]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915/gen9: only add the planes actually affected by ddb changes
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36 * DOC: RC6
37 *
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60 struct drm_i915_private *dev_priv = dev->dev_private;
61
62 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 I915_WRITE(CHICKEN_PAR1_1,
64 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66 I915_WRITE(GEN8_CONFIG0,
67 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69 /* WaEnableChickenDCPR:skl,bxt,kbl */
70 I915_WRITE(GEN8_CHICKEN_DCPR_1,
71 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 /* WaFbcWakeMemOn:skl,bxt,kbl */
75 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76 DISP_FBC_WM_DIS |
77 DISP_FBC_MEMORY_WAKE);
78
79 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81 ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = to_i915(dev);
87
88 gen9_init_clock_gating(dev);
89
90 /* WaDisableSDEUnitClockGating:bxt */
91 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94 /*
95 * FIXME:
96 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 */
98 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101 /*
102 * Wa: Backlight PWM may stop in the asserted state, causing backlight
103 * to stay fully on.
104 */
105 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107 PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = to_i915(dev);
113 u32 tmp;
114
115 tmp = I915_READ(CLKCFG);
116
117 switch (tmp & CLKCFG_FSB_MASK) {
118 case CLKCFG_FSB_533:
119 dev_priv->fsb_freq = 533; /* 133*4 */
120 break;
121 case CLKCFG_FSB_800:
122 dev_priv->fsb_freq = 800; /* 200*4 */
123 break;
124 case CLKCFG_FSB_667:
125 dev_priv->fsb_freq = 667; /* 167*4 */
126 break;
127 case CLKCFG_FSB_400:
128 dev_priv->fsb_freq = 400; /* 100*4 */
129 break;
130 }
131
132 switch (tmp & CLKCFG_MEM_MASK) {
133 case CLKCFG_MEM_533:
134 dev_priv->mem_freq = 533;
135 break;
136 case CLKCFG_MEM_667:
137 dev_priv->mem_freq = 667;
138 break;
139 case CLKCFG_MEM_800:
140 dev_priv->mem_freq = 800;
141 break;
142 }
143
144 /* detect pineview DDR3 setting */
145 tmp = I915_READ(CSHRDDR3CTL);
146 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 u16 ddrpll, csipll;
153
154 ddrpll = I915_READ16(DDRMPLL1);
155 csipll = I915_READ16(CSIPLL0);
156
157 switch (ddrpll & 0xff) {
158 case 0xc:
159 dev_priv->mem_freq = 800;
160 break;
161 case 0x10:
162 dev_priv->mem_freq = 1066;
163 break;
164 case 0x14:
165 dev_priv->mem_freq = 1333;
166 break;
167 case 0x18:
168 dev_priv->mem_freq = 1600;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172 ddrpll & 0xff);
173 dev_priv->mem_freq = 0;
174 break;
175 }
176
177 dev_priv->ips.r_t = dev_priv->mem_freq;
178
179 switch (csipll & 0x3ff) {
180 case 0x00c:
181 dev_priv->fsb_freq = 3200;
182 break;
183 case 0x00e:
184 dev_priv->fsb_freq = 3733;
185 break;
186 case 0x010:
187 dev_priv->fsb_freq = 4266;
188 break;
189 case 0x012:
190 dev_priv->fsb_freq = 4800;
191 break;
192 case 0x014:
193 dev_priv->fsb_freq = 5333;
194 break;
195 case 0x016:
196 dev_priv->fsb_freq = 5866;
197 break;
198 case 0x018:
199 dev_priv->fsb_freq = 6400;
200 break;
201 default:
202 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203 csipll & 0x3ff);
204 dev_priv->fsb_freq = 0;
205 break;
206 }
207
208 if (dev_priv->fsb_freq == 3200) {
209 dev_priv->ips.c_m = 0;
210 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211 dev_priv->ips.c_m = 1;
212 } else {
213 dev_priv->ips.c_m = 2;
214 }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
219 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
220 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
221 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
222 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
223
224 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
225 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
226 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
227 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
228 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
229
230 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
231 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
232 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
233 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
234 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
235
236 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
237 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
238 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
239 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
240 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
241
242 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
243 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
244 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
245 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
246 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
247
248 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
249 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
250 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
251 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
252 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 int is_ddr3,
257 int fsb,
258 int mem)
259 {
260 const struct cxsr_latency *latency;
261 int i;
262
263 if (fsb == 0 || mem == 0)
264 return NULL;
265
266 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267 latency = &cxsr_latency_table[i];
268 if (is_desktop == latency->is_desktop &&
269 is_ddr3 == latency->is_ddr3 &&
270 fsb == latency->fsb_freq && mem == latency->mem_freq)
271 return latency;
272 }
273
274 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276 return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281 u32 val;
282
283 mutex_lock(&dev_priv->rps.hw_lock);
284
285 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286 if (enable)
287 val &= ~FORCE_DDR_HIGH_FREQ;
288 else
289 val |= FORCE_DDR_HIGH_FREQ;
290 val &= ~FORCE_DDR_LOW_FREQ;
291 val |= FORCE_DDR_FREQ_REQ_ACK;
292 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298 mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303 u32 val;
304
305 mutex_lock(&dev_priv->rps.hw_lock);
306
307 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308 if (enable)
309 val |= DSP_MAXFIFO_PM5_ENABLE;
310 else
311 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314 mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322 struct drm_device *dev = &dev_priv->drm;
323 u32 val;
324
325 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327 POSTING_READ(FW_BLC_SELF_VLV);
328 dev_priv->wm.vlv.cxsr = enable;
329 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331 POSTING_READ(FW_BLC_SELF);
332 } else if (IS_PINEVIEW(dev)) {
333 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335 I915_WRITE(DSPFW3, val);
336 POSTING_READ(DSPFW3);
337 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340 I915_WRITE(FW_BLC_SELF, val);
341 POSTING_READ(FW_BLC_SELF);
342 } else if (IS_I915GM(dev)) {
343 /*
344 * FIXME can't find a bit like this for 915G, and
345 * and yet it does have the related watermark in
346 * FW_BLC_SELF. What's going on?
347 */
348 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
349 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
350 I915_WRITE(INSTPM, val);
351 POSTING_READ(INSTPM);
352 } else {
353 return;
354 }
355
356 DRM_DEBUG_KMS("memory self-refresh is %s\n",
357 enable ? "enabled" : "disabled");
358 }
359
360
361 /*
362 * Latency for FIFO fetches is dependent on several factors:
363 * - memory configuration (speed, channels)
364 * - chipset
365 * - current MCH state
366 * It can be fairly high in some situations, so here we assume a fairly
367 * pessimal value. It's a tradeoff between extra memory fetches (if we
368 * set this value too high, the FIFO will fetch frequently to stay full)
369 * and power consumption (set it too low to save power and we might see
370 * FIFO underruns and display "flicker").
371 *
372 * A value of 5us seems to be a good balance; safe for very low end
373 * platforms but not overly aggressive on lower latency configs.
374 */
375 static const int pessimal_latency_ns = 5000;
376
377 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
378 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
379
380 static int vlv_get_fifo_size(struct drm_device *dev,
381 enum pipe pipe, int plane)
382 {
383 struct drm_i915_private *dev_priv = to_i915(dev);
384 int sprite0_start, sprite1_start, size;
385
386 switch (pipe) {
387 uint32_t dsparb, dsparb2, dsparb3;
388 case PIPE_A:
389 dsparb = I915_READ(DSPARB);
390 dsparb2 = I915_READ(DSPARB2);
391 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
392 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
393 break;
394 case PIPE_B:
395 dsparb = I915_READ(DSPARB);
396 dsparb2 = I915_READ(DSPARB2);
397 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
398 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
399 break;
400 case PIPE_C:
401 dsparb2 = I915_READ(DSPARB2);
402 dsparb3 = I915_READ(DSPARB3);
403 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
404 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
405 break;
406 default:
407 return 0;
408 }
409
410 switch (plane) {
411 case 0:
412 size = sprite0_start;
413 break;
414 case 1:
415 size = sprite1_start - sprite0_start;
416 break;
417 case 2:
418 size = 512 - 1 - sprite1_start;
419 break;
420 default:
421 return 0;
422 }
423
424 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
425 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
426 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
427 size);
428
429 return size;
430 }
431
432 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433 {
434 struct drm_i915_private *dev_priv = to_i915(dev);
435 uint32_t dsparb = I915_READ(DSPARB);
436 int size;
437
438 size = dsparb & 0x7f;
439 if (plane)
440 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
441
442 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
443 plane ? "B" : "A", size);
444
445 return size;
446 }
447
448 static int i830_get_fifo_size(struct drm_device *dev, int plane)
449 {
450 struct drm_i915_private *dev_priv = to_i915(dev);
451 uint32_t dsparb = I915_READ(DSPARB);
452 int size;
453
454 size = dsparb & 0x1ff;
455 if (plane)
456 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
457 size >>= 1; /* Convert to cachelines */
458
459 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460 plane ? "B" : "A", size);
461
462 return size;
463 }
464
465 static int i845_get_fifo_size(struct drm_device *dev, int plane)
466 {
467 struct drm_i915_private *dev_priv = to_i915(dev);
468 uint32_t dsparb = I915_READ(DSPARB);
469 int size;
470
471 size = dsparb & 0x7f;
472 size >>= 2; /* Convert to cachelines */
473
474 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
475 plane ? "B" : "A",
476 size);
477
478 return size;
479 }
480
481 /* Pineview has different values for various configs */
482 static const struct intel_watermark_params pineview_display_wm = {
483 .fifo_size = PINEVIEW_DISPLAY_FIFO,
484 .max_wm = PINEVIEW_MAX_WM,
485 .default_wm = PINEVIEW_DFT_WM,
486 .guard_size = PINEVIEW_GUARD_WM,
487 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 .fifo_size = PINEVIEW_DISPLAY_FIFO,
491 .max_wm = PINEVIEW_MAX_WM,
492 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
493 .guard_size = PINEVIEW_GUARD_WM,
494 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_wm = {
497 .fifo_size = PINEVIEW_CURSOR_FIFO,
498 .max_wm = PINEVIEW_CURSOR_MAX_WM,
499 .default_wm = PINEVIEW_CURSOR_DFT_WM,
500 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
501 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 .fifo_size = PINEVIEW_CURSOR_FIFO,
505 .max_wm = PINEVIEW_CURSOR_MAX_WM,
506 .default_wm = PINEVIEW_CURSOR_DFT_WM,
507 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
508 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_wm_info = {
511 .fifo_size = G4X_FIFO_SIZE,
512 .max_wm = G4X_MAX_WM,
513 .default_wm = G4X_MAX_WM,
514 .guard_size = 2,
515 .cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params g4x_cursor_wm_info = {
518 .fifo_size = I965_CURSOR_FIFO,
519 .max_wm = I965_CURSOR_MAX_WM,
520 .default_wm = I965_CURSOR_DFT_WM,
521 .guard_size = 2,
522 .cacheline_size = G4X_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i965_cursor_wm_info = {
525 .fifo_size = I965_CURSOR_FIFO,
526 .max_wm = I965_CURSOR_MAX_WM,
527 .default_wm = I965_CURSOR_DFT_WM,
528 .guard_size = 2,
529 .cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i945_wm_info = {
532 .fifo_size = I945_FIFO_SIZE,
533 .max_wm = I915_MAX_WM,
534 .default_wm = 1,
535 .guard_size = 2,
536 .cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i915_wm_info = {
539 .fifo_size = I915_FIFO_SIZE,
540 .max_wm = I915_MAX_WM,
541 .default_wm = 1,
542 .guard_size = 2,
543 .cacheline_size = I915_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_a_wm_info = {
546 .fifo_size = I855GM_FIFO_SIZE,
547 .max_wm = I915_MAX_WM,
548 .default_wm = 1,
549 .guard_size = 2,
550 .cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i830_bc_wm_info = {
553 .fifo_size = I855GM_FIFO_SIZE,
554 .max_wm = I915_MAX_WM/2,
555 .default_wm = 1,
556 .guard_size = 2,
557 .cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559 static const struct intel_watermark_params i845_wm_info = {
560 .fifo_size = I830_FIFO_SIZE,
561 .max_wm = I915_MAX_WM,
562 .default_wm = 1,
563 .guard_size = 2,
564 .cacheline_size = I830_FIFO_LINE_SIZE,
565 };
566
567 /**
568 * intel_calculate_wm - calculate watermark level
569 * @clock_in_khz: pixel clock
570 * @wm: chip FIFO params
571 * @cpp: bytes per pixel
572 * @latency_ns: memory latency for the platform
573 *
574 * Calculate the watermark level (the level at which the display plane will
575 * start fetching from memory again). Each chip has a different display
576 * FIFO size and allocation, so the caller needs to figure that out and pass
577 * in the correct intel_watermark_params structure.
578 *
579 * As the pixel clock runs, the FIFO will be drained at a rate that depends
580 * on the pixel size. When it reaches the watermark level, it'll start
581 * fetching FIFO line sized based chunks from memory until the FIFO fills
582 * past the watermark point. If the FIFO drains completely, a FIFO underrun
583 * will occur, and a display engine hang could result.
584 */
585 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
586 const struct intel_watermark_params *wm,
587 int fifo_size, int cpp,
588 unsigned long latency_ns)
589 {
590 long entries_required, wm_size;
591
592 /*
593 * Note: we need to make sure we don't overflow for various clock &
594 * latency values.
595 * clocks go from a few thousand to several hundred thousand.
596 * latency is usually a few thousand
597 */
598 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 1000;
600 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
601
602 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
603
604 wm_size = fifo_size - (entries_required + wm->guard_size);
605
606 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
607
608 /* Don't promote wm_size to unsigned... */
609 if (wm_size > (long)wm->max_wm)
610 wm_size = wm->max_wm;
611 if (wm_size <= 0)
612 wm_size = wm->default_wm;
613
614 /*
615 * Bspec seems to indicate that the value shouldn't be lower than
616 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
617 * Lets go for 8 which is the burst size since certain platforms
618 * already use a hardcoded 8 (which is what the spec says should be
619 * done).
620 */
621 if (wm_size <= 8)
622 wm_size = 8;
623
624 return wm_size;
625 }
626
627 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
628 {
629 struct drm_crtc *crtc, *enabled = NULL;
630
631 for_each_crtc(dev, crtc) {
632 if (intel_crtc_active(crtc)) {
633 if (enabled)
634 return NULL;
635 enabled = crtc;
636 }
637 }
638
639 return enabled;
640 }
641
642 static void pineview_update_wm(struct drm_crtc *unused_crtc)
643 {
644 struct drm_device *dev = unused_crtc->dev;
645 struct drm_i915_private *dev_priv = to_i915(dev);
646 struct drm_crtc *crtc;
647 const struct cxsr_latency *latency;
648 u32 reg;
649 unsigned long wm;
650
651 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
652 dev_priv->fsb_freq, dev_priv->mem_freq);
653 if (!latency) {
654 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655 intel_set_memory_cxsr(dev_priv, false);
656 return;
657 }
658
659 crtc = single_enabled_crtc(dev);
660 if (crtc) {
661 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663 int clock = adjusted_mode->crtc_clock;
664
665 /* Display SR */
666 wm = intel_calculate_wm(clock, &pineview_display_wm,
667 pineview_display_wm.fifo_size,
668 cpp, latency->display_sr);
669 reg = I915_READ(DSPFW1);
670 reg &= ~DSPFW_SR_MASK;
671 reg |= FW_WM(wm, SR);
672 I915_WRITE(DSPFW1, reg);
673 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
674
675 /* cursor SR */
676 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
677 pineview_display_wm.fifo_size,
678 cpp, latency->cursor_sr);
679 reg = I915_READ(DSPFW3);
680 reg &= ~DSPFW_CURSOR_SR_MASK;
681 reg |= FW_WM(wm, CURSOR_SR);
682 I915_WRITE(DSPFW3, reg);
683
684 /* Display HPLL off SR */
685 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
686 pineview_display_hplloff_wm.fifo_size,
687 cpp, latency->display_hpll_disable);
688 reg = I915_READ(DSPFW3);
689 reg &= ~DSPFW_HPLL_SR_MASK;
690 reg |= FW_WM(wm, HPLL_SR);
691 I915_WRITE(DSPFW3, reg);
692
693 /* cursor HPLL off SR */
694 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
695 pineview_display_hplloff_wm.fifo_size,
696 cpp, latency->cursor_hpll_disable);
697 reg = I915_READ(DSPFW3);
698 reg &= ~DSPFW_HPLL_CURSOR_MASK;
699 reg |= FW_WM(wm, HPLL_CURSOR);
700 I915_WRITE(DSPFW3, reg);
701 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
702
703 intel_set_memory_cxsr(dev_priv, true);
704 } else {
705 intel_set_memory_cxsr(dev_priv, false);
706 }
707 }
708
709 static bool g4x_compute_wm0(struct drm_device *dev,
710 int plane,
711 const struct intel_watermark_params *display,
712 int display_latency_ns,
713 const struct intel_watermark_params *cursor,
714 int cursor_latency_ns,
715 int *plane_wm,
716 int *cursor_wm)
717 {
718 struct drm_crtc *crtc;
719 const struct drm_display_mode *adjusted_mode;
720 int htotal, hdisplay, clock, cpp;
721 int line_time_us, line_count;
722 int entries, tlb_miss;
723
724 crtc = intel_get_crtc_for_plane(dev, plane);
725 if (!intel_crtc_active(crtc)) {
726 *cursor_wm = cursor->guard_size;
727 *plane_wm = display->guard_size;
728 return false;
729 }
730
731 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732 clock = adjusted_mode->crtc_clock;
733 htotal = adjusted_mode->crtc_htotal;
734 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736
737 /* Use the small buffer method to calculate plane watermark */
738 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
740 if (tlb_miss > 0)
741 entries += tlb_miss;
742 entries = DIV_ROUND_UP(entries, display->cacheline_size);
743 *plane_wm = entries + display->guard_size;
744 if (*plane_wm > (int)display->max_wm)
745 *plane_wm = display->max_wm;
746
747 /* Use the large buffer method to calculate cursor watermark */
748 line_time_us = max(htotal * 1000 / clock, 1);
749 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750 entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
752 if (tlb_miss > 0)
753 entries += tlb_miss;
754 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
755 *cursor_wm = entries + cursor->guard_size;
756 if (*cursor_wm > (int)cursor->max_wm)
757 *cursor_wm = (int)cursor->max_wm;
758
759 return true;
760 }
761
762 /*
763 * Check the wm result.
764 *
765 * If any calculated watermark values is larger than the maximum value that
766 * can be programmed into the associated watermark register, that watermark
767 * must be disabled.
768 */
769 static bool g4x_check_srwm(struct drm_device *dev,
770 int display_wm, int cursor_wm,
771 const struct intel_watermark_params *display,
772 const struct intel_watermark_params *cursor)
773 {
774 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
775 display_wm, cursor_wm);
776
777 if (display_wm > display->max_wm) {
778 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
779 display_wm, display->max_wm);
780 return false;
781 }
782
783 if (cursor_wm > cursor->max_wm) {
784 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
785 cursor_wm, cursor->max_wm);
786 return false;
787 }
788
789 if (!(display_wm || cursor_wm)) {
790 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
791 return false;
792 }
793
794 return true;
795 }
796
797 static bool g4x_compute_srwm(struct drm_device *dev,
798 int plane,
799 int latency_ns,
800 const struct intel_watermark_params *display,
801 const struct intel_watermark_params *cursor,
802 int *display_wm, int *cursor_wm)
803 {
804 struct drm_crtc *crtc;
805 const struct drm_display_mode *adjusted_mode;
806 int hdisplay, htotal, cpp, clock;
807 unsigned long line_time_us;
808 int line_count, line_size;
809 int small, large;
810 int entries;
811
812 if (!latency_ns) {
813 *display_wm = *cursor_wm = 0;
814 return false;
815 }
816
817 crtc = intel_get_crtc_for_plane(dev, plane);
818 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819 clock = adjusted_mode->crtc_clock;
820 htotal = adjusted_mode->crtc_htotal;
821 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823
824 line_time_us = max(htotal * 1000 / clock, 1);
825 line_count = (latency_ns / line_time_us + 1000) / 1000;
826 line_size = hdisplay * cpp;
827
828 /* Use the minimum of the small and large buffer method for primary */
829 small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 large = line_count * line_size;
831
832 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
833 *display_wm = entries + display->guard_size;
834
835 /* calculate the self-refresh watermark for display cursor */
836 entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
838 *cursor_wm = entries + cursor->guard_size;
839
840 return g4x_check_srwm(dev,
841 *display_wm, *cursor_wm,
842 display, cursor);
843 }
844
845 #define FW_WM_VLV(value, plane) \
846 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
847
848 static void vlv_write_wm_values(struct intel_crtc *crtc,
849 const struct vlv_wm_values *wm)
850 {
851 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
852 enum pipe pipe = crtc->pipe;
853
854 I915_WRITE(VLV_DDL(pipe),
855 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
856 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
857 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
858 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
859
860 I915_WRITE(DSPFW1,
861 FW_WM(wm->sr.plane, SR) |
862 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
863 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
864 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865 I915_WRITE(DSPFW2,
866 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
867 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
868 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869 I915_WRITE(DSPFW3,
870 FW_WM(wm->sr.cursor, CURSOR_SR));
871
872 if (IS_CHERRYVIEW(dev_priv)) {
873 I915_WRITE(DSPFW7_CHV,
874 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 I915_WRITE(DSPFW8_CHV,
877 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
878 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879 I915_WRITE(DSPFW9_CHV,
880 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
881 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882 I915_WRITE(DSPHOWM,
883 FW_WM(wm->sr.plane >> 9, SR_HI) |
884 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
885 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
886 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
887 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
888 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
889 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
890 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
891 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
892 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 } else {
894 I915_WRITE(DSPFW7,
895 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
896 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897 I915_WRITE(DSPHOWM,
898 FW_WM(wm->sr.plane >> 9, SR_HI) |
899 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
900 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
901 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
902 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
903 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
904 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905 }
906
907 /* zero (unused) WM1 watermarks */
908 I915_WRITE(DSPFW4, 0);
909 I915_WRITE(DSPFW5, 0);
910 I915_WRITE(DSPFW6, 0);
911 I915_WRITE(DSPHOWM1, 0);
912
913 POSTING_READ(DSPFW1);
914 }
915
916 #undef FW_WM_VLV
917
918 enum vlv_wm_level {
919 VLV_WM_LEVEL_PM2,
920 VLV_WM_LEVEL_PM5,
921 VLV_WM_LEVEL_DDR_DVFS,
922 };
923
924 /* latency must be in 0.1us units. */
925 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
926 unsigned int pipe_htotal,
927 unsigned int horiz_pixels,
928 unsigned int cpp,
929 unsigned int latency)
930 {
931 unsigned int ret;
932
933 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934 ret = (ret + 1) * horiz_pixels * cpp;
935 ret = DIV_ROUND_UP(ret, 64);
936
937 return ret;
938 }
939
940 static void vlv_setup_wm_latency(struct drm_device *dev)
941 {
942 struct drm_i915_private *dev_priv = to_i915(dev);
943
944 /* all latencies in usec */
945 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
946
947 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
948
949 if (IS_CHERRYVIEW(dev_priv)) {
950 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
951 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952
953 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954 }
955 }
956
957 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
958 struct intel_crtc *crtc,
959 const struct intel_plane_state *state,
960 int level)
961 {
962 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963 int clock, htotal, cpp, width, wm;
964
965 if (dev_priv->wm.pri_latency[level] == 0)
966 return USHRT_MAX;
967
968 if (!state->base.visible)
969 return 0;
970
971 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 clock = crtc->config->base.adjusted_mode.crtc_clock;
973 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
974 width = crtc->config->pipe_src_w;
975 if (WARN_ON(htotal == 0))
976 htotal = 1;
977
978 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
979 /*
980 * FIXME the formula gives values that are
981 * too big for the cursor FIFO, and hence we
982 * would never be able to use cursors. For
983 * now just hardcode the watermark.
