3564 * space is not used anymore.
3565 */
3566 for_each_intel_crtc(dev, crtc) {
3567 if (!crtc->active)
3568 continue;
3569
3570 pipe = crtc->pipe;
3571
3572 if (reallocated[pipe])
3573 continue;
3574
3575 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3576 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3577 skl_wm_flush_pipe(dev_priv, pipe, 2);
3578 intel_wait_for_vblank(dev, pipe);
3579 reallocated[pipe] = true;
3580 }
3581 }
3582
3583 /*
3584 * Third pass: flush the pipes that got more space allocated.
3585 *
3586 * We don't need to actively wait for the update here, next vblank
3587 * will just get more DDB space with the correct WM values.
3588 */
3589 for_each_intel_crtc(dev, crtc) {
3590 if (!crtc->active)
3591 continue;
3592
3593 pipe = crtc->pipe;
3594
3595 /*
3596 * At this point, only the pipes more space than before are
3597 * left to re-allocate.
3598 */
3599 if (reallocated[pipe])
3600 continue;
3601
3602 skl_wm_flush_pipe(dev_priv, pipe, 3);
3603 }
3604 }
3605
3606 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3607 struct skl_pipe_wm_parameters *params,
3608 struct intel_wm_config *config,
3609 struct skl_ddb_allocation *ddb, /* out */
3610 struct skl_pipe_wm *pipe_wm /* out */)
3611 {
3612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3613
3614 skl_compute_wm_pipe_parameters(crtc, params);
3615 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3616 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3617
3618 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3619 return false;
3620
3621 intel_crtc->wm.skl_active = *pipe_wm;
3622
3623 return true;
3624 }
3625
3626 static void skl_update_other_pipe_wm(struct drm_device *dev,
3627 struct drm_crtc *crtc,
3628 struct intel_wm_config *config,
3629 struct skl_wm_values *r)
3630 {
3631 struct intel_crtc *intel_crtc;
3632 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3633
3634 /*
3635 * If the WM update hasn't changed the allocation for this_crtc (the
3636 * crtc we are currently computing the new WM values for), other
3637 * enabled crtcs will keep the same allocation and we don't need to
3638 * recompute anything for them.
3639 */
3640 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3641 return;
3642
3643 /*
3644 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3645 * other active pipes need new DDB allocation and WM values.
3646 */
3647 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3648 base.head) {
3649 struct skl_pipe_wm_parameters params = {};
3650 struct skl_pipe_wm pipe_wm = {};
3651 bool wm_changed;
3652
3653 if (this_crtc->pipe == intel_crtc->pipe)
3654 continue;
3655
3656 if (!intel_crtc->active)
3657 continue;
3658
3659 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3660 &params, config,
3661 &r->ddb, &pipe_wm);
3662
3663 /*
3664 * If we end up re-computing the other pipe WM values, it's
3665 * because it was really needed, so we expect the WM values to
3666 * be different.
3667 */
3668 WARN_ON(!wm_changed);
3669
3670 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3671 r->dirty[intel_crtc->pipe] = true;
3672 }
3673 }
3674
3675 static void skl_update_wm(struct drm_crtc *crtc)
3676 {
3677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3678 struct drm_device *dev = crtc->dev;
3679 struct drm_i915_private *dev_priv = dev->dev_private;
3680 struct skl_pipe_wm_parameters params = {};
3681 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3682 struct skl_pipe_wm pipe_wm = {};
3683 struct intel_wm_config config = {};
3684
3685 memset(results, 0, sizeof(*results));
3686
3687 skl_compute_wm_global_parameters(dev, &config);
3688
3689 if (!skl_update_pipe_wm(crtc, &params, &config,
3690 &results->ddb, &pipe_wm))
3691 return;
3692
3693 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3694 results->dirty[intel_crtc->pipe] = true;
3695
3696 skl_update_other_pipe_wm(dev, crtc, &config, results);
3697 skl_write_wm_values(dev_priv, results);
3698 skl_flush_wm_values(dev_priv, results);
3699
3700 /* store the new configuration */
3701 dev_priv->wm.skl_hw = *results;
3702 }
3703
3704 static void
3705 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3706 uint32_t sprite_width, uint32_t sprite_height,
3707 int pixel_size, bool enabled, bool scaled)
3708 {
3709 struct intel_plane *intel_plane = to_intel_plane(plane);
3710 struct drm_framebuffer *fb = plane->state->fb;
3711
3712 intel_plane->wm.enabled = enabled;
3713 intel_plane->wm.scaled = scaled;
3714 intel_plane->wm.horiz_pixels = sprite_width;
3715 intel_plane->wm.vert_pixels = sprite_height;
3716 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3717
3718 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3719 intel_plane->wm.bytes_per_pixel =
3720 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3721 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3722 intel_plane->wm.y_bytes_per_pixel =
3723 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3724 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3725
3726 /*
3727 * Framebuffer can be NULL on plane disable, but it does not
3728 * matter for watermarks if we assume no tiling in that case.
3729 */
3730 if (fb)
3731 intel_plane->wm.tiling = fb->modifier[0];
3732 intel_plane->wm.rotation = plane->state->rotation;
3733
3734 skl_update_wm(crtc);
3735 }
3736
3737 static void ilk_update_wm(struct drm_crtc *crtc)
3738 {
3739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 struct drm_device *dev = crtc->dev;
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 struct ilk_wm_maximums max;
3743 struct ilk_pipe_wm_parameters params = {};
3744 struct ilk_wm_values results = {};
3745 enum intel_ddb_partitioning partitioning;
3746 struct intel_pipe_wm pipe_wm = {};
3747 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3748 struct intel_wm_config config = {};
3749
3750 ilk_compute_wm_parameters(crtc, &params);
3751
3752 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3753
3754 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3755 return;
3756
3757 intel_crtc->wm.active = pipe_wm;
3758
3759 ilk_compute_wm_config(dev, &config);
3760
3761 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3762 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3763
3764 /* 5/6 split only in single pipe config on IVB+ */
3765 if (INTEL_INFO(dev)->gen >= 7 &&
3766 config.num_pipes_active == 1 && config.sprites_enabled) {
3767 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3768 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3769
3770 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3771 } else {
3772 best_lp_wm = &lp_wm_1_2;
3773 }
3774
3775 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3776 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3777
3778 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3779
3780 ilk_write_wm_values(dev_priv, &results);
3781 }
3782
3783 static void
3784 ilk_update_sprite_wm(struct drm_plane *plane,
3785 struct drm_crtc *crtc,
3786 uint32_t sprite_width, uint32_t sprite_height,
3787 int pixel_size, bool enabled, bool scaled)
3788 {
3789 struct drm_device *dev = plane->dev;
3790 struct intel_plane *intel_plane = to_intel_plane(plane);
3791
3792 intel_plane->wm.enabled = enabled;
3793 intel_plane->wm.scaled = scaled;
3794 intel_plane->wm.horiz_pixels = sprite_width;
3795 intel_plane->wm.vert_pixels = sprite_width;
3796 intel_plane->wm.bytes_per_pixel = pixel_size;
3797
3798 /*
3799 * IVB workaround: must disable low power watermarks for at least
3800 * one frame before enabling scaling. LP watermarks can be re-enabled
3801 * when scaling is disabled.
3802 *
3803 * WaCxSRDisabledForSpriteScaling:ivb
3804 */
3805 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3806 intel_wait_for_vblank(dev, intel_plane->pipe);
3807
3808 ilk_update_wm(crtc);
3809 }
3810
3811 static void skl_pipe_wm_active_state(uint32_t val,
3812 struct skl_pipe_wm *active,
3813 bool is_transwm,
3814 bool is_cursor,
3815 int i,
3816 int level)
3817 {
3818 bool is_enabled = (val & PLANE_WM_EN) != 0;
3819
3820 if (!is_transwm) {
3821 if (!is_cursor) {
3822 active->wm[level].plane_en[i] = is_enabled;
3823 active->wm[level].plane_res_b[i] =
3824 val & PLANE_WM_BLOCKS_MASK;
3825 active->wm[level].plane_res_l[i] =
3826 (val >> PLANE_WM_LINES_SHIFT) &
3827 PLANE_WM_LINES_MASK;
3828 } else {
3829 active->wm[level].cursor_en = is_enabled;
3830 active->wm[level].cursor_res_b =
3831 val & PLANE_WM_BLOCKS_MASK;
3832 active->wm[level].cursor_res_l =
3833 (val >> PLANE_WM_LINES_SHIFT) &
3834 PLANE_WM_LINES_MASK;
3835 }
3836 } else {
3837 if (!is_cursor) {
3838 active->trans_wm.plane_en[i] = is_enabled;
3839 active->trans_wm.plane_res_b[i] =
3840 val & PLANE_WM_BLOCKS_MASK;
3841 active->trans_wm.plane_res_l[i] =
3842 (val >> PLANE_WM_LINES_SHIFT) &
3843 PLANE_WM_LINES_MASK;
3844 } else {
3845 active->trans_wm.cursor_en = is_enabled;
3846 active->trans_wm.cursor_res_b =
3847 val & PLANE_WM_BLOCKS_MASK;
3848 active->trans_wm.cursor_res_l =
3849 (val >> PLANE_WM_LINES_SHIFT) &
3850 PLANE_WM_LINES_MASK;
3851 }
3852 }
3853 }
3854
3855 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3856 {
3857 struct drm_device *dev = crtc->dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3862 enum pipe pipe = intel_crtc->pipe;
3863 int level, i, max_level;
3864 uint32_t temp;
3865
3866 max_level = ilk_wm_max_level(dev);
3867
3868 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3869
3870 for (level = 0; level <= max_level; level++) {
3871 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3872 hw->plane[pipe][i][level] =
3873 I915_READ(PLANE_WM(pipe, i, level));
3874 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3875 }
3876
3877 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3878 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3879 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3880
3881 if (!intel_crtc->active)
3882 return;
3883
3884 hw->dirty[pipe] = true;
3885
3886 active->linetime = hw->wm_linetime[pipe];
3887
3888 for (level = 0; level <= max_level; level++) {
3889 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3890 temp = hw->plane[pipe][i][level];
3891 skl_pipe_wm_active_state(temp, active, false,
3892 false, i, level);
3893 }
3894 temp = hw->cursor[pipe][level];
3895 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3896 }
3897
3898 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3899 temp = hw->plane_trans[pipe][i];
3900 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3901 }
3902
3903 temp = hw->cursor_trans[pipe];
3904 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3905 }
3906
3907 void skl_wm_get_hw_state(struct drm_device *dev)
3908 {
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3911 struct drm_crtc *crtc;
3912
3913 skl_ddb_get_hw_state(dev_priv, ddb);
3914 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3915 skl_pipe_wm_get_hw_state(crtc);
3916 }
3917
3918 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3919 {
3920 struct drm_device *dev = crtc->dev;
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3924 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3925 enum pipe pipe = intel_crtc->pipe;
3926 static const unsigned int wm0_pipe_reg[] = {
3927 [PIPE_A] = WM0_PIPEA_ILK,
3928 [PIPE_B] = WM0_PIPEB_ILK,
3929 [PIPE_C] = WM0_PIPEC_IVB,
3930 };
3931
3932 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3933 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3934 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3935
3936 active->pipe_enabled = intel_crtc->active;
3937
3938 if (active->pipe_enabled) {
3939 u32 tmp = hw->wm_pipe[pipe];
3940
3941 /*
3942 * For active pipes LP0 watermark is marked as
3943 * enabled, and LP1+ watermaks as disabled since
3944 * we can't really reverse compute them in case
3945 * multiple pipes are active.
3946 */
3947 active->wm[0].enable = true;
3948 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3949 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3950 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3951 active->linetime = hw->wm_linetime[pipe];
3952 } else {
3953 int level, max_level = ilk_wm_max_level(dev);
3954
3955 /*
3956 * For inactive pipes, all watermark levels
3957 * should be marked as enabled but zeroed,
3958 * which is what we'd compute them to.
3959 */
3960 for (level = 0; level <= max_level; level++)
3961 active->wm[level].enable = true;
3962 }
3963 }
3964
3965 #define _FW_WM(value, plane) \
3966 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3967 #define _FW_WM_VLV(value, plane) \
3968 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3969
3970 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3971 struct vlv_wm_values *wm)
3972 {
3973 enum pipe pipe;
3974 uint32_t tmp;
3975
3976 for_each_pipe(dev_priv, pipe) {
3977 tmp = I915_READ(VLV_DDL(pipe));
3978
3979 wm->ddl[pipe].primary =
3980 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3981 wm->ddl[pipe].cursor =
3982 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3983 wm->ddl[pipe].sprite[0] =
3984 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3985 wm->ddl[pipe].sprite[1] =
3986 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3987 }
3988
3989 tmp = I915_READ(DSPFW1);
3990 wm->sr.plane = _FW_WM(tmp, SR);
3991 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3992 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3993 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3994
3995 tmp = I915_READ(DSPFW2);
3996 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3997 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3998 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3999
4000 tmp = I915_READ(DSPFW3);
4001 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4002
4003 if (IS_CHERRYVIEW(dev_priv)) {
4004 tmp = I915_READ(DSPFW7_CHV);
4005 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4006 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4007
4008 tmp = I915_READ(DSPFW8_CHV);
4009 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4010 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4011
4012 tmp = I915_READ(DSPFW9_CHV);
4013 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4014 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4015
4016 tmp = I915_READ(DSPHOWM);
4017 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4018 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4019 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4020 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4021 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4022 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4023 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4024 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4025 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4026 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4027 } else {
4028 tmp = I915_READ(DSPFW7);
4029 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4030 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4031
4032 tmp = I915_READ(DSPHOWM);
4033 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4034 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4035 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4036 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4037 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4038 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4039 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4040 }
4041 }
4042
4043 #undef _FW_WM
4044 #undef _FW_WM_VLV
4045
4046 void vlv_wm_get_hw_state(struct drm_device *dev)
4047 {
4048 struct drm_i915_private *dev_priv = to_i915(dev);
4049 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4050 struct intel_plane *plane;
4051 enum pipe pipe;
4052 u32 val;
4053
4054 vlv_read_wm_values(dev_priv, wm);
4055
4056 for_each_intel_plane(dev, plane) {
4057 switch (plane->base.type) {
4058 int sprite;
4059 case DRM_PLANE_TYPE_CURSOR:
4060 plane->wm.fifo_size = 63;
4061 break;
4062 case DRM_PLANE_TYPE_PRIMARY:
4063 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4064 break;
4065 case DRM_PLANE_TYPE_OVERLAY:
4066 sprite = plane->plane;
4067 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4068 break;
4069 }
4070 }
4071
4072 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4073 wm->level = VLV_WM_LEVEL_PM2;
4074
4075 if (IS_CHERRYVIEW(dev_priv)) {
4076 mutex_lock(&dev_priv->rps.hw_lock);
4077
4078 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4079 if (val & DSP_MAXFIFO_PM5_ENABLE)
4080 wm->level = VLV_WM_LEVEL_PM5;
4081
4082 /*
4083 * If DDR DVFS is disabled in the BIOS, Punit
4084 * will never ack the request. So if that happens
4085 * assume we don't have to enable/disable DDR DVFS
4086 * dynamically. To test that just set the REQ_ACK
4087 * bit to poke the Punit, but don't change the
4088 * HIGH/LOW bits so that we don't actually change
4089 * the current state.
