]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge tag 'drm-intel-next-2012-02-07' of git://people.freedesktop.org/~danvet/drm...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include "drmP.h"
31 #include "drm.h"
32 #include "i915_drv.h"
33 #include "i915_drm.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /*
38 * 965+ support PIPE_CONTROL commands, which provide finer grained control
39 * over cache flushing.
40 */
41 struct pipe_control {
42 struct drm_i915_gem_object *obj;
43 volatile u32 *cpu_page;
44 u32 gtt_offset;
45 };
46
47 static inline int ring_space(struct intel_ring_buffer *ring)
48 {
49 int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
50 if (space < 0)
51 space += ring->size;
52 return space;
53 }
54
55 static u32 i915_gem_get_seqno(struct drm_device *dev)
56 {
57 drm_i915_private_t *dev_priv = dev->dev_private;
58 u32 seqno;
59
60 seqno = dev_priv->next_seqno;
61
62 /* reserve 0 for non-seqno */
63 if (++dev_priv->next_seqno == 0)
64 dev_priv->next_seqno = 1;
65
66 return seqno;
67 }
68
69 static int
70 render_ring_flush(struct intel_ring_buffer *ring,
71 u32 invalidate_domains,
72 u32 flush_domains)
73 {
74 struct drm_device *dev = ring->dev;
75 u32 cmd;
76 int ret;
77
78 /*
79 * read/write caches:
80 *
81 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
82 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
83 * also flushed at 2d versus 3d pipeline switches.
84 *
85 * read-only caches:
86 *
87 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
88 * MI_READ_FLUSH is set, and is always flushed on 965.
89 *
90 * I915_GEM_DOMAIN_COMMAND may not exist?
91 *
92 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
93 * invalidated when MI_EXE_FLUSH is set.
94 *
95 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
96 * invalidated with every MI_FLUSH.
97 *
98 * TLBs:
99 *
100 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
101 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
102 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
103 * are flushed at any MI_FLUSH.
104 */
105
106 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
107 if ((invalidate_domains|flush_domains) &
108 I915_GEM_DOMAIN_RENDER)
109 cmd &= ~MI_NO_WRITE_FLUSH;
110 if (INTEL_INFO(dev)->gen < 4) {
111 /*
112 * On the 965, the sampler cache always gets flushed
113 * and this bit is reserved.
114 */
115 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
116 cmd |= MI_READ_FLUSH;
117 }
118 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
119 cmd |= MI_EXE_FLUSH;
120
121 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
122 (IS_G4X(dev) || IS_GEN5(dev)))
123 cmd |= MI_INVALIDATE_ISP;
124
125 ret = intel_ring_begin(ring, 2);
126 if (ret)
127 return ret;
128
129 intel_ring_emit(ring, cmd);
130 intel_ring_emit(ring, MI_NOOP);
131 intel_ring_advance(ring);
132
133 return 0;
134 }
135
136 /**
137 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
138 * implementing two workarounds on gen6. From section 1.4.7.1
139 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
140 *
141 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
142 * produced by non-pipelined state commands), software needs to first
143 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
144 * 0.
145 *
146 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
147 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
148 *
149 * And the workaround for these two requires this workaround first:
150 *
151 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
152 * BEFORE the pipe-control with a post-sync op and no write-cache
153 * flushes.
154 *
155 * And this last workaround is tricky because of the requirements on
156 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
157 * volume 2 part 1:
158 *
159 * "1 of the following must also be set:
160 * - Render Target Cache Flush Enable ([12] of DW1)
161 * - Depth Cache Flush Enable ([0] of DW1)
162 * - Stall at Pixel Scoreboard ([1] of DW1)
163 * - Depth Stall ([13] of DW1)
164 * - Post-Sync Operation ([13] of DW1)
165 * - Notify Enable ([8] of DW1)"
166 *
167 * The cache flushes require the workaround flush that triggered this
168 * one, so we can't use it. Depth stall would trigger the same.
169 * Post-sync nonzero is what triggered this second workaround, so we
170 * can't use that one either. Notify enable is IRQs, which aren't
171 * really our business. That leaves only stall at scoreboard.
172 */
173 static int
174 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
175 {
176 struct pipe_control *pc = ring->private;
177 u32 scratch_addr = pc->gtt_offset + 128;
178 int ret;
179
180
181 ret = intel_ring_begin(ring, 6);
182 if (ret)
183 return ret;
184
185 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
187 PIPE_CONTROL_STALL_AT_SCOREBOARD);
188 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
189 intel_ring_emit(ring, 0); /* low dword */
190 intel_ring_emit(ring, 0); /* high dword */
191 intel_ring_emit(ring, MI_NOOP);
192 intel_ring_advance(ring);
193
194 ret = intel_ring_begin(ring, 6);
195 if (ret)
196 return ret;
197
198 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
199 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
200 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201 intel_ring_emit(ring, 0);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, MI_NOOP);
204 intel_ring_advance(ring);
205
206 return 0;
207 }
208
209 static int
210 gen6_render_ring_flush(struct intel_ring_buffer *ring,
211 u32 invalidate_domains, u32 flush_domains)
212 {
213 u32 flags = 0;
214 struct pipe_control *pc = ring->private;
215 u32 scratch_addr = pc->gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 intel_emit_post_sync_nonzero_flush(ring);
220
221 /* Just flush everything. Experiments have shown that reducing the
222 * number of bits based on the write domains has little performance
223 * impact.