984 */
985 wm = 63;
986 } else {
987 wm = vlv_wm_method2(clock, htotal, width, cpp,
988 dev_priv->wm.pri_latency[level] * 10);
989 }
990
991 return min_t(int, wm, USHRT_MAX);
992 }
993
994 static void vlv_compute_fifo(struct intel_crtc *crtc)
995 {
996 struct drm_device *dev = crtc->base.dev;
997 struct vlv_wm_state *wm_state = &crtc->wm_state;
998 struct intel_plane *plane;
999 unsigned int total_rate = 0;
1000 const int fifo_size = 512 - 1;
1001 int fifo_extra, fifo_left = fifo_size;
1002
1003 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1004 struct intel_plane_state *state =
1005 to_intel_plane_state(plane->base.state);
1006
1007 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1008 continue;
1009
1010 if (state->base.visible) {
1011 wm_state->num_active_planes++;
1012 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1013 }
1014 }
1015
1016 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1017 struct intel_plane_state *state =
1018 to_intel_plane_state(plane->base.state);
1019 unsigned int rate;
1020
1021 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1022 plane->wm.fifo_size = 63;
1023 continue;
1024 }
1025
1026 if (!state->base.visible) {
1027 plane->wm.fifo_size = 0;
1028 continue;
1029 }
1030
1031 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1032 plane->wm.fifo_size = fifo_size * rate / total_rate;
1033 fifo_left -= plane->wm.fifo_size;
1034 }
1035
1036 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1037
1038 /* spread the remainder evenly */
1039 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040 int plane_extra;
1041
1042 if (fifo_left == 0)
1043 break;
1044
1045 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1046 continue;
1047
1048 /* give it all to the first plane if none are active */
1049 if (plane->wm.fifo_size == 0 &&
1050 wm_state->num_active_planes)
1051 continue;
1052
1053 plane_extra = min(fifo_extra, fifo_left);
1054 plane->wm.fifo_size += plane_extra;
1055 fifo_left -= plane_extra;
1056 }
1057
1058 WARN_ON(fifo_left != 0);
1059 }
1060
1061 static void vlv_invert_wms(struct intel_crtc *crtc)
1062 {
1063 struct vlv_wm_state *wm_state = &crtc->wm_state;
1064 int level;
1065
1066 for (level = 0; level < wm_state->num_levels; level++) {
1067 struct drm_device *dev = crtc->base.dev;
1068 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1069 struct intel_plane *plane;
1070
1071 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1072 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1073
1074 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075 switch (plane->base.type) {
1076 int sprite;
1077 case DRM_PLANE_TYPE_CURSOR:
1078 wm_state->wm[level].cursor = plane->wm.fifo_size -
1079 wm_state->wm[level].cursor;
1080 break;
1081 case DRM_PLANE_TYPE_PRIMARY:
1082 wm_state->wm[level].primary = plane->wm.fifo_size -
1083 wm_state->wm[level].primary;
1084 break;
1085 case DRM_PLANE_TYPE_OVERLAY:
1086 sprite = plane->plane;
1087 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1088 wm_state->wm[level].sprite[sprite];
1089 break;
1090 }
1091 }
1092 }
1093 }
1094
1095 static void vlv_compute_wm(struct intel_crtc *crtc)
1096 {
1097 struct drm_device *dev = crtc->base.dev;
1098 struct vlv_wm_state *wm_state = &crtc->wm_state;
1099 struct intel_plane *plane;
1100 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1101 int level;
1102
1103 memset(wm_state, 0, sizeof(*wm_state));
1104
1105 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107
1108 wm_state->num_active_planes = 0;
1109
1110 vlv_compute_fifo(crtc);
1111
1112 if (wm_state->num_active_planes != 1)
1113 wm_state->cxsr = false;
1114
1115 if (wm_state->cxsr) {
1116 for (level = 0; level < wm_state->num_levels; level++) {
1117 wm_state->sr[level].plane = sr_fifo_size;
1118 wm_state->sr[level].cursor = 63;
1119 }
1120 }
1121
1122 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123 struct intel_plane_state *state =
1124 to_intel_plane_state(plane->base.state);
1125
1126 if (!state->base.visible)
1127 continue;
1128
1129 /* normal watermarks */
1130 for (level = 0; level < wm_state->num_levels; level++) {
1131 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1132 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1133
1134 /* hack */
1135 if (WARN_ON(level == 0 && wm > max_wm))
1136 wm = max_wm;
1137
1138 if (wm > plane->wm.fifo_size)
1139 break;
1140
1141 switch (plane->base.type) {
1142 int sprite;
1143 case DRM_PLANE_TYPE_CURSOR:
1144 wm_state->wm[level].cursor = wm;
1145 break;
1146 case DRM_PLANE_TYPE_PRIMARY:
1147 wm_state->wm[level].primary = wm;
1148 break;
1149 case DRM_PLANE_TYPE_OVERLAY:
1150 sprite = plane->plane;
1151 wm_state->wm[level].sprite[sprite] = wm;
1152 break;
1153 }
1154 }
1155
1156 wm_state->num_levels = level;
1157
1158 if (!wm_state->cxsr)
1159 continue;
1160
1161 /* maxfifo watermarks */
1162 switch (plane->base.type) {
1163 int sprite, level;
1164 case DRM_PLANE_TYPE_CURSOR:
1165 for (level = 0; level < wm_state->num_levels; level++)
1166 wm_state->sr[level].cursor =
1167 wm_state->wm[level].cursor;
1168 break;
1169 case DRM_PLANE_TYPE_PRIMARY:
1170 for (level = 0; level < wm_state->num_levels; level++)
1171 wm_state->sr[level].plane =
1172 min(wm_state->sr[level].plane,
1173 wm_state->wm[level].primary);
1174 break;
1175 case DRM_PLANE_TYPE_OVERLAY:
1176 sprite = plane->plane;
1177 for (level = 0; level < wm_state->num_levels; level++)
1178 wm_state->sr[level].plane =
1179 min(wm_state->sr[level].plane,
1180 wm_state->wm[level].sprite[sprite]);
1181 break;
1182 }
1183 }
1184
1185 /* clear any (partially) filled invalid levels */
1186 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1188 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1189 }
1190
1191 vlv_invert_wms(crtc);
1192 }
1193
1194 #define VLV_FIFO(plane, value) \
1195 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1196
1197 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1198 {
1199 struct drm_device *dev = crtc->base.dev;
1200 struct drm_i915_private *dev_priv = to_i915(dev);
1201 struct intel_plane *plane;
1202 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1203
1204 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1205 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1206 WARN_ON(plane->wm.fifo_size != 63);
1207 continue;
1208 }
1209
1210 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1211 sprite0_start = plane->wm.fifo_size;
1212 else if (plane->plane == 0)
1213 sprite1_start = sprite0_start + plane->wm.fifo_size;
1214 else
1215 fifo_size = sprite1_start + plane->wm.fifo_size;
1216 }
1217
1218 WARN_ON(fifo_size != 512 - 1);
1219
1220 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1221 pipe_name(crtc->pipe), sprite0_start,
1222 sprite1_start, fifo_size);
1223
1224 switch (crtc->pipe) {
1225 uint32_t dsparb, dsparb2, dsparb3;
1226 case PIPE_A:
1227 dsparb = I915_READ(DSPARB);
1228 dsparb2 = I915_READ(DSPARB2);
1229
1230 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1231 VLV_FIFO(SPRITEB, 0xff));
1232 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1233 VLV_FIFO(SPRITEB, sprite1_start));
1234
1235 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1236 VLV_FIFO(SPRITEB_HI, 0x1));
1237 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1238 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1239
1240 I915_WRITE(DSPARB, dsparb);
1241 I915_WRITE(DSPARB2, dsparb2);
1242 break;
1243 case PIPE_B:
1244 dsparb = I915_READ(DSPARB);
1245 dsparb2 = I915_READ(DSPARB2);
1246
1247 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1248 VLV_FIFO(SPRITED, 0xff));
1249 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1250 VLV_FIFO(SPRITED, sprite1_start));
1251
1252 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1253 VLV_FIFO(SPRITED_HI, 0xff));
1254 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1255 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1256
1257 I915_WRITE(DSPARB, dsparb);
1258 I915_WRITE(DSPARB2, dsparb2);
1259 break;
1260 case PIPE_C:
1261 dsparb3 = I915_READ(DSPARB3);
1262 dsparb2 = I915_READ(DSPARB2);
1263
1264 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1265 VLV_FIFO(SPRITEF, 0xff));
1266 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1267 VLV_FIFO(SPRITEF, sprite1_start));
1268
1269 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1270 VLV_FIFO(SPRITEF_HI, 0xff));
1271 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1272 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1273
1274 I915_WRITE(DSPARB3, dsparb3);
1275 I915_WRITE(DSPARB2, dsparb2);
1276 break;
1277 default:
1278 break;
1279 }
1280 }
1281
1282 #undef VLV_FIFO
1283
1284 static void vlv_merge_wm(struct drm_device *dev,
1285 struct vlv_wm_values *wm)
1286 {
1287 struct intel_crtc *crtc;
1288 int num_active_crtcs = 0;
1289
1290 wm->level = to_i915(dev)->wm.max_level;
1291 wm->cxsr = true;
1292
1293 for_each_intel_crtc(dev, crtc) {
1294 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1295
1296 if (!crtc->active)
1297 continue;
1298
1299 if (!wm_state->cxsr)
1300 wm->cxsr = false;
1301
1302 num_active_crtcs++;
1303 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1304 }
1305
1306 if (num_active_crtcs != 1)
1307 wm->cxsr = false;
1308
1309 if (num_active_crtcs > 1)
1310 wm->level = VLV_WM_LEVEL_PM2;
1311
1312 for_each_intel_crtc(dev, crtc) {
1313 struct vlv_wm_state *wm_state = &crtc->wm_state;
1314 enum pipe pipe = crtc->pipe;
1315
1316 if (!crtc->active)
1317 continue;
1318
1319 wm->pipe[pipe] = wm_state->wm[wm->level];
1320 if (wm->cxsr)
1321 wm->sr = wm_state->sr[wm->level];
1322
1323 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1324 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1325 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1326 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1327 }
1328 }
1329
1330 static void vlv_update_wm(struct drm_crtc *crtc)
1331 {
1332 struct drm_device *dev = crtc->dev;
1333 struct drm_i915_private *dev_priv = to_i915(dev);
1334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1335 enum pipe pipe = intel_crtc->pipe;
1336 struct vlv_wm_values wm = {};
1337
1338 vlv_compute_wm(intel_crtc);
1339 vlv_merge_wm(dev, &wm);
1340
1341 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1342 /* FIXME should be part of crtc atomic commit */
1343 vlv_pipe_set_fifo_size(intel_crtc);
1344 return;
1345 }
1346
1347 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1348 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1349 chv_set_memory_dvfs(dev_priv, false);
1350
1351 if (wm.level < VLV_WM_LEVEL_PM5 &&
1352 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1353 chv_set_memory_pm5(dev_priv, false);
1354
1355 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 intel_set_memory_cxsr(dev_priv, false);
1357
1358 /* FIXME should be part of crtc atomic commit */
1359 vlv_pipe_set_fifo_size(intel_crtc);
1360
1361 vlv_write_wm_values(intel_crtc, &wm);
1362
1363 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1364 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1365 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1366 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1367 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1368
1369 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 intel_set_memory_cxsr(dev_priv, true);
1371
1372 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1373 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1374 chv_set_memory_pm5(dev_priv, true);
1375
1376 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1377 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1378 chv_set_memory_dvfs(dev_priv, true);
1379
1380 dev_priv->wm.vlv = wm;
1381 }
1382
1383 #define single_plane_enabled(mask) is_power_of_2(mask)
1384
1385 static void g4x_update_wm(struct drm_crtc *crtc)
1386 {
1387 struct drm_device *dev = crtc->dev;
1388 static const int sr_latency_ns = 12000;
1389 struct drm_i915_private *dev_priv = to_i915(dev);
1390 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1391 int plane_sr, cursor_sr;
1392 unsigned int enabled = 0;
1393 bool cxsr_enabled;
1394
1395 if (g4x_compute_wm0(dev, PIPE_A,
1396 &g4x_wm_info, pessimal_latency_ns,
1397 &g4x_cursor_wm_info, pessimal_latency_ns,
1398 &planea_wm, &cursora_wm))
1399 enabled |= 1 << PIPE_A;
1400
1401 if (g4x_compute_wm0(dev, PIPE_B,
1402 &g4x_wm_info, pessimal_latency_ns,
1403 &g4x_cursor_wm_info, pessimal_latency_ns,
1404 &planeb_wm, &cursorb_wm))
1405 enabled |= 1 << PIPE_B;
1406
1407 if (single_plane_enabled(enabled) &&
1408 g4x_compute_srwm(dev, ffs(enabled) - 1,
1409 sr_latency_ns,
1410 &g4x_wm_info,
1411 &g4x_cursor_wm_info,
1412 &plane_sr, &cursor_sr)) {
1413 cxsr_enabled = true;
1414 } else {
1415 cxsr_enabled = false;
1416 intel_set_memory_cxsr(dev_priv, false);
1417 plane_sr = cursor_sr = 0;
1418 }
1419
1420 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1421 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 planea_wm, cursora_wm,
1423 planeb_wm, cursorb_wm,
1424 plane_sr, cursor_sr);
1425
1426 I915_WRITE(DSPFW1,
1427 FW_WM(plane_sr, SR) |
1428 FW_WM(cursorb_wm, CURSORB) |
1429 FW_WM(planeb_wm, PLANEB) |
1430 FW_WM(planea_wm, PLANEA));
1431 I915_WRITE(DSPFW2,
1432 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433 FW_WM(cursora_wm, CURSORA));
1434 /* HPLL off in SR has some issues on G4x... disable it */
1435 I915_WRITE(DSPFW3,
1436 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437 FW_WM(cursor_sr, CURSOR_SR));
1438
1439 if (cxsr_enabled)
1440 intel_set_memory_cxsr(dev_priv, true);
1441 }
1442
1443 static void i965_update_wm(struct drm_crtc *unused_crtc)
1444 {
1445 struct drm_device *dev = unused_crtc->dev;
1446 struct drm_i915_private *dev_priv = to_i915(dev);
1447 struct drm_crtc *crtc;
1448 int srwm = 1;
1449 int cursor_sr = 16;
1450 bool cxsr_enabled;
1451
1452 /* Calc sr entries for one plane configs */
1453 crtc = single_enabled_crtc(dev);
1454 if (crtc) {
1455 /* self-refresh has much higher latency */
1456 static const int sr_latency_ns = 12000;
1457 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458 int clock = adjusted_mode->crtc_clock;
1459 int htotal = adjusted_mode->crtc_htotal;
1460 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 unsigned long line_time_us;
1463 int entries;
1464
1465 line_time_us = max(htotal * 1000 / clock, 1);
1466
1467 /* Use ns/us then divide to preserve precision */
1468 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469 cpp * hdisplay;
1470 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1471 srwm = I965_FIFO_SIZE - entries;
1472 if (srwm < 0)
1473 srwm = 1;
1474 srwm &= 0x1ff;
1475 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1476 entries, srwm);
1477
1478 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479 cpp * crtc->cursor->state->crtc_w;
1480 entries = DIV_ROUND_UP(entries,
1481 i965_cursor_wm_info.cacheline_size);
1482 cursor_sr = i965_cursor_wm_info.fifo_size -
1483 (entries + i965_cursor_wm_info.guard_size);
1484
1485 if (cursor_sr > i965_cursor_wm_info.max_wm)
1486 cursor_sr = i965_cursor_wm_info.max_wm;
1487
1488 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1489 "cursor %d\n", srwm, cursor_sr);
1490
1491 cxsr_enabled = true;
1492 } else {
1493 cxsr_enabled = false;
1494 /* Turn off self refresh if both pipes are enabled */
1495 intel_set_memory_cxsr(dev_priv, false);
1496 }
1497
1498 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1499 srwm);
1500
1501 /* 965 has limitations... */
1502 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1503 FW_WM(8, CURSORB) |
1504 FW_WM(8, PLANEB) |
1505 FW_WM(8, PLANEA));
1506 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1507 FW_WM(8, PLANEC_OLD));
1508 /* update cursor SR watermark */
1509 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510
1511 if (cxsr_enabled)
1512 intel_set_memory_cxsr(dev_priv, true);
1513 }
1514
1515 #undef FW_WM
1516
1517 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518 {
1519 struct drm_device *dev = unused_crtc->dev;
1520 struct drm_i915_private *dev_priv = to_i915(dev);
1521 const struct intel_watermark_params *wm_info;
1522 uint32_t fwater_lo;
1523 uint32_t fwater_hi;
1524 int cwm, srwm = 1;
1525 int fifo_size;
1526 int planea_wm, planeb_wm;
1527 struct drm_crtc *crtc, *enabled = NULL;
1528
1529 if (IS_I945GM(dev))
1530 wm_info = &i945_wm_info;
1531 else if (!IS_GEN2(dev))
1532 wm_info = &i915_wm_info;
1533 else
1534 wm_info = &i830_a_wm_info;
1535
1536 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1537 crtc = intel_get_crtc_for_plane(dev, 0);
1538 if (intel_crtc_active(crtc)) {
1539 const struct drm_display_mode *adjusted_mode;
1540 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 if (IS_GEN2(dev))
1542 cpp = 4;
1543
1544 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546 wm_info, fifo_size, cpp,
1547 pessimal_latency_ns);
1548 enabled = crtc;
1549 } else {
1550 planea_wm = fifo_size - wm_info->guard_size;
1551 if (planea_wm > (long)wm_info->max_wm)
1552 planea_wm = wm_info->max_wm;
1553 }
1554
1555 if (IS_GEN2(dev))
1556 wm_info = &i830_bc_wm_info;
1557
1558 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1559 crtc = intel_get_crtc_for_plane(dev, 1);
1560 if (intel_crtc_active(crtc)) {
1561 const struct drm_display_mode *adjusted_mode;
1562 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 if (IS_GEN2(dev))
1564 cpp = 4;
1565
1566 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568 wm_info, fifo_size, cpp,
1569 pessimal_latency_ns);
1570 if (enabled == NULL)
1571 enabled = crtc;
1572 else
1573 enabled = NULL;
1574 } else {
1575 planeb_wm = fifo_size - wm_info->guard_size;
1576 if (planeb_wm > (long)wm_info->max_wm)
1577 planeb_wm = wm_info->max_wm;
1578 }
1579
1580 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582 if (IS_I915GM(dev) && enabled) {
1583 struct drm_i915_gem_object *obj;
1584
1585 obj = intel_fb_obj(enabled->primary->state->fb);
1586
1587 /* self-refresh seems busted with untiled */
1588 if (!i915_gem_object_is_tiled(obj))
1589 enabled = NULL;
1590 }
1591
1592 /*
1593 * Overlay gets an aggressive default since video jitter is bad.
1594 */
1595 cwm = 2;
1596
1597 /* Play safe and disable self-refresh before adjusting watermarks. */
1598 intel_set_memory_cxsr(dev_priv, false);
1599
1600 /* Calc sr entries for one plane configs */
1601 if (HAS_FW_BLC(dev) && enabled) {
1602 /* self-refresh has much higher latency */
1603 static const int sr_latency_ns = 6000;
1604 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605 int clock = adjusted_mode->crtc_clock;
1606 int htotal = adjusted_mode->crtc_htotal;
1607 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 unsigned long line_time_us;
1610 int entries;
1611
1612 if (IS_I915GM(dev) || IS_I945GM(dev))
1613 cpp = 4;
1614
1615 line_time_us = max(htotal * 1000 / clock, 1);
1616
1617 /* Use ns/us then divide to preserve precision */
1618 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619 cpp * hdisplay;
1620 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1621 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1622 srwm = wm_info->fifo_size - entries;
1623 if (srwm < 0)
1624 srwm = 1;
1625
1626 if (IS_I945G(dev) || IS_I945GM(dev))
1627 I915_WRITE(FW_BLC_SELF,
1628 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629 else
1630 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1631 }
1632
1633 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1634 planea_wm, planeb_wm, cwm, srwm);
1635
1636 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1637 fwater_hi = (cwm & 0x1f);
1638
1639 /* Set request length to 8 cachelines per fetch */
1640 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1641 fwater_hi = fwater_hi | (1 << 8);
1642
1643 I915_WRITE(FW_BLC, fwater_lo);
1644 I915_WRITE(FW_BLC2, fwater_hi);
1645
1646 if (enabled)
1647 intel_set_memory_cxsr(dev_priv, true);
1648 }
1649
1650 static void i845_update_wm(struct drm_crtc *unused_crtc)
1651 {
1652 struct drm_device *dev = unused_crtc->dev;
1653 struct drm_i915_private *dev_priv = to_i915(dev);
1654 struct drm_crtc *crtc;
1655 const struct drm_display_mode *adjusted_mode;
1656 uint32_t fwater_lo;
1657 int planea_wm;
1658
1659 crtc = single_enabled_crtc(dev);
1660 if (crtc == NULL)
1661 return;
1662
1663 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665 &i845_wm_info,
1666 dev_priv->display.get_fifo_size(dev, 0),
1667 4, pessimal_latency_ns);
1668 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1669 fwater_lo |= (3<<8) | planea_wm;
1670
1671 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1672
1673 I915_WRITE(FW_BLC, fwater_lo);
1674 }
1675
1676 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677 {
1678 uint32_t pixel_rate;
1679
1680 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681
1682 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1683 * adjust the pixel_rate here. */
1684
1685 if (pipe_config->pch_pfit.enabled) {
1686 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 uint32_t pfit_size = pipe_config->pch_pfit.size;
1688
1689 pipe_w = pipe_config->pipe_src_w;
1690 pipe_h = pipe_config->pipe_src_h;
1691
1692 pfit_w = (pfit_size >> 16) & 0xFFFF;
1693 pfit_h = pfit_size & 0xFFFF;
1694 if (pipe_w < pfit_w)
1695 pipe_w = pfit_w;
1696 if (pipe_h < pfit_h)
1697 pipe_h = pfit_h;
1698
1699 if (WARN_ON(!pfit_w || !pfit_h))
1700 return pixel_rate;
1701
1702 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703 pfit_w * pfit_h);
1704 }
1705
1706 return pixel_rate;
1707 }
1708
1709 /* latency must be in 0.1us units. */
1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 {
1712 uint64_t ret;
1713
1714 if (WARN(latency == 0, "Latency value missing\n"))
1715 return UINT_MAX;
1716
1717 ret = (uint64_t) pixel_rate * cpp * latency;
1718 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1719
1720 return ret;
1721 }
1722
1723 /* latency must be in 0.1us units. */
1724 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725 uint32_t horiz_pixels, uint8_t cpp,
1726 uint32_t latency)
1727 {
1728 uint32_t ret;
1729
1730 if (WARN(latency == 0, "Latency value missing\n"))
1731 return UINT_MAX;
1732 if (WARN_ON(!pipe_htotal))
1733 return UINT_MAX;
1734
1735 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736 ret = (ret + 1) * horiz_pixels * cpp;
1737 ret = DIV_ROUND_UP(ret, 64) + 2;
1738 return ret;
1739 }
1740
1741 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742 uint8_t cpp)
1743 {
1744 /*
1745 * Neither of these should be possible since this function shouldn't be
1746 * called if the CRTC is off or the plane is invisible. But let's be
1747 * extra paranoid to avoid a potential divide-by-zero if we screw up
1748 * elsewhere in the driver.
1749 */
1750 if (WARN_ON(!cpp))
1751 return 0;
1752 if (WARN_ON(!horiz_pixels))
1753 return 0;
1754
1755 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 }
1757
1758 struct ilk_wm_maximums {
1759 uint16_t pri;
1760 uint16_t spr;
1761 uint16_t cur;
1762 uint16_t fbc;
1763 };
1764
1765 /*
1766 * For both WM_PIPE and WM_LP.
1767 * mem_value must be in 0.1us units.
1768 */
1769 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770 const struct intel_plane_state *pstate,
1771 uint32_t mem_value,
1772 bool is_lp)
1773 {
1774 int cpp = pstate->base.fb ?
1775 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 uint32_t method1, method2;
1777
1778 if (!cstate->base.active || !pstate->base.visible)
1779 return 0;
1780
1781 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782
1783 if (!is_lp)
1784 return method1;
1785
1786 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787 cstate->base.adjusted_mode.crtc_htotal,
1788 drm_rect_width(&pstate->base.dst),
1789 cpp, mem_value);
1790
1791 return min(method1, method2);
1792 }
1793
1794 /*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799 const struct intel_plane_state *pstate,
1800 uint32_t mem_value)
1801 {
1802 int cpp = pstate->base.fb ?
1803 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 uint32_t method1, method2;
1805
1806 if (!cstate->base.active || !pstate->base.visible)
1807 return 0;
1808
1809 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1811 cstate->base.adjusted_mode.crtc_htotal,
1812 drm_rect_width(&pstate->base.dst),
1813 cpp, mem_value);
1814 return min(method1, method2);
1815 }
1816
1817 /*
1818 * For both WM_PIPE and WM_LP.
1819 * mem_value must be in 0.1us units.
1820 */
1821 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822 const struct intel_plane_state *pstate,
1823 uint32_t mem_value)
1824 {
1825 /*
1826 * We treat the cursor plane as always-on for the purposes of watermark
1827 * calculation. Until we have two-stage watermark programming merged,
1828 * this is necessary to avoid flickering.
1829 */
1830 int cpp = 4;
1831 int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832
1833 if (!cstate->base.active)
1834 return 0;
1835
1836 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1837 cstate->base.adjusted_mode.crtc_htotal,
1838 width, cpp, mem_value);
1839 }
1840
1841 /* Only for WM_LP. */
1842 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843 const struct intel_plane_state *pstate,
1844 uint32_t pri_val)
1845 {
1846 int cpp = pstate->base.fb ?
1847 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848
1849 if (!cstate->base.active || !pstate->base.visible)
1850 return 0;
1851
1852 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 }
1854
1855 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1856 {
1857 if (INTEL_INFO(dev)->gen >= 8)
1858 return 3072;
1859 else if (INTEL_INFO(dev)->gen >= 7)
1860 return 768;
1861 else
1862 return 512;
1863 }
1864
1865 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1866 int level, bool is_sprite)
1867 {
1868 if (INTEL_INFO(dev)->gen >= 8)
1869 /* BDW primary/sprite plane watermarks */
1870 return level == 0 ? 255 : 2047;
1871 else if (INTEL_INFO(dev)->gen >= 7)
1872 /* IVB/HSW primary/sprite plane watermarks */
1873 return level == 0 ? 127 : 1023;
1874 else if (!is_sprite)
1875 /* ILK/SNB primary plane watermarks */
1876 return level == 0 ? 127 : 511;
1877 else
1878 /* ILK/SNB sprite plane watermarks */
1879 return level == 0 ? 63 : 255;
1880 }
1881
1882 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1883 int level)
1884 {
1885 if (INTEL_INFO(dev)->gen >= 7)
1886 return level == 0 ? 63 : 255;
1887 else
1888 return level == 0 ? 31 : 63;
1889 }
1890
1891 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1892 {
1893 if (INTEL_INFO(dev)->gen >= 8)
1894 return 31;
1895 else
1896 return 15;
1897 }
1898
1899 /* Calculate the maximum primary/sprite plane watermark */
1900 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1901 int level,
1902 const struct intel_wm_config *config,
1903 enum intel_ddb_partitioning ddb_partitioning,
1904 bool is_sprite)
1905 {
1906 unsigned int fifo_size = ilk_display_fifo_size(dev);
1907
1908 /* if sprites aren't enabled, sprites get nothing */
1909 if (is_sprite && !config->sprites_enabled)
1910 return 0;
1911
1912 /* HSW allows LP1+ watermarks even with multiple pipes */
1913 if (level == 0 || config->num_pipes_active > 1) {
1914 fifo_size /= INTEL_INFO(dev)->num_pipes;
1915
1916 /*
1917 * For some reason the non self refresh
1918 * FIFO size is only half of the self
1919 * refresh FIFO size on ILK/SNB.
1920 */
1921 if (INTEL_INFO(dev)->gen <= 6)
1922 fifo_size /= 2;
1923 }
1924
1925 if (config->sprites_enabled) {
1926 /* level 0 is always calculated with 1:1 split */
1927 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1928 if (is_sprite)
1929 fifo_size *= 5;
1930 fifo_size /= 6;
1931 } else {
1932 fifo_size /= 2;
1933 }
1934 }
1935
1936 /* clamp to max that the registers can hold */
1937 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 }
1939
1940 /* Calculate the maximum cursor plane watermark */
1941 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 int level,
1943 const struct intel_wm_config *config)
1944 {
1945 /* HSW LP1+ watermarks w/ multiple pipes */
1946 if (level > 0 && config->num_pipes_active > 1)
1947 return 64;
1948
1949 /* otherwise just report max that registers can hold */
1950 return ilk_cursor_wm_reg_max(dev, level);
1951 }
1952
1953 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 int level,
1955 const struct intel_wm_config *config,
1956 enum intel_ddb_partitioning ddb_partitioning,
1957 struct ilk_wm_maximums *max)
1958 {
1959 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1960 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1961 max->cur = ilk_cursor_wm_max(dev, level, config);
1962 max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964
1965 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1966 int level,
1967 struct ilk_wm_maximums *max)
1968 {
1969 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1970 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1971 max->cur = ilk_cursor_wm_reg_max(dev, level);
1972 max->fbc = ilk_fbc_wm_reg_max(dev);
1973 }
1974
1975 static bool ilk_validate_wm_level(int level,
1976 const struct ilk_wm_maximums *max,
1977 struct intel_wm_level *result)
1978 {
1979 bool ret;
1980
1981 /* already determined to be invalid? */
1982 if (!result->enable)
1983 return false;
1984
1985 result->enable = result->pri_val <= max->pri &&
1986 result->spr_val <= max->spr &&
1987 result->cur_val <= max->cur;
1988
1989 ret = result->enable;
1990
1991 /*
1992 * HACK until we can pre-compute everything,
1993 * and thus fail gracefully if LP0 watermarks
1994 * are exceeded...
1995 */
1996 if (level == 0 && !result->enable) {
1997 if (result->pri_val > max->pri)
1998 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1999 level, result->pri_val, max->pri);
2000 if (result->spr_val > max->spr)
2001 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2002 level, result->spr_val, max->spr);
2003 if (result->cur_val > max->cur)
2004 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2005 level, result->cur_val, max->cur);
2006
2007 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2008 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2009 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2010 result->enable = true;
2011 }
2012
2013 return ret;
2014 }
2015
2016 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017 const struct intel_crtc *intel_crtc,
2018 int level,
2019 struct intel_crtc_state *cstate,
2020 struct intel_plane_state *pristate,
2021 struct intel_plane_state *sprstate,
2022 struct intel_plane_state *curstate,
2023 struct intel_wm_level *result)
2024 {
2025 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2028
2029 /* WM1+ latency values stored in 0.5us units */
2030 if (level > 0) {
2031 pri_latency *= 5;
2032 spr_latency *= 5;
2033 cur_latency *= 5;
2034 }
2035
2036 if (pristate) {
2037 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2038 pri_latency, level);
2039 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2040 }
2041
2042 if (sprstate)
2043 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2044
2045 if (curstate)
2046 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2047
2048 result->enable = true;
2049 }
2050
2051 static uint32_t
2052 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053 {
2054 const struct intel_atomic_state *intel_state =
2055 to_intel_atomic_state(cstate->base.state);
2056 const struct drm_display_mode *adjusted_mode =
2057 &cstate->base.adjusted_mode;
2058 u32 linetime, ips_linetime;
2059
2060 if (!cstate->base.active)
2061 return 0;
2062 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2063 return 0;
2064 if (WARN_ON(intel_state->cdclk == 0))
2065 return 0;
2066
2067 /* The WM are computed with base on how long it takes to fill a single
2068 * row at the given clock rate, multiplied by 8.
