]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59 }
60
61 static void __intel_ring_advance(struct intel_engine_cs *engine)
62 {
63 struct intel_ringbuffer *ringbuf = engine->buffer;
64 ringbuf->tail &= ringbuf->size - 1;
65 engine->write_tail(engine, ringbuf->tail);
66 }
67
68 static int
69 gen2_render_ring_flush(struct drm_i915_gem_request *req,
70 u32 invalidate_domains,
71 u32 flush_domains)
72 {
73 struct intel_engine_cs *engine = req->engine;
74 u32 cmd;
75 int ret;
76
77 cmd = MI_FLUSH;
78 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79 cmd |= MI_NO_WRITE_FLUSH;
80
81 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
82 cmd |= MI_READ_FLUSH;
83
84 ret = intel_ring_begin(req, 2);
85 if (ret)
86 return ret;
87
88 intel_ring_emit(engine, cmd);
89 intel_ring_emit(engine, MI_NOOP);
90 intel_ring_advance(engine);
91
92 return 0;
93 }
94
95 static int
96 gen4_render_ring_flush(struct drm_i915_gem_request *req,
97 u32 invalidate_domains,
98 u32 flush_domains)
99 {
100 struct intel_engine_cs *engine = req->engine;
101 u32 cmd;
102 int ret;
103
104 /*
105 * read/write caches:
106 *
107 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
108 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
109 * also flushed at 2d versus 3d pipeline switches.
110 *
111 * read-only caches:
112 *
113 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
114 * MI_READ_FLUSH is set, and is always flushed on 965.
115 *
116 * I915_GEM_DOMAIN_COMMAND may not exist?
117 *
118 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
119 * invalidated when MI_EXE_FLUSH is set.
120 *
121 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
122 * invalidated with every MI_FLUSH.
123 *
124 * TLBs:
125 *
126 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
127 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
128 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
129 * are flushed at any MI_FLUSH.
130 */
131
132 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134 cmd &= ~MI_NO_WRITE_FLUSH;
135 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
136 cmd |= MI_EXE_FLUSH;
137
138 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140 cmd |= MI_INVALIDATE_ISP;
141
142 ret = intel_ring_begin(req, 2);
143 if (ret)
144 return ret;
145
146 intel_ring_emit(engine, cmd);
147 intel_ring_emit(engine, MI_NOOP);
148 intel_ring_advance(engine);
149
150 return 0;
151 }
152
153 /**
154 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
155 * implementing two workarounds on gen6. From section 1.4.7.1
156 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
157 *
158 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
159 * produced by non-pipelined state commands), software needs to first
160 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161 * 0.
162 *
163 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
164 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
165 *
166 * And the workaround for these two requires this workaround first:
167 *
168 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
169 * BEFORE the pipe-control with a post-sync op and no write-cache
170 * flushes.
171 *
172 * And this last workaround is tricky because of the requirements on
173 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174 * volume 2 part 1:
175 *
176 * "1 of the following must also be set:
177 * - Render Target Cache Flush Enable ([12] of DW1)
178 * - Depth Cache Flush Enable ([0] of DW1)
179 * - Stall at Pixel Scoreboard ([1] of DW1)
180 * - Depth Stall ([13] of DW1)
181 * - Post-Sync Operation ([13] of DW1)
182 * - Notify Enable ([8] of DW1)"
183 *
184 * The cache flushes require the workaround flush that triggered this
185 * one, so we can't use it. Depth stall would trigger the same.
186 * Post-sync nonzero is what triggered this second workaround, so we
187 * can't use that one either. Notify enable is IRQs, which aren't
188 * really our business. That leaves only stall at scoreboard.
189 */
190 static int
191 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192 {
193 struct intel_engine_cs *engine = req->engine;
194 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195 int ret;
196
197 ret = intel_ring_begin(req, 6);
198 if (ret)
199 return ret;
200
201 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
202 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203 PIPE_CONTROL_STALL_AT_SCOREBOARD);
204 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
205 intel_ring_emit(engine, 0); /* low dword */
206 intel_ring_emit(engine, 0); /* high dword */
207 intel_ring_emit(engine, MI_NOOP);
208 intel_ring_advance(engine);
209
210 ret = intel_ring_begin(req, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
216 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
217 intel_ring_emit(engine, 0);
218 intel_ring_emit(engine, 0);
219 intel_ring_emit(engine, MI_NOOP);
220 intel_ring_advance(engine);
221
222 return 0;
223 }
224
225 static int
226 gen6_render_ring_flush(struct drm_i915_gem_request *req,
227 u32 invalidate_domains, u32 flush_domains)
228 {
229 struct intel_engine_cs *engine = req->engine;
230 u32 flags = 0;
231 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232 int ret;
233
234 /* Force SNB workarounds for PIPE_CONTROL flushes */
235 ret = intel_emit_post_sync_nonzero_flush(req);
236 if (ret)
237 return ret;
238
239 /* Just flush everything. Experiments have shown that reducing the
240 * number of bits based on the write domains has little performance
241 * impact.
242 */
243 if (flush_domains) {
244 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246 /*
247 * Ensure that any following seqno writes only happen
248 * when the render cache is indeed flushed.
249 */
250 flags |= PIPE_CONTROL_CS_STALL;
251 }
252 if (invalidate_domains) {
253 flags |= PIPE_CONTROL_TLB_INVALIDATE;
254 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259 /*
260 * TLB invalidate requires a post-sync write.
261 */
262 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263 }
264
265 ret = intel_ring_begin(req, 4);
266 if (ret)
267 return ret;
268
269 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
270 intel_ring_emit(engine, flags);
271 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
272 intel_ring_emit(engine, 0);
273 intel_ring_advance(engine);
274
275 return 0;
276 }
277
278 static int
279 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280 {
281 struct intel_engine_cs *engine = req->engine;
282 int ret;
283
284 ret = intel_ring_begin(req, 4);
285 if (ret)
286 return ret;
287
288 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
289 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290 PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 intel_ring_emit(engine, 0);
292 intel_ring_emit(engine, 0);
293 intel_ring_advance(engine);
294
295 return 0;
296 }
297
298 static int
299 gen7_render_ring_flush(struct drm_i915_gem_request *req,
300 u32 invalidate_domains, u32 flush_domains)
301 {
302 struct intel_engine_cs *engine = req->engine;
303 u32 flags = 0;
304 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305 int ret;
306
307 /*
308 * Ensure that any following seqno writes only happen when the render
309 * cache is indeed flushed.
310 *
311 * Workaround: 4th PIPE_CONTROL command (except the ones with only
312 * read-cache invalidate bits set) must have the CS_STALL bit set. We
313 * don't try to be clever and just set it unconditionally.
314 */
315 flags |= PIPE_CONTROL_CS_STALL;
316
317 /* Just flush everything. Experiments have shown that reducing the
318 * number of bits based on the write domains has little performance
319 * impact.
320 */
321 if (flush_domains) {
322 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
323 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325 flags |= PIPE_CONTROL_FLUSH_ENABLE;
326 }
327 if (invalidate_domains) {
328 flags |= PIPE_CONTROL_TLB_INVALIDATE;
329 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
330 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
331 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
332 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335 /*
336 * TLB invalidate requires a post-sync write.
337 */
338 flags |= PIPE_CONTROL_QW_WRITE;
339 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340
341 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(req);
347 }
348
349 ret = intel_ring_begin(req, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(engine, flags);
355 intel_ring_emit(engine, scratch_addr);
356 intel_ring_emit(engine, 0);
357 intel_ring_advance(engine);
358
359 return 0;
360 }
361
362 static int
363 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364 u32 flags, u32 scratch_addr)
365 {
366 struct intel_engine_cs *engine = req->engine;
367 int ret;
368
369 ret = intel_ring_begin(req, 6);
370 if (ret)
371 return ret;
372
373 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
374 intel_ring_emit(engine, flags);
375 intel_ring_emit(engine, scratch_addr);
376 intel_ring_emit(engine, 0);
377 intel_ring_emit(engine, 0);
378 intel_ring_emit(engine, 0);
379 intel_ring_advance(engine);
380
381 return 0;
382 }
383
384 static int
385 gen8_render_ring_flush(struct drm_i915_gem_request *req,
386 u32 invalidate_domains, u32 flush_domains)
387 {
388 u32 flags = 0;
389 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390 int ret;
391
392 flags |= PIPE_CONTROL_CS_STALL;
393
394 if (flush_domains) {
395 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
396 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398 flags |= PIPE_CONTROL_FLUSH_ENABLE;
399 }
400 if (invalidate_domains) {
401 flags |= PIPE_CONTROL_TLB_INVALIDATE;
402 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
403 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
404 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
405 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
406 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
407 flags |= PIPE_CONTROL_QW_WRITE;
408 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409
410 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411 ret = gen8_emit_pipe_control(req,
412 PIPE_CONTROL_CS_STALL |
413 PIPE_CONTROL_STALL_AT_SCOREBOARD,
414 0);
415 if (ret)
416 return ret;
417 }
418
419 return gen8_emit_pipe_control(req, flags, scratch_addr);
420 }
421
422 static void ring_write_tail(struct intel_engine_cs *engine,
423 u32 value)
424 {
425 struct drm_i915_private *dev_priv = engine->i915;
426 I915_WRITE_TAIL(engine, value);
427 }
428
429 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430 {
431 struct drm_i915_private *dev_priv = engine->i915;
432 u64 acthd;
433
434 if (INTEL_GEN(dev_priv) >= 8)
435 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
436 RING_ACTHD_UDW(engine->mmio_base));
437 else if (INTEL_GEN(dev_priv) >= 4)
438 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439 else
440 acthd = I915_READ(ACTHD);
441
442 return acthd;
443 }
444
445 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446 {
447 struct drm_i915_private *dev_priv = engine->i915;
448 u32 addr;
449
450 addr = dev_priv->status_page_dmah->busaddr;
451 if (INTEL_GEN(dev_priv) >= 4)
452 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453 I915_WRITE(HWS_PGA, addr);
454 }
455
456 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457 {
458 struct drm_i915_private *dev_priv = engine->i915;
459 i915_reg_t mmio;
460
461 /* The ring status page addresses are no longer next to the rest of
462 * the ring registers as of gen7.
463 */
464 if (IS_GEN7(dev_priv)) {
465 switch (engine->id) {
466 case RCS:
467 mmio = RENDER_HWS_PGA_GEN7;
468 break;
469 case BCS:
470 mmio = BLT_HWS_PGA_GEN7;
471 break;
472 /*
473 * VCS2 actually doesn't exist on Gen7. Only shut up
474 * gcc switch check warning
475 */
476 case VCS2:
477 case VCS:
478 mmio = BSD_HWS_PGA_GEN7;
479 break;
480 case VECS:
481 mmio = VEBOX_HWS_PGA_GEN7;
482 break;
483 }
484 } else if (IS_GEN6(dev_priv)) {
485 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486 } else {
487 /* XXX: gen8 returns to sanity */
488 mmio = RING_HWS_PGA(engine->mmio_base);
489 }
490
491 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492 POSTING_READ(mmio);
493
494 /*
495 * Flush the TLB for this page
496 *
497 * FIXME: These two bits have disappeared on gen8, so a question
498 * arises: do we still need this and if so how should we go about
499 * invalidating the TLB?
