]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_psr.c
drm/i915/psr: Move hsw_enable_source after enabling sink.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 struct drm_i915_private *dev_priv = to_i915(dev);
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 const struct edp_vsc_psr *vsc_psr)
77 {
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = to_i915(dev);
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 i >> 2), *data);
96 data++;
97 }
98 for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 i >> 2), 0);
101
102 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 POSTING_READ(ctl_reg);
104 }
105
106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp,
107 const struct intel_crtc_state *crtc_state)
108 {
109 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
111 uint32_t val;
112
113 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
114 val = I915_READ(VLV_VSCSDP(crtc->pipe));
115 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
116 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
117 I915_WRITE(VLV_VSCSDP(crtc->pipe), val);
118 }
119
120 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp,
121 const struct intel_crtc_state *crtc_state)
122 {
123 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
124 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
125 struct edp_vsc_psr psr_vsc;
126
127 if (dev_priv->psr.psr2_support) {
128 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
129 memset(&psr_vsc, 0, sizeof(psr_vsc));
130 psr_vsc.sdp_header.HB0 = 0;
131 psr_vsc.sdp_header.HB1 = 0x7;
132 if (dev_priv->psr.colorimetry_support &&
133 dev_priv->psr.y_cord_support) {
134 psr_vsc.sdp_header.HB2 = 0x5;
135 psr_vsc.sdp_header.HB3 = 0x13;
136 } else if (dev_priv->psr.y_cord_support) {
137 psr_vsc.sdp_header.HB2 = 0x4;
138 psr_vsc.sdp_header.HB3 = 0xe;
139 } else {
140 psr_vsc.sdp_header.HB2 = 0x3;
141 psr_vsc.sdp_header.HB3 = 0xc;
142 }
143 } else {
144 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
145 memset(&psr_vsc, 0, sizeof(psr_vsc));
146 psr_vsc.sdp_header.HB0 = 0;
147 psr_vsc.sdp_header.HB1 = 0x7;
148 psr_vsc.sdp_header.HB2 = 0x2;
149 psr_vsc.sdp_header.HB3 = 0x8;
150 }
151
152 intel_psr_write_vsc(intel_dp, &psr_vsc);
153 }
154
155 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
156 {
157 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
158 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
159 }
160
161 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
162 enum port port)
163 {
164 if (INTEL_INFO(dev_priv)->gen >= 9)
165 return DP_AUX_CH_CTL(port);
166 else
167 return EDP_PSR_AUX_CTL;
168 }
169
170 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
171 enum port port, int index)
172 {
173 if (INTEL_INFO(dev_priv)->gen >= 9)
174 return DP_AUX_CH_DATA(port, index);
175 else
176 return EDP_PSR_AUX_DATA(index);
177 }
178
179 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
180 {
181 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
182 struct drm_device *dev = dig_port->base.base.dev;
183 struct drm_i915_private *dev_priv = to_i915(dev);
184 uint32_t aux_clock_divider;
185 i915_reg_t aux_ctl_reg;
186 static const uint8_t aux_msg[] = {
187 [0] = DP_AUX_NATIVE_WRITE << 4,
188 [1] = DP_SET_POWER >> 8,
189 [2] = DP_SET_POWER & 0xff,
190 [3] = 1 - 1,
191 [4] = DP_SET_POWER_D0,
192 };
193 enum port port = dig_port->port;
194 u32 aux_ctl;
195 int i;
196
197 BUILD_BUG_ON(sizeof(aux_msg) > 20);
198
199 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
200
201 /* Enable AUX frame sync at sink */
202 if (dev_priv->psr.aux_frame_sync)
203 drm_dp_dpcd_writeb(&intel_dp->aux,
204 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
205 DP_AUX_FRAME_SYNC_ENABLE);
206 /* Enable ALPM at sink for psr2 */
207 if (dev_priv->psr.psr2_support && dev_priv->psr.alpm)
208 drm_dp_dpcd_writeb(&intel_dp->aux,
209 DP_RECEIVER_ALPM_CONFIG,
210 DP_ALPM_ENABLE);
211 if (dev_priv->psr.link_standby)
212 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
213 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
214 else
215 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
216 DP_PSR_ENABLE);
217
218 aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
219
220 /* Setup AUX registers */
221 for (i = 0; i < sizeof(aux_msg); i += 4)
222 I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
223 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
224
225 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
226 aux_clock_divider);
227 I915_WRITE(aux_ctl_reg, aux_ctl);
228 }
229
230 static void vlv_psr_enable_source(struct intel_dp *intel_dp,
231 const struct intel_crtc_state *crtc_state)
232 {
233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
234 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
235 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
236
237 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
238 I915_WRITE(VLV_PSRCTL(crtc->pipe),
239 VLV_EDP_PSR_MODE_SW_TIMER |
240 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
241 VLV_EDP_PSR_ENABLE);
242 }
243
244 static void vlv_psr_activate(struct intel_dp *intel_dp)
245 {
246 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
247 struct drm_device *dev = dig_port->base.base.dev;
248 struct drm_i915_private *dev_priv = to_i915(dev);
249 struct drm_crtc *crtc = dig_port->base.base.crtc;
250 enum pipe pipe = to_intel_crtc(crtc)->pipe;
251
252 /* Let's do the transition from PSR_state 1 to PSR_state 2
253 * that is PSR transition to active - static frame transmission.