2069 * */
2070 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2071 adjusted_mode->crtc_clock);
2072 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073 intel_state->cdclk);
2074
2075 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2076 PIPE_WM_LINETIME_TIME(linetime);
2077 }
2078
2079 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080 {
2081 struct drm_i915_private *dev_priv = to_i915(dev);
2082
2083 if (IS_GEN9(dev)) {
2084 uint32_t val;
2085 int ret, i;
2086 int level, max_level = ilk_wm_max_level(dev);
2087
2088 /* read the first set of memory latencies[0:3] */
2089 val = 0; /* data0 to be programmed to 0 for first set */
2090 mutex_lock(&dev_priv->rps.hw_lock);
2091 ret = sandybridge_pcode_read(dev_priv,
2092 GEN9_PCODE_READ_MEM_LATENCY,
2093 &val);
2094 mutex_unlock(&dev_priv->rps.hw_lock);
2095
2096 if (ret) {
2097 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2098 return;
2099 }
2100
2101 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2102 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2103 GEN9_MEM_LATENCY_LEVEL_MASK;
2104 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2105 GEN9_MEM_LATENCY_LEVEL_MASK;
2106 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2107 GEN9_MEM_LATENCY_LEVEL_MASK;
2108
2109 /* read the second set of memory latencies[4:7] */
2110 val = 1; /* data0 to be programmed to 1 for second set */
2111 mutex_lock(&dev_priv->rps.hw_lock);
2112 ret = sandybridge_pcode_read(dev_priv,
2113 GEN9_PCODE_READ_MEM_LATENCY,
2114 &val);
2115 mutex_unlock(&dev_priv->rps.hw_lock);
2116 if (ret) {
2117 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2118 return;
2119 }
2120
2121 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2122 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2123 GEN9_MEM_LATENCY_LEVEL_MASK;
2124 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2125 GEN9_MEM_LATENCY_LEVEL_MASK;
2126 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2127 GEN9_MEM_LATENCY_LEVEL_MASK;
2128
2129 /*
2130 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2131 * need to be disabled. We make sure to sanitize the values out
2132 * of the punit to satisfy this requirement.
2133 */
2134 for (level = 1; level <= max_level; level++) {
2135 if (wm[level] == 0) {
2136 for (i = level + 1; i <= max_level; i++)
2137 wm[i] = 0;
2138 break;
2139 }
2140 }
2141
2142 /*
2143 * WaWmMemoryReadLatency:skl
2144 *
2145 * punit doesn't take into account the read latency so we need
2146 * to add 2us to the various latency levels we retrieve from the
2147 * punit when level 0 response data us 0us.
2148 */
2149 if (wm[0] == 0) {
2150 wm[0] += 2;
2151 for (level = 1; level <= max_level; level++) {
2152 if (wm[level] == 0)
2153 break;
2154 wm[level] += 2;
2155 }
2156 }
2157
2158 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2159 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2160
2161 wm[0] = (sskpd >> 56) & 0xFF;
2162 if (wm[0] == 0)
2163 wm[0] = sskpd & 0xF;
2164 wm[1] = (sskpd >> 4) & 0xFF;
2165 wm[2] = (sskpd >> 12) & 0xFF;
2166 wm[3] = (sskpd >> 20) & 0x1FF;
2167 wm[4] = (sskpd >> 32) & 0x1FF;
2168 } else if (INTEL_INFO(dev)->gen >= 6) {
2169 uint32_t sskpd = I915_READ(MCH_SSKPD);
2170
2171 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2172 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2173 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2174 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2175 } else if (INTEL_INFO(dev)->gen >= 5) {
2176 uint32_t mltr = I915_READ(MLTR_ILK);
2177
2178 /* ILK primary LP0 latency is 700 ns */
2179 wm[0] = 7;
2180 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2181 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2182 }
2183 }
2184
2185 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2186 {
2187 /* ILK sprite LP0 latency is 1300 ns */
2188 if (IS_GEN5(dev))
2189 wm[0] = 13;
2190 }
2191
2192 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2193 {
2194 /* ILK cursor LP0 latency is 1300 ns */
2195 if (IS_GEN5(dev))
2196 wm[0] = 13;
2197
2198 /* WaDoubleCursorLP3Latency:ivb */
2199 if (IS_IVYBRIDGE(dev))
2200 wm[3] *= 2;
2201 }
2202
2203 int ilk_wm_max_level(const struct drm_device *dev)
2204 {
2205 /* how many WM levels are we expecting */
2206 if (INTEL_INFO(dev)->gen >= 9)
2207 return 7;
2208 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2209 return 4;
2210 else if (INTEL_INFO(dev)->gen >= 6)
2211 return 3;
2212 else
2213 return 2;
2214 }
2215
2216 static void intel_print_wm_latency(struct drm_device *dev,
2217 const char *name,
2218 const uint16_t wm[8])
2219 {
2220 int level, max_level = ilk_wm_max_level(dev);
2221
2222 for (level = 0; level <= max_level; level++) {
2223 unsigned int latency = wm[level];
2224
2225 if (latency == 0) {
2226 DRM_ERROR("%s WM%d latency not provided\n",
2227 name, level);
2228 continue;
2229 }
2230
2231 /*
2232 * - latencies are in us on gen9.
2233 * - before then, WM1+ latency values are in 0.5us units
2234 */
2235 if (IS_GEN9(dev))
2236 latency *= 10;
2237 else if (level > 0)
2238 latency *= 5;
2239
2240 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2241 name, level, wm[level],
2242 latency / 10, latency % 10);
2243 }
2244 }
2245
2246 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2247 uint16_t wm[5], uint16_t min)
2248 {
2249 int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2250
2251 if (wm[0] >= min)
2252 return false;
2253
2254 wm[0] = max(wm[0], min);
2255 for (level = 1; level <= max_level; level++)
2256 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2257
2258 return true;
2259 }
2260
2261 static void snb_wm_latency_quirk(struct drm_device *dev)
2262 {
2263 struct drm_i915_private *dev_priv = to_i915(dev);
2264 bool changed;
2265
2266 /*
2267 * The BIOS provided WM memory latency values are often
2268 * inadequate for high resolution displays. Adjust them.
2269 */
2270 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2271 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2272 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2273
2274 if (!changed)
2275 return;
2276
2277 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2278 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2279 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2280 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2281 }
2282
2283 static void ilk_setup_wm_latency(struct drm_device *dev)
2284 {
2285 struct drm_i915_private *dev_priv = to_i915(dev);
2286
2287 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2288
2289 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2290 sizeof(dev_priv->wm.pri_latency));
2291 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2292 sizeof(dev_priv->wm.pri_latency));
2293
2294 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2295 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2296
2297 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2298 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2299 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2300
2301 if (IS_GEN6(dev))
2302 snb_wm_latency_quirk(dev);
2303 }
2304
2305 static void skl_setup_wm_latency(struct drm_device *dev)
2306 {
2307 struct drm_i915_private *dev_priv = to_i915(dev);
2308
2309 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2310 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2311 }
2312
2313 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2314 struct intel_pipe_wm *pipe_wm)
2315 {
2316 /* LP0 watermark maximums depend on this pipe alone */
2317 const struct intel_wm_config config = {
2318 .num_pipes_active = 1,
2319 .sprites_enabled = pipe_wm->sprites_enabled,
2320 .sprites_scaled = pipe_wm->sprites_scaled,
2321 };
2322 struct ilk_wm_maximums max;
2323
2324 /* LP0 watermarks always use 1/2 DDB partitioning */
2325 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2326
2327 /* At least LP0 must be valid */
2328 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2329 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2330 return false;
2331 }
2332
2333 return true;
2334 }
2335
2336 /* Compute new watermarks for the pipe */
2337 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2338 {
2339 struct drm_atomic_state *state = cstate->base.state;
2340 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2341 struct intel_pipe_wm *pipe_wm;
2342 struct drm_device *dev = state->dev;
2343 const struct drm_i915_private *dev_priv = to_i915(dev);
2344 struct intel_plane *intel_plane;
2345 struct intel_plane_state *pristate = NULL;
2346 struct intel_plane_state *sprstate = NULL;
2347 struct intel_plane_state *curstate = NULL;
2348 int level, max_level = ilk_wm_max_level(dev), usable_level;
2349 struct ilk_wm_maximums max;
2350
2351 pipe_wm = &cstate->wm.ilk.optimal;
2352
2353 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2354 struct intel_plane_state *ps;
2355
2356 ps = intel_atomic_get_existing_plane_state(state,
2357 intel_plane);
2358 if (!ps)
2359 continue;
2360
2361 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2362 pristate = ps;
2363 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2364 sprstate = ps;
2365 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2366 curstate = ps;
2367 }
2368
2369 pipe_wm->pipe_enabled = cstate->base.active;
2370 if (sprstate) {
2371 pipe_wm->sprites_enabled = sprstate->base.visible;
2372 pipe_wm->sprites_scaled = sprstate->base.visible &&
2373 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2374 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2375 }
2376
2377 usable_level = max_level;
2378
2379 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2380 if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2381 usable_level = 1;
2382
2383 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2384 if (pipe_wm->sprites_scaled)
2385 usable_level = 0;
2386
2387 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2388 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2389
2390 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2391 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2392
2393 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2394 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2395
2396 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2397 return -EINVAL;
2398
2399 ilk_compute_wm_reg_maximums(dev, 1, &max);
2400
2401 for (level = 1; level <= max_level; level++) {
2402 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2403
2404 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2405 pristate, sprstate, curstate, wm);
2406
2407 /*
2408 * Disable any watermark level that exceeds the
2409 * register maximums since such watermarks are
2410 * always invalid.
2411 */
2412 if (level > usable_level)
2413 continue;
2414
2415 if (ilk_validate_wm_level(level, &max, wm))
2416 pipe_wm->wm[level] = *wm;
2417 else
2418 usable_level = level;
2419 }
2420
2421 return 0;
2422 }
2423
2424 /*
2425 * Build a set of 'intermediate' watermark values that satisfy both the old
2426 * state and the new state. These can be programmed to the hardware
2427 * immediately.
2428 */
2429 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2430 struct intel_crtc *intel_crtc,
2431 struct intel_crtc_state *newstate)
2432 {
2433 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2434 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2435 int level, max_level = ilk_wm_max_level(dev);
2436
2437 /*
2438 * Start with the final, target watermarks, then combine with the
2439 * currently active watermarks to get values that are safe both before
2440 * and after the vblank.
2441 */
2442 *a = newstate->wm.ilk.optimal;
2443 a->pipe_enabled |= b->pipe_enabled;
2444 a->sprites_enabled |= b->sprites_enabled;
2445 a->sprites_scaled |= b->sprites_scaled;
2446
2447 for (level = 0; level <= max_level; level++) {
2448 struct intel_wm_level *a_wm = &a->wm[level];
2449 const struct intel_wm_level *b_wm = &b->wm[level];
2450
2451 a_wm->enable &= b_wm->enable;
2452 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2453 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2454 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2455 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2456 }
2457
2458 /*
2459 * We need to make sure that these merged watermark values are
2460 * actually a valid configuration themselves. If they're not,
2461 * there's no safe way to transition from the old state to
2462 * the new state, so we need to fail the atomic transaction.
2463 */
2464 if (!ilk_validate_pipe_wm(dev, a))
2465 return -EINVAL;
2466
2467 /*
2468 * If our intermediate WM are identical to the final WM, then we can
2469 * omit the post-vblank programming; only update if it's different.
2470 */
2471 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2472 newstate->wm.need_postvbl_update = false;
2473
2474 return 0;
2475 }
2476
2477 /*
2478 * Merge the watermarks from all active pipes for a specific level.
2479 */
2480 static void ilk_merge_wm_level(struct drm_device *dev,
2481 int level,
2482 struct intel_wm_level *ret_wm)
2483 {
2484 const struct intel_crtc *intel_crtc;
2485
2486 ret_wm->enable = true;
2487
2488 for_each_intel_crtc(dev, intel_crtc) {
2489 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2490 const struct intel_wm_level *wm = &active->wm[level];
2491
2492 if (!active->pipe_enabled)
2493 continue;
2494
2495 /*
2496 * The watermark values may have been used in the past,
2497 * so we must maintain them in the registers for some
2498 * time even if the level is now disabled.
2499 */
2500 if (!wm->enable)
2501 ret_wm->enable = false;
2502
2503 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2504 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2505 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2506 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2507 }
2508 }
2509
2510 /*
2511 * Merge all low power watermarks for all active pipes.
2512 */
2513 static void ilk_wm_merge(struct drm_device *dev,
2514 const struct intel_wm_config *config,
2515 const struct ilk_wm_maximums *max,
2516 struct intel_pipe_wm *merged)
2517 {
2518 struct drm_i915_private *dev_priv = to_i915(dev);
2519 int level, max_level = ilk_wm_max_level(dev);
2520 int last_enabled_level = max_level;
2521
2522 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2523 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2524 config->num_pipes_active > 1)
2525 last_enabled_level = 0;
2526
2527 /* ILK: FBC WM must be disabled always */
2528 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2529
2530 /* merge each WM1+ level */
2531 for (level = 1; level <= max_level; level++) {
2532 struct intel_wm_level *wm = &merged->wm[level];
2533
2534 ilk_merge_wm_level(dev, level, wm);
2535
2536 if (level > last_enabled_level)
2537 wm->enable = false;
2538 else if (!ilk_validate_wm_level(level, max, wm))
2539 /* make sure all following levels get disabled */
2540 last_enabled_level = level - 1;
2541
2542 /*
2543 * The spec says it is preferred to disable
2544 * FBC WMs instead of disabling a WM level.
2545 */
2546 if (wm->fbc_val > max->fbc) {
2547 if (wm->enable)
2548 merged->fbc_wm_enabled = false;
2549 wm->fbc_val = 0;
2550 }
2551 }
2552
2553 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2554 /*
2555 * FIXME this is racy. FBC might get enabled later.
2556 * What we should check here is whether FBC can be
2557 * enabled sometime later.
2558 */
2559 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2560 intel_fbc_is_active(dev_priv)) {
2561 for (level = 2; level <= max_level; level++) {
2562 struct intel_wm_level *wm = &merged->wm[level];
2563
2564 wm->enable = false;
2565 }
2566 }
2567 }
2568
2569 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2570 {
2571 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2572 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2573 }
2574
2575 /* The value we need to program into the WM_LPx latency field */
2576 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2577 {
2578 struct drm_i915_private *dev_priv = to_i915(dev);
2579
2580 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581 return 2 * level;
2582 else
2583 return dev_priv->wm.pri_latency[level];
2584 }
2585
2586 static void ilk_compute_wm_results(struct drm_device *dev,
2587 const struct intel_pipe_wm *merged,
2588 enum intel_ddb_partitioning partitioning,
2589 struct ilk_wm_values *results)
2590 {
2591 struct intel_crtc *intel_crtc;
2592 int level, wm_lp;
2593
2594 results->enable_fbc_wm = merged->fbc_wm_enabled;
2595 results->partitioning = partitioning;
2596
2597 /* LP1+ register values */
2598 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2599 const struct intel_wm_level *r;
2600
2601 level = ilk_wm_lp_to_level(wm_lp, merged);
2602
2603 r = &merged->wm[level];
2604
2605 /*
2606 * Maintain the watermark values even if the level is
2607 * disabled. Doing otherwise could cause underruns.
2608 */
2609 results->wm_lp[wm_lp - 1] =
2610 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2611 (r->pri_val << WM1_LP_SR_SHIFT) |
2612 r->cur_val;
2613
2614 if (r->enable)
2615 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2616
2617 if (INTEL_INFO(dev)->gen >= 8)
2618 results->wm_lp[wm_lp - 1] |=
2619 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2620 else
2621 results->wm_lp[wm_lp - 1] |=
2622 r->fbc_val << WM1_LP_FBC_SHIFT;
2623
2624 /*
2625 * Always set WM1S_LP_EN when spr_val != 0, even if the
2626 * level is disabled. Doing otherwise could cause underruns.
2627 */
2628 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2629 WARN_ON(wm_lp != 1);
2630 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2631 } else
2632 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633 }
2634
2635 /* LP0 register values */
2636 for_each_intel_crtc(dev, intel_crtc) {
2637 enum pipe pipe = intel_crtc->pipe;
2638 const struct intel_wm_level *r =
2639 &intel_crtc->wm.active.ilk.wm[0];
2640
2641 if (WARN_ON(!r->enable))
2642 continue;
2643
2644 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2645
2646 results->wm_pipe[pipe] =
2647 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2648 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2649 r->cur_val;
2650 }
2651 }
2652
2653 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2654 * case both are at the same level. Prefer r1 in case they're the same. */
2655 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2656 struct intel_pipe_wm *r1,
2657 struct intel_pipe_wm *r2)
2658 {
2659 int level, max_level = ilk_wm_max_level(dev);
2660 int level1 = 0, level2 = 0;
2661
2662 for (level = 1; level <= max_level; level++) {
2663 if (r1->wm[level].enable)
2664 level1 = level;
2665 if (r2->wm[level].enable)
2666 level2 = level;
2667 }
2668
2669 if (level1 == level2) {
2670 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2671 return r2;
2672 else
2673 return r1;
2674 } else if (level1 > level2) {
2675 return r1;
2676 } else {
2677 return r2;
2678 }
2679 }
2680
2681 /* dirty bits used to track which watermarks need changes */
2682 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2683 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2684 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2685 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2686 #define WM_DIRTY_FBC (1 << 24)
2687 #define WM_DIRTY_DDB (1 << 25)
2688
2689 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2690 const struct ilk_wm_values *old,
2691 const struct ilk_wm_values *new)
2692 {
2693 unsigned int dirty = 0;
2694 enum pipe pipe;
2695 int wm_lp;
2696
2697 for_each_pipe(dev_priv, pipe) {
2698 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2699 dirty |= WM_DIRTY_LINETIME(pipe);
2700 /* Must disable LP1+ watermarks too */
2701 dirty |= WM_DIRTY_LP_ALL;
2702 }
2703
2704 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2705 dirty |= WM_DIRTY_PIPE(pipe);
2706 /* Must disable LP1+ watermarks too */
2707 dirty |= WM_DIRTY_LP_ALL;
2708 }
2709 }
2710
2711 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2712 dirty |= WM_DIRTY_FBC;
2713 /* Must disable LP1+ watermarks too */
2714 dirty |= WM_DIRTY_LP_ALL;
2715 }
2716
2717 if (old->partitioning != new->partitioning) {
2718 dirty |= WM_DIRTY_DDB;
2719 /* Must disable LP1+ watermarks too */
2720 dirty |= WM_DIRTY_LP_ALL;
2721 }
2722
2723 /* LP1+ watermarks already deemed dirty, no need to continue */
2724 if (dirty & WM_DIRTY_LP_ALL)
2725 return dirty;
2726
2727 /* Find the lowest numbered LP1+ watermark in need of an update... */
2728 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2729 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2730 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2731 break;
2732 }
2733
2734 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2735 for (; wm_lp <= 3; wm_lp++)
2736 dirty |= WM_DIRTY_LP(wm_lp);
2737
2738 return dirty;
2739 }
2740
2741 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2742 unsigned int dirty)
2743 {
2744 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745 bool changed = false;
2746
2747 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2748 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2749 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2750 changed = true;
2751 }
2752 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2753 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2754 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2755 changed = true;
2756 }
2757 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2758 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2759 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2760 changed = true;
2761 }
2762
2763 /*
2764 * Don't touch WM1S_LP_EN here.
2765 * Doing so could cause underruns.
2766 */
2767
2768 return changed;
2769 }
2770
2771 /*
2772 * The spec says we shouldn't write when we don't need, because every write
2773 * causes WMs to be re-evaluated, expending some power.
2774 */
2775 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2776 struct ilk_wm_values *results)
2777 {
2778 struct drm_device *dev = &dev_priv->drm;
2779 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2780 unsigned int dirty;
2781 uint32_t val;
2782
2783 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2784 if (!dirty)
2785 return;
2786
2787 _ilk_disable_lp_wm(dev_priv, dirty);
2788
2789 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2790 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2791 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2792 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2793 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2794 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2795
2796 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2797 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2798 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2799 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2800 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2801 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2802
2803 if (dirty & WM_DIRTY_DDB) {
2804 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2805 val = I915_READ(WM_MISC);
2806 if (results->partitioning == INTEL_DDB_PART_1_2)
2807 val &= ~WM_MISC_DATA_PARTITION_5_6;
2808 else
2809 val |= WM_MISC_DATA_PARTITION_5_6;
2810 I915_WRITE(WM_MISC, val);
2811 } else {
2812 val = I915_READ(DISP_ARB_CTL2);
2813 if (results->partitioning == INTEL_DDB_PART_1_2)
2814 val &= ~DISP_DATA_PARTITION_5_6;
2815 else
2816 val |= DISP_DATA_PARTITION_5_6;
2817 I915_WRITE(DISP_ARB_CTL2, val);
2818 }
2819 }
2820
2821 if (dirty & WM_DIRTY_FBC) {
2822 val = I915_READ(DISP_ARB_CTL);
2823 if (results->enable_fbc_wm)
2824 val &= ~DISP_FBC_WM_DIS;
2825 else
2826 val |= DISP_FBC_WM_DIS;
2827 I915_WRITE(DISP_ARB_CTL, val);
2828 }
2829
2830 if (dirty & WM_DIRTY_LP(1) &&
2831 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2832 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2833
2834 if (INTEL_INFO(dev)->gen >= 7) {
2835 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2836 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2837 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2838 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2839 }
2840
2841 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2842 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2843 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2844 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2845 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2846 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2847
2848 dev_priv->wm.hw = *results;
2849 }
2850
2851 bool ilk_disable_lp_wm(struct drm_device *dev)
2852 {
2853 struct drm_i915_private *dev_priv = to_i915(dev);
2854
2855 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2856 }
2857
2858 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
2859
2860 /*
2861 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2862 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2863 * other universal planes are in indices 1..n. Note that this may leave unused
2864 * indices between the top "sprite" plane and the cursor.
2865 */
2866 static int
2867 skl_wm_plane_id(const struct intel_plane *plane)
2868 {
2869 switch (plane->base.type) {
2870 case DRM_PLANE_TYPE_PRIMARY:
2871 return 0;
2872 case DRM_PLANE_TYPE_CURSOR:
2873 return PLANE_CURSOR;
2874 case DRM_PLANE_TYPE_OVERLAY:
2875 return plane->plane + 1;
2876 default:
2877 MISSING_CASE(plane->base.type);
2878 return plane->plane;
2879 }
2880 }
2881
2882 static bool
2883 intel_has_sagv(struct drm_i915_private *dev_priv)
2884 {
2885 if (IS_KABYLAKE(dev_priv))
2886 return true;
2887
2888 if (IS_SKYLAKE(dev_priv) &&
2889 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2890 return true;
2891
2892 return false;
2893 }
2894
2895 /*
2896 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2897 * depending on power and performance requirements. The display engine access
2898 * to system memory is blocked during the adjustment time. Because of the
2899 * blocking time, having this enabled can cause full system hangs and/or pipe
2900 * underruns if we don't meet all of the following requirements:
2901 *
2902 * - <= 1 pipe enabled
2903 * - All planes can enable watermarks for latencies >= SAGV engine block time
2904 * - We're not using an interlaced display configuration
2905 */
2906 int
2907 intel_enable_sagv(struct drm_i915_private *dev_priv)
2908 {
2909 int ret;
2910
2911 if (!intel_has_sagv(dev_priv))
2912 return 0;
2913
2914 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2915 return 0;
2916
2917 DRM_DEBUG_KMS("Enabling the SAGV\n");
2918 mutex_lock(&dev_priv->rps.hw_lock);
2919
2920 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2921 GEN9_SAGV_ENABLE);
2922
2923 /* We don't need to wait for the SAGV when enabling */
2924 mutex_unlock(&dev_priv->rps.hw_lock);
2925
2926 /*
2927 * Some skl systems, pre-release machines in particular,
2928 * don't actually have an SAGV.
2929 */
2930 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2931 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2932 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2933 return 0;
2934 } else if (ret < 0) {
2935 DRM_ERROR("Failed to enable the SAGV\n");
2936 return ret;
2937 }
2938
2939 dev_priv->sagv_status = I915_SAGV_ENABLED;
2940 return 0;
2941 }
2942
2943 static int
2944 intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2945 {
2946 int ret;
2947 uint32_t temp = GEN9_SAGV_DISABLE;
2948
2949 ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2950 &temp);
2951 if (ret)
2952 return ret;
2953 else
2954 return temp & GEN9_SAGV_IS_DISABLED;
2955 }
2956
2957 int
2958 intel_disable_sagv(struct drm_i915_private *dev_priv)
2959 {
2960 int ret, result;
2961
2962 if (!intel_has_sagv(dev_priv))
2963 return 0;
2964
2965 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2966 return 0;
2967
2968 DRM_DEBUG_KMS("Disabling the SAGV\n");
2969 mutex_lock(&dev_priv->rps.hw_lock);
2970
2971 /* bspec says to keep retrying for at least 1 ms */
2972 ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2973 mutex_unlock(&dev_priv->rps.hw_lock);
2974
2975 if (ret == -ETIMEDOUT) {
2976 DRM_ERROR("Request to disable SAGV timed out\n");
2977 return -ETIMEDOUT;
2978 }
2979
2980 /*
2981 * Some skl systems, pre-release machines in particular,
2982 * don't actually have an SAGV.
2983 */
2984 if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2985 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2986 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2987 return 0;
2988 } else if (result < 0) {
2989 DRM_ERROR("Failed to disable the SAGV\n");
2990 return result;
2991 }
2992
2993 dev_priv->sagv_status = I915_SAGV_DISABLED;
2994 return 0;
2995 }
2996
2997 bool intel_can_enable_sagv(struct drm_atomic_state *state)
2998 {
2999 struct drm_device *dev = state->dev;
3000 struct drm_i915_private *dev_priv = to_i915(dev);
3001 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3002 struct drm_crtc *crtc;
3003 enum pipe pipe;
3004 int level, plane;
3005
3006 if (!intel_has_sagv(dev_priv))
3007 return false;
3008
3009 /*
3010 * SKL workaround: bspec recommends we disable the SAGV when we have
3011 * more then one pipe enabled
3012 *
3013 * If there are no active CRTCs, no additional checks need be performed
3014 */
3015 if (hweight32(intel_state->active_crtcs) == 0)
3016 return true;
3017 else if (hweight32(intel_state->active_crtcs) > 1)
3018 return false;
3019
3020 /* Since we're now guaranteed to only have one active CRTC... */
3021 pipe = ffs(intel_state->active_crtcs) - 1;
3022 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3023
3024 if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
3025 return false;
3026
3027 for_each_plane(dev_priv, pipe, plane) {
3028 /* Skip this plane if it's not enabled */
3029 if (intel_state->wm_results.plane[pipe][plane][0] == 0)
3030 continue;
3031
3032 /* Find the highest enabled wm level for this plane */
3033 for (level = ilk_wm_max_level(dev);
3034 intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
3035 { }
3036
3037 /*
3038 * If any of the planes on this pipe don't enable wm levels
3039 * that incur memory latencies higher then 30µs we can't enable
3040 * the SAGV
3041 */
3042 if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
3043 return false;
3044 }
3045
3046 return true;
3047 }
3048
3049 static void
3050 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3051 const struct intel_crtc_state *cstate,
3052 struct skl_ddb_entry *alloc, /* out */
3053 int *num_active /* out */)
3054 {
3055 struct drm_atomic_state *state = cstate->base.state;
3056 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3057 struct drm_i915_private *dev_priv = to_i915(dev);
3058 struct drm_crtc *for_crtc = cstate->base.crtc;
3059 unsigned int pipe_size, ddb_size;
3060 int nth_active_pipe;
3061 int pipe = to_intel_crtc(for_crtc)->pipe;
3062
3063 if (WARN_ON(!state) || !cstate->base.active) {
3064 alloc->start = 0;
3065 alloc->end = 0;
3066 *num_active = hweight32(dev_priv->active_crtcs);
3067 return;
3068 }
3069
3070 if (intel_state->active_pipe_changes)
3071 *num_active = hweight32(intel_state->active_crtcs);
3072 else
3073 *num_active = hweight32(dev_priv->active_crtcs);
3074
3075 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3076 WARN_ON(ddb_size == 0);
3077
3078 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3079
3080 /*
3081 * If the state doesn't change the active CRTC's, then there's
3082 * no need to recalculate; the existing pipe allocation limits
3083 * should remain unchanged. Note that we're safe from racing
3084 * commits since any racing commit that changes the active CRTC
3085 * list would need to grab _all_ crtc locks, including the one
3086 * we currently hold.