500 */
501 if (IS_GEN(dev_priv, 6, 7)) {
502 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503
504 /* ring should be idle before issuing a sync flush*/
505 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506
507 I915_WRITE(reg,
508 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
509 INSTPM_SYNC_FLUSH));
510 if (intel_wait_for_register(dev_priv,
511 reg, INSTPM_SYNC_FLUSH, 0,
512 1000))
513 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514 engine->name);
515 }
516 }
517
518 static bool stop_ring(struct intel_engine_cs *engine)
519 {
520 struct drm_i915_private *dev_priv = engine->i915;
521
522 if (!IS_GEN2(dev_priv)) {
523 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524 if (intel_wait_for_register(dev_priv,
525 RING_MI_MODE(engine->mmio_base),
526 MODE_IDLE,
527 MODE_IDLE,
528 1000)) {
529 DRM_ERROR("%s : timed out trying to stop ring\n",
530 engine->name);
531 /* Sometimes we observe that the idle flag is not
532 * set even though the ring is empty. So double
533 * check before giving up.
534 */
535 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536 return false;
537 }
538 }
539
540 I915_WRITE_CTL(engine, 0);
541 I915_WRITE_HEAD(engine, 0);
542 engine->write_tail(engine, 0);
543
544 if (!IS_GEN2(dev_priv)) {
545 (void)I915_READ_CTL(engine);
546 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547 }
548
549 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559 struct drm_i915_private *dev_priv = engine->i915;
560 struct intel_ringbuffer *ringbuf = engine->buffer;
561 struct drm_i915_gem_object *obj = ringbuf->obj;
562 int ret = 0;
563
564 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
565
566 if (!stop_ring(engine)) {
567 /* G45 ring initialization often fails to reset head to zero */
568 DRM_DEBUG_KMS("%s head not reset to zero "
569 "ctl %08x head %08x tail %08x start %08x\n",
570 engine->name,
571 I915_READ_CTL(engine),
572 I915_READ_HEAD(engine),
573 I915_READ_TAIL(engine),
574 I915_READ_START(engine));
575
576 if (!stop_ring(engine)) {
577 DRM_ERROR("failed to set %s head to zero "
578 "ctl %08x head %08x tail %08x start %08x\n",
579 engine->name,
580 I915_READ_CTL(engine),
581 I915_READ_HEAD(engine),
582 I915_READ_TAIL(engine),
583 I915_READ_START(engine));
584 ret = -EIO;
585 goto out;
586 }
587 }
588
589 if (I915_NEED_GFX_HWS(dev_priv))
590 intel_ring_setup_status_page(engine);
591 else
592 ring_setup_phys_status_page(engine);
593
594 /* Enforce ordering by reading HEAD register back */
595 I915_READ_HEAD(engine);
596
597 /* Initialize the ring. This must happen _after_ we've cleared the ring
598 * registers with the above sequence (the readback of the HEAD registers
599 * also enforces ordering), otherwise the hw might lose the new ring
600 * register values. */
601 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
602
603 /* WaClearRingBufHeadRegAtInit:ctg,elk */
604 if (I915_READ_HEAD(engine))
605 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
606 engine->name, I915_READ_HEAD(engine));
607 I915_WRITE_HEAD(engine, 0);
608 (void)I915_READ_HEAD(engine);
609
610 I915_WRITE_CTL(engine,
611 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
612 | RING_VALID);
613
614 /* If the head is still not zero, the ring is dead */
615 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
616 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
617 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
618 DRM_ERROR("%s initialization failed "
619 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
620 engine->name,
621 I915_READ_CTL(engine),
622 I915_READ_CTL(engine) & RING_VALID,
623 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
624 I915_READ_START(engine),
625 (unsigned long)i915_gem_obj_ggtt_offset(obj));
626 ret = -EIO;
627 goto out;
628 }
629
630 ringbuf->last_retired_head = -1;
631 ringbuf->head = I915_READ_HEAD(engine);
632 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
633 intel_ring_update_space(ringbuf);
634
635 intel_engine_init_hangcheck(engine);
636
637 out:
638 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
639
640 return ret;
641 }
642
643 void intel_fini_pipe_control(struct intel_engine_cs *engine)
644 {
645 if (engine->scratch.obj == NULL)
646 return;
647
648 i915_gem_object_ggtt_unpin(engine->scratch.obj);
649 drm_gem_object_unreference(&engine->scratch.obj->base);
650 engine->scratch.obj = NULL;
651 }
652
653 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
654 {
655 struct drm_i915_gem_object *obj;
656 int ret;
657
658 WARN_ON(engine->scratch.obj);
659
660 obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
661 if (!obj)
662 obj = i915_gem_object_create(&engine->i915->drm, size);
663 if (IS_ERR(obj)) {
664 DRM_ERROR("Failed to allocate scratch page\n");
665 ret = PTR_ERR(obj);
666 goto err;
667 }
668
669 ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
670 if (ret)
671 goto err_unref;
672
673 engine->scratch.obj = obj;
674 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
675 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
676 engine->name, engine->scratch.gtt_offset);
677 return 0;
678
679 err_unref:
680 drm_gem_object_unreference(&engine->scratch.obj->base);
681 err:
682 return ret;
683 }
684
685 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
686 {
687 struct intel_engine_cs *engine = req->engine;
688 struct i915_workarounds *w = &req->i915->workarounds;
689 int ret, i;
690
691 if (w->count == 0)
692 return 0;
693
694 engine->gpu_caches_dirty = true;
695 ret = intel_ring_flush_all_caches(req);
696 if (ret)
697 return ret;
698
699 ret = intel_ring_begin(req, (w->count * 2 + 2));
700 if (ret)
701 return ret;
702
703 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
704 for (i = 0; i < w->count; i++) {
705 intel_ring_emit_reg(engine, w->reg[i].addr);
706 intel_ring_emit(engine, w->reg[i].value);
707 }
708 intel_ring_emit(engine, MI_NOOP);
709
710 intel_ring_advance(engine);
711
712 engine->gpu_caches_dirty = true;
713 ret = intel_ring_flush_all_caches(req);
714 if (ret)
715 return ret;
716
717 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
718
719 return 0;
720 }
721
722 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
723 {
724 int ret;
725
726 ret = intel_ring_workarounds_emit(req);
727 if (ret != 0)
728 return ret;
729
730 ret = i915_gem_render_state_init(req);
731 if (ret)
732 return ret;
733
734 return 0;
735 }
736
737 static int wa_add(struct drm_i915_private *dev_priv,
738 i915_reg_t addr,
739 const u32 mask, const u32 val)
740 {
741 const u32 idx = dev_priv->workarounds.count;
742
743 if (WARN_ON(idx >= I915_MAX_WA_REGS))
744 return -ENOSPC;
745
746 dev_priv->workarounds.reg[idx].addr = addr;
747 dev_priv->workarounds.reg[idx].value = val;
748 dev_priv->workarounds.reg[idx].mask = mask;
749
750 dev_priv->workarounds.count++;
751
752 return 0;
753 }
754
755 #define WA_REG(addr, mask, val) do { \
756 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
757 if (r) \
758 return r; \
759 } while (0)
760
761 #define WA_SET_BIT_MASKED(addr, mask) \
762 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
763
764 #define WA_CLR_BIT_MASKED(addr, mask) \
765 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
766
767 #define WA_SET_FIELD_MASKED(addr, mask, value) \
768 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
769
770 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
771 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
772
773 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
774
775 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
776 i915_reg_t reg)
777 {
778 struct drm_i915_private *dev_priv = engine->i915;
779 struct i915_workarounds *wa = &dev_priv->workarounds;
780 const uint32_t index = wa->hw_whitelist_count[engine->id];
781
782 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
783 return -EINVAL;
784
785 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
786 i915_mmio_reg_offset(reg));
787 wa->hw_whitelist_count[engine->id]++;
788
789 return 0;
790 }
791
792 static int gen8_init_workarounds(struct intel_engine_cs *engine)
793 {
794 struct drm_i915_private *dev_priv = engine->i915;
795
796 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
797
798 /* WaDisableAsyncFlipPerfMode:bdw,chv */
799 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
800
801 /* WaDisablePartialInstShootdown:bdw,chv */
802 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
803 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
804
805 /* Use Force Non-Coherent whenever executing a 3D context. This is a
806 * workaround for for a possible hang in the unlikely event a TLB
807 * invalidation occurs during a PSD flush.
808 */
809 /* WaForceEnableNonCoherent:bdw,chv */
810 /* WaHdcDisableFetchWhenMasked:bdw,chv */
811 WA_SET_BIT_MASKED(HDC_CHICKEN0,
812 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
813 HDC_FORCE_NON_COHERENT);
814
815 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
816 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
817 * polygons in the same 8x4 pixel/sample area to be processed without
818 * stalling waiting for the earlier ones to write to Hierarchical Z
819 * buffer."
820 *
821 * This optimization is off by default for BDW and CHV; turn it on.
822 */
823 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
824
825 /* Wa4x4STCOptimizationDisable:bdw,chv */
826 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
827
828 /*
829 * BSpec recommends 8x4 when MSAA is used,
830 * however in practice 16x4 seems fastest.