4090 */
4091 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4092 val |= FORCE_DDR_FREQ_REQ_ACK;
4093 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4094
4095 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4096 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4097 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4098 "assuming DDR DVFS is disabled\n");
4099 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4100 } else {
4101 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4102 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4103 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4104 }
4105
4106 mutex_unlock(&dev_priv->rps.hw_lock);
4107 }
4108
4109 for_each_pipe(dev_priv, pipe)
4110 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4111 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4112 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4113
4114 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4115 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4116 }
4117
4118 void ilk_wm_get_hw_state(struct drm_device *dev)
4119 {
4120 struct drm_i915_private *dev_priv = dev->dev_private;
4121 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4122 struct drm_crtc *crtc;
4123
4124 for_each_crtc(dev, crtc)
4125 ilk_pipe_wm_get_hw_state(crtc);
4126
4127 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4128 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4129 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4130
4131 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4132 if (INTEL_INFO(dev)->gen >= 7) {
4133 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4134 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4135 }
4136
4137 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4138 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4139 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4140 else if (IS_IVYBRIDGE(dev))
4141 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4142 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4143
4144 hw->enable_fbc_wm =
4145 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4146 }
4147
4148 /**
4149 * intel_update_watermarks - update FIFO watermark values based on current modes
4150 *
4151 * Calculate watermark values for the various WM regs based on current mode
4152 * and plane configuration.
4153 *
4154 * There are several cases to deal with here:
4155 * - normal (i.e. non-self-refresh)
4156 * - self-refresh (SR) mode
4157 * - lines are large relative to FIFO size (buffer can hold up to 2)
4158 * - lines are small relative to FIFO size (buffer can hold more than 2
4159 * lines), so need to account for TLB latency
4160 *
4161 * The normal calculation is:
4162 * watermark = dotclock * bytes per pixel * latency
4163 * where latency is platform & configuration dependent (we assume pessimal
4164 * values here).
4165 *
4166 * The SR calculation is:
4167 * watermark = (trunc(latency/line time)+1) * surface width *
4168 * bytes per pixel
4169 * where
4170 * line time = htotal / dotclock
4171 * surface width = hdisplay for normal plane and 64 for cursor
4172 * and latency is assumed to be high, as above.
4173 *
4174 * The final value programmed to the register should always be rounded up,
4175 * and include an extra 2 entries to account for clock crossings.
4176 *
4177 * We don't use the sprite, so we can ignore that. And on Crestline we have
4178 * to set the non-SR watermarks to 8.
4179 */
4180 void intel_update_watermarks(struct drm_crtc *crtc)
4181 {
4182 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4183
4184 if (dev_priv->display.update_wm)
4185 dev_priv->display.update_wm(crtc);
4186 }
4187
4188 void intel_update_sprite_watermarks(struct drm_plane *plane,
4189 struct drm_crtc *crtc,
4190 uint32_t sprite_width,
4191 uint32_t sprite_height,
4192 int pixel_size,
4193 bool enabled, bool scaled)
4194 {
4195 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4196
4197 if (dev_priv->display.update_sprite_wm)
4198 dev_priv->display.update_sprite_wm(plane, crtc,
4199 sprite_width, sprite_height,
4200 pixel_size, enabled, scaled);
4201 }
4202
4203 /**
4204 * Lock protecting IPS related data structures
4205 */
4206 DEFINE_SPINLOCK(mchdev_lock);
4207
4208 /* Global for IPS driver to get at the current i915 device. Protected by
4209 * mchdev_lock. */
4210 static struct drm_i915_private *i915_mch_dev;
4211
4212 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4213 {
4214 struct drm_i915_private *dev_priv = dev->dev_private;
4215 u16 rgvswctl;
4216
4217 assert_spin_locked(&mchdev_lock);
4218
4219 rgvswctl = I915_READ16(MEMSWCTL);
4220 if (rgvswctl & MEMCTL_CMD_STS) {
4221 DRM_DEBUG("gpu busy, RCS change rejected\n");
4222 return false; /* still busy with another command */
4223 }
4224
4225 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4226 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4227 I915_WRITE16(MEMSWCTL, rgvswctl);
4228 POSTING_READ16(MEMSWCTL);
4229
4230 rgvswctl |= MEMCTL_CMD_STS;
4231 I915_WRITE16(MEMSWCTL, rgvswctl);
4232
4233 return true;
4234 }
4235
4236 static void ironlake_enable_drps(struct drm_device *dev)
4237 {
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 u32 rgvmodectl = I915_READ(MEMMODECTL);
4240 u8 fmax, fmin, fstart, vstart;
4241
4242 spin_lock_irq(&mchdev_lock);
4243
4244 /* Enable temp reporting */
4245 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4246 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4247
4248 /* 100ms RC evaluation intervals */
4249 I915_WRITE(RCUPEI, 100000);
4250 I915_WRITE(RCDNEI, 100000);
4251
4252 /* Set max/min thresholds to 90ms and 80ms respectively */
4253 I915_WRITE(RCBMAXAVG, 90000);
4254 I915_WRITE(RCBMINAVG, 80000);
4255
4256 I915_WRITE(MEMIHYST, 1);
4257
4258 /* Set up min, max, and cur for interrupt handling */
4259 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4260 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4261 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4262 MEMMODE_FSTART_SHIFT;
4263
4264 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4265 PXVFREQ_PX_SHIFT;
4266
4267 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4268 dev_priv->ips.fstart = fstart;
4269
4270 dev_priv->ips.max_delay = fstart;
4271 dev_priv->ips.min_delay = fmin;
4272 dev_priv->ips.cur_delay = fstart;
4273
4274 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4275 fmax, fmin, fstart);
4276
4277 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4278
4279 /*
4280 * Interrupts will be enabled in ironlake_irq_postinstall
4281 */
4282
4283 I915_WRITE(VIDSTART, vstart);
4284 POSTING_READ(VIDSTART);
4285
4286 rgvmodectl |= MEMMODE_SWMODE_EN;
4287 I915_WRITE(MEMMODECTL, rgvmodectl);
4288
4289 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4290 DRM_ERROR("stuck trying to change perf mode\n");
4291 mdelay(1);
4292
4293 ironlake_set_drps(dev, fstart);
4294
4295 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4296 I915_READ(0x112e0);
4297 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4298 dev_priv->ips.last_count2 = I915_READ(0x112f4);
4299 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4300
4301 spin_unlock_irq(&mchdev_lock);
4302 }
4303
4304 static void ironlake_disable_drps(struct drm_device *dev)
4305 {
4306 struct drm_i915_private *dev_priv = dev->dev_private;
4307 u16 rgvswctl;
4308
4309 spin_lock_irq(&mchdev_lock);
4310
4311 rgvswctl = I915_READ16(MEMSWCTL);
4312
4313 /* Ack interrupts, disable EFC interrupt */
4314 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4315 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4316 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4317 I915_WRITE(DEIIR, DE_PCU_EVENT);
4318 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4319
4320 /* Go back to the starting frequency */
4321 ironlake_set_drps(dev, dev_priv->ips.fstart);
4322 mdelay(1);
4323 rgvswctl |= MEMCTL_CMD_STS;
4324 I915_WRITE(MEMSWCTL, rgvswctl);
4325 mdelay(1);
4326
4327 spin_unlock_irq(&mchdev_lock);
4328 }
4329
4330 /* There's a funny hw issue where the hw returns all 0 when reading from
4331 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4332 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4333 * all limits and the gpu stuck at whatever frequency it is at atm).
4334 */
4335 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4336 {
4337 u32 limits;
4338
4339 /* Only set the down limit when we've reached the lowest level to avoid
4340 * getting more interrupts, otherwise leave this clear. This prevents a
4341 * race in the hw when coming out of rc6: There's a tiny window where
4342 * the hw runs at the minimal clock before selecting the desired
4343 * frequency, if the down threshold expires in that window we will not
4344 * receive a down interrupt. */
4345 if (IS_GEN9(dev_priv->dev)) {
4346 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4347 if (val <= dev_priv->rps.min_freq_softlimit)
4348 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4349 } else {
4350 limits = dev_priv->rps.max_freq_softlimit << 24;
4351 if (val <= dev_priv->rps.min_freq_softlimit)
4352 limits |= dev_priv->rps.min_freq_softlimit << 16;
4353 }
4354
4355 return limits;
4356 }
4357
4358 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4359 {
4360 int new_power;
4361 u32 threshold_up = 0, threshold_down = 0; /* in % */
4362 u32 ei_up = 0, ei_down = 0;
4363
4364 new_power = dev_priv->rps.power;
4365 switch (dev_priv->rps.power) {
4366 case LOW_POWER:
4367 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4368 new_power = BETWEEN;
4369 break;
4370
4371 case BETWEEN:
4372 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4373 new_power = LOW_POWER;
4374 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4375 new_power = HIGH_POWER;
4376 break;
4377
4378 case HIGH_POWER:
4379 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4380 new_power = BETWEEN;
4381 break;
4382 }
4383 /* Max/min bins are special */
4384 if (val <= dev_priv->rps.min_freq_softlimit)
4385 new_power = LOW_POWER;
4386 if (val >= dev_priv->rps.max_freq_softlimit)
4387 new_power = HIGH_POWER;
4388 if (new_power == dev_priv->rps.power)
4389 return;
4390
4391 /* Note the units here are not exactly 1us, but 1280ns. */
4392 switch (new_power) {
4393 case LOW_POWER:
4394 /* Upclock if more than 95% busy over 16ms */
4395 ei_up = 16000;
4396 threshold_up = 95;
4397
4398 /* Downclock if less than 85% busy over 32ms */
4399 ei_down = 32000;
4400 threshold_down = 85;
4401 break;
4402
4403 case BETWEEN:
4404 /* Upclock if more than 90% busy over 13ms */
4405 ei_up = 13000;
4406 threshold_up = 90;
4407
4408 /* Downclock if less than 75% busy over 32ms */
4409 ei_down = 32000;
4410 threshold_down = 75;
4411 break;
4412
4413 case HIGH_POWER:
4414 /* Upclock if more than 85% busy over 10ms */
4415 ei_up = 10000;
4416 threshold_up = 85;
4417
4418 /* Downclock if less than 60% busy over 32ms */
4419 ei_down = 32000;
4420 threshold_down = 60;
4421 break;
4422 }
4423
4424 I915_WRITE(GEN6_RP_UP_EI,
4425 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4426 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4427 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4428
4429 I915_WRITE(GEN6_RP_DOWN_EI,
4430 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4431 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4432 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4433
4434 I915_WRITE(GEN6_RP_CONTROL,
4435 GEN6_RP_MEDIA_TURBO |
4436 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4437 GEN6_RP_MEDIA_IS_GFX |
4438 GEN6_RP_ENABLE |
4439 GEN6_RP_UP_BUSY_AVG |
4440 GEN6_RP_DOWN_IDLE_AVG);
4441
4442 dev_priv->rps.power = new_power;
4443 dev_priv->rps.up_threshold = threshold_up;
4444 dev_priv->rps.down_threshold = threshold_down;
4445 dev_priv->rps.last_adj = 0;
4446 }
4447
4448 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4449 {
4450 u32 mask = 0;
4451
4452 if (val > dev_priv->rps.min_freq_softlimit)
4453 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4454 if (val < dev_priv->rps.max_freq_softlimit)
4455 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4456
4457 mask &= dev_priv->pm_rps_events;
4458
4459 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4460 }
4461
4462 /* gen6_set_rps is called to update the frequency request, but should also be
4463 * called when the range (min_delay and max_delay) is modified so that we can
4464 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4465 static void gen6_set_rps(struct drm_device *dev, u8 val)
4466 {
4467 struct drm_i915_private *dev_priv = dev->dev_private;
4468
4469 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4470 WARN_ON(val > dev_priv->rps.max_freq);
4471 WARN_ON(val < dev_priv->rps.min_freq);
4472
4473 /* min/max delay may still have been modified so be sure to
4474 * write the limits value.
4475 */
4476 if (val != dev_priv->rps.cur_freq) {
4477 gen6_set_rps_thresholds(dev_priv, val);
4478
4479 if (IS_GEN9(dev))
4480 I915_WRITE(GEN6_RPNSWREQ,
4481 GEN9_FREQUENCY(val));
4482 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4483 I915_WRITE(GEN6_RPNSWREQ,
4484 HSW_FREQUENCY(val));
4485 else
4486 I915_WRITE(GEN6_RPNSWREQ,
4487 GEN6_FREQUENCY(val) |
4488 GEN6_OFFSET(0) |
4489 GEN6_AGGRESSIVE_TURBO);
4490 }
4491
4492 /* Make sure we continue to get interrupts
4493 * until we hit the minimum or maximum frequencies.