3087 */
3088 if (!intel_state->active_pipe_changes) {
3089 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
3090 return;
3091 }
3092
3093 nth_active_pipe = hweight32(intel_state->active_crtcs &
3094 (drm_crtc_mask(for_crtc) - 1));
3095 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3096 alloc->start = nth_active_pipe * ddb_size / *num_active;
3097 alloc->end = alloc->start + pipe_size;
3098 }
3099
3100 static unsigned int skl_cursor_allocation(int num_active)
3101 {
3102 if (num_active == 1)
3103 return 32;
3104
3105 return 8;
3106 }
3107
3108 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3109 {
3110 entry->start = reg & 0x3ff;
3111 entry->end = (reg >> 16) & 0x3ff;
3112 if (entry->end)
3113 entry->end += 1;
3114 }
3115
3116 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3117 struct skl_ddb_allocation *ddb /* out */)
3118 {
3119 enum pipe pipe;
3120 int plane;
3121 u32 val;
3122
3123 memset(ddb, 0, sizeof(*ddb));
3124
3125 for_each_pipe(dev_priv, pipe) {
3126 enum intel_display_power_domain power_domain;
3127
3128 power_domain = POWER_DOMAIN_PIPE(pipe);
3129 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3130 continue;
3131
3132 for_each_plane(dev_priv, pipe, plane) {
3133 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3134 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3135 val);
3136 }
3137
3138 val = I915_READ(CUR_BUF_CFG(pipe));
3139 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3140 val);
3141
3142 intel_display_power_put(dev_priv, power_domain);
3143 }
3144 }
3145
3146 /*
3147 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3148 * The bspec defines downscale amount as:
3149 *
3150 * """
3151 * Horizontal down scale amount = maximum[1, Horizontal source size /
3152 * Horizontal destination size]
3153 * Vertical down scale amount = maximum[1, Vertical source size /
3154 * Vertical destination size]
3155 * Total down scale amount = Horizontal down scale amount *
3156 * Vertical down scale amount
3157 * """
3158 *
3159 * Return value is provided in 16.16 fixed point form to retain fractional part.
3160 * Caller should take care of dividing & rounding off the value.
3161 */
3162 static uint32_t
3163 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3164 {
3165 uint32_t downscale_h, downscale_w;
3166 uint32_t src_w, src_h, dst_w, dst_h;
3167
3168 if (WARN_ON(!pstate->base.visible))
3169 return DRM_PLANE_HELPER_NO_SCALING;
3170
3171 /* n.b., src is 16.16 fixed point, dst is whole integer */
3172 src_w = drm_rect_width(&pstate->base.src);
3173 src_h = drm_rect_height(&pstate->base.src);
3174 dst_w = drm_rect_width(&pstate->base.dst);
3175 dst_h = drm_rect_height(&pstate->base.dst);
3176 if (intel_rotation_90_or_270(pstate->base.rotation))
3177 swap(dst_w, dst_h);
3178
3179 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3180 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3181
3182 /* Provide result in 16.16 fixed point */
3183 return (uint64_t)downscale_w * downscale_h >> 16;
3184 }
3185
3186 static unsigned int
3187 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3188 const struct drm_plane_state *pstate,
3189 int y)
3190 {
3191 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3192 struct drm_framebuffer *fb = pstate->fb;
3193 uint32_t down_scale_amount, data_rate;
3194 uint32_t width = 0, height = 0;
3195 unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3196
3197 if (!intel_pstate->base.visible)
3198 return 0;
3199 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3200 return 0;
3201 if (y && format != DRM_FORMAT_NV12)
3202 return 0;
3203
3204 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3205 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3206
3207 if (intel_rotation_90_or_270(pstate->rotation))
3208 swap(width, height);
3209
3210 /* for planar format */
3211 if (format == DRM_FORMAT_NV12) {
3212 if (y) /* y-plane data rate */
3213 data_rate = width * height *
3214 drm_format_plane_cpp(format, 0);
3215 else /* uv-plane data rate */
3216 data_rate = (width / 2) * (height / 2) *
3217 drm_format_plane_cpp(format, 1);
3218 } else {
3219 /* for packed formats */
3220 data_rate = width * height * drm_format_plane_cpp(format, 0);
3221 }
3222
3223 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3224
3225 return (uint64_t)data_rate * down_scale_amount >> 16;
3226 }
3227
3228 /*
3229 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3230 * a 8192x4096@32bpp framebuffer:
3231 * 3 * 4096 * 8192 * 4 < 2^32
3232 */
3233 static unsigned int
3234 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3235 {
3236 struct drm_crtc_state *cstate = &intel_cstate->base;
3237 struct drm_atomic_state *state = cstate->state;
3238 struct drm_crtc *crtc = cstate->crtc;
3239 struct drm_device *dev = crtc->dev;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241 const struct drm_plane *plane;
3242 const struct intel_plane *intel_plane;
3243 struct drm_plane_state *pstate;
3244 unsigned int rate, total_data_rate = 0;
3245 int id;
3246 int i;
3247
3248 if (WARN_ON(!state))
3249 return 0;
3250
3251 /* Calculate and cache data rate for each plane */
3252 for_each_plane_in_state(state, plane, pstate, i) {
3253 id = skl_wm_plane_id(to_intel_plane(plane));
3254 intel_plane = to_intel_plane(plane);
3255
3256 if (intel_plane->pipe != intel_crtc->pipe)
3257 continue;
3258
3259 /* packed/uv */
3260 rate = skl_plane_relative_data_rate(intel_cstate,
3261 pstate, 0);
3262 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3263
3264 /* y-plane */
3265 rate = skl_plane_relative_data_rate(intel_cstate,
3266 pstate, 1);
3267 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3268 }
3269
3270 /* Calculate CRTC's total data rate from cached values */
3271 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3272 int id = skl_wm_plane_id(intel_plane);
3273
3274 /* packed/uv */
3275 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3276 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3277 }
3278
3279 return total_data_rate;
3280 }
3281
3282 static uint16_t
3283 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3284 const int y)
3285 {
3286 struct drm_framebuffer *fb = pstate->fb;
3287 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3288 uint32_t src_w, src_h;
3289 uint32_t min_scanlines = 8;
3290 uint8_t plane_bpp;
3291
3292 if (WARN_ON(!fb))
3293 return 0;
3294
3295 /* For packed formats, no y-plane, return 0 */
3296 if (y && fb->pixel_format != DRM_FORMAT_NV12)
3297 return 0;
3298
3299 /* For Non Y-tile return 8-blocks */
3300 if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3301 fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3302 return 8;
3303
3304 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3305 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3306
3307 if (intel_rotation_90_or_270(pstate->rotation))
3308 swap(src_w, src_h);
3309
3310 /* Halve UV plane width and height for NV12 */
3311 if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3312 src_w /= 2;
3313 src_h /= 2;
3314 }
3315
3316 if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3317 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3318 else
3319 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3320
3321 if (intel_rotation_90_or_270(pstate->rotation)) {
3322 switch (plane_bpp) {
3323 case 1:
3324 min_scanlines = 32;
3325 break;
3326 case 2:
3327 min_scanlines = 16;
3328 break;
3329 case 4:
3330 min_scanlines = 8;
3331 break;
3332 case 8:
3333 min_scanlines = 4;
3334 break;
3335 default:
3336 WARN(1, "Unsupported pixel depth %u for rotation",
3337 plane_bpp);
3338 min_scanlines = 32;
3339 }
3340 }
3341
3342 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3343 }
3344
3345 static int
3346 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3347 struct skl_ddb_allocation *ddb /* out */)
3348 {
3349 struct drm_atomic_state *state = cstate->base.state;
3350 struct drm_crtc *crtc = cstate->base.crtc;
3351 struct drm_device *dev = crtc->dev;
3352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353 struct intel_plane *intel_plane;
3354 struct drm_plane *plane;
3355 struct drm_plane_state *pstate;
3356 enum pipe pipe = intel_crtc->pipe;
3357 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3358 uint16_t alloc_size, start, cursor_blocks;
3359 uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3360 uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3361 unsigned int total_data_rate;
3362 int num_active;
3363 int id, i;
3364
3365 if (WARN_ON(!state))
3366 return 0;
3367
3368 if (!cstate->base.active) {
3369 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3370 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3371 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3372 return 0;
3373 }
3374
3375 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3376 alloc_size = skl_ddb_entry_size(alloc);
3377 if (alloc_size == 0) {
3378 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3379 return 0;
3380 }
3381
3382 cursor_blocks = skl_cursor_allocation(num_active);
3383 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3384 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3385
3386 alloc_size -= cursor_blocks;
3387
3388 /* 1. Allocate the mininum required blocks for each active plane */
3389 for_each_plane_in_state(state, plane, pstate, i) {
3390 intel_plane = to_intel_plane(plane);
3391 id = skl_wm_plane_id(intel_plane);
3392
3393 if (intel_plane->pipe != pipe)
3394 continue;
3395
3396 if (!to_intel_plane_state(pstate)->base.visible) {
3397 minimum[id] = 0;
3398 y_minimum[id] = 0;
3399 continue;
3400 }
3401 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3402 minimum[id] = 0;
3403 y_minimum[id] = 0;
3404 continue;
3405 }
3406
3407 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3408 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3409 }
3410
3411 for (i = 0; i < PLANE_CURSOR; i++) {
3412 alloc_size -= minimum[i];
3413 alloc_size -= y_minimum[i];
3414 }
3415
3416 /*
3417 * 2. Distribute the remaining space in proportion to the amount of
3418 * data each plane needs to fetch from memory.
3419 *
3420 * FIXME: we may not allocate every single block here.
3421 */
3422 total_data_rate = skl_get_total_relative_data_rate(cstate);
3423 if (total_data_rate == 0)
3424 return 0;
3425
3426 start = alloc->start;
3427 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3428 unsigned int data_rate, y_data_rate;
3429 uint16_t plane_blocks, y_plane_blocks = 0;
3430 int id = skl_wm_plane_id(intel_plane);
3431
3432 data_rate = cstate->wm.skl.plane_data_rate[id];
3433
3434 /*
3435 * allocation for (packed formats) or (uv-plane part of planar format):
3436 * promote the expression to 64 bits to avoid overflowing, the
3437 * result is < available as data_rate / total_data_rate < 1
3438 */
3439 plane_blocks = minimum[id];
3440 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3441 total_data_rate);
3442
3443 /* Leave disabled planes at (0,0) */
3444 if (data_rate) {
3445 ddb->plane[pipe][id].start = start;
3446 ddb->plane[pipe][id].end = start + plane_blocks;
3447 }
3448
3449 start += plane_blocks;
3450
3451 /*
3452 * allocation for y_plane part of planar format:
3453 */
3454 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3455
3456 y_plane_blocks = y_minimum[id];
3457 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3458 total_data_rate);
3459
3460 if (y_data_rate) {
3461 ddb->y_plane[pipe][id].start = start;
3462 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3463 }
3464
3465 start += y_plane_blocks;
3466 }
3467
3468 return 0;
3469 }
3470
3471 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3472 {
3473 /* TODO: Take into account the scalers once we support them */
3474 return config->base.adjusted_mode.crtc_clock;
3475 }
3476
3477 /*
3478 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3479 * for the read latency) and cpp should always be <= 8, so that
3480 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3481 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3482 */
3483 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3484 {
3485 uint32_t wm_intermediate_val, ret;
3486
3487 if (latency == 0)
3488 return UINT_MAX;
3489
3490 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3491 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3492
3493 return ret;
3494 }
3495
3496 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3497 uint32_t latency, uint32_t plane_blocks_per_line)
3498 {
3499 uint32_t ret;
3500 uint32_t wm_intermediate_val;
3501
3502 if (latency == 0)
3503 return UINT_MAX;
3504
3505 wm_intermediate_val = latency * pixel_rate;
3506 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3507 plane_blocks_per_line;
3508
3509 return ret;
3510 }
3511
3512 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3513 struct intel_plane_state *pstate)
3514 {
3515 uint64_t adjusted_pixel_rate;
3516 uint64_t downscale_amount;
3517 uint64_t pixel_rate;
3518
3519 /* Shouldn't reach here on disabled planes... */
3520 if (WARN_ON(!pstate->base.visible))
3521 return 0;
3522
3523 /*
3524 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3525 * with additional adjustments for plane-specific scaling.
3526 */
3527 adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3528 downscale_amount = skl_plane_downscale_amount(pstate);
3529
3530 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3531 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3532
3533 return pixel_rate;
3534 }
3535
3536 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3537 struct intel_crtc_state *cstate,
3538 struct intel_plane_state *intel_pstate,
3539 uint16_t ddb_allocation,
3540 int level,
3541 uint16_t *out_blocks, /* out */
3542 uint8_t *out_lines, /* out */
3543 bool *enabled /* out */)
3544 {
3545 struct drm_plane_state *pstate = &intel_pstate->base;
3546 struct drm_framebuffer *fb = pstate->fb;
3547 uint32_t latency = dev_priv->wm.skl_latency[level];
3548 uint32_t method1, method2;
3549 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3550 uint32_t res_blocks, res_lines;
3551 uint32_t selected_result;
3552 uint8_t cpp;
3553 uint32_t width = 0, height = 0;
3554 uint32_t plane_pixel_rate;
3555 uint32_t y_tile_minimum, y_min_scanlines;
3556
3557 if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3558 *enabled = false;
3559 return 0;
3560 }
3561
3562 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3563 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3564
3565 if (intel_rotation_90_or_270(pstate->rotation))
3566 swap(width, height);
3567
3568 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3569 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3570
3571 if (intel_rotation_90_or_270(pstate->rotation)) {
3572 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3573 drm_format_plane_cpp(fb->pixel_format, 1) :
3574 drm_format_plane_cpp(fb->pixel_format, 0);
3575
3576 switch (cpp) {
3577 case 1:
3578 y_min_scanlines = 16;
3579 break;
3580 case 2:
3581 y_min_scanlines = 8;
3582 break;
3583 default:
3584 WARN(1, "Unsupported pixel depth for rotation");
3585 case 4:
3586 y_min_scanlines = 4;
3587 break;
3588 }
3589 } else {
3590 y_min_scanlines = 4;
3591 }
3592
3593 plane_bytes_per_line = width * cpp;
3594 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3595 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3596 plane_blocks_per_line =
3597 DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3598 plane_blocks_per_line /= y_min_scanlines;
3599 } else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
3600 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3601 + 1;
3602 } else {
3603 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3604 }
3605
3606 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3607 method2 = skl_wm_method2(plane_pixel_rate,
3608 cstate->base.adjusted_mode.crtc_htotal,
3609 latency,
3610 plane_blocks_per_line);
3611
3612 y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3613
3614 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3615 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3616 selected_result = max(method2, y_tile_minimum);
3617 } else {
3618 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3619 selected_result = min(method1, method2);
3620 else
3621 selected_result = method1;
3622 }
3623
3624 res_blocks = selected_result + 1;
3625 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3626
3627 if (level >= 1 && level <= 7) {
3628 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3629 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3630 res_blocks += y_tile_minimum;
3631 res_lines += y_min_scanlines;
3632 } else {
3633 res_blocks++;
3634 }
3635 }
3636
3637 if (res_blocks >= ddb_allocation || res_lines > 31) {
3638 *enabled = false;
3639
3640 /*
3641 * If there are no valid level 0 watermarks, then we can't
3642 * support this display configuration.
3643 */
3644 if (level) {
3645 return 0;
3646 } else {
3647 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3648 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3649 to_intel_crtc(cstate->base.crtc)->pipe,
3650 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3651 res_blocks, ddb_allocation, res_lines);
3652
3653 return -EINVAL;
3654 }
3655 }
3656
3657 *out_blocks = res_blocks;
3658 *out_lines = res_lines;
3659 *enabled = true;
3660
3661 return 0;
3662 }
3663
3664 static int
3665 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3666 struct skl_ddb_allocation *ddb,
3667 struct intel_crtc_state *cstate,
3668 int level,
3669 struct skl_wm_level *result)
3670 {
3671 struct drm_atomic_state *state = cstate->base.state;
3672 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3673 struct drm_plane *plane;
3674 struct intel_plane *intel_plane;
3675 struct intel_plane_state *intel_pstate;
3676 uint16_t ddb_blocks;
3677 enum pipe pipe = intel_crtc->pipe;
3678 int ret;
3679
3680 /*
3681 * We'll only calculate watermarks for planes that are actually
3682 * enabled, so make sure all other planes are set as disabled.
3683 */
3684 memset(result, 0, sizeof(*result));
3685
3686 for_each_intel_plane_mask(&dev_priv->drm,
3687 intel_plane,
3688 cstate->base.plane_mask) {
3689 int i = skl_wm_plane_id(intel_plane);
3690
3691 plane = &intel_plane->base;
3692 intel_pstate = NULL;
3693 if (state)
3694 intel_pstate =
3695 intel_atomic_get_existing_plane_state(state,
3696 intel_plane);
3697
3698 /*
3699 * Note: If we start supporting multiple pending atomic commits
3700 * against the same planes/CRTC's in the future, plane->state
3701 * will no longer be the correct pre-state to use for the
3702 * calculations here and we'll need to change where we get the
3703 * 'unchanged' plane data from.
3704 *
3705 * For now this is fine because we only allow one queued commit
3706 * against a CRTC. Even if the plane isn't modified by this
3707 * transaction and we don't have a plane lock, we still have
3708 * the CRTC's lock, so we know that no other transactions are
3709 * racing with us to update it.
3710 */
3711 if (!intel_pstate)
3712 intel_pstate = to_intel_plane_state(plane->state);
3713
3714 WARN_ON(!intel_pstate->base.fb);
3715
3716 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3717
3718 ret = skl_compute_plane_wm(dev_priv,
3719 cstate,
3720 intel_pstate,
3721 ddb_blocks,
3722 level,
3723 &result->plane_res_b[i],
3724 &result->plane_res_l[i],
3725 &result->plane_en[i]);
3726 if (ret)
3727 return ret;
3728 }
3729
3730 return 0;
3731 }
3732
3733 static uint32_t
3734 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3735 {
3736 if (!cstate->base.active)
3737 return 0;
3738
3739 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3740 return 0;
3741
3742 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3743 skl_pipe_pixel_rate(cstate));
3744 }
3745
3746 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3747 struct skl_wm_level *trans_wm /* out */)
3748 {
3749 struct drm_crtc *crtc = cstate->base.crtc;
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 struct intel_plane *intel_plane;
3752
3753 if (!cstate->base.active)
3754 return;
3755
3756 /* Until we know more, just disable transition WMs */
3757 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3758 int i = skl_wm_plane_id(intel_plane);
3759
3760 trans_wm->plane_en[i] = false;
3761 }
3762 }
3763
3764 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3765 struct skl_ddb_allocation *ddb,
3766 struct skl_pipe_wm *pipe_wm)
3767 {
3768 struct drm_device *dev = cstate->base.crtc->dev;
3769 const struct drm_i915_private *dev_priv = to_i915(dev);
3770 int level, max_level = ilk_wm_max_level(dev);
3771 int ret;
3772
3773 for (level = 0; level <= max_level; level++) {
3774 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3775 level, &pipe_wm->wm[level]);
3776 if (ret)
3777 return ret;
3778 }
3779 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3780
3781 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3782
3783 return 0;
3784 }
3785
3786 static void skl_compute_wm_results(struct drm_device *dev,
3787 struct skl_pipe_wm *p_wm,
3788 struct skl_wm_values *r,
3789 struct intel_crtc *intel_crtc)
3790 {
3791 int level, max_level = ilk_wm_max_level(dev);
3792 enum pipe pipe = intel_crtc->pipe;
3793 uint32_t temp;
3794 int i;
3795
3796 for (level = 0; level <= max_level; level++) {
3797 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3798 temp = 0;
3799
3800 temp |= p_wm->wm[level].plane_res_l[i] <<
3801 PLANE_WM_LINES_SHIFT;
3802 temp |= p_wm->wm[level].plane_res_b[i];
3803 if (p_wm->wm[level].plane_en[i])
3804 temp |= PLANE_WM_EN;
3805
3806 r->plane[pipe][i][level] = temp;
3807 }
3808
3809 temp = 0;
3810
3811 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3812 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3813
3814 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3815 temp |= PLANE_WM_EN;
3816
3817 r->plane[pipe][PLANE_CURSOR][level] = temp;
3818
3819 }
3820
3821 /* transition WMs */
3822 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3823 temp = 0;
3824 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3825 temp |= p_wm->trans_wm.plane_res_b[i];
3826 if (p_wm->trans_wm.plane_en[i])
3827 temp |= PLANE_WM_EN;
3828
3829 r->plane_trans[pipe][i] = temp;
3830 }
3831
3832 temp = 0;
3833 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3834 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3835 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3836 temp |= PLANE_WM_EN;
3837
3838 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3839
3840 r->wm_linetime[pipe] = p_wm->linetime;
3841 }
3842
3843 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3844 i915_reg_t reg,
3845 const struct skl_ddb_entry *entry)
3846 {
3847 if (entry->end)
3848 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3849 else
3850 I915_WRITE(reg, 0);
3851 }
3852
3853 void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3854 const struct skl_wm_values *wm,
3855 int plane)
3856 {
3857 struct drm_crtc *crtc = &intel_crtc->base;
3858 struct drm_device *dev = crtc->dev;
3859 struct drm_i915_private *dev_priv = to_i915(dev);
3860 int level, max_level = ilk_wm_max_level(dev);
3861 enum pipe pipe = intel_crtc->pipe;
3862
3863 for (level = 0; level <= max_level; level++) {
3864 I915_WRITE(PLANE_WM(pipe, plane, level),
3865 wm->plane[pipe][plane][level]);
3866 }
3867 I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3868
3869 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3870 &wm->ddb.plane[pipe][plane]);
3871 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3872 &wm->ddb.y_plane[pipe][plane]);
3873 }
3874
3875 void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3876 const struct skl_wm_values *wm)
3877 {
3878 struct drm_crtc *crtc = &intel_crtc->base;
3879 struct drm_device *dev = crtc->dev;
3880 struct drm_i915_private *dev_priv = to_i915(dev);
3881 int level, max_level = ilk_wm_max_level(dev);
3882 enum pipe pipe = intel_crtc->pipe;
3883
3884 for (level = 0; level <= max_level; level++) {
3885 I915_WRITE(CUR_WM(pipe, level),
3886 wm->plane[pipe][PLANE_CURSOR][level]);
3887 }
3888 I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3889
3890 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3891 &wm->ddb.plane[pipe][PLANE_CURSOR]);
3892 }
3893
3894 bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
3895 const struct skl_ddb_allocation *new,
3896 enum pipe pipe)
3897 {
3898 return new->pipe[pipe].start == old->pipe[pipe].start &&
3899 new->pipe[pipe].end == old->pipe[pipe].end;
3900 }
3901
3902 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3903 const struct skl_ddb_entry *b)
3904 {
3905 return a->start < b->end && b->start < a->end;
3906 }
3907
3908 bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3909 const struct skl_ddb_allocation *old,
3910 const struct skl_ddb_allocation *new,
3911 enum pipe pipe)
3912 {
3913 struct drm_device *dev = state->dev;
3914 struct intel_crtc *intel_crtc;
3915 enum pipe otherp;
3916
3917 for_each_intel_crtc(dev, intel_crtc) {
3918 otherp = intel_crtc->pipe;
3919
3920 if (otherp == pipe)
3921 continue;
3922
3923 if (skl_ddb_entries_overlap(&new->pipe[pipe],
3924 &old->pipe[otherp]))
3925 return true;
3926 }
3927
3928 return false;
3929 }
3930
3931 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3932 struct skl_ddb_allocation *ddb, /* out */
3933 struct skl_pipe_wm *pipe_wm, /* out */
3934 bool *changed /* out */)
3935 {
3936 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3937 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3938 int ret;
3939
3940 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3941 if (ret)
3942 return ret;
3943
3944 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3945 *changed = false;
3946 else
3947 *changed = true;
3948
3949 return 0;
3950 }
3951
3952 static uint32_t
3953 pipes_modified(struct drm_atomic_state *state)
3954 {
3955 struct drm_crtc *crtc;
3956 struct drm_crtc_state *cstate;
3957 uint32_t i, ret = 0;
3958
3959 for_each_crtc_in_state(state, crtc, cstate, i)
3960 ret |= drm_crtc_mask(crtc);
3961
3962 return ret;
3963 }
3964
3965 int
3966 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3967 {
3968 struct drm_atomic_state *state = cstate->base.state;
3969 struct drm_device *dev = state->dev;
3970 struct drm_crtc *crtc = cstate->base.crtc;
3971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3972 struct drm_i915_private *dev_priv = to_i915(dev);
3973 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3974 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3975 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3976 struct drm_plane_state *plane_state;
3977 struct drm_plane *plane;
3978 enum pipe pipe = intel_crtc->pipe;
3979 int id;
3980
3981 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3982
3983 drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
3984 id = skl_wm_plane_id(to_intel_plane(plane));
3985
3986 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
3987 &new_ddb->plane[pipe][id]) &&
3988 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
3989 &new_ddb->y_plane[pipe][id]))
3990 continue;
3991
3992 plane_state = drm_atomic_get_plane_state(state, plane);
3993 if (IS_ERR(plane_state))
3994 return PTR_ERR(plane_state);
3995 }
3996
3997 return 0;
3998 }
3999
4000 static int
4001 skl_compute_ddb(struct drm_atomic_state *state)
4002 {
4003 struct drm_device *dev = state->dev;
4004 struct drm_i915_private *dev_priv = to_i915(dev);
4005 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4006 struct intel_crtc *intel_crtc;
4007 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4008 uint32_t realloc_pipes = pipes_modified(state);
4009 int ret;
4010
4011 /*
4012 * If this is our first atomic update following hardware readout,
4013 * we can't trust the DDB that the BIOS programmed for us. Let's
4014 * pretend that all pipes switched active status so that we'll
4015 * ensure a full DDB recompute.
4016 */
4017 if (dev_priv->wm.distrust_bios_wm) {
4018 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4019 state->acquire_ctx);
4020 if (ret)
4021 return ret;
4022
4023 intel_state->active_pipe_changes = ~0;
4024
4025 /*
4026 * We usually only initialize intel_state->active_crtcs if we
4027 * we're doing a modeset; make sure this field is always
4028 * initialized during the sanitization process that happens
4029 * on the first commit too.
4030 */
4031 if (!intel_state->modeset)
4032 intel_state->active_crtcs = dev_priv->active_crtcs;
4033 }
4034
4035 /*
4036 * If the modeset changes which CRTC's are active, we need to
4037 * recompute the DDB allocation for *all* active pipes, even
4038 * those that weren't otherwise being modified in any way by this
4039 * atomic commit. Due to the shrinking of the per-pipe allocations
4040 * when new active CRTC's are added, it's possible for a pipe that
4041 * we were already using and aren't changing at all here to suddenly
4042 * become invalid if its DDB needs exceeds its new allocation.
4043 *
4044 * Note that if we wind up doing a full DDB recompute, we can't let
4045 * any other display updates race with this transaction, so we need
4046 * to grab the lock on *all* CRTC's.