254 * Then Hardware is responsible for the transition to PSR_state 3
255 * that is PSR active - no Remote Frame Buffer (RFB) update.
256 */
257 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
258 VLV_EDP_PSR_ACTIVE_ENTRY);
259 }
260
261 static void hsw_activate_psr1(struct intel_dp *intel_dp)
262 {
263 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
264 struct drm_device *dev = dig_port->base.base.dev;
265 struct drm_i915_private *dev_priv = to_i915(dev);
266
267 uint32_t max_sleep_time = 0x1f;
268 /*
269 * Let's respect VBT in case VBT asks a higher idle_frame value.
270 * Let's use 6 as the minimum to cover all known cases including
271 * the off-by-one issue that HW has in some cases. Also there are
272 * cases where sink should be able to train
273 * with the 5 or 6 idle patterns.
274 */
275 uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
276 uint32_t val = EDP_PSR_ENABLE;
277
278 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
279 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
280
281 if (IS_HASWELL(dev_priv))
282 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
283
284 if (dev_priv->psr.link_standby)
285 val |= EDP_PSR_LINK_STANDBY;
286
287 if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
288 val |= EDP_PSR_TP1_TIME_2500us;
289 else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
290 val |= EDP_PSR_TP1_TIME_500us;
291 else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
292 val |= EDP_PSR_TP1_TIME_100us;
293 else
294 val |= EDP_PSR_TP1_TIME_0us;
295
296 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
297 val |= EDP_PSR_TP2_TP3_TIME_2500us;
298 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
299 val |= EDP_PSR_TP2_TP3_TIME_500us;
300 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
301 val |= EDP_PSR_TP2_TP3_TIME_100us;
302 else
303 val |= EDP_PSR_TP2_TP3_TIME_0us;
304
305 if (intel_dp_source_supports_hbr2(intel_dp) &&
306 drm_dp_tps3_supported(intel_dp->dpcd))
307 val |= EDP_PSR_TP1_TP3_SEL;
308 else
309 val |= EDP_PSR_TP1_TP2_SEL;
310
311 val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
312 I915_WRITE(EDP_PSR_CTL, val);
313 }
314
315 static void hsw_activate_psr2(struct intel_dp *intel_dp)
316 {
317 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
318 struct drm_device *dev = dig_port->base.base.dev;
319 struct drm_i915_private *dev_priv = to_i915(dev);
320 /*
321 * Let's respect VBT in case VBT asks a higher idle_frame value.
322 * Let's use 6 as the minimum to cover all known cases including
323 * the off-by-one issue that HW has in some cases. Also there are
324 * cases where sink should be able to train
325 * with the 5 or 6 idle patterns.