831 *
832 * Note that PS/WM thread counts depend on the WIZ hashing
833 * disable bit, which we don't touch here, but it's good
834 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
835 */
836 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
837 GEN6_WIZ_HASHING_MASK,
838 GEN6_WIZ_HASHING_16x4);
839
840 return 0;
841 }
842
843 static int bdw_init_workarounds(struct intel_engine_cs *engine)
844 {
845 struct drm_i915_private *dev_priv = engine->i915;
846 int ret;
847
848 ret = gen8_init_workarounds(engine);
849 if (ret)
850 return ret;
851
852 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
853 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
854
855 /* WaDisableDopClockGating:bdw */
856 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
857 DOP_CLOCK_GATING_DISABLE);
858
859 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
860 GEN8_SAMPLER_POWER_BYPASS_DIS);
861
862 WA_SET_BIT_MASKED(HDC_CHICKEN0,
863 /* WaForceContextSaveRestoreNonCoherent:bdw */
864 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
865 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
866 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
867
868 return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *engine)
872 {
873 struct drm_i915_private *dev_priv = engine->i915;
874 int ret;
875
876 ret = gen8_init_workarounds(engine);
877 if (ret)
878 return ret;
879
880 /* WaDisableThreadStallDopClockGating:chv */
881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882
883 /* Improve HiZ throughput on CHV. */
884 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
885
886 return 0;
887 }
888
889 static int gen9_init_workarounds(struct intel_engine_cs *engine)
890 {
891 struct drm_i915_private *dev_priv = engine->i915;
892 int ret;
893
894 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
895 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
896
897 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
898 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
899 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
900
901 /* WaDisableKillLogic:bxt,skl,kbl */
902 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
903 ECOCHK_DIS_TLB);
904
905 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
906 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
907 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908 FLOW_CONTROL_ENABLE |
909 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
910
911 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
912 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
913 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
914
915 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
916 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
917 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
918 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
919 GEN9_DG_MIRROR_FIX_ENABLE);
920
921 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
922 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
923 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
924 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
925 GEN9_RHWO_OPTIMIZATION_DISABLE);
926 /*
927 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
928 * but we do that in per ctx batchbuffer as there is an issue
929 * with this register not getting restored on ctx restore
930 */
931 }
932
933 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
934 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
935 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
936 GEN9_ENABLE_YV12_BUGFIX |
937 GEN9_ENABLE_GPGPU_PREEMPTION);
938
939 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
940 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
941 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
942 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
943
944 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
945 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
946 GEN9_CCS_TLB_PREFETCH_ENABLE);
947
948 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
949 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
950 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
951 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
952 PIXEL_MASK_CAMMING_DISABLE);
953
954 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
955 WA_SET_BIT_MASKED(HDC_CHICKEN0,
956 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
957 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
958
959 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
960 * both tied to WaForceContextSaveRestoreNonCoherent
961 * in some hsds for skl. We keep the tie for all gen9. The
962 * documentation is a bit hazy and so we want to get common behaviour,
963 * even though there is no clear evidence we would need both on kbl/bxt.
964 * This area has been source of system hangs so we play it safe
965 * and mimic the skl regardless of what bspec says.
966 *
967 * Use Force Non-Coherent whenever executing a 3D context. This
968 * is a workaround for a possible hang in the unlikely event
969 * a TLB invalidation occurs during a PSD flush.
970 */
971
972 /* WaForceEnableNonCoherent:skl,bxt,kbl */
973 WA_SET_BIT_MASKED(HDC_CHICKEN0,
974 HDC_FORCE_NON_COHERENT);
975
976 /* WaDisableHDCInvalidation:skl,bxt,kbl */
977 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
978 BDW_DISABLE_HDC_INVALIDATION);
979
980 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
981 if (IS_SKYLAKE(dev_priv) ||
982 IS_KABYLAKE(dev_priv) ||
983 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
984 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
985 GEN8_SAMPLER_POWER_BYPASS_DIS);
986
987 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
988 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
989
990 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
991 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
992 GEN8_LQSC_FLUSH_COHERENT_LINES));
993
994 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
995 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
996 if (ret)
997 return ret;
998
999 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1000 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1001 if (ret)
1002 return ret;
1003
1004 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1005 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1006 if (ret)
1007 return ret;
1008
1009 return 0;
1010 }
1011
1012 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1013 {
1014 struct drm_i915_private *dev_priv = engine->i915;
1015 u8 vals[3] = { 0, 0, 0 };
1016 unsigned int i;
1017
1018 for (i = 0; i < 3; i++) {
1019 u8 ss;
1020
1021 /*
1022 * Only consider slices where one, and only one, subslice has 7
1023 * EUs
1024 */
1025 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1026 continue;
1027
1028 /*
1029 * subslice_7eu[i] != 0 (because of the check above) and
1030 * ss_max == 4 (maximum number of subslices possible per slice)
1031 *
1032 * -> 0 <= ss <= 3;
1033 */
1034 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1035 vals[i] = 3 - ss;
1036 }
1037
1038 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1039 return 0;
1040
1041 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1042 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1043 GEN9_IZ_HASHING_MASK(2) |
1044 GEN9_IZ_HASHING_MASK(1) |
1045 GEN9_IZ_HASHING_MASK(0),
1046 GEN9_IZ_HASHING(2, vals[2]) |
1047 GEN9_IZ_HASHING(1, vals[1]) |
1048 GEN9_IZ_HASHING(0, vals[0]));
1049
1050 return 0;
1051 }
1052
1053 static int skl_init_workarounds(struct intel_engine_cs *engine)
1054 {
1055 struct drm_i915_private *dev_priv = engine->i915;
1056 int ret;
1057
1058 ret = gen9_init_workarounds(engine);
1059 if (ret)
1060 return ret;
1061
1062 /*
1063 * Actual WA is to disable percontext preemption granularity control
1064 * until D0 which is the default case so this is equivalent to
1065 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1066 */
1067 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1068 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1069 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1070 }
1071
1072 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1073 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1074 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1075 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1076 }
1077
1078 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1079 * involving this register should also be added to WA batch as required.
1080 */
1081 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1082 /* WaDisableLSQCROPERFforOCL:skl */
1083 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1084 GEN8_LQSC_RO_PERF_DIS);
1085
1086 /* WaEnableGapsTsvCreditFix:skl */
1087 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1088 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1089 GEN9_GAPS_TSV_CREDIT_DISABLE));
1090 }
1091
1092 /* WaDisablePowerCompilerClockGating:skl */
1093 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1094 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1095 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1096
1097 /* WaBarrierPerformanceFixDisable:skl */
1098 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1099 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1100 HDC_FENCE_DEST_SLM_DISABLE |
1101 HDC_BARRIER_PERFORMANCE_DISABLE);
1102
1103 /* WaDisableSbeCacheDispatchPortSharing:skl */
1104 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1105 WA_SET_BIT_MASKED(
1106 GEN7_HALF_SLICE_CHICKEN1,
1107 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1108
1109 /* WaDisableGafsUnitClkGating:skl */
1110 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1111
1112 /* WaInPlaceDecompressionHang:skl */
1113 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1114 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1115 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1116
1117 /* WaDisableLSQCROPERFforOCL:skl */
1118 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1119 if (ret)
1120 return ret;
1121
1122 return skl_tune_iz_hashing(engine);
1123 }
1124
1125 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1126 {
1127 struct drm_i915_private *dev_priv = engine->i915;
1128 int ret;
1129
1130 ret = gen9_init_workarounds(engine);
1131 if (ret)
1132 return ret;
1133
1134 /* WaStoreMultiplePTEenable:bxt */
1135 /* This is a requirement according to Hardware specification */
1136 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1137 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139 /* WaSetClckGatingDisableMedia:bxt */
1140 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1141 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143 }
1144
1145 /* WaDisableThreadStallDopClockGating:bxt */
1146 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147 STALL_DOP_GATING_DISABLE);
1148
1149 /* WaDisablePooledEuLoadBalancingFix:bxt */
1150 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1151 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1152 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1153 }
1154
1155 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1156 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1157 WA_SET_BIT_MASKED(
1158 GEN7_HALF_SLICE_CHICKEN1,
1159 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1160 }
1161
1162 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1163 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1164 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1165 /* WaDisableLSQCROPERFforOCL:bxt */
1166 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1167 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1168 if (ret)
1169 return ret;
1170
1171 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1172 if (ret)
1173 return ret;
1174 }
1175
1176 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1177 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1178 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1179 L3_HIGH_PRIO_CREDITS(2));
1180
1181 /* WaToEnableHwFixForPushConstHWBug:bxt */
1182 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1183 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1184 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1185
1186 /* WaInPlaceDecompressionHang:bxt */
1187 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1188 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1189 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1190
1191 return 0;
1192 }
1193
1194 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1195 {
1196 struct drm_i915_private *dev_priv = engine->i915;
1197 int ret;
1198
1199 ret = gen9_init_workarounds(engine);
1200 if (ret)
1201 return ret;
1202
1203 /* WaEnableGapsTsvCreditFix:kbl */
1204 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1205 GEN9_GAPS_TSV_CREDIT_DISABLE));
1206
1207 /* WaDisableDynamicCreditSharing:kbl */
1208 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1209 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1210 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1211
1212 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1213 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1214 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1215 HDC_FENCE_DEST_SLM_DISABLE);
1216
1217 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1218 * involving this register should also be added to WA batch as required.
1219 */
1220 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1221 /* WaDisableLSQCROPERFforOCL:kbl */
1222 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1223 GEN8_LQSC_RO_PERF_DIS);
1224
1225 /* WaToEnableHwFixForPushConstHWBug:kbl */
1226 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1227 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1228 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1229
1230 /* WaDisableGafsUnitClkGating:kbl */
1231 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1232
1233 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1234 WA_SET_BIT_MASKED(
1235 GEN7_HALF_SLICE_CHICKEN1,
1236 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1237
1238 /* WaInPlaceDecompressionHang:kbl */
1239 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1240 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1241
1242 /* WaDisableLSQCROPERFforOCL:kbl */
1243 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1244 if (ret)
1245 return ret;
1246
1247 return 0;
1248 }
1249
1250 int init_workarounds_ring(struct intel_engine_cs *engine)
1251 {
1252 struct drm_i915_private *dev_priv = engine->i915;
1253
1254 WARN_ON(engine->id != RCS);
1255
1256 dev_priv->workarounds.count = 0;
1257 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1258
1259 if (IS_BROADWELL(dev_priv))
1260 return bdw_init_workarounds(engine);
1261
1262 if (IS_CHERRYVIEW(dev_priv))
1263 return chv_init_workarounds(engine);
1264
1265 if (IS_SKYLAKE(dev_priv))
1266 return skl_init_workarounds(engine);
1267
1268 if (IS_BROXTON(dev_priv))
1269 return bxt_init_workarounds(engine);
1270
1271 if (IS_KABYLAKE(dev_priv))
1272 return kbl_init_workarounds(engine);
1273
1274 return 0;
1275 }
1276
1277 static int init_render_ring(struct intel_engine_cs *engine)
1278 {
1279 struct drm_i915_private *dev_priv = engine->i915;
1280 int ret = init_ring_common(engine);
1281 if (ret)
1282 return ret;
1283
1284 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1285 if (IS_GEN(dev_priv, 4, 6))
1286 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1287
1288 /* We need to disable the AsyncFlip performance optimisations in order
1289 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1290 * programmed to '1' on all products.
1291 *
1292 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1293 */
1294 if (IS_GEN(dev_priv, 6, 7))
1295 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1296
1297 /* Required for the hardware to program scanline values for waiting */
1298 /* WaEnableFlushTlbInvalidationMode:snb */
1299 if (IS_GEN6(dev_priv))
1300 I915_WRITE(GFX_MODE,
1301 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1302
1303 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1304 if (IS_GEN7(dev_priv))
1305 I915_WRITE(GFX_MODE_GEN7,
1306 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1307 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1308
1309 if (IS_GEN6(dev_priv)) {
1310 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1311 * "If this bit is set, STCunit will have LRA as replacement
1312 * policy. [...] This bit must be reset. LRA replacement
1313 * policy is not supported."