4047 */
4048 if (intel_state->active_pipe_changes) {
4049 realloc_pipes = ~0;
4050 intel_state->wm_results.dirty_pipes = ~0;
4051 }
4052
4053 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4054 struct intel_crtc_state *cstate;
4055
4056 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4057 if (IS_ERR(cstate))
4058 return PTR_ERR(cstate);
4059
4060 ret = skl_allocate_pipe_ddb(cstate, ddb);
4061 if (ret)
4062 return ret;
4063
4064 ret = skl_ddb_add_affected_planes(cstate);
4065 if (ret)
4066 return ret;
4067 }
4068
4069 return 0;
4070 }
4071
4072 static void
4073 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4074 struct skl_wm_values *src,
4075 enum pipe pipe)
4076 {
4077 dst->wm_linetime[pipe] = src->wm_linetime[pipe];
4078 memcpy(dst->plane[pipe], src->plane[pipe],
4079 sizeof(dst->plane[pipe]));
4080 memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
4081 sizeof(dst->plane_trans[pipe]));
4082
4083 dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
4084 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4085 sizeof(dst->ddb.y_plane[pipe]));
4086 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4087 sizeof(dst->ddb.plane[pipe]));
4088 }
4089
4090 static int
4091 skl_compute_wm(struct drm_atomic_state *state)
4092 {
4093 struct drm_crtc *crtc;
4094 struct drm_crtc_state *cstate;
4095 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4096 struct skl_wm_values *results = &intel_state->wm_results;
4097 struct skl_pipe_wm *pipe_wm;
4098 bool changed = false;
4099 int ret, i;
4100
4101 /*
4102 * If this transaction isn't actually touching any CRTC's, don't
4103 * bother with watermark calculation. Note that if we pass this
4104 * test, we're guaranteed to hold at least one CRTC state mutex,
4105 * which means we can safely use values like dev_priv->active_crtcs
4106 * since any racing commits that want to update them would need to
4107 * hold _all_ CRTC state mutexes.
4108 */
4109 for_each_crtc_in_state(state, crtc, cstate, i)
4110 changed = true;
4111 if (!changed)
4112 return 0;
4113
4114 /* Clear all dirty flags */
4115 results->dirty_pipes = 0;
4116
4117 ret = skl_compute_ddb(state);
4118 if (ret)
4119 return ret;
4120
4121 /*
4122 * Calculate WM's for all pipes that are part of this transaction.
4123 * Note that the DDB allocation above may have added more CRTC's that
4124 * weren't otherwise being modified (and set bits in dirty_pipes) if
4125 * pipe allocations had to change.
4126 *
4127 * FIXME: Now that we're doing this in the atomic check phase, we
4128 * should allow skl_update_pipe_wm() to return failure in cases where
4129 * no suitable watermark values can be found.
4130 */
4131 for_each_crtc_in_state(state, crtc, cstate, i) {
4132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4133 struct intel_crtc_state *intel_cstate =
4134 to_intel_crtc_state(cstate);
4135
4136 pipe_wm = &intel_cstate->wm.skl.optimal;
4137 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4138 &changed);
4139 if (ret)
4140 return ret;
4141
4142 if (changed)
4143 results->dirty_pipes |= drm_crtc_mask(crtc);
4144
4145 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4146 /* This pipe's WM's did not change */
4147 continue;
4148
4149 intel_cstate->update_wm_pre = true;
4150 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4151 }
4152
4153 return 0;
4154 }
4155
4156 static void skl_update_wm(struct drm_crtc *crtc)
4157 {
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159 struct drm_device *dev = crtc->dev;
4160 struct drm_i915_private *dev_priv = to_i915(dev);
4161 struct skl_wm_values *results = &dev_priv->wm.skl_results;
4162 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4163 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4164 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4165 enum pipe pipe = intel_crtc->pipe;
4166
4167 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4168 return;
4169
4170 intel_crtc->wm.active.skl = *pipe_wm;
4171
4172 mutex_lock(&dev_priv->wm.wm_mutex);
4173
4174 /*
4175 * If this pipe isn't active already, we're going to be enabling it
4176 * very soon. Since it's safe to update a pipe's ddb allocation while
4177 * the pipe's shut off, just do so here. Already active pipes will have
4178 * their watermarks updated once we update their planes.
4179 */
4180 if (crtc->state->active_changed) {
4181 int plane;
4182
4183 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
4184 skl_write_plane_wm(intel_crtc, results, plane);
4185
4186 skl_write_cursor_wm(intel_crtc, results);
4187 }
4188
4189 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4190
4191 mutex_unlock(&dev_priv->wm.wm_mutex);
4192 }
4193
4194 static void ilk_compute_wm_config(struct drm_device *dev,
4195 struct intel_wm_config *config)
4196 {
4197 struct intel_crtc *crtc;
4198
4199 /* Compute the currently _active_ config */
4200 for_each_intel_crtc(dev, crtc) {
4201 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4202
4203 if (!wm->pipe_enabled)
4204 continue;
4205
4206 config->sprites_enabled |= wm->sprites_enabled;
4207 config->sprites_scaled |= wm->sprites_scaled;
4208 config->num_pipes_active++;
4209 }
4210 }
4211
4212 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4213 {
4214 struct drm_device *dev = &dev_priv->drm;
4215 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4216 struct ilk_wm_maximums max;
4217 struct intel_wm_config config = {};
4218 struct ilk_wm_values results = {};
4219 enum intel_ddb_partitioning partitioning;
4220
4221 ilk_compute_wm_config(dev, &config);
4222
4223 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4224 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4225
4226 /* 5/6 split only in single pipe config on IVB+ */
4227 if (INTEL_INFO(dev)->gen >= 7 &&
4228 config.num_pipes_active == 1 && config.sprites_enabled) {
4229 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4230 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4231
4232 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4233 } else {
4234 best_lp_wm = &lp_wm_1_2;
4235 }
4236
4237 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4238 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4239
4240 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4241
4242 ilk_write_wm_values(dev_priv, &results);
4243 }
4244
4245 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4246 {
4247 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4248 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4249
4250 mutex_lock(&dev_priv->wm.wm_mutex);
4251 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4252 ilk_program_watermarks(dev_priv);
4253 mutex_unlock(&dev_priv->wm.wm_mutex);
4254 }
4255
4256 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4257 {
4258 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4259 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4260
4261 mutex_lock(&dev_priv->wm.wm_mutex);
4262 if (cstate->wm.need_postvbl_update) {
4263 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4264 ilk_program_watermarks(dev_priv);
4265 }
4266 mutex_unlock(&dev_priv->wm.wm_mutex);
4267 }
4268
4269 static void skl_pipe_wm_active_state(uint32_t val,
4270 struct skl_pipe_wm *active,
4271 bool is_transwm,
4272 bool is_cursor,
4273 int i,
4274 int level)
4275 {
4276 bool is_enabled = (val & PLANE_WM_EN) != 0;
4277
4278 if (!is_transwm) {
4279 if (!is_cursor) {
4280 active->wm[level].plane_en[i] = is_enabled;
4281 active->wm[level].plane_res_b[i] =
4282 val & PLANE_WM_BLOCKS_MASK;
4283 active->wm[level].plane_res_l[i] =
4284 (val >> PLANE_WM_LINES_SHIFT) &
4285 PLANE_WM_LINES_MASK;
4286 } else {
4287 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4288 active->wm[level].plane_res_b[PLANE_CURSOR] =
4289 val & PLANE_WM_BLOCKS_MASK;
4290 active->wm[level].plane_res_l[PLANE_CURSOR] =
4291 (val >> PLANE_WM_LINES_SHIFT) &
4292 PLANE_WM_LINES_MASK;
4293 }
4294 } else {
4295 if (!is_cursor) {
4296 active->trans_wm.plane_en[i] = is_enabled;
4297 active->trans_wm.plane_res_b[i] =
4298 val & PLANE_WM_BLOCKS_MASK;
4299 active->trans_wm.plane_res_l[i] =
4300 (val >> PLANE_WM_LINES_SHIFT) &
4301 PLANE_WM_LINES_MASK;
4302 } else {
4303 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4304 active->trans_wm.plane_res_b[PLANE_CURSOR] =
4305 val & PLANE_WM_BLOCKS_MASK;
4306 active->trans_wm.plane_res_l[PLANE_CURSOR] =
4307 (val >> PLANE_WM_LINES_SHIFT) &
4308 PLANE_WM_LINES_MASK;
4309 }
4310 }
4311 }
4312
4313 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4314 {
4315 struct drm_device *dev = crtc->dev;
4316 struct drm_i915_private *dev_priv = to_i915(dev);
4317 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4320 struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4321 enum pipe pipe = intel_crtc->pipe;
4322 int level, i, max_level;
4323 uint32_t temp;
4324
4325 max_level = ilk_wm_max_level(dev);
4326
4327 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4328
4329 for (level = 0; level <= max_level; level++) {
4330 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4331 hw->plane[pipe][i][level] =
4332 I915_READ(PLANE_WM(pipe, i, level));
4333 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4334 }
4335
4336 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4337 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4338 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4339
4340 if (!intel_crtc->active)
4341 return;
4342
4343 hw->dirty_pipes |= drm_crtc_mask(crtc);
4344
4345 active->linetime = hw->wm_linetime[pipe];
4346
4347 for (level = 0; level <= max_level; level++) {
4348 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4349 temp = hw->plane[pipe][i][level];
4350 skl_pipe_wm_active_state(temp, active, false,
4351 false, i, level);
4352 }
4353 temp = hw->plane[pipe][PLANE_CURSOR][level];
4354 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4355 }
4356
4357 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4358 temp = hw->plane_trans[pipe][i];
4359 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4360 }
4361
4362 temp = hw->plane_trans[pipe][PLANE_CURSOR];
4363 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4364
4365 intel_crtc->wm.active.skl = *active;
4366 }
4367
4368 void skl_wm_get_hw_state(struct drm_device *dev)
4369 {
4370 struct drm_i915_private *dev_priv = to_i915(dev);
4371 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4372 struct drm_crtc *crtc;
4373
4374 skl_ddb_get_hw_state(dev_priv, ddb);
4375 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4376 skl_pipe_wm_get_hw_state(crtc);
4377
4378 if (dev_priv->active_crtcs) {
4379 /* Fully recompute DDB on first atomic commit */
4380 dev_priv->wm.distrust_bios_wm = true;
4381 } else {
4382 /* Easy/common case; just sanitize DDB now if everything off */
4383 memset(ddb, 0, sizeof(*ddb));
4384 }
4385 }
4386
4387 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4388 {
4389 struct drm_device *dev = crtc->dev;
4390 struct drm_i915_private *dev_priv = to_i915(dev);
4391 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4393 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4394 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4395 enum pipe pipe = intel_crtc->pipe;
4396 static const i915_reg_t wm0_pipe_reg[] = {
4397 [PIPE_A] = WM0_PIPEA_ILK,
4398 [PIPE_B] = WM0_PIPEB_ILK,
4399 [PIPE_C] = WM0_PIPEC_IVB,
4400 };
4401
4402 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4403 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4404 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4405
4406 memset(active, 0, sizeof(*active));
4407
4408 active->pipe_enabled = intel_crtc->active;
4409
4410 if (active->pipe_enabled) {
4411 u32 tmp = hw->wm_pipe[pipe];
4412
4413 /*
4414 * For active pipes LP0 watermark is marked as
4415 * enabled, and LP1+ watermaks as disabled since
4416 * we can't really reverse compute them in case
4417 * multiple pipes are active.
4418 */
4419 active->wm[0].enable = true;
4420 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4421 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4422 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4423 active->linetime = hw->wm_linetime[pipe];
4424 } else {
4425 int level, max_level = ilk_wm_max_level(dev);
4426
4427 /*
4428 * For inactive pipes, all watermark levels
4429 * should be marked as enabled but zeroed,
4430 * which is what we'd compute them to.
4431 */
4432 for (level = 0; level <= max_level; level++)
4433 active->wm[level].enable = true;
4434 }
4435
4436 intel_crtc->wm.active.ilk = *active;
4437 }
4438
4439 #define _FW_WM(value, plane) \
4440 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4441 #define _FW_WM_VLV(value, plane) \
4442 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4443
4444 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4445 struct vlv_wm_values *wm)
4446 {
4447 enum pipe pipe;
4448 uint32_t tmp;
4449
4450 for_each_pipe(dev_priv, pipe) {
4451 tmp = I915_READ(VLV_DDL(pipe));
4452
4453 wm->ddl[pipe].primary =
4454 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4455 wm->ddl[pipe].cursor =
4456 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4457 wm->ddl[pipe].sprite[0] =
4458 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4459 wm->ddl[pipe].sprite[1] =
4460 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4461 }
4462
4463 tmp = I915_READ(DSPFW1);
4464 wm->sr.plane = _FW_WM(tmp, SR);
4465 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4466 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4467 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4468
4469 tmp = I915_READ(DSPFW2);
4470 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4471 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4472 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4473
4474 tmp = I915_READ(DSPFW3);
4475 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4476
4477 if (IS_CHERRYVIEW(dev_priv)) {
4478 tmp = I915_READ(DSPFW7_CHV);
4479 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4480 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4481
4482 tmp = I915_READ(DSPFW8_CHV);
4483 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4484 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4485
4486 tmp = I915_READ(DSPFW9_CHV);
4487 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4488 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4489
4490 tmp = I915_READ(DSPHOWM);
4491 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4492 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4493 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4494 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4495 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4496 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4497 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4498 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4499 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4500 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4501 } else {
4502 tmp = I915_READ(DSPFW7);
4503 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4504 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4505
4506 tmp = I915_READ(DSPHOWM);
4507 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4508 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4509 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4510 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4511 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4512 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4513 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4514 }
4515 }
4516
4517 #undef _FW_WM
4518 #undef _FW_WM_VLV
4519
4520 void vlv_wm_get_hw_state(struct drm_device *dev)
4521 {
4522 struct drm_i915_private *dev_priv = to_i915(dev);
4523 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4524 struct intel_plane *plane;
4525 enum pipe pipe;
4526 u32 val;
4527
4528 vlv_read_wm_values(dev_priv, wm);
4529
4530 for_each_intel_plane(dev, plane) {
4531 switch (plane->base.type) {
4532 int sprite;
4533 case DRM_PLANE_TYPE_CURSOR:
4534 plane->wm.fifo_size = 63;
4535 break;
4536 case DRM_PLANE_TYPE_PRIMARY:
4537 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4538 break;
4539 case DRM_PLANE_TYPE_OVERLAY:
4540 sprite = plane->plane;
4541 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4542 break;
4543 }
4544 }
4545
4546 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4547 wm->level = VLV_WM_LEVEL_PM2;
4548
4549 if (IS_CHERRYVIEW(dev_priv)) {
4550 mutex_lock(&dev_priv->rps.hw_lock);
4551
4552 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4553 if (val & DSP_MAXFIFO_PM5_ENABLE)
4554 wm->level = VLV_WM_LEVEL_PM5;
4555
4556 /*
4557 * If DDR DVFS is disabled in the BIOS, Punit
4558 * will never ack the request. So if that happens
4559 * assume we don't have to enable/disable DDR DVFS
4560 * dynamically. To test that just set the REQ_ACK
4561 * bit to poke the Punit, but don't change the
4562 * HIGH/LOW bits so that we don't actually change
4563 * the current state.
4564 */
4565 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4566 val |= FORCE_DDR_FREQ_REQ_ACK;
4567 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4568
4569 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4570 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4571 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4572 "assuming DDR DVFS is disabled\n");
4573 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4574 } else {
4575 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4576 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4577 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4578 }
4579
4580 mutex_unlock(&dev_priv->rps.hw_lock);
4581 }
4582
4583 for_each_pipe(dev_priv, pipe)
4584 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4585 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4586 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4587
4588 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4589 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4590 }
4591
4592 void ilk_wm_get_hw_state(struct drm_device *dev)
4593 {
4594 struct drm_i915_private *dev_priv = to_i915(dev);
4595 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4596 struct drm_crtc *crtc;
4597
4598 for_each_crtc(dev, crtc)
4599 ilk_pipe_wm_get_hw_state(crtc);
4600
4601 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4602 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4603 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4604
4605 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4606 if (INTEL_INFO(dev)->gen >= 7) {
4607 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4608 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4609 }
4610
4611 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4612 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4613 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4614 else if (IS_IVYBRIDGE(dev))
4615 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4616 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4617
4618 hw->enable_fbc_wm =
4619 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4620 }
4621
4622 /**
4623 * intel_update_watermarks - update FIFO watermark values based on current modes
4624 *
4625 * Calculate watermark values for the various WM regs based on current mode
4626 * and plane configuration.
4627 *
4628 * There are several cases to deal with here:
4629 * - normal (i.e. non-self-refresh)
4630 * - self-refresh (SR) mode
4631 * - lines are large relative to FIFO size (buffer can hold up to 2)
4632 * - lines are small relative to FIFO size (buffer can hold more than 2
4633 * lines), so need to account for TLB latency
4634 *
4635 * The normal calculation is:
4636 * watermark = dotclock * bytes per pixel * latency
4637 * where latency is platform & configuration dependent (we assume pessimal
4638 * values here).
4639 *
4640 * The SR calculation is:
4641 * watermark = (trunc(latency/line time)+1) * surface width *
4642 * bytes per pixel
4643 * where
4644 * line time = htotal / dotclock
4645 * surface width = hdisplay for normal plane and 64 for cursor
4646 * and latency is assumed to be high, as above.
4647 *
4648 * The final value programmed to the register should always be rounded up,
4649 * and include an extra 2 entries to account for clock crossings.
4650 *
4651 * We don't use the sprite, so we can ignore that. And on Crestline we have
4652 * to set the non-SR watermarks to 8.
4653 */
4654 void intel_update_watermarks(struct drm_crtc *crtc)
4655 {
4656 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4657
4658 if (dev_priv->display.update_wm)
4659 dev_priv->display.update_wm(crtc);
4660 }
4661
4662 /*
4663 * Lock protecting IPS related data structures
4664 */
4665 DEFINE_SPINLOCK(mchdev_lock);
4666
4667 /* Global for IPS driver to get at the current i915 device. Protected by
4668 * mchdev_lock. */
4669 static struct drm_i915_private *i915_mch_dev;
4670
4671 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4672 {
4673 u16 rgvswctl;
4674
4675 assert_spin_locked(&mchdev_lock);
4676
4677 rgvswctl = I915_READ16(MEMSWCTL);
4678 if (rgvswctl & MEMCTL_CMD_STS) {
4679 DRM_DEBUG("gpu busy, RCS change rejected\n");
4680 return false; /* still busy with another command */
4681 }
4682
4683 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4684 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4685 I915_WRITE16(MEMSWCTL, rgvswctl);
4686 POSTING_READ16(MEMSWCTL);
4687
4688 rgvswctl |= MEMCTL_CMD_STS;
4689 I915_WRITE16(MEMSWCTL, rgvswctl);
4690
4691 return true;
4692 }
4693
4694 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4695 {
4696 u32 rgvmodectl;
4697 u8 fmax, fmin, fstart, vstart;
4698
4699 spin_lock_irq(&mchdev_lock);
4700
4701 rgvmodectl = I915_READ(MEMMODECTL);
4702
4703 /* Enable temp reporting */
4704 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4705 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4706
4707 /* 100ms RC evaluation intervals */
4708 I915_WRITE(RCUPEI, 100000);
4709 I915_WRITE(RCDNEI, 100000);
4710
4711 /* Set max/min thresholds to 90ms and 80ms respectively */
4712 I915_WRITE(RCBMAXAVG, 90000);
4713 I915_WRITE(RCBMINAVG, 80000);
4714
4715 I915_WRITE(MEMIHYST, 1);
4716
4717 /* Set up min, max, and cur for interrupt handling */
4718 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4719 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4720 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4721 MEMMODE_FSTART_SHIFT;
4722
4723 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4724 PXVFREQ_PX_SHIFT;
4725
4726 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4727 dev_priv->ips.fstart = fstart;
4728
4729 dev_priv->ips.max_delay = fstart;
4730 dev_priv->ips.min_delay = fmin;
4731 dev_priv->ips.cur_delay = fstart;
4732
4733 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4734 fmax, fmin, fstart);
4735
4736 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4737
4738 /*
4739 * Interrupts will be enabled in ironlake_irq_postinstall
4740 */
4741
4742 I915_WRITE(VIDSTART, vstart);
4743 POSTING_READ(VIDSTART);
4744
4745 rgvmodectl |= MEMMODE_SWMODE_EN;
4746 I915_WRITE(MEMMODECTL, rgvmodectl);
4747
4748 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4749 DRM_ERROR("stuck trying to change perf mode\n");
4750 mdelay(1);
4751
4752 ironlake_set_drps(dev_priv, fstart);
4753
4754 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4755 I915_READ(DDREC) + I915_READ(CSIEC);
4756 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4757 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4758 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4759
4760 spin_unlock_irq(&mchdev_lock);
4761 }
4762
4763 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4764 {
4765 u16 rgvswctl;
4766
4767 spin_lock_irq(&mchdev_lock);
4768
4769 rgvswctl = I915_READ16(MEMSWCTL);
4770
4771 /* Ack interrupts, disable EFC interrupt */
4772 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4773 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4774 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4775 I915_WRITE(DEIIR, DE_PCU_EVENT);
4776 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4777
4778 /* Go back to the starting frequency */
4779 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4780 mdelay(1);
4781 rgvswctl |= MEMCTL_CMD_STS;
4782 I915_WRITE(MEMSWCTL, rgvswctl);
4783 mdelay(1);
4784
4785 spin_unlock_irq(&mchdev_lock);
4786 }
4787
4788 /* There's a funny hw issue where the hw returns all 0 when reading from
4789 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4790 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4791 * all limits and the gpu stuck at whatever frequency it is at atm).
4792 */
4793 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4794 {
4795 u32 limits;
4796
4797 /* Only set the down limit when we've reached the lowest level to avoid
4798 * getting more interrupts, otherwise leave this clear. This prevents a
4799 * race in the hw when coming out of rc6: There's a tiny window where
4800 * the hw runs at the minimal clock before selecting the desired
4801 * frequency, if the down threshold expires in that window we will not
4802 * receive a down interrupt. */
4803 if (IS_GEN9(dev_priv)) {
4804 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4805 if (val <= dev_priv->rps.min_freq_softlimit)
4806 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4807 } else {
4808 limits = dev_priv->rps.max_freq_softlimit << 24;
4809 if (val <= dev_priv->rps.min_freq_softlimit)
4810 limits |= dev_priv->rps.min_freq_softlimit << 16;
4811 }
4812
4813 return limits;
4814 }
4815
4816 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4817 {
4818 int new_power;
4819 u32 threshold_up = 0, threshold_down = 0; /* in % */
4820 u32 ei_up = 0, ei_down = 0;
4821
4822 new_power = dev_priv->rps.power;
4823 switch (dev_priv->rps.power) {
4824 case LOW_POWER:
4825 if (val > dev_priv->rps.efficient_freq + 1 &&
4826 val > dev_priv->rps.cur_freq)
4827 new_power = BETWEEN;
4828 break;
4829
4830 case BETWEEN:
4831 if (val <= dev_priv->rps.efficient_freq &&
4832 val < dev_priv->rps.cur_freq)
4833 new_power = LOW_POWER;
4834 else if (val >= dev_priv->rps.rp0_freq &&
4835 val > dev_priv->rps.cur_freq)
4836 new_power = HIGH_POWER;
4837 break;
4838
4839 case HIGH_POWER:
4840 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4841 val < dev_priv->rps.cur_freq)
4842 new_power = BETWEEN;
4843 break;
4844 }
4845 /* Max/min bins are special */
4846 if (val <= dev_priv->rps.min_freq_softlimit)
4847 new_power = LOW_POWER;
4848 if (val >= dev_priv->rps.max_freq_softlimit)
4849 new_power = HIGH_POWER;
4850 if (new_power == dev_priv->rps.power)
4851 return;
4852
4853 /* Note the units here are not exactly 1us, but 1280ns. */
4854 switch (new_power) {
4855 case LOW_POWER:
4856 /* Upclock if more than 95% busy over 16ms */
4857 ei_up = 16000;
4858 threshold_up = 95;
4859
4860 /* Downclock if less than 85% busy over 32ms */
4861 ei_down = 32000;
4862 threshold_down = 85;
4863 break;
4864
4865 case BETWEEN:
4866 /* Upclock if more than 90% busy over 13ms */
4867 ei_up = 13000;
4868 threshold_up = 90;
4869
4870 /* Downclock if less than 75% busy over 32ms */
4871 ei_down = 32000;
4872 threshold_down = 75;
4873 break;
4874
4875 case HIGH_POWER:
4876 /* Upclock if more than 85% busy over 10ms */
4877 ei_up = 10000;
4878 threshold_up = 85;
4879
4880 /* Downclock if less than 60% busy over 32ms */
4881 ei_down = 32000;
4882 threshold_down = 60;
4883 break;
4884 }
4885
4886 I915_WRITE(GEN6_RP_UP_EI,
4887 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4888 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4889 GT_INTERVAL_FROM_US(dev_priv,
4890 ei_up * threshold_up / 100));
4891
4892 I915_WRITE(GEN6_RP_DOWN_EI,
4893 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4894 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4895 GT_INTERVAL_FROM_US(dev_priv,
4896 ei_down * threshold_down / 100));
4897
4898 I915_WRITE(GEN6_RP_CONTROL,
4899 GEN6_RP_MEDIA_TURBO |
4900 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4901 GEN6_RP_MEDIA_IS_GFX |
4902 GEN6_RP_ENABLE |
4903 GEN6_RP_UP_BUSY_AVG |
4904 GEN6_RP_DOWN_IDLE_AVG);
4905
4906 dev_priv->rps.power = new_power;
4907 dev_priv->rps.up_threshold = threshold_up;
4908 dev_priv->rps.down_threshold = threshold_down;
4909 dev_priv->rps.last_adj = 0;
4910 }
4911
4912 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4913 {
4914 u32 mask = 0;
4915
4916 if (val > dev_priv->rps.min_freq_softlimit)
4917 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4918 if (val < dev_priv->rps.max_freq_softlimit)
4919 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4920
4921 mask &= dev_priv->pm_rps_events;
4922
4923 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4924 }
4925
4926 /* gen6_set_rps is called to update the frequency request, but should also be
4927 * called when the range (min_delay and max_delay) is modified so that we can
4928 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4929 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4930 {
4931 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4932 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4933 return;
4934
4935 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4936 WARN_ON(val > dev_priv->rps.max_freq);
4937 WARN_ON(val < dev_priv->rps.min_freq);
4938
4939 /* min/max delay may still have been modified so be sure to
4940 * write the limits value.
4941 */
4942 if (val != dev_priv->rps.cur_freq) {
4943 gen6_set_rps_thresholds(dev_priv, val);
4944
4945 if (IS_GEN9(dev_priv))
4946 I915_WRITE(GEN6_RPNSWREQ,
4947 GEN9_FREQUENCY(val));
4948 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4949 I915_WRITE(GEN6_RPNSWREQ,
4950 HSW_FREQUENCY(val));
4951 else
4952 I915_WRITE(GEN6_RPNSWREQ,
4953 GEN6_FREQUENCY(val) |
4954 GEN6_OFFSET(0) |
4955 GEN6_AGGRESSIVE_TURBO);
4956 }
4957
4958 /* Make sure we continue to get interrupts
4959 * until we hit the minimum or maximum frequencies.
4960 */
4961 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4962 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4963
4964 POSTING_READ(GEN6_RPNSWREQ);
4965
4966 dev_priv->rps.cur_freq = val;
4967 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4968 }
4969
4970 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4971 {
4972 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973 WARN_ON(val > dev_priv->rps.max_freq);
4974 WARN_ON(val < dev_priv->rps.min_freq);
4975
4976 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4977 "Odd GPU freq value\n"))
4978 val &= ~1;
4979
4980 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4981
4982 if (val != dev_priv->rps.cur_freq) {
4983 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4984 if (!IS_CHERRYVIEW(dev_priv))
4985 gen6_set_rps_thresholds(dev_priv, val);
4986 }
4987
4988 dev_priv->rps.cur_freq = val;
4989 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4990 }
4991
4992 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4993 *
4994 * * If Gfx is Idle, then
4995 * 1. Forcewake Media well.
4996 * 2. Request idle freq.
4997 * 3. Release Forcewake of Media well.