4494 */
4495 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4496 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4497
4498 POSTING_READ(GEN6_RPNSWREQ);
4499
4500 dev_priv->rps.cur_freq = val;
4501 trace_intel_gpu_freq_change(val * 50);
4502 }
4503
4504 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4505 {
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4509 WARN_ON(val > dev_priv->rps.max_freq);
4510 WARN_ON(val < dev_priv->rps.min_freq);
4511
4512 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4513 "Odd GPU freq value\n"))
4514 val &= ~1;
4515
4516 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4517
4518 if (val != dev_priv->rps.cur_freq) {
4519 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4520 if (!IS_CHERRYVIEW(dev_priv))
4521 gen6_set_rps_thresholds(dev_priv, val);
4522 }
4523
4524 dev_priv->rps.cur_freq = val;
4525 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4526 }
4527
4528 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4529 *
4530 * * If Gfx is Idle, then
4531 * 1. Forcewake Media well.
4532 * 2. Request idle freq.
4533 * 3. Release Forcewake of Media well.
4534 */
4535 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4536 {
4537 u32 val = dev_priv->rps.idle_freq;
4538
4539 if (dev_priv->rps.cur_freq <= val)
4540 return;
4541
4542 /* Wake up the media well, as that takes a lot less
4543 * power than the Render well. */
4544 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4545 valleyview_set_rps(dev_priv->dev, val);
4546 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4547 }
4548
4549 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4550 {
4551 mutex_lock(&dev_priv->rps.hw_lock);
4552 if (dev_priv->rps.enabled) {
4553 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4554 gen6_rps_reset_ei(dev_priv);
4555 I915_WRITE(GEN6_PMINTRMSK,
4556 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4557 }
4558 mutex_unlock(&dev_priv->rps.hw_lock);
4559 }
4560
4561 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4562 {
4563 struct drm_device *dev = dev_priv->dev;
4564
4565 mutex_lock(&dev_priv->rps.hw_lock);
4566 if (dev_priv->rps.enabled) {
4567 if (IS_VALLEYVIEW(dev))
4568 vlv_set_rps_idle(dev_priv);
4569 else
4570 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4571 dev_priv->rps.last_adj = 0;
4572 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4573 }
4574 mutex_unlock(&dev_priv->rps.hw_lock);
4575
4576 spin_lock(&dev_priv->rps.client_lock);
4577 while (!list_empty(&dev_priv->rps.clients))
4578 list_del_init(dev_priv->rps.clients.next);
4579 spin_unlock(&dev_priv->rps.client_lock);
4580 }
4581
4582 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4583 struct intel_rps_client *rps,
4584 unsigned long submitted)
4585 {
4586 /* This is intentionally racy! We peek at the state here, then
4587 * validate inside the RPS worker.
4588 */
4589 if (!(dev_priv->mm.busy &&
4590 dev_priv->rps.enabled &&
4591 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4592 return;
4593
4594 /* Force a RPS boost (and don't count it against the client) if
4595 * the GPU is severely congested.
4596 */
4597 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4598 rps = NULL;
4599
4600 spin_lock(&dev_priv->rps.client_lock);
4601 if (rps == NULL || list_empty(&rps->link)) {
4602 spin_lock_irq(&dev_priv->irq_lock);
4603 if (dev_priv->rps.interrupts_enabled) {
4604 dev_priv->rps.client_boost = true;
4605 queue_work(dev_priv->wq, &dev_priv->rps.work);
4606 }
4607 spin_unlock_irq(&dev_priv->irq_lock);
4608
4609 if (rps != NULL) {
4610 list_add(&rps->link, &dev_priv->rps.clients);
4611 rps->boosts++;
4612 } else
4613 dev_priv->rps.boosts++;
4614 }
4615 spin_unlock(&dev_priv->rps.client_lock);
4616 }
4617
4618 void intel_set_rps(struct drm_device *dev, u8 val)
4619 {
4620 if (IS_VALLEYVIEW(dev))
4621 valleyview_set_rps(dev, val);
4622 else
4623 gen6_set_rps(dev, val);
4624 }
4625
4626 static void gen9_disable_rps(struct drm_device *dev)
4627 {
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629
4630 I915_WRITE(GEN6_RC_CONTROL, 0);
4631 I915_WRITE(GEN9_PG_ENABLE, 0);
4632 }
4633
4634 static void gen6_disable_rps(struct drm_device *dev)
4635 {
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638 I915_WRITE(GEN6_RC_CONTROL, 0);
4639 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4640 }
4641
4642 static void cherryview_disable_rps(struct drm_device *dev)
4643 {
4644 struct drm_i915_private *dev_priv = dev->dev_private;
4645
4646 I915_WRITE(GEN6_RC_CONTROL, 0);
4647 }
4648
4649 static void valleyview_disable_rps(struct drm_device *dev)
4650 {
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652
4653 /* we're doing forcewake before Disabling RC6,
4654 * This what the BIOS expects when going into suspend */
4655 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4656
4657 I915_WRITE(GEN6_RC_CONTROL, 0);
4658
4659 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4660 }
4661
4662 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4663 {
4664 if (IS_VALLEYVIEW(dev)) {
4665 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4666 mode = GEN6_RC_CTL_RC6_ENABLE;
4667 else
4668 mode = 0;
4669 }
4670 if (HAS_RC6p(dev))
4671 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4672 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4673 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4674 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4675
4676 else
4677 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4678 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4679 }
4680
4681 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4682 {
4683 /* No RC6 before Ironlake and code is gone for ilk. */
4684 if (INTEL_INFO(dev)->gen < 6)
4685 return 0;
4686
4687 /* Respect the kernel parameter if it is set */
4688 if (enable_rc6 >= 0) {
4689 int mask;
4690
4691 if (HAS_RC6p(dev))
4692 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4693 INTEL_RC6pp_ENABLE;
4694 else
4695 mask = INTEL_RC6_ENABLE;
4696
4697 if ((enable_rc6 & mask) != enable_rc6)
4698 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4699 enable_rc6 & mask, enable_rc6, mask);
4700
4701 return enable_rc6 & mask;
4702 }
4703
4704 if (IS_IVYBRIDGE(dev))
4705 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4706
4707 return INTEL_RC6_ENABLE;
4708 }
4709
4710 int intel_enable_rc6(const struct drm_device *dev)
4711 {
4712 return i915.enable_rc6;
4713 }
4714
4715 static void gen6_init_rps_frequencies(struct drm_device *dev)
4716 {
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 uint32_t rp_state_cap;
4719 u32 ddcc_status = 0;
4720 int ret;
4721
4722 /* All of these values are in units of 50MHz */
4723 dev_priv->rps.cur_freq = 0;
4724 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4725 if (IS_BROXTON(dev)) {
4726 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4727 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4728 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4729 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4730 } else {
4731 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4732 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4733 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4734 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4735 }
4736
4737 /* hw_max = RP0 until we check for overclocking */
4738 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4739
4740 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4741 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4742 ret = sandybridge_pcode_read(dev_priv,
4743 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4744 &ddcc_status);
4745 if (0 == ret)
4746 dev_priv->rps.efficient_freq =
4747 clamp_t(u8,
4748 ((ddcc_status >> 8) & 0xff),
4749 dev_priv->rps.min_freq,
4750 dev_priv->rps.max_freq);
4751 }
4752
4753 if (IS_SKYLAKE(dev)) {
4754 /* Store the frequency values in 16.66 MHZ units, which is
4755 the natural hardware unit for SKL */
4756 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4757 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4758 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4759 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4760 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4761 }
4762
4763 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4764
4765 /* Preserve min/max settings in case of re-init */
4766 if (dev_priv->rps.max_freq_softlimit == 0)
4767 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4768
4769 if (dev_priv->rps.min_freq_softlimit == 0) {
4770 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4771 dev_priv->rps.min_freq_softlimit =
4772 max_t(int, dev_priv->rps.efficient_freq,
4773 intel_freq_opcode(dev_priv, 450));
4774 else
4775 dev_priv->rps.min_freq_softlimit =
4776 dev_priv->rps.min_freq;
4777 }
4778 }
4779
4780 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4781 static void gen9_enable_rps(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784
4785 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4786
4787 gen6_init_rps_frequencies(dev);
4788
4789 /* Program defaults and thresholds for RPS*/
4790 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4791 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4792
4793 /* 1 second timeout*/
4794 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4795 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4796
4797 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4798
4799 /* Leaning on the below call to gen6_set_rps to program/setup the
4800 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4801 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4802 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4803 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4804
4805 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4806 }
4807
4808 static void gen9_enable_rc6(struct drm_device *dev)
4809 {
4810 struct drm_i915_private *dev_priv = dev->dev_private;
4811 struct intel_engine_cs *ring;
4812 uint32_t rc6_mask = 0;
4813 int unused;
4814
4815 /* 1a: Software RC state - RC0 */
4816 I915_WRITE(GEN6_RC_STATE, 0);
4817
4818 /* 1b: Get forcewake during program sequence. Although the driver
4819 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4820 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4821
4822 /* 2a: Disable RC states. */
4823 I915_WRITE(GEN6_RC_CONTROL, 0);
4824
4825 /* 2b: Program RC6 thresholds.*/
4826 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4827 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4828 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4829 for_each_ring(ring, dev_priv, unused)
4830 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4831 I915_WRITE(GEN6_RC_SLEEP, 0);
4832 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4833
4834 /* 2c: Program Coarse Power Gating Policies. */
4835 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4836 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4837
4838 /* 3a: Enable RC6 */
4839 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4840 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4841 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4842 "on" : "off");
4843 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4844 GEN6_RC_CTL_EI_MODE(1) |
4845 rc6_mask);
4846
4847 /*
4848 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4849 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
4850 */
4851 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4852 GEN9_MEDIA_PG_ENABLE : 0);
4853
4854
4855 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4856
4857 }
4858
4859 static void gen8_enable_rps(struct drm_device *dev)
4860 {
4861 struct drm_i915_private *dev_priv = dev->dev_private;
4862 struct intel_engine_cs *ring;
4863 uint32_t rc6_mask = 0;
4864 int unused;
4865
4866 /* 1a: Software RC state - RC0 */
4867 I915_WRITE(GEN6_RC_STATE, 0);
4868
4869 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4870 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4871 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4872
4873 /* 2a: Disable RC states. */
4874 I915_WRITE(GEN6_RC_CONTROL, 0);
4875
4876 /* Initialize rps frequencies */
4877 gen6_init_rps_frequencies(dev);
4878
4879 /* 2b: Program RC6 thresholds.*/
4880 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4881 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4882 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4883 for_each_ring(ring, dev_priv, unused)
4884 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4885 I915_WRITE(GEN6_RC_SLEEP, 0);
4886 if (IS_BROADWELL(dev))
4887 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4888 else
4889 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4890
4891 /* 3: Enable RC6 */
4892 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4893 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4894 intel_print_rc6_info(dev, rc6_mask);
4895 if (IS_BROADWELL(dev))
4896 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4897 GEN7_RC_CTL_TO_MODE |
4898 rc6_mask);
4899 else
4900 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4901 GEN6_RC_CTL_EI_MODE(1) |
4902 rc6_mask);
4903
4904 /* 4 Program defaults and thresholds for RPS*/
4905 I915_WRITE(GEN6_RPNSWREQ,
4906 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4907 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4908 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4909 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4910 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4911
4912 /* Docs recommend 900MHz, and 300 MHz respectively */
4913 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4914 dev_priv->rps.max_freq_softlimit << 24 |
4915 dev_priv->rps.min_freq_softlimit << 16);
4916
4917 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4918 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4919 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4920 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4921
4922 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4923
4924 /* 5: Enable RPS */
4925 I915_WRITE(GEN6_RP_CONTROL,
4926 GEN6_RP_MEDIA_TURBO |
4927 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4928 GEN6_RP_MEDIA_IS_GFX |
4929 GEN6_RP_ENABLE |
4930 GEN6_RP_UP_BUSY_AVG |
4931 GEN6_RP_DOWN_IDLE_AVG);
4932
4933 /* 6: Ring frequency + overclocking (our driver does this later */
4934
4935 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4936 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4937
4938 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4939 }
4940
4941 static void gen6_enable_rps(struct drm_device *dev)
4942 {
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944 struct intel_engine_cs *ring;
4945 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4946 u32 gtfifodbg;
4947 int rc6_mode;
4948 int i, ret;
4949
4950 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4951
4952 /* Here begins a magic sequence of register writes to enable
4953 * auto-downclocking.
4954 *
4955 * Perhaps there might be some value in exposing these to
4956 * userspace...