1314 */
1315 I915_WRITE(CACHE_MODE_0,
1316 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1317 }
1318
1319 if (IS_GEN(dev_priv, 6, 7))
1320 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1321
1322 if (INTEL_INFO(dev_priv)->gen >= 6)
1323 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1324
1325 return init_workarounds_ring(engine);
1326 }
1327
1328 static void render_ring_cleanup(struct intel_engine_cs *engine)
1329 {
1330 struct drm_i915_private *dev_priv = engine->i915;
1331
1332 if (dev_priv->semaphore_obj) {
1333 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1334 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1335 dev_priv->semaphore_obj = NULL;
1336 }
1337
1338 intel_fini_pipe_control(engine);
1339 }
1340
1341 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1342 unsigned int num_dwords)
1343 {
1344 #define MBOX_UPDATE_DWORDS 8
1345 struct intel_engine_cs *signaller = signaller_req->engine;
1346 struct drm_i915_private *dev_priv = signaller_req->i915;
1347 struct intel_engine_cs *waiter;
1348 enum intel_engine_id id;
1349 int ret, num_rings;
1350
1351 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1352 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1353 #undef MBOX_UPDATE_DWORDS
1354
1355 ret = intel_ring_begin(signaller_req, num_dwords);
1356 if (ret)
1357 return ret;
1358
1359 for_each_engine_id(waiter, dev_priv, id) {
1360 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1361 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1362 continue;
1363
1364 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1365 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1366 PIPE_CONTROL_QW_WRITE |
1367 PIPE_CONTROL_CS_STALL);
1368 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1369 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1370 intel_ring_emit(signaller, signaller_req->seqno);
1371 intel_ring_emit(signaller, 0);
1372 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1373 MI_SEMAPHORE_TARGET(waiter->hw_id));
1374 intel_ring_emit(signaller, 0);
1375 }
1376
1377 return 0;
1378 }
1379
1380 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1381 unsigned int num_dwords)
1382 {
1383 #define MBOX_UPDATE_DWORDS 6
1384 struct intel_engine_cs *signaller = signaller_req->engine;
1385 struct drm_i915_private *dev_priv = signaller_req->i915;
1386 struct intel_engine_cs *waiter;
1387 enum intel_engine_id id;
1388 int ret, num_rings;
1389
1390 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1391 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1392 #undef MBOX_UPDATE_DWORDS
1393
1394 ret = intel_ring_begin(signaller_req, num_dwords);
1395 if (ret)
1396 return ret;
1397
1398 for_each_engine_id(waiter, dev_priv, id) {
1399 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1400 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1401 continue;
1402
1403 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1404 MI_FLUSH_DW_OP_STOREDW);
1405 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1406 MI_FLUSH_DW_USE_GTT);
1407 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1408 intel_ring_emit(signaller, signaller_req->seqno);
1409 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1410 MI_SEMAPHORE_TARGET(waiter->hw_id));
1411 intel_ring_emit(signaller, 0);
1412 }
1413
1414 return 0;
1415 }
1416
1417 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1418 unsigned int num_dwords)
1419 {
1420 struct intel_engine_cs *signaller = signaller_req->engine;
1421 struct drm_i915_private *dev_priv = signaller_req->i915;
1422 struct intel_engine_cs *useless;
1423 enum intel_engine_id id;
1424 int ret, num_rings;
1425
1426 #define MBOX_UPDATE_DWORDS 3
1427 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1428 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1429 #undef MBOX_UPDATE_DWORDS
1430
1431 ret = intel_ring_begin(signaller_req, num_dwords);
1432 if (ret)
1433 return ret;
1434
1435 for_each_engine_id(useless, dev_priv, id) {
1436 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1437
1438 if (i915_mmio_reg_valid(mbox_reg)) {
1439 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1440 intel_ring_emit_reg(signaller, mbox_reg);
1441 intel_ring_emit(signaller, signaller_req->seqno);
1442 }
1443 }
1444
1445 /* If num_dwords was rounded, make sure the tail pointer is correct */
1446 if (num_rings % 2 == 0)
1447 intel_ring_emit(signaller, MI_NOOP);
1448
1449 return 0;
1450 }
1451
1452 /**
1453 * gen6_add_request - Update the semaphore mailbox registers
1454 *
1455 * @request - request to write to the ring
1456 *
1457 * Update the mailbox registers in the *other* rings with the current seqno.
1458 * This acts like a signal in the canonical semaphore.
1459 */
1460 static int
1461 gen6_add_request(struct drm_i915_gem_request *req)
1462 {
1463 struct intel_engine_cs *engine = req->engine;
1464 int ret;
1465
1466 if (engine->semaphore.signal)
1467 ret = engine->semaphore.signal(req, 4);
1468 else
1469 ret = intel_ring_begin(req, 4);
1470
1471 if (ret)
1472 return ret;
1473
1474 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1475 intel_ring_emit(engine,
1476 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1477 intel_ring_emit(engine, req->seqno);
1478 intel_ring_emit(engine, MI_USER_INTERRUPT);
1479 __intel_ring_advance(engine);
1480
1481 return 0;
1482 }
1483
1484 static int
1485 gen8_render_add_request(struct drm_i915_gem_request *req)
1486 {
1487 struct intel_engine_cs *engine = req->engine;
1488 int ret;
1489
1490 if (engine->semaphore.signal)
1491 ret = engine->semaphore.signal(req, 8);
1492 else
1493 ret = intel_ring_begin(req, 8);
1494 if (ret)
1495 return ret;
1496
1497 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1498 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1499 PIPE_CONTROL_CS_STALL |
1500 PIPE_CONTROL_QW_WRITE));
1501 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1502 intel_ring_emit(engine, 0);
1503 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1504 /* We're thrashing one dword of HWS. */
1505 intel_ring_emit(engine, 0);
1506 intel_ring_emit(engine, MI_USER_INTERRUPT);
1507 intel_ring_emit(engine, MI_NOOP);
1508 __intel_ring_advance(engine);
1509
1510 return 0;
1511 }
1512
1513 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1514 u32 seqno)
1515 {
1516 return dev_priv->last_seqno < seqno;
1517 }
1518
1519 /**
1520 * intel_ring_sync - sync the waiter to the signaller on seqno
1521 *
1522 * @waiter - ring that is waiting
1523 * @signaller - ring which has, or will signal
1524 * @seqno - seqno which the waiter will block on
1525 */
1526
1527 static int
1528 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1529 struct intel_engine_cs *signaller,
1530 u32 seqno)
1531 {
1532 struct intel_engine_cs *waiter = waiter_req->engine;
1533 struct drm_i915_private *dev_priv = waiter_req->i915;
1534 u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1535 struct i915_hw_ppgtt *ppgtt;
1536 int ret;
1537
1538 ret = intel_ring_begin(waiter_req, 4);
1539 if (ret)
1540 return ret;
1541
1542 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1543 MI_SEMAPHORE_GLOBAL_GTT |
1544 MI_SEMAPHORE_SAD_GTE_SDD);
1545 intel_ring_emit(waiter, seqno);
1546 intel_ring_emit(waiter, lower_32_bits(offset));
1547 intel_ring_emit(waiter, upper_32_bits(offset));
1548 intel_ring_advance(waiter);
1549
1550 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1551 * pagetables and we must reload them before executing the batch.
1552 * We do this on the i915_switch_context() following the wait and
1553 * before the dispatch.
1554 */
1555 ppgtt = waiter_req->ctx->ppgtt;
1556 if (ppgtt && waiter_req->engine->id != RCS)
1557 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1558 return 0;
1559 }
1560
1561 static int
1562 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1563 struct intel_engine_cs *signaller,
1564 u32 seqno)
1565 {
1566 struct intel_engine_cs *waiter = waiter_req->engine;
1567 u32 dw1 = MI_SEMAPHORE_MBOX |
1568 MI_SEMAPHORE_COMPARE |
1569 MI_SEMAPHORE_REGISTER;
1570 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1571 int ret;
1572
1573 /* Throughout all of the GEM code, seqno passed implies our current
1574 * seqno is >= the last seqno executed. However for hardware the
1575 * comparison is strictly greater than.
1576 */
1577 seqno -= 1;
1578
1579 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1580
1581 ret = intel_ring_begin(waiter_req, 4);
1582 if (ret)
1583 return ret;
1584
1585 /* If seqno wrap happened, omit the wait with no-ops */
1586 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1587 intel_ring_emit(waiter, dw1 | wait_mbox);
1588 intel_ring_emit(waiter, seqno);
1589 intel_ring_emit(waiter, 0);
1590 intel_ring_emit(waiter, MI_NOOP);
1591 } else {
1592 intel_ring_emit(waiter, MI_NOOP);
1593 intel_ring_emit(waiter, MI_NOOP);
1594 intel_ring_emit(waiter, MI_NOOP);
1595 intel_ring_emit(waiter, MI_NOOP);
1596 }
1597 intel_ring_advance(waiter);
1598
1599 return 0;
1600 }
1601
1602 static void
1603 gen5_seqno_barrier(struct intel_engine_cs *ring)
1604 {
1605 /* MI_STORE are internally buffered by the GPU and not flushed
1606 * either by MI_FLUSH or SyncFlush or any other combination of
1607 * MI commands.
1608 *
1609 * "Only the submission of the store operation is guaranteed.
1610 * The write result will be complete (coherent) some time later
1611 * (this is practically a finite period but there is no guaranteed
1612 * latency)."
1613 *
1614 * Empirically, we observe that we need a delay of at least 75us to
1615 * be sure that the seqno write is visible by the CPU.
1616 */
1617 usleep_range(125, 250);
1618 }
1619
1620 static void
1621 gen6_seqno_barrier(struct intel_engine_cs *engine)
1622 {
1623 struct drm_i915_private *dev_priv = engine->i915;
1624
1625 /* Workaround to force correct ordering between irq and seqno writes on
1626 * ivb (and maybe also on snb) by reading from a CS register (like
1627 * ACTHD) before reading the status page.
1628 *
1629 * Note that this effectively stalls the read by the time it takes to
1630 * do a memory transaction, which more or less ensures that the write
1631 * from the GPU has sufficient time to invalidate the CPU cacheline.
1632 * Alternatively we could delay the interrupt from the CS ring to give
1633 * the write time to land, but that would incur a delay after every
1634 * batch i.e. much more frequent than a delay when waiting for the
1635 * interrupt (with the same net latency).
1636 *
1637 * Also note that to prevent whole machine hangs on gen7, we have to
1638 * take the spinlock to guard against concurrent cacheline access.