326 */
327 uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
328 uint32_t val;
329
330 val = idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
331
332 /* FIXME: selective update is probably totally broken because it doesn't
333 * mesh at all with our frontbuffer tracking. And the hw alone isn't
334 * good enough. */
335 val |= EDP_PSR2_ENABLE |
336 EDP_SU_TRACK_ENABLE |
337 EDP_FRAMES_BEFORE_SU_ENTRY;
338
339 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
340 val |= EDP_PSR2_TP2_TIME_2500;
341 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
342 val |= EDP_PSR2_TP2_TIME_500;
343 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
344 val |= EDP_PSR2_TP2_TIME_100;
345 else
346 val |= EDP_PSR2_TP2_TIME_50;
347
348 I915_WRITE(EDP_PSR2_CTL, val);
349 }
350
351 static void hsw_psr_activate(struct intel_dp *intel_dp)
352 {
353 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
354 struct drm_device *dev = dig_port->base.base.dev;
355 struct drm_i915_private *dev_priv = to_i915(dev);
356
357 /* On HSW+ after we enable PSR on source it will activate it
358 * as soon as it match configure idle_frame count. So
359 * we just actually enable it here on activation time.
360 */
361
362 /* psr1 and psr2 are mutually exclusive.*/
363 if (dev_priv->psr.psr2_support)
364 hsw_activate_psr2(intel_dp);
365 else
366 hsw_activate_psr1(intel_dp);
367 }
368
369 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
370 {
371 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
372 struct drm_device *dev = dig_port->base.base.dev;
373 struct drm_i915_private *dev_priv = to_i915(dev);
374 struct drm_crtc *crtc = dig_port->base.base.crtc;
375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
376 const struct drm_display_mode *adjusted_mode =
377 &intel_crtc->config->base.adjusted_mode;
378 int psr_setup_time;
379
380 lockdep_assert_held(&dev_priv->psr.lock);
381 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
382 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
383
384 dev_priv->psr.source_ok = false;
385
386 /*
387 * HSW spec explicitly says PSR is tied to port A.
388 * BDW+ platforms with DDI implementation of PSR have different
389 * PSR registers per transcoder and we only implement transcoder EDP
390 * ones. Since by Display design transcoder EDP is tied to port A
391 * we can safely escape based on the port A.
392 */
393 if (HAS_DDI(dev_priv) && dig_port->port != PORT_A) {
394 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
395 return false;
396 }
397
398 if (!i915.enable_psr) {
399 DRM_DEBUG_KMS("PSR disable by flag\n");
400 return false;
401 }
402
403 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
404 !dev_priv->psr.link_standby) {
405 DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
406 return false;
407 }
408
409 if (IS_HASWELL(dev_priv) &&
410 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
411 S3D_ENABLE) {
412 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
413 return false;
414 }
415
416 if (IS_HASWELL(dev_priv) &&
417 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
418 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
419 return false;
420 }
421
422 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
423 if (psr_setup_time < 0) {
424 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
425 intel_dp->psr_dpcd[1]);
426 return false;
427 }
428
429 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
430 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
431 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
432 psr_setup_time);
433 return false;
434 }
435
436 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
437 if (dev_priv->psr.psr2_support &&
438 (intel_crtc->config->pipe_src_w > 3200 ||
439 intel_crtc->config->pipe_src_h > 2000)) {
440 dev_priv->psr.psr2_support = false;
441 return false;
442 }
443
444 /*
445 * FIXME:enable psr2 only for y-cordinate psr2 panels
446 * After gtc implementation , remove this restriction.
447 */
448 if (!dev_priv->psr.y_cord_support && dev_priv->psr.psr2_support) {
449 DRM_DEBUG_KMS("PSR2 disabled, panel does not support Y coordinate\n");
450 return false;
451 }
452
453 dev_priv->psr.source_ok = true;
454 return true;
455 }
456
457 static void intel_psr_activate(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 if (dev_priv->psr.psr2_support)
464 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
465 else
466 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
467 WARN_ON(dev_priv->psr.active);
468 lockdep_assert_held(&dev_priv->psr.lock);
469
470 dev_priv->psr.activate(intel_dp);
471 dev_priv->psr.active = true;
472 }
473
474 static void hsw_psr_enable_source(struct intel_dp *intel_dp,
475 const struct intel_crtc_state *crtc_state)
476 {
477 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
478 struct drm_device *dev = dig_port->base.base.dev;
479 struct drm_i915_private *dev_priv = to_i915(dev);
480 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
481 u32 chicken;
482
483 if (dev_priv->psr.psr2_support) {
484 chicken = PSR2_VSC_ENABLE_PROG_HEADER;
485 if (dev_priv->psr.y_cord_support)
486 chicken |= PSR2_ADD_VERTICAL_LINE_COUNT;
487 I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
488
489 I915_WRITE(EDP_PSR_DEBUG_CTL,
490 EDP_PSR_DEBUG_MASK_MEMUP |
491 EDP_PSR_DEBUG_MASK_HPD |
492 EDP_PSR_DEBUG_MASK_LPSP |
493 EDP_PSR_DEBUG_MASK_MAX_SLEEP |
494 EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
495 } else {
496 /*
497 * Per Spec: Avoid continuous PSR exit by masking MEMUP
498 * and HPD. also mask LPSP to avoid dependency on other
499 * drivers that might block runtime_pm besides
500 * preventing other hw tracking issues now we can rely
501 * on frontbuffer tracking.