4957 */
4958 I915_WRITE(GEN6_RC_STATE, 0);
4959
4960 /* Clear the DBG now so we don't confuse earlier errors */
4961 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4962 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4963 I915_WRITE(GTFIFODBG, gtfifodbg);
4964 }
4965
4966 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4967
4968 /* Initialize rps frequencies */
4969 gen6_init_rps_frequencies(dev);
4970
4971 /* disable the counters and set deterministic thresholds */
4972 I915_WRITE(GEN6_RC_CONTROL, 0);
4973
4974 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4975 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4976 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4977 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4978 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4979
4980 for_each_ring(ring, dev_priv, i)
4981 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4982
4983 I915_WRITE(GEN6_RC_SLEEP, 0);
4984 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4985 if (IS_IVYBRIDGE(dev))
4986 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4987 else
4988 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4989 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4990 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4991
4992 /* Check if we are enabling RC6 */
4993 rc6_mode = intel_enable_rc6(dev_priv->dev);
4994 if (rc6_mode & INTEL_RC6_ENABLE)
4995 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4996
4997 /* We don't use those on Haswell */
4998 if (!IS_HASWELL(dev)) {
4999 if (rc6_mode & INTEL_RC6p_ENABLE)
5000 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5001
5002 if (rc6_mode & INTEL_RC6pp_ENABLE)
5003 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5004 }
5005
5006 intel_print_rc6_info(dev, rc6_mask);
5007
5008 I915_WRITE(GEN6_RC_CONTROL,
5009 rc6_mask |
5010 GEN6_RC_CTL_EI_MODE(1) |
5011 GEN6_RC_CTL_HW_ENABLE);
5012
5013 /* Power down if completely idle for over 50ms */
5014 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5015 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5016
5017 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5018 if (ret)
5019 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5020
5021 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5022 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5023 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5024 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5025 (pcu_mbox & 0xff) * 50);
5026 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5027 }
5028
5029 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5030 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5031
5032 rc6vids = 0;
5033 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5034 if (IS_GEN6(dev) && ret) {
5035 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5036 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5037 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5038 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5039 rc6vids &= 0xffff00;
5040 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5041 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5042 if (ret)
5043 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5044 }
5045
5046 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5047 }
5048
5049 static void __gen6_update_ring_freq(struct drm_device *dev)
5050 {
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 int min_freq = 15;
5053 unsigned int gpu_freq;
5054 unsigned int max_ia_freq, min_ring_freq;
5055 unsigned int max_gpu_freq, min_gpu_freq;
5056 int scaling_factor = 180;
5057 struct cpufreq_policy *policy;
5058
5059 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5060
5061 policy = cpufreq_cpu_get(0);
5062 if (policy) {
5063 max_ia_freq = policy->cpuinfo.max_freq;
5064 cpufreq_cpu_put(policy);
5065 } else {
5066 /*
5067 * Default to measured freq if none found, PCU will ensure we
5068 * don't go over
5069 */
5070 max_ia_freq = tsc_khz;
5071 }
5072
5073 /* Convert from kHz to MHz */
5074 max_ia_freq /= 1000;
5075
5076 min_ring_freq = I915_READ(DCLK) & 0xf;
5077 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5078 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5079
5080 if (IS_SKYLAKE(dev)) {
5081 /* Convert GT frequency to 50 HZ units */
5082 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5083 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5084 } else {
5085 min_gpu_freq = dev_priv->rps.min_freq;
5086 max_gpu_freq = dev_priv->rps.max_freq;
5087 }
5088
5089 /*
5090 * For each potential GPU frequency, load a ring frequency we'd like
5091 * to use for memory access. We do this by specifying the IA frequency
5092 * the PCU should use as a reference to determine the ring frequency.
5093 */
5094 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5095 int diff = max_gpu_freq - gpu_freq;
5096 unsigned int ia_freq = 0, ring_freq = 0;
5097
5098 if (IS_SKYLAKE(dev)) {
5099 /*
5100 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5101 * No floor required for ring frequency on SKL.
5102 */
5103 ring_freq = gpu_freq;
5104 } else if (INTEL_INFO(dev)->gen >= 8) {
5105 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5106 ring_freq = max(min_ring_freq, gpu_freq);
5107 } else if (IS_HASWELL(dev)) {
5108 ring_freq = mult_frac(gpu_freq, 5, 4);
5109 ring_freq = max(min_ring_freq, ring_freq);
5110 /* leave ia_freq as the default, chosen by cpufreq */
5111 } else {
5112 /* On older processors, there is no separate ring
5113 * clock domain, so in order to boost the bandwidth
5114 * of the ring, we need to upclock the CPU (ia_freq).
5115 *
5116 * For GPU frequencies less than 750MHz,
5117 * just use the lowest ring freq.
5118 */
5119 if (gpu_freq < min_freq)
5120 ia_freq = 800;
5121 else
5122 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5123 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5124 }
5125
5126 sandybridge_pcode_write(dev_priv,
5127 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5128 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5129 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5130 gpu_freq);
5131 }
5132 }
5133
5134 void gen6_update_ring_freq(struct drm_device *dev)
5135 {
5136 struct drm_i915_private *dev_priv = dev->dev_private;
5137
5138 if (!HAS_CORE_RING_FREQ(dev))
5139 return;
5140
5141 mutex_lock(&dev_priv->rps.hw_lock);
5142 __gen6_update_ring_freq(dev);
5143 mutex_unlock(&dev_priv->rps.hw_lock);
5144 }
5145
5146 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5147 {
5148 struct drm_device *dev = dev_priv->dev;
5149 u32 val, rp0;
5150
5151 if (dev->pdev->revision >= 0x20) {
5152 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5153
5154 switch (INTEL_INFO(dev)->eu_total) {
5155 case 8:
5156 /* (2 * 4) config */
5157 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5158 break;
5159 case 12:
5160 /* (2 * 6) config */
5161 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5162 break;
5163 case 16:
5164 /* (2 * 8) config */
5165 default:
5166 /* Setting (2 * 8) Min RP0 for any other combination */
5167 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5168 break;
5169 }
5170 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5171 } else {
5172 /* For pre-production hardware */
5173 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5174 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5175 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5176 }
5177 return rp0;
5178 }
5179
5180 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5181 {
5182 u32 val, rpe;
5183
5184 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5185 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5186
5187 return rpe;
5188 }
5189
5190 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5191 {
5192 struct drm_device *dev = dev_priv->dev;
5193 u32 val, rp1;
5194
5195 if (dev->pdev->revision >= 0x20) {
5196 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5197 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5198 } else {
5199 /* For pre-production hardware */
5200 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5201 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5202 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5203 }
5204 return rp1;
5205 }
5206
5207 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5208 {
5209 u32 val, rp1;
5210
5211 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5212
5213 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5214
5215 return rp1;
5216 }
5217
5218 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5219 {
5220 u32 val, rp0;
5221
5222 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5223
5224 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5225 /* Clamp to max */
5226 rp0 = min_t(u32, rp0, 0xea);
5227
5228 return rp0;
5229 }
5230
5231 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5232 {
5233 u32 val, rpe;
5234
5235 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5236 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5237 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5238 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5239
5240 return rpe;
5241 }
5242
5243 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5244 {
5245 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5246 }
5247
5248 /* Check that the pctx buffer wasn't move under us. */
5249 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5250 {
5251 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5252
5253 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5254 dev_priv->vlv_pctx->stolen->start);
5255 }
5256
5257
5258 /* Check that the pcbr address is not empty. */
5259 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5260 {
5261 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5262
5263 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5264 }
5265
5266 static void cherryview_setup_pctx(struct drm_device *dev)
5267 {
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 unsigned long pctx_paddr, paddr;
5270 struct i915_gtt *gtt = &dev_priv->gtt;
5271 u32 pcbr;
5272 int pctx_size = 32*1024;
5273
5274 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5275
5276 pcbr = I915_READ(VLV_PCBR);
5277 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5278 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5279 paddr = (dev_priv->mm.stolen_base +
5280 (gtt->stolen_size - pctx_size));
5281
5282 pctx_paddr = (paddr & (~4095));
5283 I915_WRITE(VLV_PCBR, pctx_paddr);
5284 }
5285
5286 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5287 }
5288
5289 static void valleyview_setup_pctx(struct drm_device *dev)
5290 {
5291 struct drm_i915_private *dev_priv = dev->dev_private;
5292 struct drm_i915_gem_object *pctx;
5293 unsigned long pctx_paddr;
5294 u32 pcbr;
5295 int pctx_size = 24*1024;
5296
5297 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5298
5299 pcbr = I915_READ(VLV_PCBR);
5300 if (pcbr) {
5301 /* BIOS set it up already, grab the pre-alloc'd space */
5302 int pcbr_offset;
5303
5304 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5305 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5306 pcbr_offset,
5307 I915_GTT_OFFSET_NONE,
5308 pctx_size);
5309 goto out;
5310 }
5311
5312 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5313
5314 /*
5315 * From the Gunit register HAS:
5316 * The Gfx driver is expected to program this register and ensure
5317 * proper allocation within Gfx stolen memory. For example, this
5318 * register should be programmed such than the PCBR range does not
5319 * overlap with other ranges, such as the frame buffer, protected
5320 * memory, or any other relevant ranges.
5321 */
5322 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5323 if (!pctx) {
5324 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5325 return;
5326 }
5327
5328 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5329 I915_WRITE(VLV_PCBR, pctx_paddr);
5330
5331 out:
5332 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5333 dev_priv->vlv_pctx = pctx;
5334 }
5335
5336 static void valleyview_cleanup_pctx(struct drm_device *dev)
5337 {
5338 struct drm_i915_private *dev_priv = dev->dev_private;
5339
5340 if (WARN_ON(!dev_priv->vlv_pctx))
5341 return;
5342
5343 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5344 dev_priv->vlv_pctx = NULL;
5345 }
5346
5347 static void valleyview_init_gt_powersave(struct drm_device *dev)
5348 {
5349 struct drm_i915_private *dev_priv = dev->dev_private;
5350 u32 val;
5351
5352 valleyview_setup_pctx(dev);
5353
5354 mutex_lock(&dev_priv->rps.hw_lock);
5355
5356 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5357 switch ((val >> 6) & 3) {
5358 case 0:
5359 case 1:
5360 dev_priv->mem_freq = 800;
5361 break;
5362 case 2:
5363 dev_priv->mem_freq = 1066;
5364 break;
5365 case 3:
5366 dev_priv->mem_freq = 1333;
5367 break;
5368 }
5369 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5370
5371 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5372 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5373 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5374 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5375 dev_priv->rps.max_freq);
5376
5377 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5378 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5379 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5380 dev_priv->rps.efficient_freq);
5381
5382 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5383 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5384 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5385 dev_priv->rps.rp1_freq);
5386
5387 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5388 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5389 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5390 dev_priv->rps.min_freq);
5391
5392 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5393
5394 /* Preserve min/max settings in case of re-init */
5395 if (dev_priv->rps.max_freq_softlimit == 0)
5396 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5397
5398 if (dev_priv->rps.min_freq_softlimit == 0)
5399 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5400
5401 mutex_unlock(&dev_priv->rps.hw_lock);
5402 }
5403
5404 static void cherryview_init_gt_powersave(struct drm_device *dev)
5405 {
5406 struct drm_i915_private *dev_priv = dev->dev_private;
5407 u32 val;
5408
5409 cherryview_setup_pctx(dev);
5410
5411 mutex_lock(&dev_priv->rps.hw_lock);
5412
5413 mutex_lock(&dev_priv->sb_lock);
5414 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5415 mutex_unlock(&dev_priv->sb_lock);
5416
5417 switch ((val >> 2) & 0x7) {
5418 case 0:
5419 case 1:
5420 dev_priv->rps.cz_freq = 200;
5421 dev_priv->mem_freq = 1600;
5422 break;
5423 case 2:
5424 dev_priv->rps.cz_freq = 267;
5425 dev_priv->mem_freq = 1600;
5426 break;
5427 case 3:
5428 dev_priv->rps.cz_freq = 333;
5429 dev_priv->mem_freq = 2000;
5430 break;
5431 case 4:
5432 dev_priv->rps.cz_freq = 320;
5433 dev_priv->mem_freq = 1600;
5434 break;
5435 case 5:
5436 dev_priv->rps.cz_freq = 400;
5437 dev_priv->mem_freq = 1600;
5438 break;
5439 }
5440 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5441
5442 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5443 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5444 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5445 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5446 dev_priv->rps.max_freq);
5447
5448 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5449 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5450 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5451 dev_priv->rps.efficient_freq);
5452
5453 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5454 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5455 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5456 dev_priv->rps.rp1_freq);
5457
5458 /* PUnit validated range is only [RPe, RP0] */