1639 */
1640 spin_lock_irq(&dev_priv->uncore.lock);
1641 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1642 spin_unlock_irq(&dev_priv->uncore.lock);
1643 }
1644
1645 static void
1646 gen5_irq_enable(struct intel_engine_cs *engine)
1647 {
1648 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1649 }
1650
1651 static void
1652 gen5_irq_disable(struct intel_engine_cs *engine)
1653 {
1654 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1655 }
1656
1657 static void
1658 i9xx_irq_enable(struct intel_engine_cs *engine)
1659 {
1660 struct drm_i915_private *dev_priv = engine->i915;
1661
1662 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1663 I915_WRITE(IMR, dev_priv->irq_mask);
1664 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1665 }
1666
1667 static void
1668 i9xx_irq_disable(struct intel_engine_cs *engine)
1669 {
1670 struct drm_i915_private *dev_priv = engine->i915;
1671
1672 dev_priv->irq_mask |= engine->irq_enable_mask;
1673 I915_WRITE(IMR, dev_priv->irq_mask);
1674 }
1675
1676 static void
1677 i8xx_irq_enable(struct intel_engine_cs *engine)
1678 {
1679 struct drm_i915_private *dev_priv = engine->i915;
1680
1681 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1682 I915_WRITE16(IMR, dev_priv->irq_mask);
1683 POSTING_READ16(RING_IMR(engine->mmio_base));
1684 }
1685
1686 static void
1687 i8xx_irq_disable(struct intel_engine_cs *engine)
1688 {
1689 struct drm_i915_private *dev_priv = engine->i915;
1690
1691 dev_priv->irq_mask |= engine->irq_enable_mask;
1692 I915_WRITE16(IMR, dev_priv->irq_mask);
1693 }
1694
1695 static int
1696 bsd_ring_flush(struct drm_i915_gem_request *req,
1697 u32 invalidate_domains,
1698 u32 flush_domains)
1699 {
1700 struct intel_engine_cs *engine = req->engine;
1701 int ret;
1702
1703 ret = intel_ring_begin(req, 2);
1704 if (ret)
1705 return ret;
1706
1707 intel_ring_emit(engine, MI_FLUSH);
1708 intel_ring_emit(engine, MI_NOOP);
1709 intel_ring_advance(engine);
1710 return 0;
1711 }
1712
1713 static int
1714 i9xx_add_request(struct drm_i915_gem_request *req)
1715 {
1716 struct intel_engine_cs *engine = req->engine;
1717 int ret;
1718
1719 ret = intel_ring_begin(req, 4);
1720 if (ret)
1721 return ret;
1722
1723 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1724 intel_ring_emit(engine,
1725 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1726 intel_ring_emit(engine, req->seqno);
1727 intel_ring_emit(engine, MI_USER_INTERRUPT);
1728 __intel_ring_advance(engine);
1729
1730 return 0;
1731 }
1732
1733 static void
1734 gen6_irq_enable(struct intel_engine_cs *engine)
1735 {
1736 struct drm_i915_private *dev_priv = engine->i915;
1737
1738 I915_WRITE_IMR(engine,
1739 ~(engine->irq_enable_mask |
1740 engine->irq_keep_mask));
1741 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1742 }
1743
1744 static void
1745 gen6_irq_disable(struct intel_engine_cs *engine)
1746 {
1747 struct drm_i915_private *dev_priv = engine->i915;
1748
1749 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1750 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1751 }
1752
1753 static void
1754 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1755 {
1756 struct drm_i915_private *dev_priv = engine->i915;
1757
1758 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1759 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1760 }
1761
1762 static void
1763 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1764 {
1765 struct drm_i915_private *dev_priv = engine->i915;
1766
1767 I915_WRITE_IMR(engine, ~0);
1768 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1769 }
1770
1771 static void
1772 gen8_irq_enable(struct intel_engine_cs *engine)
1773 {
1774 struct drm_i915_private *dev_priv = engine->i915;
1775
1776 I915_WRITE_IMR(engine,
1777 ~(engine->irq_enable_mask |
1778 engine->irq_keep_mask));
1779 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1780 }
1781
1782 static void
1783 gen8_irq_disable(struct intel_engine_cs *engine)
1784 {
1785 struct drm_i915_private *dev_priv = engine->i915;
1786
1787 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1788 }
1789
1790 static int
1791 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1792 u64 offset, u32 length,
1793 unsigned dispatch_flags)
1794 {
1795 struct intel_engine_cs *engine = req->engine;
1796 int ret;
1797
1798 ret = intel_ring_begin(req, 2);
1799 if (ret)
1800 return ret;
1801
1802 intel_ring_emit(engine,
1803 MI_BATCH_BUFFER_START |
1804 MI_BATCH_GTT |
1805 (dispatch_flags & I915_DISPATCH_SECURE ?
1806 0 : MI_BATCH_NON_SECURE_I965));
1807 intel_ring_emit(engine, offset);
1808 intel_ring_advance(engine);
1809
1810 return 0;
1811 }
1812
1813 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1814 #define I830_BATCH_LIMIT (256*1024)
1815 #define I830_TLB_ENTRIES (2)
1816 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1817 static int
1818 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1819 u64 offset, u32 len,
1820 unsigned dispatch_flags)
1821 {
1822 struct intel_engine_cs *engine = req->engine;
1823 u32 cs_offset = engine->scratch.gtt_offset;
1824 int ret;
1825
1826 ret = intel_ring_begin(req, 6);
1827 if (ret)
1828 return ret;
1829
1830 /* Evict the invalid PTE TLBs */
1831 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1832 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1833 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1834 intel_ring_emit(engine, cs_offset);
1835 intel_ring_emit(engine, 0xdeadbeef);
1836 intel_ring_emit(engine, MI_NOOP);
1837 intel_ring_advance(engine);
1838
1839 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1840 if (len > I830_BATCH_LIMIT)
1841 return -ENOSPC;
1842
1843 ret = intel_ring_begin(req, 6 + 2);
1844 if (ret)
1845 return ret;
1846
1847 /* Blit the batch (which has now all relocs applied) to the
1848 * stable batch scratch bo area (so that the CS never
1849 * stumbles over its tlb invalidation bug) ...
1850 */
1851 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1852 intel_ring_emit(engine,
1853 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1854 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1855 intel_ring_emit(engine, cs_offset);
1856 intel_ring_emit(engine, 4096);
1857 intel_ring_emit(engine, offset);
1858
1859 intel_ring_emit(engine, MI_FLUSH);
1860 intel_ring_emit(engine, MI_NOOP);
1861 intel_ring_advance(engine);
1862
1863 /* ... and execute it. */
1864 offset = cs_offset;
1865 }
1866
1867 ret = intel_ring_begin(req, 2);
1868 if (ret)
1869 return ret;
1870
1871 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1872 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1873 0 : MI_BATCH_NON_SECURE));
1874 intel_ring_advance(engine);
1875
1876 return 0;
1877 }
1878
1879 static int
1880 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1881 u64 offset, u32 len,
1882 unsigned dispatch_flags)
1883 {
1884 struct intel_engine_cs *engine = req->engine;
1885 int ret;
1886
1887 ret = intel_ring_begin(req, 2);
1888 if (ret)
1889 return ret;
1890
1891 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1892 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1893 0 : MI_BATCH_NON_SECURE));
1894 intel_ring_advance(engine);
1895
1896 return 0;
1897 }
1898
1899 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1900 {
1901 struct drm_i915_private *dev_priv = engine->i915;
1902
1903 if (!dev_priv->status_page_dmah)
1904 return;
1905
1906 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1907 engine->status_page.page_addr = NULL;
1908 }
1909
1910 static void cleanup_status_page(struct intel_engine_cs *engine)
1911 {
1912 struct drm_i915_gem_object *obj;
1913
1914 obj = engine->status_page.obj;
1915 if (obj == NULL)
1916 return;
1917
1918 kunmap(sg_page(obj->pages->sgl));
1919 i915_gem_object_ggtt_unpin(obj);
1920 drm_gem_object_unreference(&obj->base);
1921 engine->status_page.obj = NULL;
1922 }
1923
1924 static int init_status_page(struct intel_engine_cs *engine)
1925 {
1926 struct drm_i915_gem_object *obj = engine->status_page.obj;
1927
1928 if (obj == NULL) {
1929 unsigned flags;
1930 int ret;
1931
1932 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1933 if (IS_ERR(obj)) {
1934 DRM_ERROR("Failed to allocate status page\n");
1935 return PTR_ERR(obj);
1936 }
1937
1938 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1939 if (ret)
1940 goto err_unref;
1941
1942 flags = 0;
1943 if (!HAS_LLC(engine->i915))
1944 /* On g33, we cannot place HWS above 256MiB, so
1945 * restrict its pinning to the low mappable arena.
1946 * Though this restriction is not documented for
1947 * gen4, gen5, or byt, they also behave similarly
1948 * and hang if the HWS is placed at the top of the
1949 * GTT. To generalise, it appears that all !llc
1950 * platforms have issues with us placing the HWS
1951 * above the mappable region (even though we never
1952 * actualy map it).