4998 */
4999 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5000 {
5001 u32 val = dev_priv->rps.idle_freq;
5002
5003 if (dev_priv->rps.cur_freq <= val)
5004 return;
5005
5006 /* Wake up the media well, as that takes a lot less
5007 * power than the Render well. */
5008 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5009 valleyview_set_rps(dev_priv, val);
5010 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5011 }
5012
5013 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5014 {
5015 mutex_lock(&dev_priv->rps.hw_lock);
5016 if (dev_priv->rps.enabled) {
5017 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5018 gen6_rps_reset_ei(dev_priv);
5019 I915_WRITE(GEN6_PMINTRMSK,
5020 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5021
5022 gen6_enable_rps_interrupts(dev_priv);
5023
5024 /* Ensure we start at the user's desired frequency */
5025 intel_set_rps(dev_priv,
5026 clamp(dev_priv->rps.cur_freq,
5027 dev_priv->rps.min_freq_softlimit,
5028 dev_priv->rps.max_freq_softlimit));
5029 }
5030 mutex_unlock(&dev_priv->rps.hw_lock);
5031 }
5032
5033 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5034 {
5035 /* Flush our bottom-half so that it does not race with us
5036 * setting the idle frequency and so that it is bounded by
5037 * our rpm wakeref. And then disable the interrupts to stop any
5038 * futher RPS reclocking whilst we are asleep.
5039 */
5040 gen6_disable_rps_interrupts(dev_priv);
5041
5042 mutex_lock(&dev_priv->rps.hw_lock);
5043 if (dev_priv->rps.enabled) {
5044 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5045 vlv_set_rps_idle(dev_priv);
5046 else
5047 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5048 dev_priv->rps.last_adj = 0;
5049 I915_WRITE(GEN6_PMINTRMSK,
5050 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5051 }
5052 mutex_unlock(&dev_priv->rps.hw_lock);
5053
5054 spin_lock(&dev_priv->rps.client_lock);
5055 while (!list_empty(&dev_priv->rps.clients))
5056 list_del_init(dev_priv->rps.clients.next);
5057 spin_unlock(&dev_priv->rps.client_lock);
5058 }
5059
5060 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5061 struct intel_rps_client *rps,
5062 unsigned long submitted)
5063 {
5064 /* This is intentionally racy! We peek at the state here, then
5065 * validate inside the RPS worker.
5066 */
5067 if (!(dev_priv->gt.awake &&
5068 dev_priv->rps.enabled &&
5069 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5070 return;
5071
5072 /* Force a RPS boost (and don't count it against the client) if
5073 * the GPU is severely congested.
5074 */
5075 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5076 rps = NULL;
5077
5078 spin_lock(&dev_priv->rps.client_lock);
5079 if (rps == NULL || list_empty(&rps->link)) {
5080 spin_lock_irq(&dev_priv->irq_lock);
5081 if (dev_priv->rps.interrupts_enabled) {
5082 dev_priv->rps.client_boost = true;
5083 schedule_work(&dev_priv->rps.work);
5084 }
5085 spin_unlock_irq(&dev_priv->irq_lock);
5086
5087 if (rps != NULL) {
5088 list_add(&rps->link, &dev_priv->rps.clients);
5089 rps->boosts++;
5090 } else
5091 dev_priv->rps.boosts++;
5092 }
5093 spin_unlock(&dev_priv->rps.client_lock);
5094 }
5095
5096 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5097 {
5098 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5099 valleyview_set_rps(dev_priv, val);
5100 else
5101 gen6_set_rps(dev_priv, val);
5102 }
5103
5104 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5105 {
5106 I915_WRITE(GEN6_RC_CONTROL, 0);
5107 I915_WRITE(GEN9_PG_ENABLE, 0);
5108 }
5109
5110 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5111 {
5112 I915_WRITE(GEN6_RP_CONTROL, 0);
5113 }
5114
5115 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5116 {
5117 I915_WRITE(GEN6_RC_CONTROL, 0);
5118 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5119 I915_WRITE(GEN6_RP_CONTROL, 0);
5120 }
5121
5122 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5123 {
5124 I915_WRITE(GEN6_RC_CONTROL, 0);
5125 }
5126
5127 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5128 {
5129 /* we're doing forcewake before Disabling RC6,
5130 * This what the BIOS expects when going into suspend */
5131 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5132
5133 I915_WRITE(GEN6_RC_CONTROL, 0);
5134
5135 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5136 }
5137
5138 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5139 {
5140 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5141 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5142 mode = GEN6_RC_CTL_RC6_ENABLE;
5143 else
5144 mode = 0;
5145 }
5146 if (HAS_RC6p(dev_priv))
5147 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5148 "RC6 %s RC6p %s RC6pp %s\n",
5149 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5150 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5151 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5152
5153 else
5154 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5155 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5156 }
5157
5158 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5159 {
5160 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5161 bool enable_rc6 = true;
5162 unsigned long rc6_ctx_base;
5163 u32 rc_ctl;
5164 int rc_sw_target;
5165
5166 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5167 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5168 RC_SW_TARGET_STATE_SHIFT;
5169 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5170 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5171 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5172 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5173 rc_sw_target);
5174
5175 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5176 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5177 enable_rc6 = false;
5178 }
5179
5180 /*
5181 * The exact context size is not known for BXT, so assume a page size
5182 * for this check.
5183 */
5184 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5185 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5186 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5187 ggtt->stolen_reserved_size))) {
5188 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5189 enable_rc6 = false;
5190 }
5191
5192 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5193 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5194 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5195 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5196 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5197 enable_rc6 = false;
5198 }
5199
5200 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5201 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5202 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5203 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5204 enable_rc6 = false;
5205 }
5206
5207 if (!I915_READ(GEN6_GFXPAUSE)) {
5208 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5209 enable_rc6 = false;
5210 }
5211
5212 if (!I915_READ(GEN8_MISC_CTRL0)) {
5213 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5214 enable_rc6 = false;
5215 }
5216
5217 return enable_rc6;
5218 }
5219
5220 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5221 {
5222 /* No RC6 before Ironlake and code is gone for ilk. */
5223 if (INTEL_INFO(dev_priv)->gen < 6)
5224 return 0;
5225
5226 if (!enable_rc6)
5227 return 0;
5228
5229 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5230 DRM_INFO("RC6 disabled by BIOS\n");
5231 return 0;
5232 }
5233
5234 /* Respect the kernel parameter if it is set */
5235 if (enable_rc6 >= 0) {
5236 int mask;
5237
5238 if (HAS_RC6p(dev_priv))
5239 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5240 INTEL_RC6pp_ENABLE;
5241 else
5242 mask = INTEL_RC6_ENABLE;
5243
5244 if ((enable_rc6 & mask) != enable_rc6)
5245 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5246 "(requested %d, valid %d)\n",
5247 enable_rc6 & mask, enable_rc6, mask);
5248
5249 return enable_rc6 & mask;
5250 }
5251
5252 if (IS_IVYBRIDGE(dev_priv))
5253 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5254
5255 return INTEL_RC6_ENABLE;
5256 }
5257
5258 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5259 {
5260 /* All of these values are in units of 50MHz */
5261
5262 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5263 if (IS_BROXTON(dev_priv)) {
5264 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5265 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5266 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5267 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5268 } else {
5269 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5270 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5271 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5272 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5273 }
5274 /* hw_max = RP0 until we check for overclocking */
5275 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5276
5277 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5278 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5279 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5280 u32 ddcc_status = 0;
5281
5282 if (sandybridge_pcode_read(dev_priv,
5283 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5284 &ddcc_status) == 0)
5285 dev_priv->rps.efficient_freq =
5286 clamp_t(u8,
5287 ((ddcc_status >> 8) & 0xff),
5288 dev_priv->rps.min_freq,
5289 dev_priv->rps.max_freq);
5290 }
5291
5292 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5293 /* Store the frequency values in 16.66 MHZ units, which is
5294 * the natural hardware unit for SKL
5295 */
5296 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5297 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5298 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5299 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5300 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5301 }
5302 }
5303
5304 static void reset_rps(struct drm_i915_private *dev_priv,
5305 void (*set)(struct drm_i915_private *, u8))
5306 {
5307 u8 freq = dev_priv->rps.cur_freq;
5308
5309 /* force a reset */
5310 dev_priv->rps.power = -1;
5311 dev_priv->rps.cur_freq = -1;
5312
5313 set(dev_priv, freq);
5314 }
5315
5316 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5317 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5318 {
5319 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5320
5321 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5322 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5323 /*
5324 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5325 * clear out the Control register just to avoid inconsitency
5326 * with debugfs interface, which will show Turbo as enabled
5327 * only and that is not expected by the User after adding the
5328 * WaGsvDisableTurbo. Apart from this there is no problem even
5329 * if the Turbo is left enabled in the Control register, as the
5330 * Up/Down interrupts would remain masked.
5331 */
5332 gen9_disable_rps(dev_priv);
5333 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5334 return;
5335 }
5336
5337 /* Program defaults and thresholds for RPS*/
5338 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5339 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5340
5341 /* 1 second timeout*/
5342 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5343 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5344
5345 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5346
5347 /* Leaning on the below call to gen6_set_rps to program/setup the
5348 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5349 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5350 reset_rps(dev_priv, gen6_set_rps);
5351
5352 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353 }
5354
5355 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5356 {
5357 struct intel_engine_cs *engine;
5358 uint32_t rc6_mask = 0;
5359
5360 /* 1a: Software RC state - RC0 */
5361 I915_WRITE(GEN6_RC_STATE, 0);
5362
5363 /* 1b: Get forcewake during program sequence. Although the driver
5364 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5365 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5366
5367 /* 2a: Disable RC states. */
5368 I915_WRITE(GEN6_RC_CONTROL, 0);
5369
5370 /* 2b: Program RC6 thresholds.*/
5371
5372 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5373 if (IS_SKYLAKE(dev_priv))
5374 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5375 else
5376 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5377 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5378 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5379 for_each_engine(engine, dev_priv)
5380 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5381
5382 if (HAS_GUC(dev_priv))
5383 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5384
5385 I915_WRITE(GEN6_RC_SLEEP, 0);
5386
5387 /* 2c: Program Coarse Power Gating Policies. */
5388 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5389 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5390
5391 /* 3a: Enable RC6 */
5392 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5393 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5394 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5395 /* WaRsUseTimeoutMode */
5396 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5397 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5398 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5399 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5400 GEN7_RC_CTL_TO_MODE |
5401 rc6_mask);
5402 } else {
5403 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5404 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5405 GEN6_RC_CTL_EI_MODE(1) |
5406 rc6_mask);
5407 }
5408
5409 /*
5410 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5411 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5412 */
5413 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5414 I915_WRITE(GEN9_PG_ENABLE, 0);
5415 else
5416 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5417 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5418
5419 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5420 }
5421
5422 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5423 {
5424 struct intel_engine_cs *engine;
5425 uint32_t rc6_mask = 0;
5426
5427 /* 1a: Software RC state - RC0 */
5428 I915_WRITE(GEN6_RC_STATE, 0);
5429
5430 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5431 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5432 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5433
5434 /* 2a: Disable RC states. */
5435 I915_WRITE(GEN6_RC_CONTROL, 0);
5436
5437 /* 2b: Program RC6 thresholds.*/
5438 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5439 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5440 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5441 for_each_engine(engine, dev_priv)
5442 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5443 I915_WRITE(GEN6_RC_SLEEP, 0);
5444 if (IS_BROADWELL(dev_priv))
5445 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5446 else
5447 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5448
5449 /* 3: Enable RC6 */
5450 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5451 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5452 intel_print_rc6_info(dev_priv, rc6_mask);
5453 if (IS_BROADWELL(dev_priv))
5454 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5455 GEN7_RC_CTL_TO_MODE |
5456 rc6_mask);
5457 else
5458 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5459 GEN6_RC_CTL_EI_MODE(1) |
5460 rc6_mask);
5461
5462 /* 4 Program defaults and thresholds for RPS*/
5463 I915_WRITE(GEN6_RPNSWREQ,
5464 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5465 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5466 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5467 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5468 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5469
5470 /* Docs recommend 900MHz, and 300 MHz respectively */
5471 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5472 dev_priv->rps.max_freq_softlimit << 24 |
5473 dev_priv->rps.min_freq_softlimit << 16);
5474
5475 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5476 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5477 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5478 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5479
5480 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5481
5482 /* 5: Enable RPS */
5483 I915_WRITE(GEN6_RP_CONTROL,
5484 GEN6_RP_MEDIA_TURBO |
5485 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5486 GEN6_RP_MEDIA_IS_GFX |
5487 GEN6_RP_ENABLE |
5488 GEN6_RP_UP_BUSY_AVG |
5489 GEN6_RP_DOWN_IDLE_AVG);
5490
5491 /* 6: Ring frequency + overclocking (our driver does this later */
5492
5493 reset_rps(dev_priv, gen6_set_rps);
5494
5495 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5496 }
5497
5498 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5499 {
5500 struct intel_engine_cs *engine;
5501 u32 rc6vids, rc6_mask = 0;
5502 u32 gtfifodbg;
5503 int rc6_mode;
5504 int ret;
5505
5506 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5507
5508 /* Here begins a magic sequence of register writes to enable
5509 * auto-downclocking.
5510 *
5511 * Perhaps there might be some value in exposing these to
5512 * userspace...
5513 */
5514 I915_WRITE(GEN6_RC_STATE, 0);
5515
5516 /* Clear the DBG now so we don't confuse earlier errors */
5517 gtfifodbg = I915_READ(GTFIFODBG);
5518 if (gtfifodbg) {
5519 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5520 I915_WRITE(GTFIFODBG, gtfifodbg);
5521 }
5522
5523 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5524
5525 /* disable the counters and set deterministic thresholds */
5526 I915_WRITE(GEN6_RC_CONTROL, 0);
5527
5528 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5529 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5530 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5531 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5532 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5533
5534 for_each_engine(engine, dev_priv)
5535 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5536
5537 I915_WRITE(GEN6_RC_SLEEP, 0);
5538 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5539 if (IS_IVYBRIDGE(dev_priv))
5540 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5541 else
5542 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5543 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5544 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5545
5546 /* Check if we are enabling RC6 */
5547 rc6_mode = intel_enable_rc6();
5548 if (rc6_mode & INTEL_RC6_ENABLE)
5549 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5550
5551 /* We don't use those on Haswell */
5552 if (!IS_HASWELL(dev_priv)) {
5553 if (rc6_mode & INTEL_RC6p_ENABLE)
5554 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5555
5556 if (rc6_mode & INTEL_RC6pp_ENABLE)
5557 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5558 }
5559
5560 intel_print_rc6_info(dev_priv, rc6_mask);
5561
5562 I915_WRITE(GEN6_RC_CONTROL,
5563 rc6_mask |
5564 GEN6_RC_CTL_EI_MODE(1) |
5565 GEN6_RC_CTL_HW_ENABLE);
5566
5567 /* Power down if completely idle for over 50ms */
5568 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5569 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5570
5571 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5572 if (ret)
5573 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5574
5575 reset_rps(dev_priv, gen6_set_rps);
5576
5577 rc6vids = 0;
5578 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5579 if (IS_GEN6(dev_priv) && ret) {
5580 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5581 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5582 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5583 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5584 rc6vids &= 0xffff00;
5585 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5586 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5587 if (ret)
5588 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5589 }
5590
5591 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5592 }
5593
5594 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5595 {
5596 int min_freq = 15;
5597 unsigned int gpu_freq;
5598 unsigned int max_ia_freq, min_ring_freq;
5599 unsigned int max_gpu_freq, min_gpu_freq;
5600 int scaling_factor = 180;
5601 struct cpufreq_policy *policy;
5602
5603 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5604
5605 policy = cpufreq_cpu_get(0);
5606 if (policy) {
5607 max_ia_freq = policy->cpuinfo.max_freq;
5608 cpufreq_cpu_put(policy);
5609 } else {
5610 /*
5611 * Default to measured freq if none found, PCU will ensure we
5612 * don't go over
5613 */
5614 max_ia_freq = tsc_khz;
5615 }
5616
5617 /* Convert from kHz to MHz */
5618 max_ia_freq /= 1000;
5619
5620 min_ring_freq = I915_READ(DCLK) & 0xf;
5621 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5622 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5623
5624 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5625 /* Convert GT frequency to 50 HZ units */
5626 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5627 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5628 } else {
5629 min_gpu_freq = dev_priv->rps.min_freq;
5630 max_gpu_freq = dev_priv->rps.max_freq;
5631 }
5632
5633 /*
5634 * For each potential GPU frequency, load a ring frequency we'd like
5635 * to use for memory access. We do this by specifying the IA frequency
5636 * the PCU should use as a reference to determine the ring frequency.
5637 */
5638 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5639 int diff = max_gpu_freq - gpu_freq;
5640 unsigned int ia_freq = 0, ring_freq = 0;
5641
5642 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5643 /*
5644 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5645 * No floor required for ring frequency on SKL.
5646 */
5647 ring_freq = gpu_freq;
5648 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5649 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5650 ring_freq = max(min_ring_freq, gpu_freq);
5651 } else if (IS_HASWELL(dev_priv)) {
5652 ring_freq = mult_frac(gpu_freq, 5, 4);
5653 ring_freq = max(min_ring_freq, ring_freq);
5654 /* leave ia_freq as the default, chosen by cpufreq */
5655 } else {
5656 /* On older processors, there is no separate ring
5657 * clock domain, so in order to boost the bandwidth
5658 * of the ring, we need to upclock the CPU (ia_freq).
5659 *
5660 * For GPU frequencies less than 750MHz,
5661 * just use the lowest ring freq.
5662 */
5663 if (gpu_freq < min_freq)
5664 ia_freq = 800;
5665 else
5666 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5667 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5668 }
5669
5670 sandybridge_pcode_write(dev_priv,
5671 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5672 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5673 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5674 gpu_freq);
5675 }
5676 }
5677
5678 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5679 {
5680 u32 val, rp0;
5681
5682 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5683
5684 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5685 case 8:
5686 /* (2 * 4) config */
5687 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5688 break;
5689 case 12:
5690 /* (2 * 6) config */
5691 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5692 break;
5693 case 16:
5694 /* (2 * 8) config */
5695 default:
5696 /* Setting (2 * 8) Min RP0 for any other combination */
5697 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5698 break;
5699 }
5700
5701 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5702
5703 return rp0;
5704 }
5705
5706 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5707 {
5708 u32 val, rpe;
5709
5710 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5711 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5712
5713 return rpe;
5714 }
5715
5716 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5717 {
5718 u32 val, rp1;
5719
5720 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5721 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5722
5723 return rp1;
5724 }
5725
5726 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5727 {
5728 u32 val, rp1;
5729
5730 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5731
5732 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5733
5734 return rp1;
5735 }
5736
5737 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5738 {
5739 u32 val, rp0;
5740
5741 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5742
5743 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5744 /* Clamp to max */
5745 rp0 = min_t(u32, rp0, 0xea);
5746
5747 return rp0;
5748 }
5749
5750 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5751 {
5752 u32 val, rpe;
5753
5754 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5755 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5756 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5757 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5758
5759 return rpe;
5760 }
5761
5762 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5763 {
5764 u32 val;
5765
5766 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5767 /*
5768 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5769 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5770 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5771 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5772 * to make sure it matches what Punit accepts.
5773 */
5774 return max_t(u32, val, 0xc0);
5775 }
5776
5777 /* Check that the pctx buffer wasn't move under us. */
5778 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5779 {
5780 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5781
5782 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5783 dev_priv->vlv_pctx->stolen->start);
5784 }
5785
5786
5787 /* Check that the pcbr address is not empty. */
5788 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5789 {
5790 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5791
5792 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5793 }
5794
5795 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5796 {
5797 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5798 unsigned long pctx_paddr, paddr;
5799 u32 pcbr;
5800 int pctx_size = 32*1024;
5801
5802 pcbr = I915_READ(VLV_PCBR);
5803 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5804 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5805 paddr = (dev_priv->mm.stolen_base +
5806 (ggtt->stolen_size - pctx_size));
5807
5808 pctx_paddr = (paddr & (~4095));
5809 I915_WRITE(VLV_PCBR, pctx_paddr);
5810 }
5811
5812 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5813 }
5814
5815 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5816 {
5817 struct drm_i915_gem_object *pctx;
5818 unsigned long pctx_paddr;
5819 u32 pcbr;
5820 int pctx_size = 24*1024;
5821
5822 pcbr = I915_READ(VLV_PCBR);
5823 if (pcbr) {
5824 /* BIOS set it up already, grab the pre-alloc'd space */
5825 int pcbr_offset;
5826
5827 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5828 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5829 pcbr_offset,
5830 I915_GTT_OFFSET_NONE,
5831 pctx_size);
5832 goto out;
5833 }
5834
5835 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5836
5837 /*
5838 * From the Gunit register HAS:
5839 * The Gfx driver is expected to program this register and ensure
5840 * proper allocation within Gfx stolen memory. For example, this
5841 * register should be programmed such than the PCBR range does not
5842 * overlap with other ranges, such as the frame buffer, protected
5843 * memory, or any other relevant ranges.
5844 */
5845 pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5846 if (!pctx) {
5847 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5848 goto out;
5849 }
5850
5851 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5852 I915_WRITE(VLV_PCBR, pctx_paddr);
5853
5854 out:
5855 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5856 dev_priv->vlv_pctx = pctx;
5857 }
5858
5859 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5860 {
5861 if (WARN_ON(!dev_priv->vlv_pctx))
5862 return;
5863
5864 i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5865 dev_priv->vlv_pctx = NULL;
5866 }
5867
5868 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5869 {
5870 dev_priv->rps.gpll_ref_freq =
5871 vlv_get_cck_clock(dev_priv, "GPLL ref",
5872 CCK_GPLL_CLOCK_CONTROL,
5873 dev_priv->czclk_freq);
5874
5875 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5876 dev_priv->rps.gpll_ref_freq);
5877 }
5878
5879 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5880 {
5881 u32 val;
5882
5883 valleyview_setup_pctx(dev_priv);
5884
5885 vlv_init_gpll_ref_freq(dev_priv);
5886
5887 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5888 switch ((val >> 6) & 3) {
5889 case 0:
5890 case 1:
5891 dev_priv->mem_freq = 800;
5892 break;
5893 case 2:
5894 dev_priv->mem_freq = 1066;
5895 break;
5896 case 3:
5897 dev_priv->mem_freq = 1333;
5898 break;
5899 }
5900 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5901
5902 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5903 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5904 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5905 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5906 dev_priv->rps.max_freq);
5907
5908 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5909 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5910 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5911 dev_priv->rps.efficient_freq);
5912
5913 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5914 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5915 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5916 dev_priv->rps.rp1_freq);
5917
5918 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5919 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5920 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5921 dev_priv->rps.min_freq);
5922 }
5923
5924 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5925 {
5926 u32 val;
5927
5928 cherryview_setup_pctx(dev_priv);
5929
5930 vlv_init_gpll_ref_freq(dev_priv);
5931
5932 mutex_lock(&dev_priv->sb_lock);
5933 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5934 mutex_unlock(&dev_priv->sb_lock);
5935
5936 switch ((val >> 2) & 0x7) {
5937 case 3:
5938 dev_priv->mem_freq = 2000;
5939 break;
5940 default:
5941 dev_priv->mem_freq = 1600;
5942 break;
5943 }
5944 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5945
5946 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5947 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5948 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5949 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5950 dev_priv->rps.max_freq);
5951
5952 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5953 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5954 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5955 dev_priv->rps.efficient_freq);
5956
5957 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5958 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5959 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5960 dev_priv->rps.rp1_freq);
5961
5962 /* PUnit validated range is only [RPe, RP0] */
5963 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5964 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5965 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5966 dev_priv->rps.min_freq);
5967
5968 WARN_ONCE((dev_priv->rps.max_freq |
5969 dev_priv->rps.efficient_freq |
5970 dev_priv->rps.rp1_freq |
5971 dev_priv->rps.min_freq) & 1,
5972 "Odd GPU freq values\n");
5973 }
5974
5975 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5976 {
5977 valleyview_cleanup_pctx(dev_priv);
5978 }
5979
5980 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5981 {
5982 struct intel_engine_cs *engine;
5983 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5984
5985 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5986
5987 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5988 GT_FIFO_FREE_ENTRIES_CHV);
5989 if (gtfifodbg) {
5990 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5991 gtfifodbg);
5992 I915_WRITE(GTFIFODBG, gtfifodbg);
5993 }
5994
5995 cherryview_check_pctx(dev_priv);
5996
5997 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5998 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5999 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6000
6001 /* Disable RC states. */
6002 I915_WRITE(GEN6_RC_CONTROL, 0);
6003
6004 /* 2a: Program RC6 thresholds.*/
6005 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6006 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6007 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6008
6009 for_each_engine(engine, dev_priv)
6010 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6011 I915_WRITE(GEN6_RC_SLEEP, 0);
6012
6013 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6014 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6015
6016 /* allows RC6 residency counter to work */
6017 I915_WRITE(VLV_COUNTER_CONTROL,
6018 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6019 VLV_MEDIA_RC6_COUNT_EN |
6020 VLV_RENDER_RC6_COUNT_EN));
6021
6022 /* For now we assume BIOS is allocating and populating the PCBR */
6023 pcbr = I915_READ(VLV_PCBR);
6024
6025 /* 3: Enable RC6 */
6026 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6027 (pcbr >> VLV_PCBR_ADDR_SHIFT))
6028 rc6_mode = GEN7_RC_CTL_TO_MODE;
6029
6030 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6031
6032 /* 4 Program defaults and thresholds for RPS*/
6033 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6034 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6035 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6036 I915_WRITE(GEN6_RP_UP_EI, 66000);
6037 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6038
6039 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6040
6041 /* 5: Enable RPS */
6042 I915_WRITE(GEN6_RP_CONTROL,
6043 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6044 GEN6_RP_MEDIA_IS_GFX |
6045 GEN6_RP_ENABLE |
6046 GEN6_RP_UP_BUSY_AVG |
6047 GEN6_RP_DOWN_IDLE_AVG);
6048
6049 /* Setting Fixed Bias */
6050 val = VLV_OVERRIDE_EN |
6051 VLV_SOC_TDP_EN |
6052 CHV_BIAS_CPU_50_SOC_50;
6053 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6054
6055 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6056
6057 /* RPS code assumes GPLL is used */
6058 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6059
6060 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6061 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6062
6063 reset_rps(dev_priv, valleyview_set_rps);
6064
6065 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6066 }
6067
6068 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6069 {
6070 struct intel_engine_cs *engine;
6071 u32 gtfifodbg, val, rc6_mode = 0;
6072
6073 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6074
6075 valleyview_check_pctx(dev_priv);
6076
6077 gtfifodbg = I915_READ(GTFIFODBG);
6078 if (gtfifodbg) {
6079 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6080 gtfifodbg);
6081 I915_WRITE(GTFIFODBG, gtfifodbg);
6082 }
6083
6084 /* If VLV, Forcewake all wells, else re-direct to regular path */
6085 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6086
6087 /* Disable RC states. */
6088 I915_WRITE(GEN6_RC_CONTROL, 0);
6089
6090 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6091 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6092 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6093 I915_WRITE(GEN6_RP_UP_EI, 66000);
6094 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6095
6096 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6097
6098 I915_WRITE(GEN6_RP_CONTROL,
6099 GEN6_RP_MEDIA_TURBO |
6100 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6101 GEN6_RP_MEDIA_IS_GFX |
6102 GEN6_RP_ENABLE |
6103 GEN6_RP_UP_BUSY_AVG |
6104 GEN6_RP_DOWN_IDLE_CONT);
6105
6106 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6107 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6108 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6109
6110 for_each_engine(engine, dev_priv)
6111 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6112
6113 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6114
6115 /* allows RC6 residency counter to work */
6116 I915_WRITE(VLV_COUNTER_CONTROL,
6117 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6118 VLV_RENDER_RC0_COUNT_EN |
6119 VLV_MEDIA_RC6_COUNT_EN |
6120 VLV_RENDER_RC6_COUNT_EN));
6121
6122 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6123 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6124
6125 intel_print_rc6_info(dev_priv, rc6_mode);
6126
6127 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6128
6129 /* Setting Fixed Bias */
6130 val = VLV_OVERRIDE_EN |
6131 VLV_SOC_TDP_EN |
6132 VLV_BIAS_CPU_125_SOC_875;
6133 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6134
6135 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6136
6137 /* RPS code assumes GPLL is used */
6138 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6139
6140 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6141 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6142
6143 reset_rps(dev_priv, valleyview_set_rps);
6144
6145 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6146 }
6147
6148 static unsigned long intel_pxfreq(u32 vidfreq)
6149 {
6150 unsigned long freq;
6151 int div = (vidfreq & 0x3f0000) >> 16;
6152 int post = (vidfreq & 0x3000) >> 12;
6153 int pre = (vidfreq & 0x7);
6154
6155 if (!pre)
6156 return 0;
6157
6158 freq = ((div * 133333) / ((1<<post) * pre));
6159
6160 return freq;
6161 }
6162
6163 static const struct cparams {
6164 u16 i;
6165 u16 t;
6166 u16 m;
6167 u16 c;
6168 } cparams[] = {
6169 { 1, 1333, 301, 28664 },
6170 { 1, 1066, 294, 24460 },
6171 { 1, 800, 294, 25192 },
6172 { 0, 1333, 276, 27605 },
6173 { 0, 1066, 276, 27605 },
6174 { 0, 800, 231, 23784 },
6175 };
6176
6177 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6178 {
6179 u64 total_count, diff, ret;
6180 u32 count1, count2, count3, m = 0, c = 0;
6181 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6182 int i;
6183
6184 assert_spin_locked(&mchdev_lock);
6185
6186 diff1 = now - dev_priv->ips.last_time1;
6187
6188 /* Prevent division-by-zero if we are asking too fast.