5459 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5460 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5461 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5462 dev_priv->rps.min_freq);
5463
5464 WARN_ONCE((dev_priv->rps.max_freq |
5465 dev_priv->rps.efficient_freq |
5466 dev_priv->rps.rp1_freq |
5467 dev_priv->rps.min_freq) & 1,
5468 "Odd GPU freq values\n");
5469
5470 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5471
5472 /* Preserve min/max settings in case of re-init */
5473 if (dev_priv->rps.max_freq_softlimit == 0)
5474 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5475
5476 if (dev_priv->rps.min_freq_softlimit == 0)
5477 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5478
5479 mutex_unlock(&dev_priv->rps.hw_lock);
5480 }
5481
5482 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5483 {
5484 valleyview_cleanup_pctx(dev);
5485 }
5486
5487 static void cherryview_enable_rps(struct drm_device *dev)
5488 {
5489 struct drm_i915_private *dev_priv = dev->dev_private;
5490 struct intel_engine_cs *ring;
5491 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5492 int i;
5493
5494 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5495
5496 gtfifodbg = I915_READ(GTFIFODBG);
5497 if (gtfifodbg) {
5498 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5499 gtfifodbg);
5500 I915_WRITE(GTFIFODBG, gtfifodbg);
5501 }
5502
5503 cherryview_check_pctx(dev_priv);
5504
5505 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5506 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5507 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5508
5509 /* Disable RC states. */
5510 I915_WRITE(GEN6_RC_CONTROL, 0);
5511
5512 /* 2a: Program RC6 thresholds.*/
5513 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5514 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5515 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5516
5517 for_each_ring(ring, dev_priv, i)
5518 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5519 I915_WRITE(GEN6_RC_SLEEP, 0);
5520
5521 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5522 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5523
5524 /* allows RC6 residency counter to work */
5525 I915_WRITE(VLV_COUNTER_CONTROL,
5526 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5527 VLV_MEDIA_RC6_COUNT_EN |
5528 VLV_RENDER_RC6_COUNT_EN));
5529
5530 /* For now we assume BIOS is allocating and populating the PCBR */
5531 pcbr = I915_READ(VLV_PCBR);
5532
5533 /* 3: Enable RC6 */
5534 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5535 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5536 rc6_mode = GEN7_RC_CTL_TO_MODE;
5537
5538 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5539
5540 /* 4 Program defaults and thresholds for RPS*/
5541 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5542 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5543 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5544 I915_WRITE(GEN6_RP_UP_EI, 66000);
5545 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5546
5547 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5548
5549 /* 5: Enable RPS */
5550 I915_WRITE(GEN6_RP_CONTROL,
5551 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5552 GEN6_RP_MEDIA_IS_GFX |
5553 GEN6_RP_ENABLE |
5554 GEN6_RP_UP_BUSY_AVG |
5555 GEN6_RP_DOWN_IDLE_AVG);
5556
5557 /* Setting Fixed Bias */
5558 val = VLV_OVERRIDE_EN |
5559 VLV_SOC_TDP_EN |
5560 CHV_BIAS_CPU_50_SOC_50;
5561 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5562
5563 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5564
5565 /* RPS code assumes GPLL is used */
5566 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5567
5568 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5569 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5570
5571 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5572 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5573 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5574 dev_priv->rps.cur_freq);
5575
5576 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5577 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5578 dev_priv->rps.efficient_freq);
5579
5580 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5581
5582 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5583 }
5584
5585 static void valleyview_enable_rps(struct drm_device *dev)
5586 {
5587 struct drm_i915_private *dev_priv = dev->dev_private;
5588 struct intel_engine_cs *ring;
5589 u32 gtfifodbg, val, rc6_mode = 0;
5590 int i;
5591
5592 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5593
5594 valleyview_check_pctx(dev_priv);
5595
5596 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5597 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5598 gtfifodbg);
5599 I915_WRITE(GTFIFODBG, gtfifodbg);
5600 }
5601
5602 /* If VLV, Forcewake all wells, else re-direct to regular path */
5603 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5604
5605 /* Disable RC states. */
5606 I915_WRITE(GEN6_RC_CONTROL, 0);
5607
5608 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5609 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5610 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5611 I915_WRITE(GEN6_RP_UP_EI, 66000);
5612 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5613
5614 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5615
5616 I915_WRITE(GEN6_RP_CONTROL,
5617 GEN6_RP_MEDIA_TURBO |
5618 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5619 GEN6_RP_MEDIA_IS_GFX |
5620 GEN6_RP_ENABLE |
5621 GEN6_RP_UP_BUSY_AVG |
5622 GEN6_RP_DOWN_IDLE_CONT);
5623
5624 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5625 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5626 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5627
5628 for_each_ring(ring, dev_priv, i)
5629 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5630
5631 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5632
5633 /* allows RC6 residency counter to work */
5634 I915_WRITE(VLV_COUNTER_CONTROL,
5635 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5636 VLV_RENDER_RC0_COUNT_EN |
5637 VLV_MEDIA_RC6_COUNT_EN |
5638 VLV_RENDER_RC6_COUNT_EN));
5639
5640 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5641 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5642
5643 intel_print_rc6_info(dev, rc6_mode);
5644
5645 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5646
5647 /* Setting Fixed Bias */
5648 val = VLV_OVERRIDE_EN |
5649 VLV_SOC_TDP_EN |
5650 VLV_BIAS_CPU_125_SOC_875;
5651 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5652
5653 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5654
5655 /* RPS code assumes GPLL is used */
5656 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5657
5658 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5659 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5660
5661 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5662 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5663 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5664 dev_priv->rps.cur_freq);
5665
5666 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5667 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5668 dev_priv->rps.efficient_freq);
5669
5670 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5671
5672 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5673 }
5674
5675 static unsigned long intel_pxfreq(u32 vidfreq)
5676 {
5677 unsigned long freq;
5678 int div = (vidfreq & 0x3f0000) >> 16;
5679 int post = (vidfreq & 0x3000) >> 12;
5680 int pre = (vidfreq & 0x7);
5681
5682 if (!pre)
5683 return 0;
5684
5685 freq = ((div * 133333) / ((1<<post) * pre));
5686
5687 return freq;
5688 }
5689
5690 static const struct cparams {
5691 u16 i;
5692 u16 t;
5693 u16 m;
5694 u16 c;
5695 } cparams[] = {
5696 { 1, 1333, 301, 28664 },
5697 { 1, 1066, 294, 24460 },
5698 { 1, 800, 294, 25192 },
5699 { 0, 1333, 276, 27605 },
5700 { 0, 1066, 276, 27605 },
5701 { 0, 800, 231, 23784 },
5702 };
5703
5704 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5705 {
5706 u64 total_count, diff, ret;
5707 u32 count1, count2, count3, m = 0, c = 0;
5708 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5709 int i;
5710
5711 assert_spin_locked(&mchdev_lock);
5712
5713 diff1 = now - dev_priv->ips.last_time1;
5714
5715 /* Prevent division-by-zero if we are asking too fast.
5716 * Also, we don't get interesting results if we are polling
5717 * faster than once in 10ms, so just return the saved value
5718 * in such cases.
5719 */
5720 if (diff1 <= 10)
5721 return dev_priv->ips.chipset_power;
5722
5723 count1 = I915_READ(DMIEC);
5724 count2 = I915_READ(DDREC);
5725 count3 = I915_READ(CSIEC);
5726
5727 total_count = count1 + count2 + count3;
5728
5729 /* FIXME: handle per-counter overflow */
5730 if (total_count < dev_priv->ips.last_count1) {
5731 diff = ~0UL - dev_priv->ips.last_count1;
5732 diff += total_count;
5733 } else {
5734 diff = total_count - dev_priv->ips.last_count1;
5735 }
5736
5737 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5738 if (cparams[i].i == dev_priv->ips.c_m &&
5739 cparams[i].t == dev_priv->ips.r_t) {
5740 m = cparams[i].m;
5741 c = cparams[i].c;
5742 break;
5743 }
5744 }
5745
5746 diff = div_u64(diff, diff1);
5747 ret = ((m * diff) + c);
5748 ret = div_u64(ret, 10);
5749
5750 dev_priv->ips.last_count1 = total_count;
5751 dev_priv->ips.last_time1 = now;
5752
5753 dev_priv->ips.chipset_power = ret;
5754
5755 return ret;
5756 }
5757
5758 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5759 {
5760 struct drm_device *dev = dev_priv->dev;
5761 unsigned long val;
5762
5763 if (INTEL_INFO(dev)->gen != 5)
5764 return 0;
5765
5766 spin_lock_irq(&mchdev_lock);
5767
5768 val = __i915_chipset_val(dev_priv);
5769
5770 spin_unlock_irq(&mchdev_lock);
5771
5772 return val;
5773 }
5774
5775 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5776 {
5777 unsigned long m, x, b;
5778 u32 tsfs;
5779
5780 tsfs = I915_READ(TSFS);
5781
5782 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5783 x = I915_READ8(TR1);
5784
5785 b = tsfs & TSFS_INTR_MASK;
5786
5787 return ((m * x) / 127) - b;
5788 }
5789
5790 static int _pxvid_to_vd(u8 pxvid)
5791 {
5792 if (pxvid == 0)
5793 return 0;
5794
5795 if (pxvid >= 8 && pxvid < 31)
5796 pxvid = 31;
5797
5798 return (pxvid + 2) * 125;
5799 }
5800
5801 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5802 {
5803 struct drm_device *dev = dev_priv->dev;
5804 const int vd = _pxvid_to_vd(pxvid);
5805 const int vm = vd - 1125;
5806
5807 if (INTEL_INFO(dev)->is_mobile)
5808 return vm > 0 ? vm : 0;
5809
5810 return vd;
5811 }
5812
5813 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5814 {
5815 u64 now, diff, diffms;
5816 u32 count;
5817
5818 assert_spin_locked(&mchdev_lock);
5819
5820 now = ktime_get_raw_ns();
5821 diffms = now - dev_priv->ips.last_time2;
5822 do_div(diffms, NSEC_PER_MSEC);
5823
5824 /* Don't divide by 0 */
5825 if (!diffms)
5826 return;
5827
5828 count = I915_READ(GFXEC);
5829
5830 if (count < dev_priv->ips.last_count2) {
5831 diff = ~0UL - dev_priv->ips.last_count2;
5832 diff += count;
5833 } else {
5834 diff = count - dev_priv->ips.last_count2;
5835 }
5836
5837 dev_priv->ips.last_count2 = count;
5838 dev_priv->ips.last_time2 = now;
5839
5840 /* More magic constants... */
5841 diff = diff * 1181;
5842 diff = div_u64(diff, diffms * 10);
5843 dev_priv->ips.gfx_power = diff;
5844 }
5845
5846 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5847 {
5848 struct drm_device *dev = dev_priv->dev;
5849
5850 if (INTEL_INFO(dev)->gen != 5)
5851 return;
5852
5853 spin_lock_irq(&mchdev_lock);
5854
5855 __i915_update_gfx_val(dev_priv);
5856
5857 spin_unlock_irq(&mchdev_lock);
5858 }
5859
5860 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5861 {
5862 unsigned long t, corr, state1, corr2, state2;
5863 u32 pxvid, ext_v;
5864
5865 assert_spin_locked(&mchdev_lock);
5866
5867 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5868 pxvid = (pxvid >> 24) & 0x7f;
5869 ext_v = pvid_to_extvid(dev_priv, pxvid);
5870
5871 state1 = ext_v;
5872
5873 t = i915_mch_val(dev_priv);
5874
5875 /* Revel in the empirically derived constants */
5876
5877 /* Correction factor in 1/100000 units */
5878 if (t > 80)
5879 corr = ((t * 2349) + 135940);
5880 else if (t >= 50)
5881 corr = ((t * 964) + 29317);
5882 else /* < 50 */
5883 corr = ((t * 301) + 1004);
5884
5885 corr = corr * ((150142 * state1) / 10000 - 78642);
5886 corr /= 100000;
5887 corr2 = (corr * dev_priv->ips.corr);
5888
5889 state2 = (corr2 * state1) / 10000;
5890 state2 /= 100; /* convert to mW */
5891
5892 __i915_update_gfx_val(dev_priv);
5893
5894 return dev_priv->ips.gfx_power + state2;
5895 }
5896
5897 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5898 {
5899 struct drm_device *dev = dev_priv->dev;
5900 unsigned long val;
5901
5902 if (INTEL_INFO(dev)->gen != 5)
5903 return 0;
5904
5905 spin_lock_irq(&mchdev_lock);
5906
5907 val = __i915_gfx_val(dev_priv);
5908
5909 spin_unlock_irq(&mchdev_lock);
5910
5911 return val;
5912 }
5913
5914 /**
5915 * i915_read_mch_val - return value for IPS use
5916 *
5917 * Calculate and return a value for the IPS driver to use when deciding whether
5918 * we have thermal and power headroom to increase CPU or GPU power budget.
5919 */
5920 unsigned long i915_read_mch_val(void)
5921 {
5922 struct drm_i915_private *dev_priv;
5923 unsigned long chipset_val, graphics_val, ret = 0;
5924
5925 spin_lock_irq(&mchdev_lock);
5926 if (!i915_mch_dev)
5927 goto out_unlock;
5928 dev_priv = i915_mch_dev;
5929
5930 chipset_val = __i915_chipset_val(dev_priv);
5931 graphics_val = __i915_gfx_val(dev_priv);
5932
5933 ret = chipset_val + graphics_val;
5934
5935 out_unlock:
5936 spin_unlock_irq(&mchdev_lock);
5937
5938 return ret;
5939 }
5940 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5941
5942 /**
5943 * i915_gpu_raise - raise GPU frequency limit
5944 *
5945 * Raise the limit; IPS indicates we have thermal headroom.
5946 */
5947 bool i915_gpu_raise(void)
5948 {
5949 struct drm_i915_private *dev_priv;
5950 bool ret = true;
5951
5952 spin_lock_irq(&mchdev_lock);
5953 if (!i915_mch_dev) {
5954 ret = false;
5955 goto out_unlock;
5956 }
5957 dev_priv = i915_mch_dev;
5958
5959 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5960 dev_priv->ips.max_delay--;
5961
5962 out_unlock:
5963 spin_unlock_irq(&mchdev_lock);
5964
5965 return ret;
5966 }
5967 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5968
5969 /**
5970 * i915_gpu_lower - lower GPU frequency limit
5971 *
5972 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5973 * frequency maximum.
5974 */
5975 bool i915_gpu_lower(void)
5976 {
5977 struct drm_i915_private *dev_priv;
5978 bool ret = true;
5979
5980 spin_lock_irq(&mchdev_lock);
5981 if (!i915_mch_dev) {
5982 ret = false;
5983 goto out_unlock;
5984 }
5985 dev_priv = i915_mch_dev;
5986
5987 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5988 dev_priv->ips.max_delay++;
5989
5990 out_unlock:
5991 spin_unlock_irq(&mchdev_lock);
5992
5993 return ret;
5994 }
5995 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5996
5997 /**
5998 * i915_gpu_busy - indicate GPU business to IPS
5999 *
6000 * Tell the IPS driver whether or not the GPU is busy.
6001 */
6002 bool i915_gpu_busy(void)
6003 {
6004 struct drm_i915_private *dev_priv;
6005 struct intel_engine_cs *ring;
6006 bool ret = false;
6007 int i;
6008
6009 spin_lock_irq(&mchdev_lock);
6010 if (!i915_mch_dev)
6011 goto out_unlock;
6012 dev_priv = i915_mch_dev;
6013
6014 for_each_ring(ring, dev_priv, i)
6015 ret |= !list_empty(&ring->request_list);
6016
6017 out_unlock:
6018 spin_unlock_irq(&mchdev_lock);
6019
6020 return ret;
6021 }
6022 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6023
6024 /**
6025 * i915_gpu_turbo_disable - disable graphics turbo
6026 *
6027 * Disable graphics turbo by resetting the max frequency and setting the
6028 * current frequency to the default.