1953 */
1954 flags |= PIN_MAPPABLE;
1955 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1956 if (ret) {
1957 err_unref:
1958 drm_gem_object_unreference(&obj->base);
1959 return ret;
1960 }
1961
1962 engine->status_page.obj = obj;
1963 }
1964
1965 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1966 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1967 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1968
1969 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1970 engine->name, engine->status_page.gfx_addr);
1971
1972 return 0;
1973 }
1974
1975 static int init_phys_status_page(struct intel_engine_cs *engine)
1976 {
1977 struct drm_i915_private *dev_priv = engine->i915;
1978
1979 if (!dev_priv->status_page_dmah) {
1980 dev_priv->status_page_dmah =
1981 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1982 if (!dev_priv->status_page_dmah)
1983 return -ENOMEM;
1984 }
1985
1986 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1987 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1988
1989 return 0;
1990 }
1991
1992 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1993 {
1994 GEM_BUG_ON(ringbuf->vma == NULL);
1995 GEM_BUG_ON(ringbuf->virtual_start == NULL);
1996
1997 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1998 i915_gem_object_unpin_map(ringbuf->obj);
1999 else
2000 i915_vma_unpin_iomap(ringbuf->vma);
2001 ringbuf->virtual_start = NULL;
2002
2003 i915_gem_object_ggtt_unpin(ringbuf->obj);
2004 ringbuf->vma = NULL;
2005 }
2006
2007 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2008 struct intel_ringbuffer *ringbuf)
2009 {
2010 struct drm_i915_gem_object *obj = ringbuf->obj;
2011 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2012 unsigned flags = PIN_OFFSET_BIAS | 4096;
2013 void *addr;
2014 int ret;
2015
2016 if (HAS_LLC(dev_priv) && !obj->stolen) {
2017 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2018 if (ret)
2019 return ret;
2020
2021 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2022 if (ret)
2023 goto err_unpin;
2024
2025 addr = i915_gem_object_pin_map(obj);
2026 if (IS_ERR(addr)) {
2027 ret = PTR_ERR(addr);
2028 goto err_unpin;
2029 }
2030 } else {
2031 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2032 flags | PIN_MAPPABLE);
2033 if (ret)
2034 return ret;
2035
2036 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037 if (ret)
2038 goto err_unpin;
2039
2040 /* Access through the GTT requires the device to be awake. */
2041 assert_rpm_wakelock_held(dev_priv);
2042
2043 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2044 if (IS_ERR(addr)) {
2045 ret = PTR_ERR(addr);
2046 goto err_unpin;
2047 }
2048 }
2049
2050 ringbuf->virtual_start = addr;
2051 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2052 return 0;
2053
2054 err_unpin:
2055 i915_gem_object_ggtt_unpin(obj);
2056 return ret;
2057 }
2058
2059 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2060 {
2061 drm_gem_object_unreference(&ringbuf->obj->base);
2062 ringbuf->obj = NULL;
2063 }
2064
2065 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2066 struct intel_ringbuffer *ringbuf)
2067 {
2068 struct drm_i915_gem_object *obj;
2069
2070 obj = NULL;
2071 if (!HAS_LLC(dev))
2072 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2073 if (obj == NULL)
2074 obj = i915_gem_object_create(dev, ringbuf->size);
2075 if (IS_ERR(obj))
2076 return PTR_ERR(obj);
2077
2078 /* mark ring buffers as read-only from GPU side by default */
2079 obj->gt_ro = 1;
2080
2081 ringbuf->obj = obj;
2082
2083 return 0;
2084 }
2085
2086 struct intel_ringbuffer *
2087 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2088 {
2089 struct intel_ringbuffer *ring;
2090 int ret;
2091
2092 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2093 if (ring == NULL) {
2094 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2095 engine->name);
2096 return ERR_PTR(-ENOMEM);
2097 }
2098
2099 ring->engine = engine;
2100 list_add(&ring->link, &engine->buffers);
2101
2102 ring->size = size;
2103 /* Workaround an erratum on the i830 which causes a hang if
2104 * the TAIL pointer points to within the last 2 cachelines
2105 * of the buffer.
2106 */
2107 ring->effective_size = size;
2108 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2109 ring->effective_size -= 2 * CACHELINE_BYTES;
2110
2111 ring->last_retired_head = -1;
2112 intel_ring_update_space(ring);
2113
2114 ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2115 if (ret) {
2116 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2117 engine->name, ret);
2118 list_del(&ring->link);
2119 kfree(ring);
2120 return ERR_PTR(ret);
2121 }
2122
2123 return ring;
2124 }
2125
2126 void
2127 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2128 {
2129 intel_destroy_ringbuffer_obj(ring);
2130 list_del(&ring->link);
2131 kfree(ring);
2132 }
2133
2134 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2135 struct intel_engine_cs *engine)
2136 {
2137 struct intel_context *ce = &ctx->engine[engine->id];
2138 int ret;
2139
2140 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2141
2142 if (ce->pin_count++)
2143 return 0;
2144
2145 if (ce->state) {
2146 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2147 if (ret)
2148 goto error;
2149 }
2150
2151 /* The kernel context is only used as a placeholder for flushing the
2152 * active context. It is never used for submitting user rendering and
2153 * as such never requires the golden render context, and so we can skip
2154 * emitting it when we switch to the kernel context. This is required
2155 * as during eviction we cannot allocate and pin the renderstate in
2156 * order to initialise the context.
2157 */
2158 if (ctx == ctx->i915->kernel_context)
2159 ce->initialised = true;
2160
2161 i915_gem_context_reference(ctx);
2162 return 0;
2163
2164 error:
2165 ce->pin_count = 0;
2166 return ret;
2167 }
2168
2169 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2170 struct intel_engine_cs *engine)
2171 {
2172 struct intel_context *ce = &ctx->engine[engine->id];
2173
2174 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2175
2176 if (--ce->pin_count)
2177 return;
2178
2179 if (ce->state)
2180 i915_gem_object_ggtt_unpin(ce->state);
2181
2182 i915_gem_context_unreference(ctx);
2183 }
2184
2185 static int intel_init_ring_buffer(struct drm_device *dev,
2186 struct intel_engine_cs *engine)
2187 {
2188 struct drm_i915_private *dev_priv = to_i915(dev);
2189 struct intel_ringbuffer *ringbuf;
2190 int ret;
2191
2192 WARN_ON(engine->buffer);
2193
2194 engine->i915 = dev_priv;
2195 INIT_LIST_HEAD(&engine->active_list);
2196 INIT_LIST_HEAD(&engine->request_list);
2197 INIT_LIST_HEAD(&engine->execlist_queue);
2198 INIT_LIST_HEAD(&engine->buffers);
2199 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2200 memset(engine->semaphore.sync_seqno, 0,
2201 sizeof(engine->semaphore.sync_seqno));
2202
2203 ret = intel_engine_init_breadcrumbs(engine);
2204 if (ret)
2205 goto error;
2206
2207 /* We may need to do things with the shrinker which
2208 * require us to immediately switch back to the default
2209 * context. This can cause a problem as pinning the
2210 * default context also requires GTT space which may not
2211 * be available. To avoid this we always pin the default
2212 * context.
2213 */
2214 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2215 if (ret)
2216 goto error;
2217
2218 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2219 if (IS_ERR(ringbuf)) {
2220 ret = PTR_ERR(ringbuf);
2221 goto error;
2222 }
2223 engine->buffer = ringbuf;
2224
2225 if (I915_NEED_GFX_HWS(dev_priv)) {
2226 ret = init_status_page(engine);
2227 if (ret)
2228 goto error;
2229 } else {
2230 WARN_ON(engine->id != RCS);
2231 ret = init_phys_status_page(engine);
2232 if (ret)
2233 goto error;
2234 }
2235
2236 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2237 if (ret) {
2238 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2239 engine->name, ret);
2240 intel_destroy_ringbuffer_obj(ringbuf);
2241 goto error;
2242 }
2243
2244 ret = i915_cmd_parser_init_ring(engine);
2245 if (ret)
2246 goto error;
2247
2248 return 0;
2249
2250 error:
2251 intel_cleanup_engine(engine);
2252 return ret;
2253 }
2254
2255 void intel_cleanup_engine(struct intel_engine_cs *engine)
2256 {
2257 struct drm_i915_private *dev_priv;
2258
2259 if (!intel_engine_initialized(engine))
2260 return;
2261
2262 dev_priv = engine->i915;
2263
2264 if (engine->buffer) {
2265 intel_stop_engine(engine);
2266 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2267
2268 intel_unpin_ringbuffer_obj(engine->buffer);
2269 intel_ringbuffer_free(engine->buffer);
2270 engine->buffer = NULL;
2271 }
2272
2273 if (engine->cleanup)
2274 engine->cleanup(engine);
2275
2276 if (I915_NEED_GFX_HWS(dev_priv)) {
2277 cleanup_status_page(engine);
2278 } else {
2279 WARN_ON(engine->id != RCS);
2280 cleanup_phys_status_page(engine);
2281 }
2282
2283 i915_cmd_parser_fini_ring(engine);
2284 i915_gem_batch_pool_fini(&engine->batch_pool);
2285 intel_engine_fini_breadcrumbs(engine);
2286
2287 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2288
2289 engine->i915 = NULL;
2290 }
2291
2292 int intel_engine_idle(struct intel_engine_cs *engine)
2293 {
2294 struct drm_i915_gem_request *req;
2295
2296 /* Wait upon the last request to be completed */
2297 if (list_empty(&engine->request_list))
2298 return 0;
2299
2300 req = list_entry(engine->request_list.prev,
2301 struct drm_i915_gem_request,
2302 list);
2303
2304 /* Make sure we do not trigger any retires */
2305 return __i915_wait_request(req,
2306 req->i915->mm.interruptible,
2307 NULL, NULL);
2308 }
2309
2310 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2311 {
2312 int ret;
2313
2314 /* Flush enough space to reduce the likelihood of waiting after
2315 * we start building the request - in which case we will just
2316 * have to repeat work.
2317 */
2318 request->reserved_space += LEGACY_REQUEST_SIZE;
2319
2320 request->ringbuf = request->engine->buffer;
2321
2322 ret = intel_ring_begin(request, 0);
2323 if (ret)
2324 return ret;
2325
2326 request->reserved_space -= LEGACY_REQUEST_SIZE;
2327 return 0;
2328 }
2329
2330 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2331 {
2332 struct intel_ringbuffer *ringbuf = req->ringbuf;
2333 struct intel_engine_cs *engine = req->engine;
2334 struct drm_i915_gem_request *target;
2335
2336 intel_ring_update_space(ringbuf);
2337 if (ringbuf->space >= bytes)
2338 return 0;
2339
2340 /*
2341 * Space is reserved in the ringbuffer for finalising the request,
2342 * as that cannot be allowed to fail. During request finalisation,
2343 * reserved_space is set to 0 to stop the overallocation and the
2344 * assumption is that then we never need to wait (which has the
2345 * risk of failing with EINTR).
2346 *
2347 * See also i915_gem_request_alloc() and i915_add_request().
2348 */
2349 GEM_BUG_ON(!req->reserved_space);
2350
2351 list_for_each_entry(target, &engine->request_list, list) {
2352 unsigned space;
2353
2354 /*
2355 * The request queue is per-engine, so can contain requests
2356 * from multiple ringbuffers. Here, we must ignore any that
2357 * aren't from the ringbuffer we're considering.
2358 */
2359 if (target->ringbuf != ringbuf)
2360 continue;
2361
2362 /* Would completion of this request free enough space? */
2363 space = __intel_ring_space(target->postfix, ringbuf->tail,
2364 ringbuf->size);
2365 if (space >= bytes)
2366 break;
2367 }
2368
2369 if (WARN_ON(&target->list == &engine->request_list))
2370 return -ENOSPC;
2371
2372 return i915_wait_request(target);
2373 }
2374
2375 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2376 {
2377 struct intel_ringbuffer *ringbuf = req->ringbuf;
2378 int remain_actual = ringbuf->size - ringbuf->tail;
2379 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2380 int bytes = num_dwords * sizeof(u32);
2381 int total_bytes, wait_bytes;
2382 bool need_wrap = false;
2383
2384 total_bytes = bytes + req->reserved_space;
2385
2386 if (unlikely(bytes > remain_usable)) {
2387 /*
2388 * Not enough space for the basic request. So need to flush
2389 * out the remainder and then wait for base + reserved.