502 */
503 I915_WRITE(EDP_PSR_DEBUG_CTL,
504 EDP_PSR_DEBUG_MASK_MEMUP |
505 EDP_PSR_DEBUG_MASK_HPD |
506 EDP_PSR_DEBUG_MASK_LPSP);
507 }
508 }
509
510 /**
511 * intel_psr_enable - Enable PSR
512 * @intel_dp: Intel DP
513 * @crtc_state: new CRTC state
514 *
515 * This function can only be called after the pipe is fully trained and enabled.
516 */
517 void intel_psr_enable(struct intel_dp *intel_dp,
518 const struct intel_crtc_state *crtc_state)
519 {
520 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
521 struct drm_device *dev = intel_dig_port->base.base.dev;
522 struct drm_i915_private *dev_priv = to_i915(dev);
523
524 if (!HAS_PSR(dev_priv))
525 return;
526
527 if (!is_edp_psr(intel_dp)) {
528 DRM_DEBUG_KMS("PSR not supported by this panel\n");
529 return;
530 }
531
532 mutex_lock(&dev_priv->psr.lock);
533 if (dev_priv->psr.enabled) {
534 DRM_DEBUG_KMS("PSR already in use\n");
535 goto unlock;
536 }
537
538 if (!intel_psr_match_conditions(intel_dp))
539 goto unlock;
540
541 dev_priv->psr.busy_frontbuffer_bits = 0;
542
543 if (HAS_DDI(dev_priv)) {
544
545 hsw_psr_setup_vsc(intel_dp, crtc_state);
546
547 /* Enable PSR on the panel */
548 hsw_psr_enable_sink(intel_dp);
549
550 hsw_psr_enable_source(intel_dp, crtc_state);
551
552 if (INTEL_GEN(dev_priv) >= 9)
553 intel_psr_activate(intel_dp);
554 } else {
555 vlv_psr_setup_vsc(intel_dp, crtc_state);
556
557 /* Enable PSR on the panel */
558 vlv_psr_enable_sink(intel_dp);
559
560 vlv_psr_enable_source(intel_dp, crtc_state);
561 }
562
563 /*
564 * FIXME: Activation should happen immediately since this function
565 * is just called after pipe is fully trained and enabled.
566 * However on every platform we face issues when first activation
567 * follows a modeset so quickly.
568 * - On VLV/CHV we get bank screen on first activation
569 * - On HSW/BDW we get a recoverable frozen screen until next
570 * exit-activate sequence.