6029 */
6030 bool i915_gpu_turbo_disable(void)
6031 {
6032 struct drm_i915_private *dev_priv;
6033 bool ret = true;
6034
6035 spin_lock_irq(&mchdev_lock);
6036 if (!i915_mch_dev) {
6037 ret = false;
6038 goto out_unlock;
6039 }
6040 dev_priv = i915_mch_dev;
6041
6042 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6043
6044 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6045 ret = false;
6046
6047 out_unlock:
6048 spin_unlock_irq(&mchdev_lock);
6049
6050 return ret;
6051 }
6052 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6053
6054 /**
6055 * Tells the intel_ips driver that the i915 driver is now loaded, if
6056 * IPS got loaded first.
6057 *
6058 * This awkward dance is so that neither module has to depend on the
6059 * other in order for IPS to do the appropriate communication of
6060 * GPU turbo limits to i915.
6061 */
6062 static void
6063 ips_ping_for_i915_load(void)
6064 {
6065 void (*link)(void);
6066
6067 link = symbol_get(ips_link_to_i915_driver);
6068 if (link) {
6069 link();
6070 symbol_put(ips_link_to_i915_driver);
6071 }
6072 }
6073
6074 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6075 {
6076 /* We only register the i915 ips part with intel-ips once everything is
6077 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6078 spin_lock_irq(&mchdev_lock);
6079 i915_mch_dev = dev_priv;
6080 spin_unlock_irq(&mchdev_lock);
6081
6082 ips_ping_for_i915_load();
6083 }
6084
6085 void intel_gpu_ips_teardown(void)
6086 {
6087 spin_lock_irq(&mchdev_lock);
6088 i915_mch_dev = NULL;
6089 spin_unlock_irq(&mchdev_lock);
6090 }
6091
6092 static void intel_init_emon(struct drm_device *dev)
6093 {
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6095 u32 lcfuse;
6096 u8 pxw[16];
6097 int i;
6098
6099 /* Disable to program */
6100 I915_WRITE(ECR, 0);
6101 POSTING_READ(ECR);
6102
6103 /* Program energy weights for various events */
6104 I915_WRITE(SDEW, 0x15040d00);
6105 I915_WRITE(CSIEW0, 0x007f0000);
6106 I915_WRITE(CSIEW1, 0x1e220004);
6107 I915_WRITE(CSIEW2, 0x04000004);
6108
6109 for (i = 0; i < 5; i++)
6110 I915_WRITE(PEW + (i * 4), 0);
6111 for (i = 0; i < 3; i++)
6112 I915_WRITE(DEW + (i * 4), 0);
6113
6114 /* Program P-state weights to account for frequency power adjustment */
6115 for (i = 0; i < 16; i++) {
6116 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6117 unsigned long freq = intel_pxfreq(pxvidfreq);
6118 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6119 PXVFREQ_PX_SHIFT;
6120 unsigned long val;
6121
6122 val = vid * vid;
6123 val *= (freq / 1000);
6124 val *= 255;
6125 val /= (127*127*900);
6126 if (val > 0xff)
6127 DRM_ERROR("bad pxval: %ld\n", val);
6128 pxw[i] = val;
6129 }
6130 /* Render standby states get 0 weight */
6131 pxw[14] = 0;
6132 pxw[15] = 0;
6133
6134 for (i = 0; i < 4; i++) {
6135 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6136 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6137 I915_WRITE(PXW + (i * 4), val);
6138 }
6139
6140 /* Adjust magic regs to magic values (more experimental results) */
6141 I915_WRITE(OGW0, 0);
6142 I915_WRITE(OGW1, 0);
6143 I915_WRITE(EG0, 0x00007f00);
6144 I915_WRITE(EG1, 0x0000000e);
6145 I915_WRITE(EG2, 0x000e0000);
6146 I915_WRITE(EG3, 0x68000300);
6147 I915_WRITE(EG4, 0x42000000);
6148 I915_WRITE(EG5, 0x00140031);
6149 I915_WRITE(EG6, 0);
6150 I915_WRITE(EG7, 0);
6151
6152 for (i = 0; i < 8; i++)
6153 I915_WRITE(PXWL + (i * 4), 0);
6154
6155 /* Enable PMON + select events */
6156 I915_WRITE(ECR, 0x80000019);
6157
6158 lcfuse = I915_READ(LCFUSE02);
6159
6160 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6161 }
6162
6163 void intel_init_gt_powersave(struct drm_device *dev)
6164 {
6165 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6166
6167 if (IS_CHERRYVIEW(dev))
6168 cherryview_init_gt_powersave(dev);
6169 else if (IS_VALLEYVIEW(dev))
6170 valleyview_init_gt_powersave(dev);
6171 }
6172
6173 void intel_cleanup_gt_powersave(struct drm_device *dev)
6174 {
6175 if (IS_CHERRYVIEW(dev))
6176 return;
6177 else if (IS_VALLEYVIEW(dev))
6178 valleyview_cleanup_gt_powersave(dev);
6179 }
6180
6181 static void gen6_suspend_rps(struct drm_device *dev)
6182 {
6183 struct drm_i915_private *dev_priv = dev->dev_private;
6184
6185 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6186
6187 gen6_disable_rps_interrupts(dev);
6188 }
6189
6190 /**
6191 * intel_suspend_gt_powersave - suspend PM work and helper threads
6192 * @dev: drm device
6193 *
6194 * We don't want to disable RC6 or other features here, we just want
6195 * to make sure any work we've queued has finished and won't bother
6196 * us while we're suspended.
6197 */
6198 void intel_suspend_gt_powersave(struct drm_device *dev)
6199 {
6200 struct drm_i915_private *dev_priv = dev->dev_private;
6201
6202 if (INTEL_INFO(dev)->gen < 6)
6203 return;
6204
6205 gen6_suspend_rps(dev);
6206
6207 /* Force GPU to min freq during suspend */
6208 gen6_rps_idle(dev_priv);
6209 }
6210
6211 void intel_disable_gt_powersave(struct drm_device *dev)
6212 {
6213 struct drm_i915_private *dev_priv = dev->dev_private;
6214
6215 if (IS_IRONLAKE_M(dev)) {
6216 ironlake_disable_drps(dev);
6217 } else if (INTEL_INFO(dev)->gen >= 6) {
6218 intel_suspend_gt_powersave(dev);
6219
6220 mutex_lock(&dev_priv->rps.hw_lock);
6221 if (INTEL_INFO(dev)->gen >= 9)
6222 gen9_disable_rps(dev);
6223 else if (IS_CHERRYVIEW(dev))
6224 cherryview_disable_rps(dev);
6225 else if (IS_VALLEYVIEW(dev))
6226 valleyview_disable_rps(dev);
6227 else
6228 gen6_disable_rps(dev);
6229
6230 dev_priv->rps.enabled = false;
6231 mutex_unlock(&dev_priv->rps.hw_lock);
6232 }
6233 }
6234
6235 static void intel_gen6_powersave_work(struct work_struct *work)
6236 {
6237 struct drm_i915_private *dev_priv =
6238 container_of(work, struct drm_i915_private,
6239 rps.delayed_resume_work.work);
6240 struct drm_device *dev = dev_priv->dev;
6241
6242 mutex_lock(&dev_priv->rps.hw_lock);
6243
6244 gen6_reset_rps_interrupts(dev);
6245
6246 if (IS_CHERRYVIEW(dev)) {
6247 cherryview_enable_rps(dev);
6248 } else if (IS_VALLEYVIEW(dev)) {
6249 valleyview_enable_rps(dev);
6250 } else if (INTEL_INFO(dev)->gen >= 9) {
6251 gen9_enable_rc6(dev);
6252 gen9_enable_rps(dev);
6253 if (IS_SKYLAKE(dev))
6254 __gen6_update_ring_freq(dev);
6255 } else if (IS_BROADWELL(dev)) {
6256 gen8_enable_rps(dev);
6257 __gen6_update_ring_freq(dev);
6258 } else {
6259 gen6_enable_rps(dev);
6260 __gen6_update_ring_freq(dev);
6261 }
6262
6263 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6264 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6265
6266 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6267 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6268
6269 dev_priv->rps.enabled = true;
6270
6271 gen6_enable_rps_interrupts(dev);
6272
6273 mutex_unlock(&dev_priv->rps.hw_lock);
6274
6275 intel_runtime_pm_put(dev_priv);
6276 }
6277
6278 void intel_enable_gt_powersave(struct drm_device *dev)
6279 {
6280 struct drm_i915_private *dev_priv = dev->dev_private;
6281
6282 /* Powersaving is controlled by the host when inside a VM */
6283 if (intel_vgpu_active(dev))
6284 return;
6285
6286 if (IS_IRONLAKE_M(dev)) {
6287 mutex_lock(&dev->struct_mutex);
6288 ironlake_enable_drps(dev);
6289 intel_init_emon(dev);
6290 mutex_unlock(&dev->struct_mutex);
6291 } else if (INTEL_INFO(dev)->gen >= 6) {
6292 /*
6293 * PCU communication is slow and this doesn't need to be
6294 * done at any specific time, so do this out of our fast path
6295 * to make resume and init faster.
6296 *
6297 * We depend on the HW RC6 power context save/restore
6298 * mechanism when entering D3 through runtime PM suspend. So
6299 * disable RPM until RPS/RC6 is properly setup. We can only
6300 * get here via the driver load/system resume/runtime resume
6301 * paths, so the _noresume version is enough (and in case of
6302 * runtime resume it's necessary).
6303 */
6304 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6305 round_jiffies_up_relative(HZ)))
6306 intel_runtime_pm_get_noresume(dev_priv);
6307 }
6308 }
6309
6310 void intel_reset_gt_powersave(struct drm_device *dev)
6311 {
6312 struct drm_i915_private *dev_priv = dev->dev_private;
6313
6314 if (INTEL_INFO(dev)->gen < 6)
6315 return;
6316
6317 gen6_suspend_rps(dev);
6318 dev_priv->rps.enabled = false;
6319 }
6320
6321 static void ibx_init_clock_gating(struct drm_device *dev)
6322 {
6323 struct drm_i915_private *dev_priv = dev->dev_private;
6324
6325 /*
6326 * On Ibex Peak and Cougar Point, we need to disable clock
6327 * gating for the panel power sequencer or it will fail to
6328 * start up when no ports are active.
6329 */
6330 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6331 }
6332
6333 static void g4x_disable_trickle_feed(struct drm_device *dev)
6334 {
6335 struct drm_i915_private *dev_priv = dev->dev_private;
6336 enum pipe pipe;
6337
6338 for_each_pipe(dev_priv, pipe) {
6339 I915_WRITE(DSPCNTR(pipe),
6340 I915_READ(DSPCNTR(pipe)) |
6341 DISPPLANE_TRICKLE_FEED_DISABLE);
6342
6343 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6344 POSTING_READ(DSPSURF(pipe));
6345 }
6346 }
6347
6348 static void ilk_init_lp_watermarks(struct drm_device *dev)
6349 {
6350 struct drm_i915_private *dev_priv = dev->dev_private;
6351
6352 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6353 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6354 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6355
6356 /*
6357 * Don't touch WM1S_LP_EN here.
6358 * Doing so could cause underruns.
6359 */
6360 }
6361
6362 static void ironlake_init_clock_gating(struct drm_device *dev)
6363 {
6364 struct drm_i915_private *dev_priv = dev->dev_private;
6365 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6366
6367 /*
6368 * Required for FBC
6369 * WaFbcDisableDpfcClockGating:ilk
6370 */
6371 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6372 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6373 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6374
6375 I915_WRITE(PCH_3DCGDIS0,
6376 MARIUNIT_CLOCK_GATE_DISABLE |
6377 SVSMUNIT_CLOCK_GATE_DISABLE);
6378 I915_WRITE(PCH_3DCGDIS1,
6379 VFMUNIT_CLOCK_GATE_DISABLE);
6380
6381 /*
6382 * According to the spec the following bits should be set in
6383 * order to enable memory self-refresh
6384 * The bit 22/21 of 0x42004
6385 * The bit 5 of 0x42020
6386 * The bit 15 of 0x45000
6387 */
6388 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6389 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6390 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6391 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6392 I915_WRITE(DISP_ARB_CTL,
6393 (I915_READ(DISP_ARB_CTL) |
6394 DISP_FBC_WM_DIS));
6395
6396 ilk_init_lp_watermarks(dev);
6397
6398 /*
6399 * Based on the document from hardware guys the following bits
6400 * should be set unconditionally in order to enable FBC.
6401 * The bit 22 of 0x42000
6402 * The bit 22 of 0x42004
6403 * The bit 7,8,9 of 0x42020.
6404 */
6405 if (IS_IRONLAKE_M(dev)) {
6406 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6407 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6408 I915_READ(ILK_DISPLAY_CHICKEN1) |
6409 ILK_FBCQ_DIS);
6410 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6411 I915_READ(ILK_DISPLAY_CHICKEN2) |
6412 ILK_DPARB_GATE);
6413 }
6414
6415 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6416
6417 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6418 I915_READ(ILK_DISPLAY_CHICKEN2) |
6419 ILK_ELPIN_409_SELECT);
6420 I915_WRITE(_3D_CHICKEN2,
6421 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6422 _3D_CHICKEN2_WM_READ_PIPELINED);
6423
6424 /* WaDisableRenderCachePipelinedFlush:ilk */
6425 I915_WRITE(CACHE_MODE_0,
6426 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6427
6428 /* WaDisable_RenderCache_OperationalFlush:ilk */
6429 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6430
6431 g4x_disable_trickle_feed(dev);
6432
6433 ibx_init_clock_gating(dev);
6434 }
6435
6436 static void cpt_init_clock_gating(struct drm_device *dev)
6437 {
6438 struct drm_i915_private *dev_priv = dev->dev_private;
6439 int pipe;
6440 uint32_t val;
6441
6442 /*
6443 * On Ibex Peak and Cougar Point, we need to disable clock
6444 * gating for the panel power sequencer or it will fail to
6445 * start up when no ports are active.