2390 */
2391 wait_bytes = remain_actual + total_bytes;
2392 need_wrap = true;
2393 } else if (unlikely(total_bytes > remain_usable)) {
2394 /*
2395 * The base request will fit but the reserved space
2396 * falls off the end. So we don't need an immediate wrap
2397 * and only need to effectively wait for the reserved
2398 * size space from the start of ringbuffer.
2399 */
2400 wait_bytes = remain_actual + req->reserved_space;
2401 } else {
2402 /* No wrapping required, just waiting. */
2403 wait_bytes = total_bytes;
2404 }
2405
2406 if (wait_bytes > ringbuf->space) {
2407 int ret = wait_for_space(req, wait_bytes);
2408 if (unlikely(ret))
2409 return ret;
2410
2411 intel_ring_update_space(ringbuf);
2412 if (unlikely(ringbuf->space < wait_bytes))
2413 return -EAGAIN;
2414 }
2415
2416 if (unlikely(need_wrap)) {
2417 GEM_BUG_ON(remain_actual > ringbuf->space);
2418 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2419
2420 /* Fill the tail with MI_NOOP */
2421 memset(ringbuf->virtual_start + ringbuf->tail,
2422 0, remain_actual);
2423 ringbuf->tail = 0;
2424 ringbuf->space -= remain_actual;
2425 }
2426
2427 ringbuf->space -= bytes;
2428 GEM_BUG_ON(ringbuf->space < 0);
2429 return 0;
2430 }
2431
2432 /* Align the ring tail to a cacheline boundary */
2433 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2434 {
2435 struct intel_engine_cs *engine = req->engine;
2436 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2437 int ret;
2438
2439 if (num_dwords == 0)
2440 return 0;
2441
2442 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2443 ret = intel_ring_begin(req, num_dwords);
2444 if (ret)
2445 return ret;
2446
2447 while (num_dwords--)
2448 intel_ring_emit(engine, MI_NOOP);
2449
2450 intel_ring_advance(engine);
2451
2452 return 0;
2453 }
2454
2455 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2456 {
2457 struct drm_i915_private *dev_priv = engine->i915;
2458
2459 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2460 * so long as the semaphore value in the register/page is greater
2461 * than the sync value), so whenever we reset the seqno,
2462 * so long as we reset the tracking semaphore value to 0, it will
2463 * always be before the next request's seqno. If we don't reset
2464 * the semaphore value, then when the seqno moves backwards all
2465 * future waits will complete instantly (causing rendering corruption).
2466 */
2467 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2468 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2469 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2470 if (HAS_VEBOX(dev_priv))
2471 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2472 }
2473 if (dev_priv->semaphore_obj) {
2474 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2475 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2476 void *semaphores = kmap(page);
2477 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2478 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2479 kunmap(page);
2480 }
2481 memset(engine->semaphore.sync_seqno, 0,
2482 sizeof(engine->semaphore.sync_seqno));
2483
2484 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2485 if (engine->irq_seqno_barrier)
2486 engine->irq_seqno_barrier(engine);
2487 engine->last_submitted_seqno = seqno;
2488
2489 engine->hangcheck.seqno = seqno;
2490
2491 /* After manually advancing the seqno, fake the interrupt in case
2492 * there are any waiters for that seqno.
2493 */
2494 rcu_read_lock();
2495 intel_engine_wakeup(engine);
2496 rcu_read_unlock();
2497 }
2498
2499 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2500 u32 value)
2501 {
2502 struct drm_i915_private *dev_priv = engine->i915;
2503
2504 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2505
2506 /* Every tail move must follow the sequence below */
2507
2508 /* Disable notification that the ring is IDLE. The GT
2509 * will then assume that it is busy and bring it out of rc6.
2510 */
2511 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2512 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2513
2514 /* Clear the context id. Here be magic! */
2515 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2516
2517 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2518 if (intel_wait_for_register_fw(dev_priv,
2519 GEN6_BSD_SLEEP_PSMI_CONTROL,
2520 GEN6_BSD_SLEEP_INDICATOR,
2521 0,
2522 50))
2523 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2524
2525 /* Now that the ring is fully powered up, update the tail */
2526 I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2527 POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2528
2529 /* Let the ring send IDLE messages to the GT again,
2530 * and so let it sleep to conserve power when idle.
2531 */
2532 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2533 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2534
2535 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2536 }
2537
2538 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2539 u32 invalidate, u32 flush)
2540 {
2541 struct intel_engine_cs *engine = req->engine;
2542 uint32_t cmd;
2543 int ret;
2544
2545 ret = intel_ring_begin(req, 4);
2546 if (ret)
2547 return ret;
2548
2549 cmd = MI_FLUSH_DW;
2550 if (INTEL_GEN(req->i915) >= 8)
2551 cmd += 1;
2552
2553 /* We always require a command barrier so that subsequent
2554 * commands, such as breadcrumb interrupts, are strictly ordered
2555 * wrt the contents of the write cache being flushed to memory
2556 * (and thus being coherent from the CPU).
2557 */
2558 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2559
2560 /*
2561 * Bspec vol 1c.5 - video engine command streamer:
2562 * "If ENABLED, all TLBs will be invalidated once the flush
2563 * operation is complete. This bit is only valid when the
2564 * Post-Sync Operation field is a value of 1h or 3h."
2565 */
2566 if (invalidate & I915_GEM_GPU_DOMAINS)
2567 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2568
2569 intel_ring_emit(engine, cmd);
2570 intel_ring_emit(engine,
2571 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2572 if (INTEL_GEN(req->i915) >= 8) {
2573 intel_ring_emit(engine, 0); /* upper addr */
2574 intel_ring_emit(engine, 0); /* value */
2575 } else {
2576 intel_ring_emit(engine, 0);
2577 intel_ring_emit(engine, MI_NOOP);
2578 }
2579 intel_ring_advance(engine);
2580 return 0;
2581 }
2582
2583 static int
2584 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2585 u64 offset, u32 len,
2586 unsigned dispatch_flags)
2587 {
2588 struct intel_engine_cs *engine = req->engine;
2589 bool ppgtt = USES_PPGTT(engine->dev) &&
2590 !(dispatch_flags & I915_DISPATCH_SECURE);
2591 int ret;
2592
2593 ret = intel_ring_begin(req, 4);
2594 if (ret)
2595 return ret;
2596
2597 /* FIXME(BDW): Address space and security selectors. */
2598 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2599 (dispatch_flags & I915_DISPATCH_RS ?
2600 MI_BATCH_RESOURCE_STREAMER : 0));
2601 intel_ring_emit(engine, lower_32_bits(offset));
2602 intel_ring_emit(engine, upper_32_bits(offset));
2603 intel_ring_emit(engine, MI_NOOP);
2604 intel_ring_advance(engine);
2605
2606 return 0;
2607 }
2608
2609 static int
2610 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2611 u64 offset, u32 len,
2612 unsigned dispatch_flags)
2613 {
2614 struct intel_engine_cs *engine = req->engine;
2615 int ret;
2616
2617 ret = intel_ring_begin(req, 2);
2618 if (ret)
2619 return ret;
2620
2621 intel_ring_emit(engine,
2622 MI_BATCH_BUFFER_START |
2623 (dispatch_flags & I915_DISPATCH_SECURE ?
2624 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2625 (dispatch_flags & I915_DISPATCH_RS ?
2626 MI_BATCH_RESOURCE_STREAMER : 0));
2627 /* bit0-7 is the length on GEN6+ */
2628 intel_ring_emit(engine, offset);
2629 intel_ring_advance(engine);
2630
2631 return 0;
2632 }
2633
2634 static int
2635 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2636 u64 offset, u32 len,
2637 unsigned dispatch_flags)
2638 {
2639 struct intel_engine_cs *engine = req->engine;
2640 int ret;
2641
2642 ret = intel_ring_begin(req, 2);
2643 if (ret)
2644 return ret;
2645
2646 intel_ring_emit(engine,
2647 MI_BATCH_BUFFER_START |
2648 (dispatch_flags & I915_DISPATCH_SECURE ?
2649 0 : MI_BATCH_NON_SECURE_I965));
2650 /* bit0-7 is the length on GEN6+ */
2651 intel_ring_emit(engine, offset);
2652 intel_ring_advance(engine);
2653
2654 return 0;
2655 }
2656
2657 /* Blitter support (SandyBridge+) */
2658
2659 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2660 u32 invalidate, u32 flush)
2661 {
2662 struct intel_engine_cs *engine = req->engine;
2663 uint32_t cmd;
2664 int ret;
2665
2666 ret = intel_ring_begin(req, 4);
2667 if (ret)
2668 return ret;
2669
2670 cmd = MI_FLUSH_DW;
2671 if (INTEL_GEN(req->i915) >= 8)
2672 cmd += 1;
2673
2674 /* We always require a command barrier so that subsequent
2675 * commands, such as breadcrumb interrupts, are strictly ordered
2676 * wrt the contents of the write cache being flushed to memory
2677 * (and thus being coherent from the CPU).
2678 */
2679 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2680
2681 /*
2682 * Bspec vol 1c.3 - blitter engine command streamer:
2683 * "If ENABLED, all TLBs will be invalidated once the flush
2684 * operation is complete. This bit is only valid when the
2685 * Post-Sync Operation field is a value of 1h or 3h."
2686 */
2687 if (invalidate & I915_GEM_DOMAIN_RENDER)
2688 cmd |= MI_INVALIDATE_TLB;
2689 intel_ring_emit(engine, cmd);
2690 intel_ring_emit(engine,
2691 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2692 if (INTEL_GEN(req->i915) >= 8) {
2693 intel_ring_emit(engine, 0); /* upper addr */
2694 intel_ring_emit(engine, 0); /* value */
2695 } else {
2696 intel_ring_emit(engine, 0);
2697 intel_ring_emit(engine, MI_NOOP);
2698 }
2699 intel_ring_advance(engine);
2700
2701 return 0;
2702 }
2703
2704 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2705 struct intel_engine_cs *engine)
2706 {
2707 struct drm_i915_gem_object *obj;
2708 int ret, i;
2709
2710 if (!i915_semaphore_is_enabled(dev_priv))
2711 return;
2712
2713 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2714 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2715 if (IS_ERR(obj)) {
2716 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2717 i915.semaphores = 0;
2718 } else {
2719 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2720 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2721 if (ret != 0) {
2722 drm_gem_object_unreference(&obj->base);
2723 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2724 i915.semaphores = 0;
2725 } else {
2726 dev_priv->semaphore_obj = obj;
2727 }
2728 }
2729 }
2730
2731 if (!i915_semaphore_is_enabled(dev_priv))
2732 return;
2733
2734 if (INTEL_GEN(dev_priv) >= 8) {
2735 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2736
2737 engine->semaphore.sync_to = gen8_ring_sync;
2738 engine->semaphore.signal = gen8_xcs_signal;
2739
2740 for (i = 0; i < I915_NUM_ENGINES; i++) {
2741 u64 ring_offset;
2742
2743 if (i != engine->id)
2744 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2745 else
2746 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2747
2748 engine->semaphore.signal_ggtt[i] = ring_offset;
2749 }
2750 } else if (INTEL_GEN(dev_priv) >= 6) {
2751 engine->semaphore.sync_to = gen6_ring_sync;
2752 engine->semaphore.signal = gen6_signal;
2753
2754 /*
2755 * The current semaphore is only applied on pre-gen8
2756 * platform. And there is no VCS2 ring on the pre-gen8
2757 * platform. So the semaphore between RCS and VCS2 is
2758 * initialized as INVALID. Gen8 will initialize the
2759 * sema between VCS2 and RCS later.