571 */
572 if (INTEL_GEN(dev_priv) < 9)
573 schedule_delayed_work(&dev_priv->psr.work,
574 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
575
576 dev_priv->psr.enabled = intel_dp;
577 unlock:
578 mutex_unlock(&dev_priv->psr.lock);
579 }
580
581 static void vlv_psr_disable(struct intel_dp *intel_dp,
582 const struct intel_crtc_state *old_crtc_state)
583 {
584 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
585 struct drm_device *dev = intel_dig_port->base.base.dev;
586 struct drm_i915_private *dev_priv = to_i915(dev);
587 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
588 uint32_t val;
589
590 if (dev_priv->psr.active) {
591 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
592 if (intel_wait_for_register(dev_priv,
593 VLV_PSRSTAT(crtc->pipe),
594 VLV_EDP_PSR_IN_TRANS,
595 0,
596 1))
597 WARN(1, "PSR transition took longer than expected\n");
598
599 val = I915_READ(VLV_PSRCTL(crtc->pipe));
600 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
601 val &= ~VLV_EDP_PSR_ENABLE;
602 val &= ~VLV_EDP_PSR_MODE_MASK;
603 I915_WRITE(VLV_PSRCTL(crtc->pipe), val);
604
605 dev_priv->psr.active = false;
606 } else {
607 WARN_ON(vlv_is_psr_active_on_pipe(dev, crtc->pipe));
608 }
609 }
610
611 static void hsw_psr_disable(struct intel_dp *intel_dp,
612 const struct intel_crtc_state *old_crtc_state)
613 {
614 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
615 struct drm_device *dev = intel_dig_port->base.base.dev;
616 struct drm_i915_private *dev_priv = to_i915(dev);
617
618 if (dev_priv->psr.active) {
619 i915_reg_t psr_ctl;
620 u32 psr_status_mask;
621
622 if (dev_priv->psr.aux_frame_sync)
623 drm_dp_dpcd_writeb(&intel_dp->aux,
624 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
625 0);
626
627 if (dev_priv->psr.psr2_support) {
628 psr_ctl = EDP_PSR2_CTL;
629 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
630
631 I915_WRITE(psr_ctl,
632 I915_READ(psr_ctl) &
633 ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
634
635 } else {
636 psr_ctl = EDP_PSR_STATUS_CTL;
637 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
638
639 I915_WRITE(psr_ctl,
640 I915_READ(psr_ctl) & ~EDP_PSR_ENABLE);
641 }
642
643 /* Wait till PSR is idle */
644 if (intel_wait_for_register(dev_priv,
645 psr_ctl, psr_status_mask, 0,
646 2000))
647 DRM_ERROR("Timed out waiting for PSR Idle State\n");
648
649 dev_priv->psr.active = false;
650 } else {
651 if (dev_priv->psr.psr2_support)
652 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
653 else
654 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
655 }
656 }
657
658 /**
659 * intel_psr_disable - Disable PSR
660 * @intel_dp: Intel DP
661 * @old_crtc_state: old CRTC state
662 *
663 * This function needs to be called before disabling pipe.
664 */
665 void intel_psr_disable(struct intel_dp *intel_dp,
666 const struct intel_crtc_state *old_crtc_state)
667 {
668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669 struct drm_device *dev = intel_dig_port->base.base.dev;
670 struct drm_i915_private *dev_priv = to_i915(dev);
671
672 if (!HAS_PSR(dev_priv))
673 return;
674
675 mutex_lock(&dev_priv->psr.lock);
676 if (!dev_priv->psr.enabled) {
677 mutex_unlock(&dev_priv->psr.lock);
678 return;
679 }
680
681 dev_priv->psr.disable_source(intel_dp, old_crtc_state);
682
683 /* Disable PSR on Sink */
684 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
685
686 dev_priv->psr.enabled = NULL;
687 mutex_unlock(&dev_priv->psr.lock);
688
689 cancel_delayed_work_sync(&dev_priv->psr.work);
690 }
691
692 static void intel_psr_work(struct work_struct *work)
693 {
694 struct drm_i915_private *dev_priv =
695 container_of(work, typeof(*dev_priv), psr.work.work);
696 struct intel_dp *intel_dp = dev_priv->psr.enabled;
697 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
698 enum pipe pipe = to_intel_crtc(crtc)->pipe;
699
700 /* We have to make sure PSR is ready for re-enable
701 * otherwise it keeps disabled until next full enable/disable cycle.
702 * PSR might take some time to get fully disabled
703 * and be ready for re-enable.