6189 * Also, we don't get interesting results if we are polling
6190 * faster than once in 10ms, so just return the saved value
6191 * in such cases.
6192 */
6193 if (diff1 <= 10)
6194 return dev_priv->ips.chipset_power;
6195
6196 count1 = I915_READ(DMIEC);
6197 count2 = I915_READ(DDREC);
6198 count3 = I915_READ(CSIEC);
6199
6200 total_count = count1 + count2 + count3;
6201
6202 /* FIXME: handle per-counter overflow */
6203 if (total_count < dev_priv->ips.last_count1) {
6204 diff = ~0UL - dev_priv->ips.last_count1;
6205 diff += total_count;
6206 } else {
6207 diff = total_count - dev_priv->ips.last_count1;
6208 }
6209
6210 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6211 if (cparams[i].i == dev_priv->ips.c_m &&
6212 cparams[i].t == dev_priv->ips.r_t) {
6213 m = cparams[i].m;
6214 c = cparams[i].c;
6215 break;
6216 }
6217 }
6218
6219 diff = div_u64(diff, diff1);
6220 ret = ((m * diff) + c);
6221 ret = div_u64(ret, 10);
6222
6223 dev_priv->ips.last_count1 = total_count;
6224 dev_priv->ips.last_time1 = now;
6225
6226 dev_priv->ips.chipset_power = ret;
6227
6228 return ret;
6229 }
6230
6231 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6232 {
6233 unsigned long val;
6234
6235 if (INTEL_INFO(dev_priv)->gen != 5)
6236 return 0;
6237
6238 spin_lock_irq(&mchdev_lock);
6239
6240 val = __i915_chipset_val(dev_priv);
6241
6242 spin_unlock_irq(&mchdev_lock);
6243
6244 return val;
6245 }
6246
6247 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6248 {
6249 unsigned long m, x, b;
6250 u32 tsfs;
6251
6252 tsfs = I915_READ(TSFS);
6253
6254 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6255 x = I915_READ8(TR1);
6256
6257 b = tsfs & TSFS_INTR_MASK;
6258
6259 return ((m * x) / 127) - b;
6260 }
6261
6262 static int _pxvid_to_vd(u8 pxvid)
6263 {
6264 if (pxvid == 0)
6265 return 0;
6266
6267 if (pxvid >= 8 && pxvid < 31)
6268 pxvid = 31;
6269
6270 return (pxvid + 2) * 125;
6271 }
6272
6273 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6274 {
6275 const int vd = _pxvid_to_vd(pxvid);
6276 const int vm = vd - 1125;
6277
6278 if (INTEL_INFO(dev_priv)->is_mobile)
6279 return vm > 0 ? vm : 0;
6280
6281 return vd;
6282 }
6283
6284 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6285 {
6286 u64 now, diff, diffms;
6287 u32 count;
6288
6289 assert_spin_locked(&mchdev_lock);
6290
6291 now = ktime_get_raw_ns();
6292 diffms = now - dev_priv->ips.last_time2;
6293 do_div(diffms, NSEC_PER_MSEC);
6294
6295 /* Don't divide by 0 */
6296 if (!diffms)
6297 return;
6298
6299 count = I915_READ(GFXEC);
6300
6301 if (count < dev_priv->ips.last_count2) {
6302 diff = ~0UL - dev_priv->ips.last_count2;
6303 diff += count;
6304 } else {
6305 diff = count - dev_priv->ips.last_count2;
6306 }
6307
6308 dev_priv->ips.last_count2 = count;
6309 dev_priv->ips.last_time2 = now;
6310
6311 /* More magic constants... */
6312 diff = diff * 1181;
6313 diff = div_u64(diff, diffms * 10);
6314 dev_priv->ips.gfx_power = diff;
6315 }
6316
6317 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6318 {
6319 if (INTEL_INFO(dev_priv)->gen != 5)
6320 return;
6321
6322 spin_lock_irq(&mchdev_lock);
6323
6324 __i915_update_gfx_val(dev_priv);
6325
6326 spin_unlock_irq(&mchdev_lock);
6327 }
6328
6329 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6330 {
6331 unsigned long t, corr, state1, corr2, state2;
6332 u32 pxvid, ext_v;
6333
6334 assert_spin_locked(&mchdev_lock);
6335
6336 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6337 pxvid = (pxvid >> 24) & 0x7f;
6338 ext_v = pvid_to_extvid(dev_priv, pxvid);
6339
6340 state1 = ext_v;
6341
6342 t = i915_mch_val(dev_priv);
6343
6344 /* Revel in the empirically derived constants */
6345
6346 /* Correction factor in 1/100000 units */
6347 if (t > 80)
6348 corr = ((t * 2349) + 135940);
6349 else if (t >= 50)
6350 corr = ((t * 964) + 29317);
6351 else /* < 50 */
6352 corr = ((t * 301) + 1004);
6353
6354 corr = corr * ((150142 * state1) / 10000 - 78642);
6355 corr /= 100000;
6356 corr2 = (corr * dev_priv->ips.corr);
6357
6358 state2 = (corr2 * state1) / 10000;
6359 state2 /= 100; /* convert to mW */
6360
6361 __i915_update_gfx_val(dev_priv);
6362
6363 return dev_priv->ips.gfx_power + state2;
6364 }
6365
6366 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6367 {
6368 unsigned long val;
6369
6370 if (INTEL_INFO(dev_priv)->gen != 5)
6371 return 0;
6372
6373 spin_lock_irq(&mchdev_lock);
6374
6375 val = __i915_gfx_val(dev_priv);
6376
6377 spin_unlock_irq(&mchdev_lock);
6378
6379 return val;
6380 }
6381
6382 /**
6383 * i915_read_mch_val - return value for IPS use
6384 *
6385 * Calculate and return a value for the IPS driver to use when deciding whether
6386 * we have thermal and power headroom to increase CPU or GPU power budget.
6387 */
6388 unsigned long i915_read_mch_val(void)
6389 {
6390 struct drm_i915_private *dev_priv;
6391 unsigned long chipset_val, graphics_val, ret = 0;
6392
6393 spin_lock_irq(&mchdev_lock);
6394 if (!i915_mch_dev)
6395 goto out_unlock;
6396 dev_priv = i915_mch_dev;
6397
6398 chipset_val = __i915_chipset_val(dev_priv);
6399 graphics_val = __i915_gfx_val(dev_priv);
6400
6401 ret = chipset_val + graphics_val;
6402
6403 out_unlock:
6404 spin_unlock_irq(&mchdev_lock);
6405
6406 return ret;
6407 }
6408 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6409
6410 /**
6411 * i915_gpu_raise - raise GPU frequency limit
6412 *
6413 * Raise the limit; IPS indicates we have thermal headroom.
6414 */
6415 bool i915_gpu_raise(void)
6416 {
6417 struct drm_i915_private *dev_priv;
6418 bool ret = true;
6419
6420 spin_lock_irq(&mchdev_lock);
6421 if (!i915_mch_dev) {
6422 ret = false;
6423 goto out_unlock;
6424 }
6425 dev_priv = i915_mch_dev;
6426
6427 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6428 dev_priv->ips.max_delay--;
6429
6430 out_unlock:
6431 spin_unlock_irq(&mchdev_lock);
6432
6433 return ret;
6434 }
6435 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6436
6437 /**
6438 * i915_gpu_lower - lower GPU frequency limit
6439 *
6440 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6441 * frequency maximum.
6442 */
6443 bool i915_gpu_lower(void)
6444 {
6445 struct drm_i915_private *dev_priv;
6446 bool ret = true;
6447
6448 spin_lock_irq(&mchdev_lock);
6449 if (!i915_mch_dev) {
6450 ret = false;
6451 goto out_unlock;
6452 }
6453 dev_priv = i915_mch_dev;
6454
6455 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6456 dev_priv->ips.max_delay++;
6457
6458 out_unlock:
6459 spin_unlock_irq(&mchdev_lock);
6460
6461 return ret;
6462 }
6463 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6464
6465 /**
6466 * i915_gpu_busy - indicate GPU business to IPS
6467 *
6468 * Tell the IPS driver whether or not the GPU is busy.
6469 */
6470 bool i915_gpu_busy(void)
6471 {
6472 bool ret = false;
6473
6474 spin_lock_irq(&mchdev_lock);
6475 if (i915_mch_dev)
6476 ret = i915_mch_dev->gt.awake;
6477 spin_unlock_irq(&mchdev_lock);
6478
6479 return ret;
6480 }
6481 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6482
6483 /**
6484 * i915_gpu_turbo_disable - disable graphics turbo
6485 *
6486 * Disable graphics turbo by resetting the max frequency and setting the
6487 * current frequency to the default.
6488 */
6489 bool i915_gpu_turbo_disable(void)
6490 {
6491 struct drm_i915_private *dev_priv;
6492 bool ret = true;
6493
6494 spin_lock_irq(&mchdev_lock);
6495 if (!i915_mch_dev) {
6496 ret = false;
6497 goto out_unlock;
6498 }
6499 dev_priv = i915_mch_dev;
6500
6501 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6502
6503 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6504 ret = false;
6505
6506 out_unlock:
6507 spin_unlock_irq(&mchdev_lock);
6508
6509 return ret;
6510 }
6511 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6512
6513 /**
6514 * Tells the intel_ips driver that the i915 driver is now loaded, if
6515 * IPS got loaded first.
6516 *
6517 * This awkward dance is so that neither module has to depend on the
6518 * other in order for IPS to do the appropriate communication of
6519 * GPU turbo limits to i915.
6520 */
6521 static void
6522 ips_ping_for_i915_load(void)
6523 {
6524 void (*link)(void);
6525
6526 link = symbol_get(ips_link_to_i915_driver);
6527 if (link) {
6528 link();
6529 symbol_put(ips_link_to_i915_driver);
6530 }
6531 }
6532
6533 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6534 {
6535 /* We only register the i915 ips part with intel-ips once everything is
6536 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6537 spin_lock_irq(&mchdev_lock);
6538 i915_mch_dev = dev_priv;
6539 spin_unlock_irq(&mchdev_lock);
6540
6541 ips_ping_for_i915_load();
6542 }
6543
6544 void intel_gpu_ips_teardown(void)
6545 {
6546 spin_lock_irq(&mchdev_lock);
6547 i915_mch_dev = NULL;
6548 spin_unlock_irq(&mchdev_lock);
6549 }
6550
6551 static void intel_init_emon(struct drm_i915_private *dev_priv)
6552 {
6553 u32 lcfuse;
6554 u8 pxw[16];
6555 int i;
6556
6557 /* Disable to program */
6558 I915_WRITE(ECR, 0);
6559 POSTING_READ(ECR);
6560
6561 /* Program energy weights for various events */
6562 I915_WRITE(SDEW, 0x15040d00);
6563 I915_WRITE(CSIEW0, 0x007f0000);
6564 I915_WRITE(CSIEW1, 0x1e220004);
6565 I915_WRITE(CSIEW2, 0x04000004);
6566
6567 for (i = 0; i < 5; i++)
6568 I915_WRITE(PEW(i), 0);
6569 for (i = 0; i < 3; i++)
6570 I915_WRITE(DEW(i), 0);
6571
6572 /* Program P-state weights to account for frequency power adjustment */
6573 for (i = 0; i < 16; i++) {
6574 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6575 unsigned long freq = intel_pxfreq(pxvidfreq);
6576 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6577 PXVFREQ_PX_SHIFT;
6578 unsigned long val;
6579
6580 val = vid * vid;
6581 val *= (freq / 1000);
6582 val *= 255;
6583 val /= (127*127*900);
6584 if (val > 0xff)
6585 DRM_ERROR("bad pxval: %ld\n", val);
6586 pxw[i] = val;
6587 }
6588 /* Render standby states get 0 weight */
6589 pxw[14] = 0;
6590 pxw[15] = 0;
6591
6592 for (i = 0; i < 4; i++) {
6593 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6594 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6595 I915_WRITE(PXW(i), val);
6596 }
6597
6598 /* Adjust magic regs to magic values (more experimental results) */
6599 I915_WRITE(OGW0, 0);
6600 I915_WRITE(OGW1, 0);
6601 I915_WRITE(EG0, 0x00007f00);
6602 I915_WRITE(EG1, 0x0000000e);
6603 I915_WRITE(EG2, 0x000e0000);
6604 I915_WRITE(EG3, 0x68000300);
6605 I915_WRITE(EG4, 0x42000000);
6606 I915_WRITE(EG5, 0x00140031);
6607 I915_WRITE(EG6, 0);
6608 I915_WRITE(EG7, 0);
6609
6610 for (i = 0; i < 8; i++)
6611 I915_WRITE(PXWL(i), 0);
6612
6613 /* Enable PMON + select events */
6614 I915_WRITE(ECR, 0x80000019);
6615
6616 lcfuse = I915_READ(LCFUSE02);
6617
6618 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6619 }
6620
6621 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6622 {
6623 /*
6624 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6625 * requirement.
6626 */
6627 if (!i915.enable_rc6) {
6628 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6629 intel_runtime_pm_get(dev_priv);
6630 }
6631
6632 mutex_lock(&dev_priv->drm.struct_mutex);
6633 mutex_lock(&dev_priv->rps.hw_lock);
6634
6635 /* Initialize RPS limits (for userspace) */
6636 if (IS_CHERRYVIEW(dev_priv))
6637 cherryview_init_gt_powersave(dev_priv);
6638 else if (IS_VALLEYVIEW(dev_priv))
6639 valleyview_init_gt_powersave(dev_priv);
6640 else if (INTEL_GEN(dev_priv) >= 6)
6641 gen6_init_rps_frequencies(dev_priv);
6642
6643 /* Derive initial user preferences/limits from the hardware limits */
6644 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6645 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6646
6647 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6648 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6649
6650 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6651 dev_priv->rps.min_freq_softlimit =
6652 max_t(int,
6653 dev_priv->rps.efficient_freq,
6654 intel_freq_opcode(dev_priv, 450));
6655
6656 /* After setting max-softlimit, find the overclock max freq */
6657 if (IS_GEN6(dev_priv) ||
6658 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6659 u32 params = 0;
6660
6661 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6662 if (params & BIT(31)) { /* OC supported */
6663 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6664 (dev_priv->rps.max_freq & 0xff) * 50,
6665 (params & 0xff) * 50);
6666 dev_priv->rps.max_freq = params & 0xff;
6667 }
6668 }
6669
6670 /* Finally allow us to boost to max by default */
6671 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6672
6673 mutex_unlock(&dev_priv->rps.hw_lock);
6674 mutex_unlock(&dev_priv->drm.struct_mutex);
6675
6676 intel_autoenable_gt_powersave(dev_priv);
6677 }
6678
6679 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6680 {
6681 if (IS_VALLEYVIEW(dev_priv))
6682 valleyview_cleanup_gt_powersave(dev_priv);
6683
6684 if (!i915.enable_rc6)
6685 intel_runtime_pm_put(dev_priv);
6686 }
6687
6688 /**
6689 * intel_suspend_gt_powersave - suspend PM work and helper threads
6690 * @dev_priv: i915 device
6691 *
6692 * We don't want to disable RC6 or other features here, we just want
6693 * to make sure any work we've queued has finished and won't bother
6694 * us while we're suspended.
6695 */
6696 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6697 {
6698 if (INTEL_GEN(dev_priv) < 6)
6699 return;
6700
6701 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6702 intel_runtime_pm_put(dev_priv);
6703
6704 /* gen6_rps_idle() will be called later to disable interrupts */
6705 }
6706
6707 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6708 {
6709 dev_priv->rps.enabled = true; /* force disabling */
6710 intel_disable_gt_powersave(dev_priv);
6711
6712 gen6_reset_rps_interrupts(dev_priv);
6713 }
6714
6715 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6716 {
6717 if (!READ_ONCE(dev_priv->rps.enabled))
6718 return;
6719
6720 mutex_lock(&dev_priv->rps.hw_lock);
6721
6722 if (INTEL_GEN(dev_priv) >= 9) {
6723 gen9_disable_rc6(dev_priv);
6724 gen9_disable_rps(dev_priv);
6725 } else if (IS_CHERRYVIEW(dev_priv)) {
6726 cherryview_disable_rps(dev_priv);
6727 } else if (IS_VALLEYVIEW(dev_priv)) {
6728 valleyview_disable_rps(dev_priv);
6729 } else if (INTEL_GEN(dev_priv) >= 6) {
6730 gen6_disable_rps(dev_priv);
6731 } else if (IS_IRONLAKE_M(dev_priv)) {
6732 ironlake_disable_drps(dev_priv);
6733 }
6734
6735 dev_priv->rps.enabled = false;
6736 mutex_unlock(&dev_priv->rps.hw_lock);
6737 }
6738
6739 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6740 {
6741 /* We shouldn't be disabling as we submit, so this should be less
6742 * racy than it appears!
6743 */
6744 if (READ_ONCE(dev_priv->rps.enabled))
6745 return;
6746
6747 /* Powersaving is controlled by the host when inside a VM */
6748 if (intel_vgpu_active(dev_priv))
6749 return;
6750
6751 mutex_lock(&dev_priv->rps.hw_lock);
6752
6753 if (IS_CHERRYVIEW(dev_priv)) {
6754 cherryview_enable_rps(dev_priv);
6755 } else if (IS_VALLEYVIEW(dev_priv)) {
6756 valleyview_enable_rps(dev_priv);
6757 } else if (INTEL_GEN(dev_priv) >= 9) {
6758 gen9_enable_rc6(dev_priv);
6759 gen9_enable_rps(dev_priv);
6760 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6761 gen6_update_ring_freq(dev_priv);
6762 } else if (IS_BROADWELL(dev_priv)) {
6763 gen8_enable_rps(dev_priv);
6764 gen6_update_ring_freq(dev_priv);
6765 } else if (INTEL_GEN(dev_priv) >= 6) {
6766 gen6_enable_rps(dev_priv);
6767 gen6_update_ring_freq(dev_priv);
6768 } else if (IS_IRONLAKE_M(dev_priv)) {
6769 ironlake_enable_drps(dev_priv);
6770 intel_init_emon(dev_priv);
6771 }
6772
6773 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6774 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6775
6776 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6777 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6778
6779 dev_priv->rps.enabled = true;
6780 mutex_unlock(&dev_priv->rps.hw_lock);
6781 }
6782
6783 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6784 {
6785 struct drm_i915_private *dev_priv =
6786 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6787 struct intel_engine_cs *rcs;
6788 struct drm_i915_gem_request *req;
6789
6790 if (READ_ONCE(dev_priv->rps.enabled))
6791 goto out;
6792
6793 rcs = &dev_priv->engine[RCS];
6794 if (rcs->last_context)
6795 goto out;
6796
6797 if (!rcs->init_context)
6798 goto out;
6799
6800 mutex_lock(&dev_priv->drm.struct_mutex);
6801
6802 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6803 if (IS_ERR(req))
6804 goto unlock;
6805
6806 if (!i915.enable_execlists && i915_switch_context(req) == 0)
6807 rcs->init_context(req);
6808
6809 /* Mark the device busy, calling intel_enable_gt_powersave() */
6810 i915_add_request_no_flush(req);
6811
6812 unlock:
6813 mutex_unlock(&dev_priv->drm.struct_mutex);
6814 out:
6815 intel_runtime_pm_put(dev_priv);
6816 }
6817
6818 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6819 {
6820 if (READ_ONCE(dev_priv->rps.enabled))
6821 return;
6822
6823 if (IS_IRONLAKE_M(dev_priv)) {
6824 ironlake_enable_drps(dev_priv);
6825 intel_init_emon(dev_priv);
6826 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6827 /*
6828 * PCU communication is slow and this doesn't need to be
6829 * done at any specific time, so do this out of our fast path
6830 * to make resume and init faster.
6831 *
6832 * We depend on the HW RC6 power context save/restore
6833 * mechanism when entering D3 through runtime PM suspend. So
6834 * disable RPM until RPS/RC6 is properly setup. We can only
6835 * get here via the driver load/system resume/runtime resume
6836 * paths, so the _noresume version is enough (and in case of
6837 * runtime resume it's necessary).
6838 */
6839 if (queue_delayed_work(dev_priv->wq,
6840 &dev_priv->rps.autoenable_work,
6841 round_jiffies_up_relative(HZ)))
6842 intel_runtime_pm_get_noresume(dev_priv);
6843 }
6844 }
6845
6846 static void ibx_init_clock_gating(struct drm_device *dev)
6847 {
6848 struct drm_i915_private *dev_priv = to_i915(dev);
6849
6850 /*
6851 * On Ibex Peak and Cougar Point, we need to disable clock
6852 * gating for the panel power sequencer or it will fail to
6853 * start up when no ports are active.
6854 */
6855 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6856 }
6857
6858 static void g4x_disable_trickle_feed(struct drm_device *dev)
6859 {
6860 struct drm_i915_private *dev_priv = to_i915(dev);
6861 enum pipe pipe;
6862
6863 for_each_pipe(dev_priv, pipe) {
6864 I915_WRITE(DSPCNTR(pipe),
6865 I915_READ(DSPCNTR(pipe)) |
6866 DISPPLANE_TRICKLE_FEED_DISABLE);
6867
6868 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6869 POSTING_READ(DSPSURF(pipe));
6870 }
6871 }
6872
6873 static void ilk_init_lp_watermarks(struct drm_device *dev)
6874 {
6875 struct drm_i915_private *dev_priv = to_i915(dev);
6876
6877 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6878 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6879 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6880
6881 /*
6882 * Don't touch WM1S_LP_EN here.
6883 * Doing so could cause underruns.
6884 */
6885 }
6886
6887 static void ironlake_init_clock_gating(struct drm_device *dev)
6888 {
6889 struct drm_i915_private *dev_priv = to_i915(dev);
6890 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6891
6892 /*
6893 * Required for FBC
6894 * WaFbcDisableDpfcClockGating:ilk
6895 */
6896 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6897 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6898 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6899
6900 I915_WRITE(PCH_3DCGDIS0,
6901 MARIUNIT_CLOCK_GATE_DISABLE |
6902 SVSMUNIT_CLOCK_GATE_DISABLE);
6903 I915_WRITE(PCH_3DCGDIS1,
6904 VFMUNIT_CLOCK_GATE_DISABLE);
6905
6906 /*
6907 * According to the spec the following bits should be set in
6908 * order to enable memory self-refresh
6909 * The bit 22/21 of 0x42004
6910 * The bit 5 of 0x42020
6911 * The bit 15 of 0x45000
6912 */
6913 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6914 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6915 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6916 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6917 I915_WRITE(DISP_ARB_CTL,
6918 (I915_READ(DISP_ARB_CTL) |
6919 DISP_FBC_WM_DIS));
6920
6921 ilk_init_lp_watermarks(dev);
6922
6923 /*
6924 * Based on the document from hardware guys the following bits
6925 * should be set unconditionally in order to enable FBC.
6926 * The bit 22 of 0x42000
6927 * The bit 22 of 0x42004
6928 * The bit 7,8,9 of 0x42020.
6929 */
6930 if (IS_IRONLAKE_M(dev)) {
6931 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6932 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6933 I915_READ(ILK_DISPLAY_CHICKEN1) |
6934 ILK_FBCQ_DIS);
6935 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6936 I915_READ(ILK_DISPLAY_CHICKEN2) |
6937 ILK_DPARB_GATE);
6938 }
6939
6940 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6941
6942 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6943 I915_READ(ILK_DISPLAY_CHICKEN2) |
6944 ILK_ELPIN_409_SELECT);
6945 I915_WRITE(_3D_CHICKEN2,
6946 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6947 _3D_CHICKEN2_WM_READ_PIPELINED);
6948
6949 /* WaDisableRenderCachePipelinedFlush:ilk */
6950 I915_WRITE(CACHE_MODE_0,
6951 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6952
6953 /* WaDisable_RenderCache_OperationalFlush:ilk */
6954 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6955
6956 g4x_disable_trickle_feed(dev);
6957
6958 ibx_init_clock_gating(dev);
6959 }
6960
6961 static void cpt_init_clock_gating(struct drm_device *dev)
6962 {
6963 struct drm_i915_private *dev_priv = to_i915(dev);
6964 int pipe;
6965 uint32_t val;
6966
6967 /*
6968 * On Ibex Peak and Cougar Point, we need to disable clock
6969 * gating for the panel power sequencer or it will fail to
6970 * start up when no ports are active.
6971 */
6972 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6973 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6974 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6975 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6976 DPLS_EDP_PPS_FIX_DIS);
6977 /* The below fixes the weird display corruption, a few pixels shifted
6978 * downward, on (only) LVDS of some HP laptops with IVY.
6979 */
6980 for_each_pipe(dev_priv, pipe) {
6981 val = I915_READ(TRANS_CHICKEN2(pipe));
6982 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6983 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6984 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6985 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6986 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6987 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6988 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6989 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6990 }
6991 /* WADP0ClockGatingDisable */
6992 for_each_pipe(dev_priv, pipe) {
6993 I915_WRITE(TRANS_CHICKEN1(pipe),
6994 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6995 }
6996 }
6997
6998 static void gen6_check_mch_setup(struct drm_device *dev)
6999 {
7000 struct drm_i915_private *dev_priv = to_i915(dev);
7001 uint32_t tmp;
7002
7003 tmp = I915_READ(MCH_SSKPD);
7004 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7005 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7006 tmp);
7007 }
7008
7009 static void gen6_init_clock_gating(struct drm_device *dev)
7010 {
7011 struct drm_i915_private *dev_priv = to_i915(dev);
7012 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7013
7014 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7015
7016 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7017 I915_READ(ILK_DISPLAY_CHICKEN2) |
7018 ILK_ELPIN_409_SELECT);
7019
7020 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7021 I915_WRITE(_3D_CHICKEN,
7022 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7023
7024 /* WaDisable_RenderCache_OperationalFlush:snb */
7025 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7026
7027 /*
7028 * BSpec recoomends 8x4 when MSAA is used,
7029 * however in practice 16x4 seems fastest.
7030 *
7031 * Note that PS/WM thread counts depend on the WIZ hashing
7032 * disable bit, which we don't touch here, but it's good
7033 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7034 */
7035 I915_WRITE(GEN6_GT_MODE,
7036 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7037
7038 ilk_init_lp_watermarks(dev);
7039
7040 I915_WRITE(CACHE_MODE_0,
7041 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7042
7043 I915_WRITE(GEN6_UCGCTL1,
7044 I915_READ(GEN6_UCGCTL1) |
7045 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7046 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7047
7048 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7049 * gating disable must be set. Failure to set it results in
7050 * flickering pixels due to Z write ordering failures after
7051 * some amount of runtime in the Mesa "fire" demo, and Unigine
7052 * Sanctuary and Tropics, and apparently anything else with
7053 * alpha test or pixel discard.
7054 *
7055 * According to the spec, bit 11 (RCCUNIT) must also be set,
7056 * but we didn't debug actual testcases to find it out.