2760 */
2761 for (i = 0; i < I915_NUM_ENGINES; i++) {
2762 static const struct {
2763 u32 wait_mbox;
2764 i915_reg_t mbox_reg;
2765 } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2766 [RCS] = {
2767 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2768 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2769 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2770 },
2771 [VCS] = {
2772 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2773 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2774 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2775 },
2776 [BCS] = {
2777 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2778 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2779 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2780 },
2781 [VECS] = {
2782 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2783 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2784 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2785 },
2786 };
2787 u32 wait_mbox;
2788 i915_reg_t mbox_reg;
2789
2790 if (i == engine->id || i == VCS2) {
2791 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2792 mbox_reg = GEN6_NOSYNC;
2793 } else {
2794 wait_mbox = sem_data[engine->id][i].wait_mbox;
2795 mbox_reg = sem_data[engine->id][i].mbox_reg;
2796 }
2797
2798 engine->semaphore.mbox.wait[i] = wait_mbox;
2799 engine->semaphore.mbox.signal[i] = mbox_reg;
2800 }
2801 }
2802 }
2803
2804 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2805 struct intel_engine_cs *engine)
2806 {
2807 if (INTEL_GEN(dev_priv) >= 8) {
2808 engine->irq_enable = gen8_irq_enable;
2809 engine->irq_disable = gen8_irq_disable;
2810 engine->irq_seqno_barrier = gen6_seqno_barrier;
2811 } else if (INTEL_GEN(dev_priv) >= 6) {
2812 engine->irq_enable = gen6_irq_enable;
2813 engine->irq_disable = gen6_irq_disable;
2814 engine->irq_seqno_barrier = gen6_seqno_barrier;
2815 } else if (INTEL_GEN(dev_priv) >= 5) {
2816 engine->irq_enable = gen5_irq_enable;
2817 engine->irq_disable = gen5_irq_disable;
2818 engine->irq_seqno_barrier = gen5_seqno_barrier;
2819 } else if (INTEL_GEN(dev_priv) >= 3) {
2820 engine->irq_enable = i9xx_irq_enable;
2821 engine->irq_disable = i9xx_irq_disable;
2822 } else {
2823 engine->irq_enable = i8xx_irq_enable;
2824 engine->irq_disable = i8xx_irq_disable;
2825 }
2826 }
2827
2828 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2829 struct intel_engine_cs *engine)
2830 {
2831 engine->init_hw = init_ring_common;
2832 engine->write_tail = ring_write_tail;
2833
2834 engine->add_request = i9xx_add_request;
2835 if (INTEL_GEN(dev_priv) >= 6)
2836 engine->add_request = gen6_add_request;
2837
2838 if (INTEL_GEN(dev_priv) >= 8)
2839 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2840 else if (INTEL_GEN(dev_priv) >= 6)
2841 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2842 else if (INTEL_GEN(dev_priv) >= 4)
2843 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2844 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2845 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2846 else
2847 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2848
2849 intel_ring_init_irq(dev_priv, engine);
2850 intel_ring_init_semaphores(dev_priv, engine);
2851 }
2852
2853 int intel_init_render_ring_buffer(struct drm_device *dev)
2854 {
2855 struct drm_i915_private *dev_priv = to_i915(dev);
2856 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2857 int ret;
2858
2859 engine->name = "render ring";
2860 engine->id = RCS;
2861 engine->exec_id = I915_EXEC_RENDER;
2862 engine->hw_id = 0;
2863 engine->mmio_base = RENDER_RING_BASE;
2864
2865 intel_ring_default_vfuncs(dev_priv, engine);
2866
2867 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2868 if (HAS_L3_DPF(dev_priv))
2869 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2870
2871 if (INTEL_GEN(dev_priv) >= 8) {
2872 engine->init_context = intel_rcs_ctx_init;
2873 engine->add_request = gen8_render_add_request;
2874 engine->flush = gen8_render_ring_flush;
2875 if (i915_semaphore_is_enabled(dev_priv))
2876 engine->semaphore.signal = gen8_rcs_signal;
2877 } else if (INTEL_GEN(dev_priv) >= 6) {
2878 engine->init_context = intel_rcs_ctx_init;
2879 engine->flush = gen7_render_ring_flush;
2880 if (IS_GEN6(dev_priv))
2881 engine->flush = gen6_render_ring_flush;
2882 } else if (IS_GEN5(dev_priv)) {
2883 engine->flush = gen4_render_ring_flush;
2884 } else {
2885 if (INTEL_GEN(dev_priv) < 4)
2886 engine->flush = gen2_render_ring_flush;
2887 else
2888 engine->flush = gen4_render_ring_flush;
2889 engine->irq_enable_mask = I915_USER_INTERRUPT;
2890 }
2891
2892 if (IS_HASWELL(dev_priv))
2893 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2894
2895 engine->init_hw = init_render_ring;
2896 engine->cleanup = render_ring_cleanup;
2897
2898 ret = intel_init_ring_buffer(dev, engine);
2899 if (ret)
2900 return ret;
2901
2902 if (INTEL_GEN(dev_priv) >= 6) {
2903 ret = intel_init_pipe_control(engine, 4096);
2904 if (ret)
2905 return ret;
2906 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2907 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2908 if (ret)
2909 return ret;
2910 }
2911
2912 return 0;
2913 }
2914
2915 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2916 {
2917 struct drm_i915_private *dev_priv = to_i915(dev);
2918 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2919
2920 engine->name = "bsd ring";
2921 engine->id = VCS;
2922 engine->exec_id = I915_EXEC_BSD;
2923 engine->hw_id = 1;
2924
2925 intel_ring_default_vfuncs(dev_priv, engine);
2926
2927 if (INTEL_GEN(dev_priv) >= 6) {
2928 engine->mmio_base = GEN6_BSD_RING_BASE;
2929 /* gen6 bsd needs a special wa for tail updates */
2930 if (IS_GEN6(dev_priv))
2931 engine->write_tail = gen6_bsd_ring_write_tail;
2932 engine->flush = gen6_bsd_ring_flush;
2933 if (INTEL_GEN(dev_priv) >= 8)
2934 engine->irq_enable_mask =
2935 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2936 else
2937 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2938 } else {
2939 engine->mmio_base = BSD_RING_BASE;
2940 engine->flush = bsd_ring_flush;
2941 if (IS_GEN5(dev_priv))
2942 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2943 else
2944 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2945 }
2946
2947 return intel_init_ring_buffer(dev, engine);
2948 }
2949
2950 /**
2951 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2952 */
2953 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2954 {
2955 struct drm_i915_private *dev_priv = to_i915(dev);
2956 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2957
2958 engine->name = "bsd2 ring";
2959 engine->id = VCS2;
2960 engine->exec_id = I915_EXEC_BSD;
2961 engine->hw_id = 4;
2962 engine->mmio_base = GEN8_BSD2_RING_BASE;
2963
2964 intel_ring_default_vfuncs(dev_priv, engine);
2965
2966 engine->flush = gen6_bsd_ring_flush;
2967 engine->irq_enable_mask =
2968 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2969
2970 return intel_init_ring_buffer(dev, engine);
2971 }
2972
2973 int intel_init_blt_ring_buffer(struct drm_device *dev)
2974 {
2975 struct drm_i915_private *dev_priv = to_i915(dev);
2976 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2977
2978 engine->name = "blitter ring";
2979 engine->id = BCS;
2980 engine->exec_id = I915_EXEC_BLT;
2981 engine->hw_id = 2;
2982 engine->mmio_base = BLT_RING_BASE;
2983
2984 intel_ring_default_vfuncs(dev_priv, engine);
2985
2986 engine->flush = gen6_ring_flush;
2987 if (INTEL_GEN(dev_priv) >= 8)
2988 engine->irq_enable_mask =
2989 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2990 else
2991 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2992
2993 return intel_init_ring_buffer(dev, engine);
2994 }
2995
2996 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2997 {
2998 struct drm_i915_private *dev_priv = to_i915(dev);
2999 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3000
3001 engine->name = "video enhancement ring";
3002 engine->id = VECS;
3003 engine->exec_id = I915_EXEC_VEBOX;
3004 engine->hw_id = 3;
3005 engine->mmio_base = VEBOX_RING_BASE;
3006
3007 intel_ring_default_vfuncs(dev_priv, engine);
3008
3009 engine->flush = gen6_ring_flush;
3010
3011 if (INTEL_GEN(dev_priv) >= 8) {
3012 engine->irq_enable_mask =
3013 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3014 } else {
3015 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3016 engine->irq_enable = hsw_vebox_irq_enable;
3017 engine->irq_disable = hsw_vebox_irq_disable;
3018 }
3019
3020 return intel_init_ring_buffer(dev, engine);
3021 }
3022
3023 int
3024 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3025 {
3026 struct intel_engine_cs *engine = req->engine;
3027 int ret;
3028
3029 if (!engine->gpu_caches_dirty)
3030 return 0;
3031
3032 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3033 if (ret)
3034 return ret;
3035
3036 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3037
3038 engine->gpu_caches_dirty = false;
3039 return 0;
3040 }
3041
3042 int
3043 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3044 {
3045 struct intel_engine_cs *engine = req->engine;
3046 uint32_t flush_domains;
3047 int ret;
3048
3049 flush_domains = 0;
3050 if (engine->gpu_caches_dirty)
3051 flush_domains = I915_GEM_GPU_DOMAINS;
3052
3053 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3054 if (ret)
3055 return ret;
3056
3057 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3058
3059 engine->gpu_caches_dirty = false;
3060 return 0;
3061 }
3062
3063 void
3064 intel_stop_engine(struct intel_engine_cs *engine)
3065 {
3066 int ret;
3067
3068 if (!intel_engine_initialized(engine))
3069 return;
3070
3071 ret = intel_engine_idle(engine);
3072 if (ret)
3073 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3074 engine->name, ret);
3075
3076 stop_ring(engine);
3077 }