704 */
705 if (HAS_DDI(dev_priv)) {
706 if (dev_priv->psr.psr2_support) {
707 if (intel_wait_for_register(dev_priv,
708 EDP_PSR2_STATUS_CTL,
709 EDP_PSR2_STATUS_STATE_MASK,
710 0,
711 50)) {
712 DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n");
713 return;
714 }
715 } else {
716 if (intel_wait_for_register(dev_priv,
717 EDP_PSR_STATUS_CTL,
718 EDP_PSR_STATUS_STATE_MASK,
719 0,
720 50)) {
721 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
722 return;
723 }
724 }
725 } else {
726 if (intel_wait_for_register(dev_priv,
727 VLV_PSRSTAT(pipe),
728 VLV_EDP_PSR_IN_TRANS,
729 0,
730 1)) {
731 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
732 return;
733 }
734 }
735 mutex_lock(&dev_priv->psr.lock);
736 intel_dp = dev_priv->psr.enabled;
737
738 if (!intel_dp)
739 goto unlock;
740
741 /*
742 * The delayed work can race with an invalidate hence we need to
743 * recheck. Since psr_flush first clears this and then reschedules we
744 * won't ever miss a flush when bailing out here.
745 */
746 if (dev_priv->psr.busy_frontbuffer_bits)
747 goto unlock;
748
749 intel_psr_activate(intel_dp);
750 unlock:
751 mutex_unlock(&dev_priv->psr.lock);
752 }
753
754 static void intel_psr_exit(struct drm_i915_private *dev_priv)
755 {
756 struct intel_dp *intel_dp = dev_priv->psr.enabled;
757 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
758 enum pipe pipe = to_intel_crtc(crtc)->pipe;
759 u32 val;
760
761 if (!dev_priv->psr.active)
762 return;
763
764 if (HAS_DDI(dev_priv)) {
765 if (dev_priv->psr.aux_frame_sync)
766 drm_dp_dpcd_writeb(&intel_dp->aux,
767 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
768 0);
769 if (dev_priv->psr.psr2_support) {
770 val = I915_READ(EDP_PSR2_CTL);
771 WARN_ON(!(val & EDP_PSR2_ENABLE));
772 I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
773 } else {
774 val = I915_READ(EDP_PSR_CTL);
775 WARN_ON(!(val & EDP_PSR_ENABLE));
776 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
777 }
778 } else {
779 val = I915_READ(VLV_PSRCTL(pipe));
780
781 /* Here we do the transition from PSR_state 3 to PSR_state 5
782 * directly once PSR State 4 that is active with single frame
783 * update can be skipped. PSR_state 5 that is PSR exit then
784 * Hardware is responsible to transition back to PSR_state 1
785 * that is PSR inactive. Same state after
786 * vlv_edp_psr_enable_source.
787 */
788 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
789 I915_WRITE(VLV_PSRCTL(pipe), val);
790
791 /* Send AUX wake up - Spec says after transitioning to PSR
792 * active we have to send AUX wake up by writing 01h in DPCD
793 * 600h of sink device.
794 * XXX: This might slow down the transition, but without this
795 * HW doesn't complete the transition to PSR_state 1 and we
796 * never get the screen updated.
797 */
798 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
799 DP_SET_POWER_D0);
800 }
801
802 dev_priv->psr.active = false;
803 }
804
805 /**
806 * intel_psr_single_frame_update - Single Frame Update
807 * @dev_priv: i915 device
808 * @frontbuffer_bits: frontbuffer plane tracking bits
809 *
810 * Some platforms support a single frame update feature that is used to
811 * send and update only one frame on Remote Frame Buffer.
812 * So far it is only implemented for Valleyview and Cherryview because
813 * hardware requires this to be done before a page flip.
814 */
815 void intel_psr_single_frame_update(struct drm_i915_private *dev_priv,
816 unsigned frontbuffer_bits)
817 {
818 struct drm_crtc *crtc;
819 enum pipe pipe;
820 u32 val;
821
822 if (!HAS_PSR(dev_priv))
823 return;
824
825 /*
826 * Single frame update is already supported on BDW+ but it requires
827 * many W/A and it isn't really needed.
828 */
829 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
830 return;
831
832 mutex_lock(&dev_priv->psr.lock);
833 if (!dev_priv->psr.enabled) {
834 mutex_unlock(&dev_priv->psr.lock);
835 return;
836 }
837
838 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
839 pipe = to_intel_crtc(crtc)->pipe;
840
841 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
842 val = I915_READ(VLV_PSRCTL(pipe));
843
844 /*
845 * We need to set this bit before writing registers for a flip.
846 * This bit will be self-clear when it gets to the PSR active state.