6446 */
6447 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6448 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6449 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6450 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6451 DPLS_EDP_PPS_FIX_DIS);
6452 /* The below fixes the weird display corruption, a few pixels shifted
6453 * downward, on (only) LVDS of some HP laptops with IVY.
6454 */
6455 for_each_pipe(dev_priv, pipe) {
6456 val = I915_READ(TRANS_CHICKEN2(pipe));
6457 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6458 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6459 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6460 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6461 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6462 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6463 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6464 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6465 }
6466 /* WADP0ClockGatingDisable */
6467 for_each_pipe(dev_priv, pipe) {
6468 I915_WRITE(TRANS_CHICKEN1(pipe),
6469 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6470 }
6471 }
6472
6473 static void gen6_check_mch_setup(struct drm_device *dev)
6474 {
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 uint32_t tmp;
6477
6478 tmp = I915_READ(MCH_SSKPD);
6479 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6480 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6481 tmp);
6482 }
6483
6484 static void gen6_init_clock_gating(struct drm_device *dev)
6485 {
6486 struct drm_i915_private *dev_priv = dev->dev_private;
6487 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6488
6489 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6490
6491 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6492 I915_READ(ILK_DISPLAY_CHICKEN2) |
6493 ILK_ELPIN_409_SELECT);
6494
6495 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6496 I915_WRITE(_3D_CHICKEN,
6497 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6498
6499 /* WaDisable_RenderCache_OperationalFlush:snb */
6500 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6501
6502 /*
6503 * BSpec recoomends 8x4 when MSAA is used,
6504 * however in practice 16x4 seems fastest.
6505 *
6506 * Note that PS/WM thread counts depend on the WIZ hashing
6507 * disable bit, which we don't touch here, but it's good
6508 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6509 */
6510 I915_WRITE(GEN6_GT_MODE,
6511 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6512
6513 ilk_init_lp_watermarks(dev);
6514
6515 I915_WRITE(CACHE_MODE_0,
6516 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6517
6518 I915_WRITE(GEN6_UCGCTL1,
6519 I915_READ(GEN6_UCGCTL1) |
6520 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6521 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6522
6523 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6524 * gating disable must be set. Failure to set it results in
6525 * flickering pixels due to Z write ordering failures after
6526 * some amount of runtime in the Mesa "fire" demo, and Unigine
6527 * Sanctuary and Tropics, and apparently anything else with
6528 * alpha test or pixel discard.
6529 *
6530 * According to the spec, bit 11 (RCCUNIT) must also be set,
6531 * but we didn't debug actual testcases to find it out.
6532 *
6533 * WaDisableRCCUnitClockGating:snb
6534 * WaDisableRCPBUnitClockGating:snb
6535 */
6536 I915_WRITE(GEN6_UCGCTL2,
6537 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6538 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6539
6540 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6541 I915_WRITE(_3D_CHICKEN3,
6542 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6543
6544 /*
6545 * Bspec says:
6546 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6547 * 3DSTATE_SF number of SF output attributes is more than 16."
6548 */
6549 I915_WRITE(_3D_CHICKEN3,
6550 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6551
6552 /*
6553 * According to the spec the following bits should be
6554 * set in order to enable memory self-refresh and fbc:
6555 * The bit21 and bit22 of 0x42000
6556 * The bit21 and bit22 of 0x42004
6557 * The bit5 and bit7 of 0x42020
6558 * The bit14 of 0x70180
6559 * The bit14 of 0x71180
6560 *
6561 * WaFbcAsynchFlipDisableFbcQueue:snb
6562 */
6563 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6564 I915_READ(ILK_DISPLAY_CHICKEN1) |
6565 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6566 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6567 I915_READ(ILK_DISPLAY_CHICKEN2) |
6568 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6569 I915_WRITE(ILK_DSPCLK_GATE_D,
6570 I915_READ(ILK_DSPCLK_GATE_D) |
6571 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6572 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6573
6574 g4x_disable_trickle_feed(dev);
6575
6576 cpt_init_clock_gating(dev);
6577
6578 gen6_check_mch_setup(dev);
6579 }
6580
6581 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6582 {
6583 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6584
6585 /*
6586 * WaVSThreadDispatchOverride:ivb,vlv
6587 *
6588 * This actually overrides the dispatch
6589 * mode for all thread types.
6590 */
6591 reg &= ~GEN7_FF_SCHED_MASK;
6592 reg |= GEN7_FF_TS_SCHED_HW;
6593 reg |= GEN7_FF_VS_SCHED_HW;
6594 reg |= GEN7_FF_DS_SCHED_HW;
6595
6596 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6597 }
6598
6599 static void lpt_init_clock_gating(struct drm_device *dev)
6600 {
6601 struct drm_i915_private *dev_priv = dev->dev_private;
6602
6603 /*
6604 * TODO: this bit should only be enabled when really needed, then
6605 * disabled when not needed anymore in order to save power.
6606 */
6607 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6608 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6609 I915_READ(SOUTH_DSPCLK_GATE_D) |
6610 PCH_LP_PARTITION_LEVEL_DISABLE);
6611
6612 /* WADPOClockGatingDisable:hsw */
6613 I915_WRITE(_TRANSA_CHICKEN1,
6614 I915_READ(_TRANSA_CHICKEN1) |
6615 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6616 }
6617
6618 static void lpt_suspend_hw(struct drm_device *dev)
6619 {
6620 struct drm_i915_private *dev_priv = dev->dev_private;
6621
6622 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6623 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6624
6625 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6626 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6627 }
6628 }
6629
6630 static void broadwell_init_clock_gating(struct drm_device *dev)
6631 {
6632 struct drm_i915_private *dev_priv = dev->dev_private;
6633 enum pipe pipe;
6634 uint32_t misccpctl;
6635
6636 ilk_init_lp_watermarks(dev);
6637
6638 /* WaSwitchSolVfFArbitrationPriority:bdw */
6639 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6640
6641 /* WaPsrDPAMaskVBlankInSRD:bdw */
6642 I915_WRITE(CHICKEN_PAR1_1,
6643 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6644
6645 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6646 for_each_pipe(dev_priv, pipe) {
6647 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6648 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6649 BDW_DPRS_MASK_VBLANK_SRD);
6650 }
6651
6652 /* WaVSRefCountFullforceMissDisable:bdw */
6653 /* WaDSRefCountFullforceMissDisable:bdw */
6654 I915_WRITE(GEN7_FF_THREAD_MODE,
6655 I915_READ(GEN7_FF_THREAD_MODE) &
6656 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6657
6658 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6659 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6660
6661 /* WaDisableSDEUnitClockGating:bdw */
6662 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6663 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6664
6665 /*
6666 * WaProgramL3SqcReg1Default:bdw
6667 * WaTempDisableDOPClkGating:bdw
6668 */
6669 misccpctl = I915_READ(GEN7_MISCCPCTL);
6670 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6671 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6672 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6673
6674 /*
6675 * WaGttCachingOffByDefault:bdw
6676 * GTT cache may not work with big pages, so if those
6677 * are ever enabled GTT cache may need to be disabled.
6678 */
6679 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6680
6681 lpt_init_clock_gating(dev);
6682 }
6683
6684 static void haswell_init_clock_gating(struct drm_device *dev)
6685 {
6686 struct drm_i915_private *dev_priv = dev->dev_private;
6687
6688 ilk_init_lp_watermarks(dev);
6689
6690 /* L3 caching of data atomics doesn't work -- disable it. */
6691 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6692 I915_WRITE(HSW_ROW_CHICKEN3,
6693 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6694
6695 /* This is required by WaCatErrorRejectionIssue:hsw */
6696 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6697 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6698 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6699
6700 /* WaVSRefCountFullforceMissDisable:hsw */
6701 I915_WRITE(GEN7_FF_THREAD_MODE,
6702 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6703
6704 /* WaDisable_RenderCache_OperationalFlush:hsw */
6705 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6706
6707 /* enable HiZ Raw Stall Optimization */
6708 I915_WRITE(CACHE_MODE_0_GEN7,
6709 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6710
6711 /* WaDisable4x2SubspanOptimization:hsw */
6712 I915_WRITE(CACHE_MODE_1,
6713 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6714
6715 /*
6716 * BSpec recommends 8x4 when MSAA is used,
6717 * however in practice 16x4 seems fastest.
6718 *
6719 * Note that PS/WM thread counts depend on the WIZ hashing
6720 * disable bit, which we don't touch here, but it's good
6721 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6722 */
6723 I915_WRITE(GEN7_GT_MODE,
6724 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6725
6726 /* WaSampleCChickenBitEnable:hsw */
6727 I915_WRITE(HALF_SLICE_CHICKEN3,
6728 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6729
6730 /* WaSwitchSolVfFArbitrationPriority:hsw */
6731 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6732
6733 /* WaRsPkgCStateDisplayPMReq:hsw */
6734 I915_WRITE(CHICKEN_PAR1_1,
6735 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6736
6737 lpt_init_clock_gating(dev);
6738 }
6739
6740 static void ivybridge_init_clock_gating(struct drm_device *dev)
6741 {
6742 struct drm_i915_private *dev_priv = dev->dev_private;
6743 uint32_t snpcr;
6744
6745 ilk_init_lp_watermarks(dev);
6746
6747 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6748
6749 /* WaDisableEarlyCull:ivb */
6750 I915_WRITE(_3D_CHICKEN3,
6751 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6752
6753 /* WaDisableBackToBackFlipFix:ivb */
6754 I915_WRITE(IVB_CHICKEN3,
6755 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6756 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6757
6758 /* WaDisablePSDDualDispatchEnable:ivb */
6759 if (IS_IVB_GT1(dev))
6760 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6761 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6762
6763 /* WaDisable_RenderCache_OperationalFlush:ivb */
6764 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6765
6766 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6767 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6768 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6769
6770 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6771 I915_WRITE(GEN7_L3CNTLREG1,
6772 GEN7_WA_FOR_GEN7_L3_CONTROL);
6773 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6774 GEN7_WA_L3_CHICKEN_MODE);
6775 if (IS_IVB_GT1(dev))
6776 I915_WRITE(GEN7_ROW_CHICKEN2,
6777 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6778 else {
6779 /* must write both registers */
6780 I915_WRITE(GEN7_ROW_CHICKEN2,
6781 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6782 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6783 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6784 }
6785
6786 /* WaForceL3Serialization:ivb */
6787 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6788 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6789
6790 /*
6791 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6792 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6793 */
6794 I915_WRITE(GEN6_UCGCTL2,
6795 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6796
6797 /* This is required by WaCatErrorRejectionIssue:ivb */
6798 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6799 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6800 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6801
6802 g4x_disable_trickle_feed(dev);
6803
6804 gen7_setup_fixed_func_scheduler(dev_priv);
6805
6806 if (0) { /* causes HiZ corruption on ivb:gt1 */
6807 /* enable HiZ Raw Stall Optimization */
6808 I915_WRITE(CACHE_MODE_0_GEN7,
6809 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6810 }
6811
6812 /* WaDisable4x2SubspanOptimization:ivb */
6813 I915_WRITE(CACHE_MODE_1,
6814 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6815
6816 /*
6817 * BSpec recommends 8x4 when MSAA is used,
6818 * however in practice 16x4 seems fastest.
6819 *
6820 * Note that PS/WM thread counts depend on the WIZ hashing
6821 * disable bit, which we don't touch here, but it's good
6822 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6823 */
6824 I915_WRITE(GEN7_GT_MODE,
6825 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6826
6827 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6828 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6829 snpcr |= GEN6_MBC_SNPCR_MED;
6830 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6831
6832 if (!HAS_PCH_NOP(dev))
6833 cpt_init_clock_gating(dev);
6834
6835 gen6_check_mch_setup(dev);
6836 }
6837
6838 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6839 {
6840 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6841
6842 /*
6843 * Disable trickle feed and enable pnd deadline calculation
6844 */
6845 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6846 I915_WRITE(CBR1_VLV, 0);
6847 }
6848
6849 static void valleyview_init_clock_gating(struct drm_device *dev)
6850 {
6851 struct drm_i915_private *dev_priv = dev->dev_private;
6852
6853 vlv_init_display_clock_gating(dev_priv);
6854
6855 /* WaDisableEarlyCull:vlv */
6856 I915_WRITE(_3D_CHICKEN3,
6857 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6858
6859 /* WaDisableBackToBackFlipFix:vlv */
6860 I915_WRITE(IVB_CHICKEN3,
6861 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6862 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6863
6864 /* WaPsdDispatchEnable:vlv */
6865 /* WaDisablePSDDualDispatchEnable:vlv */
6866 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6867 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6868 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6869
6870 /* WaDisable_RenderCache_OperationalFlush:vlv */
6871 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6872
6873 /* WaForceL3Serialization:vlv */
6874 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6875 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6876
6877 /* WaDisableDopClockGating:vlv */
6878 I915_WRITE(GEN7_ROW_CHICKEN2,
6879 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6880
6881 /* This is required by WaCatErrorRejectionIssue:vlv */
6882 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6883 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6884 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6885
6886 gen7_setup_fixed_func_scheduler(dev_priv);
6887
6888 /*
6889 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6890 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6891 */
6892 I915_WRITE(GEN6_UCGCTL2,
6893 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6894
6895 /* WaDisableL3Bank2xClockGate:vlv
6896 * Disabling L3 clock gating- MMIO 940c[25] = 1
6897 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6898 I915_WRITE(GEN7_UCGCTL4,
6899 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6900
6901 /*
6902 * BSpec says this must be set, even though
6903 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6904 */
6905 I915_WRITE(CACHE_MODE_1,
6906 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6907
6908 /*
6909 * BSpec recommends 8x4 when MSAA is used,
6910 * however in practice 16x4 seems fastest.