7057 *
7058 * WaDisableRCCUnitClockGating:snb
7059 * WaDisableRCPBUnitClockGating:snb
7060 */
7061 I915_WRITE(GEN6_UCGCTL2,
7062 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7063 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7064
7065 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7066 I915_WRITE(_3D_CHICKEN3,
7067 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7068
7069 /*
7070 * Bspec says:
7071 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7072 * 3DSTATE_SF number of SF output attributes is more than 16."
7073 */
7074 I915_WRITE(_3D_CHICKEN3,
7075 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7076
7077 /*
7078 * According to the spec the following bits should be
7079 * set in order to enable memory self-refresh and fbc:
7080 * The bit21 and bit22 of 0x42000
7081 * The bit21 and bit22 of 0x42004
7082 * The bit5 and bit7 of 0x42020
7083 * The bit14 of 0x70180
7084 * The bit14 of 0x71180
7085 *
7086 * WaFbcAsynchFlipDisableFbcQueue:snb
7087 */
7088 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7089 I915_READ(ILK_DISPLAY_CHICKEN1) |
7090 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7091 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7092 I915_READ(ILK_DISPLAY_CHICKEN2) |
7093 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7094 I915_WRITE(ILK_DSPCLK_GATE_D,
7095 I915_READ(ILK_DSPCLK_GATE_D) |
7096 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7097 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7098
7099 g4x_disable_trickle_feed(dev);
7100
7101 cpt_init_clock_gating(dev);
7102
7103 gen6_check_mch_setup(dev);
7104 }
7105
7106 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7107 {
7108 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7109
7110 /*
7111 * WaVSThreadDispatchOverride:ivb,vlv
7112 *
7113 * This actually overrides the dispatch
7114 * mode for all thread types.
7115 */
7116 reg &= ~GEN7_FF_SCHED_MASK;
7117 reg |= GEN7_FF_TS_SCHED_HW;
7118 reg |= GEN7_FF_VS_SCHED_HW;
7119 reg |= GEN7_FF_DS_SCHED_HW;
7120
7121 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7122 }
7123
7124 static void lpt_init_clock_gating(struct drm_device *dev)
7125 {
7126 struct drm_i915_private *dev_priv = to_i915(dev);
7127
7128 /*
7129 * TODO: this bit should only be enabled when really needed, then
7130 * disabled when not needed anymore in order to save power.
7131 */
7132 if (HAS_PCH_LPT_LP(dev))
7133 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7134 I915_READ(SOUTH_DSPCLK_GATE_D) |
7135 PCH_LP_PARTITION_LEVEL_DISABLE);
7136
7137 /* WADPOClockGatingDisable:hsw */
7138 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7139 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7140 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7141 }
7142
7143 static void lpt_suspend_hw(struct drm_device *dev)
7144 {
7145 struct drm_i915_private *dev_priv = to_i915(dev);
7146
7147 if (HAS_PCH_LPT_LP(dev)) {
7148 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7149
7150 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7151 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7152 }
7153 }
7154
7155 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7156 int general_prio_credits,
7157 int high_prio_credits)
7158 {
7159 u32 misccpctl;
7160
7161 /* WaTempDisableDOPClkGating:bdw */
7162 misccpctl = I915_READ(GEN7_MISCCPCTL);
7163 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7164
7165 I915_WRITE(GEN8_L3SQCREG1,
7166 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7167 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7168
7169 /*
7170 * Wait at least 100 clocks before re-enabling clock gating.
7171 * See the definition of L3SQCREG1 in BSpec.
7172 */
7173 POSTING_READ(GEN8_L3SQCREG1);
7174 udelay(1);
7175 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7176 }
7177
7178 static void kabylake_init_clock_gating(struct drm_device *dev)
7179 {
7180 struct drm_i915_private *dev_priv = dev->dev_private;
7181
7182 gen9_init_clock_gating(dev);
7183
7184 /* WaDisableSDEUnitClockGating:kbl */
7185 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7186 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7187 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7188
7189 /* WaDisableGamClockGating:kbl */
7190 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7191 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7192 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7193
7194 /* WaFbcNukeOnHostModify:kbl */
7195 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7196 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7197 }
7198
7199 static void skylake_init_clock_gating(struct drm_device *dev)
7200 {
7201 struct drm_i915_private *dev_priv = dev->dev_private;
7202
7203 gen9_init_clock_gating(dev);
7204
7205 /* WAC6entrylatency:skl */
7206 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7207 FBC_LLC_FULLY_OPEN);
7208
7209 /* WaFbcNukeOnHostModify:skl */
7210 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7211 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7212 }
7213
7214 static void broadwell_init_clock_gating(struct drm_device *dev)
7215 {
7216 struct drm_i915_private *dev_priv = to_i915(dev);
7217 enum pipe pipe;
7218
7219 ilk_init_lp_watermarks(dev);
7220
7221 /* WaSwitchSolVfFArbitrationPriority:bdw */
7222 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7223
7224 /* WaPsrDPAMaskVBlankInSRD:bdw */
7225 I915_WRITE(CHICKEN_PAR1_1,
7226 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7227
7228 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7229 for_each_pipe(dev_priv, pipe) {
7230 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7231 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7232 BDW_DPRS_MASK_VBLANK_SRD);
7233 }
7234
7235 /* WaVSRefCountFullforceMissDisable:bdw */
7236 /* WaDSRefCountFullforceMissDisable:bdw */
7237 I915_WRITE(GEN7_FF_THREAD_MODE,
7238 I915_READ(GEN7_FF_THREAD_MODE) &
7239 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7240
7241 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7242 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7243
7244 /* WaDisableSDEUnitClockGating:bdw */
7245 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7246 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7247
7248 /* WaProgramL3SqcReg1Default:bdw */
7249 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7250
7251 /*
7252 * WaGttCachingOffByDefault:bdw
7253 * GTT cache may not work with big pages, so if those
7254 * are ever enabled GTT cache may need to be disabled.
7255 */
7256 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7257
7258 /* WaKVMNotificationOnConfigChange:bdw */
7259 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7260 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7261
7262 lpt_init_clock_gating(dev);
7263 }
7264
7265 static void haswell_init_clock_gating(struct drm_device *dev)
7266 {
7267 struct drm_i915_private *dev_priv = to_i915(dev);
7268
7269 ilk_init_lp_watermarks(dev);
7270
7271 /* L3 caching of data atomics doesn't work -- disable it. */
7272 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7273 I915_WRITE(HSW_ROW_CHICKEN3,
7274 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7275
7276 /* This is required by WaCatErrorRejectionIssue:hsw */
7277 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7278 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7279 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7280
7281 /* WaVSRefCountFullforceMissDisable:hsw */
7282 I915_WRITE(GEN7_FF_THREAD_MODE,
7283 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7284
7285 /* WaDisable_RenderCache_OperationalFlush:hsw */
7286 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7287
7288 /* enable HiZ Raw Stall Optimization */
7289 I915_WRITE(CACHE_MODE_0_GEN7,
7290 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7291
7292 /* WaDisable4x2SubspanOptimization:hsw */
7293 I915_WRITE(CACHE_MODE_1,
7294 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7295
7296 /*
7297 * BSpec recommends 8x4 when MSAA is used,
7298 * however in practice 16x4 seems fastest.
7299 *
7300 * Note that PS/WM thread counts depend on the WIZ hashing
7301 * disable bit, which we don't touch here, but it's good
7302 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7303 */
7304 I915_WRITE(GEN7_GT_MODE,
7305 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7306
7307 /* WaSampleCChickenBitEnable:hsw */
7308 I915_WRITE(HALF_SLICE_CHICKEN3,
7309 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7310
7311 /* WaSwitchSolVfFArbitrationPriority:hsw */
7312 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7313
7314 /* WaRsPkgCStateDisplayPMReq:hsw */
7315 I915_WRITE(CHICKEN_PAR1_1,
7316 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7317
7318 lpt_init_clock_gating(dev);
7319 }
7320
7321 static void ivybridge_init_clock_gating(struct drm_device *dev)
7322 {
7323 struct drm_i915_private *dev_priv = to_i915(dev);
7324 uint32_t snpcr;
7325
7326 ilk_init_lp_watermarks(dev);
7327
7328 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7329
7330 /* WaDisableEarlyCull:ivb */
7331 I915_WRITE(_3D_CHICKEN3,
7332 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7333
7334 /* WaDisableBackToBackFlipFix:ivb */
7335 I915_WRITE(IVB_CHICKEN3,
7336 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7337 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7338
7339 /* WaDisablePSDDualDispatchEnable:ivb */
7340 if (IS_IVB_GT1(dev))
7341 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7342 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7343
7344 /* WaDisable_RenderCache_OperationalFlush:ivb */
7345 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7346
7347 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7348 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7349 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7350
7351 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7352 I915_WRITE(GEN7_L3CNTLREG1,
7353 GEN7_WA_FOR_GEN7_L3_CONTROL);
7354 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7355 GEN7_WA_L3_CHICKEN_MODE);
7356 if (IS_IVB_GT1(dev))
7357 I915_WRITE(GEN7_ROW_CHICKEN2,
7358 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7359 else {
7360 /* must write both registers */
7361 I915_WRITE(GEN7_ROW_CHICKEN2,
7362 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7363 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7364 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7365 }
7366
7367 /* WaForceL3Serialization:ivb */
7368 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7369 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7370
7371 /*
7372 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7373 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7374 */
7375 I915_WRITE(GEN6_UCGCTL2,
7376 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7377
7378 /* This is required by WaCatErrorRejectionIssue:ivb */
7379 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7380 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7381 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7382
7383 g4x_disable_trickle_feed(dev);
7384
7385 gen7_setup_fixed_func_scheduler(dev_priv);
7386
7387 if (0) { /* causes HiZ corruption on ivb:gt1 */
7388 /* enable HiZ Raw Stall Optimization */
7389 I915_WRITE(CACHE_MODE_0_GEN7,
7390 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7391 }
7392
7393 /* WaDisable4x2SubspanOptimization:ivb */
7394 I915_WRITE(CACHE_MODE_1,
7395 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7396
7397 /*
7398 * BSpec recommends 8x4 when MSAA is used,
7399 * however in practice 16x4 seems fastest.
7400 *
7401 * Note that PS/WM thread counts depend on the WIZ hashing
7402 * disable bit, which we don't touch here, but it's good
7403 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7404 */
7405 I915_WRITE(GEN7_GT_MODE,
7406 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7407
7408 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7409 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7410 snpcr |= GEN6_MBC_SNPCR_MED;
7411 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7412
7413 if (!HAS_PCH_NOP(dev))
7414 cpt_init_clock_gating(dev);
7415
7416 gen6_check_mch_setup(dev);
7417 }
7418
7419 static void valleyview_init_clock_gating(struct drm_device *dev)
7420 {
7421 struct drm_i915_private *dev_priv = to_i915(dev);
7422
7423 /* WaDisableEarlyCull:vlv */
7424 I915_WRITE(_3D_CHICKEN3,
7425 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7426
7427 /* WaDisableBackToBackFlipFix:vlv */
7428 I915_WRITE(IVB_CHICKEN3,
7429 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7430 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7431
7432 /* WaPsdDispatchEnable:vlv */
7433 /* WaDisablePSDDualDispatchEnable:vlv */
7434 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7435 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7436 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7437
7438 /* WaDisable_RenderCache_OperationalFlush:vlv */
7439 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7440
7441 /* WaForceL3Serialization:vlv */
7442 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7443 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7444
7445 /* WaDisableDopClockGating:vlv */
7446 I915_WRITE(GEN7_ROW_CHICKEN2,
7447 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7448
7449 /* This is required by WaCatErrorRejectionIssue:vlv */
7450 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7451 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7452 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7453
7454 gen7_setup_fixed_func_scheduler(dev_priv);
7455
7456 /*
7457 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7458 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7459 */
7460 I915_WRITE(GEN6_UCGCTL2,
7461 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7462
7463 /* WaDisableL3Bank2xClockGate:vlv
7464 * Disabling L3 clock gating- MMIO 940c[25] = 1
7465 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7466 I915_WRITE(GEN7_UCGCTL4,
7467 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7468
7469 /*
7470 * BSpec says this must be set, even though
7471 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7472 */
7473 I915_WRITE(CACHE_MODE_1,
7474 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7475
7476 /*
7477 * BSpec recommends 8x4 when MSAA is used,
7478 * however in practice 16x4 seems fastest.
7479 *
7480 * Note that PS/WM thread counts depend on the WIZ hashing
7481 * disable bit, which we don't touch here, but it's good
7482 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7483 */
7484 I915_WRITE(GEN7_GT_MODE,
7485 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7486
7487 /*
7488 * WaIncreaseL3CreditsForVLVB0:vlv
7489 * This is the hardware default actually.
7490 */
7491 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7492
7493 /*
7494 * WaDisableVLVClockGating_VBIIssue:vlv
7495 * Disable clock gating on th GCFG unit to prevent a delay
7496 * in the reporting of vblank events.
7497 */
7498 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7499 }
7500
7501 static void cherryview_init_clock_gating(struct drm_device *dev)
7502 {
7503 struct drm_i915_private *dev_priv = to_i915(dev);
7504
7505 /* WaVSRefCountFullforceMissDisable:chv */
7506 /* WaDSRefCountFullforceMissDisable:chv */
7507 I915_WRITE(GEN7_FF_THREAD_MODE,
7508 I915_READ(GEN7_FF_THREAD_MODE) &
7509 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7510
7511 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7512 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7513 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7514
7515 /* WaDisableCSUnitClockGating:chv */
7516 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7517 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7518
7519 /* WaDisableSDEUnitClockGating:chv */
7520 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7521 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7522
7523 /*
7524 * WaProgramL3SqcReg1Default:chv
7525 * See gfxspecs/Related Documents/Performance Guide/
7526 * LSQC Setting Recommendations.
7527 */
7528 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7529
7530 /*
7531 * GTT cache may not work with big pages, so if those
7532 * are ever enabled GTT cache may need to be disabled.
7533 */
7534 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7535 }
7536
7537 static void g4x_init_clock_gating(struct drm_device *dev)
7538 {
7539 struct drm_i915_private *dev_priv = to_i915(dev);
7540 uint32_t dspclk_gate;
7541
7542 I915_WRITE(RENCLK_GATE_D1, 0);
7543 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7544 GS_UNIT_CLOCK_GATE_DISABLE |
7545 CL_UNIT_CLOCK_GATE_DISABLE);
7546 I915_WRITE(RAMCLK_GATE_D, 0);
7547 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7548 OVRUNIT_CLOCK_GATE_DISABLE |
7549 OVCUNIT_CLOCK_GATE_DISABLE;
7550 if (IS_GM45(dev))
7551 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7552 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7553
7554 /* WaDisableRenderCachePipelinedFlush */
7555 I915_WRITE(CACHE_MODE_0,
7556 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7557
7558 /* WaDisable_RenderCache_OperationalFlush:g4x */
7559 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7560
7561 g4x_disable_trickle_feed(dev);
7562 }
7563
7564 static void crestline_init_clock_gating(struct drm_device *dev)
7565 {
7566 struct drm_i915_private *dev_priv = to_i915(dev);
7567
7568 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7569 I915_WRITE(RENCLK_GATE_D2, 0);
7570 I915_WRITE(DSPCLK_GATE_D, 0);
7571 I915_WRITE(RAMCLK_GATE_D, 0);
7572 I915_WRITE16(DEUC, 0);
7573 I915_WRITE(MI_ARB_STATE,
7574 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7575
7576 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7577 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7578 }
7579
7580 static void broadwater_init_clock_gating(struct drm_device *dev)
7581 {
7582 struct drm_i915_private *dev_priv = to_i915(dev);
7583
7584 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7585 I965_RCC_CLOCK_GATE_DISABLE |
7586 I965_RCPB_CLOCK_GATE_DISABLE |
7587 I965_ISC_CLOCK_GATE_DISABLE |
7588 I965_FBC_CLOCK_GATE_DISABLE);
7589 I915_WRITE(RENCLK_GATE_D2, 0);
7590 I915_WRITE(MI_ARB_STATE,
7591 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7592
7593 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7594 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7595 }
7596
7597 static void gen3_init_clock_gating(struct drm_device *dev)
7598 {
7599 struct drm_i915_private *dev_priv = to_i915(dev);
7600 u32 dstate = I915_READ(D_STATE);
7601
7602 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7603 DSTATE_DOT_CLOCK_GATING;
7604 I915_WRITE(D_STATE, dstate);
7605
7606 if (IS_PINEVIEW(dev))
7607 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7608
7609 /* IIR "flip pending" means done if this bit is set */
7610 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7611
7612 /* interrupts should cause a wake up from C3 */
7613 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7614
7615 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7616 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7617
7618 I915_WRITE(MI_ARB_STATE,
7619 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7620 }
7621
7622 static void i85x_init_clock_gating(struct drm_device *dev)
7623 {
7624 struct drm_i915_private *dev_priv = to_i915(dev);
7625
7626 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7627
7628 /* interrupts should cause a wake up from C3 */
7629 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7630 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7631
7632 I915_WRITE(MEM_MODE,
7633 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7634 }
7635
7636 static void i830_init_clock_gating(struct drm_device *dev)
7637 {
7638 struct drm_i915_private *dev_priv = to_i915(dev);
7639
7640 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7641
7642 I915_WRITE(MEM_MODE,
7643 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7644 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7645 }
7646
7647 void intel_init_clock_gating(struct drm_device *dev)
7648 {
7649 struct drm_i915_private *dev_priv = to_i915(dev);
7650
7651 dev_priv->display.init_clock_gating(dev);
7652 }
7653
7654 void intel_suspend_hw(struct drm_device *dev)
7655 {
7656 if (HAS_PCH_LPT(dev))
7657 lpt_suspend_hw(dev);
7658 }
7659
7660 static void nop_init_clock_gating(struct drm_device *dev)
7661 {
7662 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7663 }
7664
7665 /**
7666 * intel_init_clock_gating_hooks - setup the clock gating hooks
7667 * @dev_priv: device private
7668 *
7669 * Setup the hooks that configure which clocks of a given platform can be
7670 * gated and also apply various GT and display specific workarounds for these
7671 * platforms. Note that some GT specific workarounds are applied separately
7672 * when GPU contexts or batchbuffers start their execution.
7673 */
7674 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7675 {
7676 if (IS_SKYLAKE(dev_priv))
7677 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7678 else if (IS_KABYLAKE(dev_priv))
7679 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7680 else if (IS_BROXTON(dev_priv))
7681 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7682 else if (IS_BROADWELL(dev_priv))
7683 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7684 else if (IS_CHERRYVIEW(dev_priv))
7685 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7686 else if (IS_HASWELL(dev_priv))
7687 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7688 else if (IS_IVYBRIDGE(dev_priv))
7689 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7690 else if (IS_VALLEYVIEW(dev_priv))
7691 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7692 else if (IS_GEN6(dev_priv))
7693 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7694 else if (IS_GEN5(dev_priv))
7695 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7696 else if (IS_G4X(dev_priv))
7697 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7698 else if (IS_CRESTLINE(dev_priv))
7699 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7700 else if (IS_BROADWATER(dev_priv))
7701 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7702 else if (IS_GEN3(dev_priv))
7703 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7704 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7705 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7706 else if (IS_GEN2(dev_priv))
7707 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7708 else {
7709 MISSING_CASE(INTEL_DEVID(dev_priv));
7710 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7711 }
7712 }
7713
7714 /* Set up chip specific power management-related functions */
7715 void intel_init_pm(struct drm_device *dev)
7716 {
7717 struct drm_i915_private *dev_priv = to_i915(dev);
7718
7719 intel_fbc_init(dev_priv);
7720
7721 /* For cxsr */
7722 if (IS_PINEVIEW(dev))
7723 i915_pineview_get_mem_freq(dev);
7724 else if (IS_GEN5(dev))
7725 i915_ironlake_get_mem_freq(dev);
7726
7727 /* For FIFO watermark updates */
7728 if (INTEL_INFO(dev)->gen >= 9) {
7729 skl_setup_wm_latency(dev);
7730 dev_priv->display.update_wm = skl_update_wm;
7731 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7732 } else if (HAS_PCH_SPLIT(dev)) {
7733 ilk_setup_wm_latency(dev);
7734
7735 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7736 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7737 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7738 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7739 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7740 dev_priv->display.compute_intermediate_wm =
7741 ilk_compute_intermediate_wm;
7742 dev_priv->display.initial_watermarks =
7743 ilk_initial_watermarks;
7744 dev_priv->display.optimize_watermarks =
7745 ilk_optimize_watermarks;
7746 } else {
7747 DRM_DEBUG_KMS("Failed to read display plane latency. "
7748 "Disable CxSR\n");
7749 }
7750 } else if (IS_CHERRYVIEW(dev)) {
7751 vlv_setup_wm_latency(dev);
7752 dev_priv->display.update_wm = vlv_update_wm;
7753 } else if (IS_VALLEYVIEW(dev)) {
7754 vlv_setup_wm_latency(dev);
7755 dev_priv->display.update_wm = vlv_update_wm;
7756 } else if (IS_PINEVIEW(dev)) {
7757 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7758 dev_priv->is_ddr3,
7759 dev_priv->fsb_freq,
7760 dev_priv->mem_freq)) {
7761 DRM_INFO("failed to find known CxSR latency "
7762 "(found ddr%s fsb freq %d, mem freq %d), "
7763 "disabling CxSR\n",
7764 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7765 dev_priv->fsb_freq, dev_priv->mem_freq);
7766 /* Disable CxSR and never update its watermark again */
7767 intel_set_memory_cxsr(dev_priv, false);
7768 dev_priv->display.update_wm = NULL;
7769 } else
7770 dev_priv->display.update_wm = pineview_update_wm;
7771 } else if (IS_G4X(dev)) {
7772 dev_priv->display.update_wm = g4x_update_wm;
7773 } else if (IS_GEN4(dev)) {
7774 dev_priv->display.update_wm = i965_update_wm;
7775 } else if (IS_GEN3(dev)) {
7776 dev_priv->display.update_wm = i9xx_update_wm;
7777 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7778 } else if (IS_GEN2(dev)) {
7779 if (INTEL_INFO(dev)->num_pipes == 1) {
7780 dev_priv->display.update_wm = i845_update_wm;
7781 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7782 } else {
7783 dev_priv->display.update_wm = i9xx_update_wm;
7784 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7785 }
7786 } else {
7787 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7788 }
7789 }
7790
7791 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7792 {
7793 uint32_t flags =
7794 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7795
7796 switch (flags) {
7797 case GEN6_PCODE_SUCCESS:
7798 return 0;
7799 case GEN6_PCODE_UNIMPLEMENTED_CMD:
7800 case GEN6_PCODE_ILLEGAL_CMD:
7801 return -ENXIO;
7802 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7803 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7804 return -EOVERFLOW;
7805 case GEN6_PCODE_TIMEOUT:
7806 return -ETIMEDOUT;
7807 default:
7808 MISSING_CASE(flags)
7809 return 0;
7810 }
7811 }
7812
7813 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7814 {
7815 uint32_t flags =
7816 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7817
7818 switch (flags) {
7819 case GEN6_PCODE_SUCCESS:
7820 return 0;
7821 case GEN6_PCODE_ILLEGAL_CMD:
7822 return -ENXIO;
7823 case GEN7_PCODE_TIMEOUT:
7824 return -ETIMEDOUT;
7825 case GEN7_PCODE_ILLEGAL_DATA:
7826 return -EINVAL;
7827 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7828 return -EOVERFLOW;
7829 default:
7830 MISSING_CASE(flags);
7831 return 0;
7832 }
7833 }
7834
7835 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7836 {
7837 int status;
7838
7839 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7840
7841 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7842 * use te fw I915_READ variants to reduce the amount of work
7843 * required when reading/writing.
7844 */
7845
7846 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7847 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7848 return -EAGAIN;
7849 }
7850
7851 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7852 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7853 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7854
7855 if (intel_wait_for_register_fw(dev_priv,
7856 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7857 500)) {
7858 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7859 return -ETIMEDOUT;
7860 }
7861
7862 *val = I915_READ_FW(GEN6_PCODE_DATA);
7863 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7864
7865 if (INTEL_GEN(dev_priv) > 6)
7866 status = gen7_check_mailbox_status(dev_priv);
7867 else
7868 status = gen6_check_mailbox_status(dev_priv);
7869
7870 if (status) {
7871 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7872 status);
7873 return status;
7874 }
7875
7876 return 0;
7877 }
7878
7879 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7880 u32 mbox, u32 val)
7881 {
7882 int status;
7883
7884 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7885
7886 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7887 * use te fw I915_READ variants to reduce the amount of work
7888 * required when reading/writing.
7889 */
7890
7891 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7892 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7893 return -EAGAIN;
7894 }
7895
7896 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7897 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7898
7899 if (intel_wait_for_register_fw(dev_priv,
7900 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7901 500)) {
7902 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7903 return -ETIMEDOUT;
7904 }
7905
7906 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7907
7908 if (INTEL_GEN(dev_priv) > 6)
7909 status = gen7_check_mailbox_status(dev_priv);
7910 else
7911 status = gen6_check_mailbox_status(dev_priv);
7912
7913 if (status) {
7914 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7915 status);
7916 return status;
7917 }
7918
7919 return 0;
7920 }
7921
7922 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7923 {
7924 /*
7925 * N = val - 0xb7
7926 * Slow = Fast = GPLL ref * N
7927 */
7928 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7929 }
7930
7931 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7932 {
7933 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7934 }
7935
7936 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7937 {
7938 /*
7939 * N = val / 2
7940 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7941 */
7942 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7943 }
7944
7945 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7946 {
7947 /* CHV needs even values */
7948 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7949 }
7950
7951 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7952 {
7953 if (IS_GEN9(dev_priv))
7954 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7955 GEN9_FREQ_SCALER);
7956 else if (IS_CHERRYVIEW(dev_priv))
7957 return chv_gpu_freq(dev_priv, val);
7958 else if (IS_VALLEYVIEW(dev_priv))
7959 return byt_gpu_freq(dev_priv, val);
7960 else
7961 return val * GT_FREQUENCY_MULTIPLIER;
7962 }
7963
7964 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7965 {
7966 if (IS_GEN9(dev_priv))
7967 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7968 GT_FREQUENCY_MULTIPLIER);
7969 else if (IS_CHERRYVIEW(dev_priv))
7970 return chv_freq_opcode(dev_priv, val);
7971 else if (IS_VALLEYVIEW(dev_priv))
7972 return byt_freq_opcode(dev_priv, val);
7973 else
7974 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7975 }
7976
7977 struct request_boost {
7978 struct work_struct work;
7979 struct drm_i915_gem_request *req;
7980 };
7981
7982 static void __intel_rps_boost_work(struct work_struct *work)
7983 {
7984 struct request_boost *boost = container_of(work, struct request_boost, work);
7985 struct drm_i915_gem_request *req = boost->req;
7986
7987 if (!i915_gem_request_completed(req))
7988 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7989
7990 i915_gem_request_put(req);
7991 kfree(boost);
7992 }
7993
7994 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7995 {
7996 struct request_boost *boost;
7997
7998 if (req == NULL || INTEL_GEN(req->i915) < 6)
7999 return;
8000
8001 if (i915_gem_request_completed(req))
8002 return;
8003
8004 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8005 if (boost == NULL)
8006 return;
8007
8008 boost->req = i915_gem_request_get(req);
8009
8010 INIT_WORK(&boost->work, __intel_rps_boost_work);
8011 queue_work(req->i915->wq, &boost->work);
8012 }
8013
8014 void intel_pm_setup(struct drm_device *dev)
8015 {
8016 struct drm_i915_private *dev_priv = to_i915(dev);
8017
8018 mutex_init(&dev_priv->rps.hw_lock);
8019 spin_lock_init(&dev_priv->rps.client_lock);
8020
8021 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8022 __intel_autoenable_gt_powersave);
8023 INIT_LIST_HEAD(&dev_priv->rps.clients);
8024
8025 dev_priv->pm.suspended = false;
8026 atomic_set(&dev_priv->pm.wakeref_count, 0);
8027 atomic_set(&dev_priv->pm.atomic_seq, 0);
8028 }