847 */
848 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
849 }
850 mutex_unlock(&dev_priv->psr.lock);
851 }
852
853 /**
854 * intel_psr_invalidate - Invalidade PSR
855 * @dev_priv: i915 device
856 * @frontbuffer_bits: frontbuffer plane tracking bits
857 *
858 * Since the hardware frontbuffer tracking has gaps we need to integrate
859 * with the software frontbuffer tracking. This function gets called every
860 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
861 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
862 *
863 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
864 */
865 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
866 unsigned frontbuffer_bits)
867 {
868 struct drm_crtc *crtc;
869 enum pipe pipe;
870
871 if (!HAS_PSR(dev_priv))
872 return;
873
874 mutex_lock(&dev_priv->psr.lock);
875 if (!dev_priv->psr.enabled) {
876 mutex_unlock(&dev_priv->psr.lock);
877 return;
878 }
879
880 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
881 pipe = to_intel_crtc(crtc)->pipe;
882
883 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
884 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
885
886 if (frontbuffer_bits)
887 intel_psr_exit(dev_priv);
888
889 mutex_unlock(&dev_priv->psr.lock);
890 }
891
892 /**
893 * intel_psr_flush - Flush PSR
894 * @dev_priv: i915 device
895 * @frontbuffer_bits: frontbuffer plane tracking bits
896 * @origin: which operation caused the flush
897 *
898 * Since the hardware frontbuffer tracking has gaps we need to integrate
899 * with the software frontbuffer tracking. This function gets called every
900 * time frontbuffer rendering has completed and flushed out to memory. PSR
901 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
902 *
903 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
904 */
905 void intel_psr_flush(struct drm_i915_private *dev_priv,
906 unsigned frontbuffer_bits, enum fb_op_origin origin)
907 {
908 struct drm_crtc *crtc;
909 enum pipe pipe;
910
911 if (!HAS_PSR(dev_priv))
912 return;
913
914 mutex_lock(&dev_priv->psr.lock);
915 if (!dev_priv->psr.enabled) {
916 mutex_unlock(&dev_priv->psr.lock);
917 return;
918 }
919
920 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
921 pipe = to_intel_crtc(crtc)->pipe;
922
923 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
924 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
925
926 /* By definition flush = invalidate + flush */
927 if (frontbuffer_bits)
928 intel_psr_exit(dev_priv);
929
930 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
931 if (!work_busy(&dev_priv->psr.work.work))
932 schedule_delayed_work(&dev_priv->psr.work,
933 msecs_to_jiffies(100));
934 mutex_unlock(&dev_priv->psr.lock);
935 }
936
937 /**
938 * intel_psr_init - Init basic PSR work and mutex.
939 * @dev_priv: i915 device private
940 *
941 * This function is called only once at driver load to initialize basic
942 * PSR stuff.
943 */
944 void intel_psr_init(struct drm_i915_private *dev_priv)
945 {
946 if (!HAS_PSR(dev_priv))
947 return;
948
949 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
950 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
951
952 /* Per platform default: all disabled. */
953 if (i915.enable_psr == -1)
954 i915.enable_psr = 0;
955
956 /* Set link_standby x link_off defaults */
957 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
958 /* HSW and BDW require workarounds that we don't implement. */
959 dev_priv->psr.link_standby = false;
960 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
961 /* On VLV and CHV only standby mode is supported. */
962 dev_priv->psr.link_standby = true;
963 else
964 /* For new platforms let's respect VBT back again */
965 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
966
967 /* Override link_standby x link_off defaults */
968 if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
969 DRM_DEBUG_KMS("PSR: Forcing link standby\n");
970 dev_priv->psr.link_standby = true;
971 }
972 if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
973 DRM_DEBUG_KMS("PSR: Forcing main link off\n");
974 dev_priv->psr.link_standby = false;
975 }
976
977 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
978 mutex_init(&dev_priv->psr.lock);
979
980 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
981 dev_priv->psr.disable_source = vlv_psr_disable;
982 dev_priv->psr.activate = vlv_psr_activate;
983 } else {
984 dev_priv->psr.disable_source = hsw_psr_disable;
985 dev_priv->psr.activate = hsw_psr_activate;
986 }
987 }