6911 *
6912 * Note that PS/WM thread counts depend on the WIZ hashing
6913 * disable bit, which we don't touch here, but it's good
6914 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6915 */
6916 I915_WRITE(GEN7_GT_MODE,
6917 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6918
6919 /*
6920 * WaIncreaseL3CreditsForVLVB0:vlv
6921 * This is the hardware default actually.
6922 */
6923 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6924
6925 /*
6926 * WaDisableVLVClockGating_VBIIssue:vlv
6927 * Disable clock gating on th GCFG unit to prevent a delay
6928 * in the reporting of vblank events.
6929 */
6930 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6931 }
6932
6933 static void cherryview_init_clock_gating(struct drm_device *dev)
6934 {
6935 struct drm_i915_private *dev_priv = dev->dev_private;
6936
6937 vlv_init_display_clock_gating(dev_priv);
6938
6939 /* WaVSRefCountFullforceMissDisable:chv */
6940 /* WaDSRefCountFullforceMissDisable:chv */
6941 I915_WRITE(GEN7_FF_THREAD_MODE,
6942 I915_READ(GEN7_FF_THREAD_MODE) &
6943 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6944
6945 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6946 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6947 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6948
6949 /* WaDisableCSUnitClockGating:chv */
6950 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6951 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6952
6953 /* WaDisableSDEUnitClockGating:chv */
6954 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6955 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6956
6957 /*
6958 * GTT cache may not work with big pages, so if those
6959 * are ever enabled GTT cache may need to be disabled.
6960 */
6961 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6962 }
6963
6964 static void g4x_init_clock_gating(struct drm_device *dev)
6965 {
6966 struct drm_i915_private *dev_priv = dev->dev_private;
6967 uint32_t dspclk_gate;
6968
6969 I915_WRITE(RENCLK_GATE_D1, 0);
6970 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6971 GS_UNIT_CLOCK_GATE_DISABLE |
6972 CL_UNIT_CLOCK_GATE_DISABLE);
6973 I915_WRITE(RAMCLK_GATE_D, 0);
6974 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6975 OVRUNIT_CLOCK_GATE_DISABLE |
6976 OVCUNIT_CLOCK_GATE_DISABLE;
6977 if (IS_GM45(dev))
6978 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6979 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6980
6981 /* WaDisableRenderCachePipelinedFlush */
6982 I915_WRITE(CACHE_MODE_0,
6983 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6984
6985 /* WaDisable_RenderCache_OperationalFlush:g4x */
6986 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6987
6988 g4x_disable_trickle_feed(dev);
6989 }
6990
6991 static void crestline_init_clock_gating(struct drm_device *dev)
6992 {
6993 struct drm_i915_private *dev_priv = dev->dev_private;
6994
6995 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6996 I915_WRITE(RENCLK_GATE_D2, 0);
6997 I915_WRITE(DSPCLK_GATE_D, 0);
6998 I915_WRITE(RAMCLK_GATE_D, 0);
6999 I915_WRITE16(DEUC, 0);
7000 I915_WRITE(MI_ARB_STATE,
7001 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7004 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005 }
7006
7007 static void broadwater_init_clock_gating(struct drm_device *dev)
7008 {
7009 struct drm_i915_private *dev_priv = dev->dev_private;
7010
7011 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7012 I965_RCC_CLOCK_GATE_DISABLE |
7013 I965_RCPB_CLOCK_GATE_DISABLE |
7014 I965_ISC_CLOCK_GATE_DISABLE |
7015 I965_FBC_CLOCK_GATE_DISABLE);
7016 I915_WRITE(RENCLK_GATE_D2, 0);
7017 I915_WRITE(MI_ARB_STATE,
7018 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7019
7020 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7021 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7022 }
7023
7024 static void gen3_init_clock_gating(struct drm_device *dev)
7025 {
7026 struct drm_i915_private *dev_priv = dev->dev_private;
7027 u32 dstate = I915_READ(D_STATE);
7028
7029 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7030 DSTATE_DOT_CLOCK_GATING;
7031 I915_WRITE(D_STATE, dstate);
7032
7033 if (IS_PINEVIEW(dev))
7034 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7035
7036 /* IIR "flip pending" means done if this bit is set */
7037 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7038
7039 /* interrupts should cause a wake up from C3 */
7040 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7041
7042 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7043 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7044
7045 I915_WRITE(MI_ARB_STATE,
7046 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7047 }
7048
7049 static void i85x_init_clock_gating(struct drm_device *dev)
7050 {
7051 struct drm_i915_private *dev_priv = dev->dev_private;
7052
7053 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7054
7055 /* interrupts should cause a wake up from C3 */
7056 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7057 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7058
7059 I915_WRITE(MEM_MODE,
7060 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7061 }
7062
7063 static void i830_init_clock_gating(struct drm_device *dev)
7064 {
7065 struct drm_i915_private *dev_priv = dev->dev_private;
7066
7067 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7068
7069 I915_WRITE(MEM_MODE,
7070 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7071 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7072 }
7073
7074 void intel_init_clock_gating(struct drm_device *dev)
7075 {
7076 struct drm_i915_private *dev_priv = dev->dev_private;
7077
7078 if (dev_priv->display.init_clock_gating)
7079 dev_priv->display.init_clock_gating(dev);
7080 }
7081
7082 void intel_suspend_hw(struct drm_device *dev)
7083 {
7084 if (HAS_PCH_LPT(dev))
7085 lpt_suspend_hw(dev);
7086 }
7087
7088 /* Set up chip specific power management-related functions */
7089 void intel_init_pm(struct drm_device *dev)
7090 {
7091 struct drm_i915_private *dev_priv = dev->dev_private;
7092
7093 intel_fbc_init(dev_priv);
7094
7095 /* For cxsr */
7096 if (IS_PINEVIEW(dev))
7097 i915_pineview_get_mem_freq(dev);
7098 else if (IS_GEN5(dev))
7099 i915_ironlake_get_mem_freq(dev);
7100
7101 /* For FIFO watermark updates */
7102 if (INTEL_INFO(dev)->gen >= 9) {
7103 skl_setup_wm_latency(dev);
7104
7105 if (IS_BROXTON(dev))
7106 dev_priv->display.init_clock_gating =
7107 bxt_init_clock_gating;
7108 else if (IS_SKYLAKE(dev))
7109 dev_priv->display.init_clock_gating =
7110 skl_init_clock_gating;
7111 dev_priv->display.update_wm = skl_update_wm;
7112 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7113 } else if (HAS_PCH_SPLIT(dev)) {
7114 ilk_setup_wm_latency(dev);
7115
7116 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7117 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7118 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7119 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7120 dev_priv->display.update_wm = ilk_update_wm;
7121 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7122 } else {
7123 DRM_DEBUG_KMS("Failed to read display plane latency. "
7124 "Disable CxSR\n");
7125 }
7126
7127 if (IS_GEN5(dev))
7128 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7129 else if (IS_GEN6(dev))
7130 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7131 else if (IS_IVYBRIDGE(dev))
7132 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7133 else if (IS_HASWELL(dev))
7134 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7135 else if (INTEL_INFO(dev)->gen == 8)
7136 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7137 } else if (IS_CHERRYVIEW(dev)) {
7138 vlv_setup_wm_latency(dev);
7139
7140 dev_priv->display.update_wm = vlv_update_wm;
7141 dev_priv->display.init_clock_gating =
7142 cherryview_init_clock_gating;
7143 } else if (IS_VALLEYVIEW(dev)) {
7144 vlv_setup_wm_latency(dev);
7145
7146 dev_priv->display.update_wm = vlv_update_wm;
7147 dev_priv->display.init_clock_gating =
7148 valleyview_init_clock_gating;
7149 } else if (IS_PINEVIEW(dev)) {
7150 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7151 dev_priv->is_ddr3,
7152 dev_priv->fsb_freq,
7153 dev_priv->mem_freq)) {
7154 DRM_INFO("failed to find known CxSR latency "
7155 "(found ddr%s fsb freq %d, mem freq %d), "
7156 "disabling CxSR\n",
7157 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7158 dev_priv->fsb_freq, dev_priv->mem_freq);
7159 /* Disable CxSR and never update its watermark again */
7160 intel_set_memory_cxsr(dev_priv, false);
7161 dev_priv->display.update_wm = NULL;
7162 } else
7163 dev_priv->display.update_wm = pineview_update_wm;
7164 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7165 } else if (IS_G4X(dev)) {
7166 dev_priv->display.update_wm = g4x_update_wm;
7167 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7168 } else if (IS_GEN4(dev)) {
7169 dev_priv->display.update_wm = i965_update_wm;
7170 if (IS_CRESTLINE(dev))
7171 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7172 else if (IS_BROADWATER(dev))
7173 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7174 } else if (IS_GEN3(dev)) {
7175 dev_priv->display.update_wm = i9xx_update_wm;
7176 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7177 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7178 } else if (IS_GEN2(dev)) {
7179 if (INTEL_INFO(dev)->num_pipes == 1) {
7180 dev_priv->display.update_wm = i845_update_wm;
7181 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7182 } else {
7183 dev_priv->display.update_wm = i9xx_update_wm;
7184 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7185 }
7186
7187 if (IS_I85X(dev) || IS_I865G(dev))
7188 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7189 else
7190 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7191 } else {
7192 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7193 }
7194 }
7195
7196 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7197 {
7198 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7199
7200 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7201 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7202 return -EAGAIN;
7203 }
7204
7205 I915_WRITE(GEN6_PCODE_DATA, *val);
7206 I915_WRITE(GEN6_PCODE_DATA1, 0);
7207 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7208
7209 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7210 500)) {
7211 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7212 return -ETIMEDOUT;
7213 }
7214
7215 *val = I915_READ(GEN6_PCODE_DATA);
7216 I915_WRITE(GEN6_PCODE_DATA, 0);
7217
7218 return 0;
7219 }
7220
7221 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7222 {
7223 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7224
7225 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7226 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7227 return -EAGAIN;
7228 }
7229
7230 I915_WRITE(GEN6_PCODE_DATA, val);
7231 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7232
7233 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7234 500)) {
7235 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7236 return -ETIMEDOUT;
7237 }
7238
7239 I915_WRITE(GEN6_PCODE_DATA, 0);
7240
7241 return 0;
7242 }
7243
7244 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7245 {
7246 switch (czclk_freq) {
7247 case 200:
7248 return 10;
7249 case 267:
7250 return 12;
7251 case 320:
7252 case 333:
7253 return 16;
7254 case 400:
7255 return 20;
7256 default:
7257 return -1;
7258 }
7259 }
7260
7261 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7262 {
7263 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7264
7265 div = vlv_gpu_freq_div(czclk_freq);
7266 if (div < 0)
7267 return div;
7268
7269 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7270 }
7271
7272 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7273 {
7274 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7275
7276 mul = vlv_gpu_freq_div(czclk_freq);
7277 if (mul < 0)
7278 return mul;
7279
7280 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7281 }
7282
7283 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7284 {
7285 int div, czclk_freq = dev_priv->rps.cz_freq;
7286
7287 div = vlv_gpu_freq_div(czclk_freq) / 2;
7288 if (div < 0)
7289 return div;
7290
7291 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7292 }
7293
7294 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7295 {
7296 int mul, czclk_freq = dev_priv->rps.cz_freq;
7297
7298 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7299 if (mul < 0)
7300 return mul;
7301
7302 /* CHV needs even values */
7303 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7304 }
7305
7306 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7307 {
7308 if (IS_GEN9(dev_priv->dev))
7309 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7310 else if (IS_CHERRYVIEW(dev_priv->dev))
7311 return chv_gpu_freq(dev_priv, val);
7312 else if (IS_VALLEYVIEW(dev_priv->dev))
7313 return byt_gpu_freq(dev_priv, val);
7314 else
7315 return val * GT_FREQUENCY_MULTIPLIER;
7316 }
7317
7318 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7319 {
7320 if (IS_GEN9(dev_priv->dev))
7321 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7322 else if (IS_CHERRYVIEW(dev_priv->dev))
7323 return chv_freq_opcode(dev_priv, val);
7324 else if (IS_VALLEYVIEW(dev_priv->dev))
7325 return byt_freq_opcode(dev_priv, val);
7326 else
7327 return val / GT_FREQUENCY_MULTIPLIER;
7328 }
7329
7330 struct request_boost {
7331 struct work_struct work;
7332 struct drm_i915_gem_request *req;
7333 };
7334
7335 static void __intel_rps_boost_work(struct work_struct *work)
7336 {
7337 struct request_boost *boost = container_of(work, struct request_boost, work);
7338 struct drm_i915_gem_request *req = boost->req;
7339
7340 if (!i915_gem_request_completed(req, true))
7341 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7342 req->emitted_jiffies);
7343
7344 i915_gem_request_unreference__unlocked(req);
7345 kfree(boost);
7346 }
7347
7348 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7349 struct drm_i915_gem_request *req)
7350 {
7351 struct request_boost *boost;
7352
7353 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7354 return;
7355
7356 if (i915_gem_request_completed(req, true))
7357 return;
7358
7359 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7360 if (boost == NULL)
7361 return;
7362
7363 i915_gem_request_reference(req);
7364 boost->req = req;
7365
7366 INIT_WORK(&boost->work, __intel_rps_boost_work);
7367 queue_work(to_i915(dev)->wq, &boost->work);
7368 }
7369
7370 void intel_pm_setup(struct drm_device *dev)
7371 {
7372 struct drm_i915_private *dev_priv = dev->dev_private;
7373
7374 mutex_init(&dev_priv->rps.hw_lock);
7375 spin_lock_init(&dev_priv->rps.client_lock);
7376
7377 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7378 intel_gen6_powersave_work);
7379 INIT_LIST_HEAD(&dev_priv->rps.clients);
7380 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7381 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7382
7383 dev_priv->pm.suspended = false;
7384 }