224 */
225 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
226 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
227 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
228 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
230 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
231 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
232
233 ret = intel_ring_begin(ring, 6);
234 if (ret)
235 return ret;
236
237 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
238 intel_ring_emit(ring, flags);
239 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
240 intel_ring_emit(ring, 0); /* lower dword */
241 intel_ring_emit(ring, 0); /* uppwer dword */
242 intel_ring_emit(ring, MI_NOOP);
243 intel_ring_advance(ring);
244
245 return 0;
246 }
247
248 static void ring_write_tail(struct intel_ring_buffer *ring,
249 u32 value)
250 {
251 drm_i915_private_t *dev_priv = ring->dev->dev_private;
252 I915_WRITE_TAIL(ring, value);
253 }
254
255 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
256 {
257 drm_i915_private_t *dev_priv = ring->dev->dev_private;
258 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
259 RING_ACTHD(ring->mmio_base) : ACTHD;
260
261 return I915_READ(acthd_reg);
262 }
263
264 static int init_ring_common(struct intel_ring_buffer *ring)
265 {
266 drm_i915_private_t *dev_priv = ring->dev->dev_private;
267 struct drm_i915_gem_object *obj = ring->obj;
268 u32 head;
269
270 /* Stop the ring if it's running. */
271 I915_WRITE_CTL(ring, 0);
272 I915_WRITE_HEAD(ring, 0);
273 ring->write_tail(ring, 0);
274
275 /* Initialize the ring. */
276 I915_WRITE_START(ring, obj->gtt_offset);
277 head = I915_READ_HEAD(ring) & HEAD_ADDR;
278
279 /* G45 ring initialization fails to reset head to zero */
280 if (head != 0) {
281 DRM_DEBUG_KMS("%s head not reset to zero "
282 "ctl %08x head %08x tail %08x start %08x\n",
283 ring->name,
284 I915_READ_CTL(ring),
285 I915_READ_HEAD(ring),
286 I915_READ_TAIL(ring),
287 I915_READ_START(ring));
288
289 I915_WRITE_HEAD(ring, 0);
290
291 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
292 DRM_ERROR("failed to set %s head to zero "
293 "ctl %08x head %08x tail %08x start %08x\n",
294 ring->name,
295 I915_READ_CTL(ring),
296 I915_READ_HEAD(ring),
297 I915_READ_TAIL(ring),
298 I915_READ_START(ring));
299 }
300 }
301
302 I915_WRITE_CTL(ring,
303 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
304 | RING_REPORT_64K | RING_VALID);
305
306 /* If the head is still not zero, the ring is dead */
307 if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
308 I915_READ_START(ring) != obj->gtt_offset ||
309 (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
310 DRM_ERROR("%s initialization failed "
311 "ctl %08x head %08x tail %08x start %08x\n",
312 ring->name,
313 I915_READ_CTL(ring),
314 I915_READ_HEAD(ring),
315 I915_READ_TAIL(ring),
316 I915_READ_START(ring));
317 return -EIO;
318 }
319
320 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
321 i915_kernel_lost_context(ring->dev);
322 else {
323 ring->head = I915_READ_HEAD(ring);
324 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
325 ring->space = ring_space(ring);
326 }
327
328 return 0;
329 }
330
331 static int
332 init_pipe_control(struct intel_ring_buffer *ring)
333 {
334 struct pipe_control *pc;
335 struct drm_i915_gem_object *obj;
336 int ret;
337
338 if (ring->private)
339 return 0;
340
341 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
342 if (!pc)
343 return -ENOMEM;
344
345 obj = i915_gem_alloc_object(ring->dev, 4096);
346 if (obj == NULL) {
347 DRM_ERROR("Failed to allocate seqno page\n");
348 ret = -ENOMEM;
349 goto err;
350 }
351
352 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
353
354 ret = i915_gem_object_pin(obj, 4096, true);
355 if (ret)
356 goto err_unref;
357
358 pc->gtt_offset = obj->gtt_offset;
359 pc->cpu_page = kmap(obj->pages[0]);
360 if (pc->cpu_page == NULL)
361 goto err_unpin;
362
363 pc->obj = obj;
364 ring->private = pc;
365 return 0;
366
367 err_unpin:
368 i915_gem_object_unpin(obj);
369 err_unref:
370 drm_gem_object_unreference(&obj->base);
371 err:
372 kfree(pc);
373 return ret;
374 }
375
376 static void
377 cleanup_pipe_control(struct intel_ring_buffer *ring)
378 {
379 struct pipe_control *pc = ring->private;
380 struct drm_i915_gem_object *obj;
381
382 if (!ring->private)
383 return;
384
385 obj = pc->obj;
386 kunmap(obj->pages[0]);
387 i915_gem_object_unpin(obj);
388 drm_gem_object_unreference(&obj->base);
389
390 kfree(pc);
391 ring->private = NULL;
392 }
393
394 static int init_render_ring(struct intel_ring_buffer *ring)
395 {
396 struct drm_device *dev = ring->dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 int ret = init_ring_common(ring);
399
400 if (INTEL_INFO(dev)->gen > 3) {
401 int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
402 I915_WRITE(MI_MODE, mode);
403 if (IS_GEN7(dev))
404 I915_WRITE(GFX_MODE_GEN7,
405 GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
406 GFX_MODE_ENABLE(GFX_REPLAY_MODE));
407 }
408
409 if (INTEL_INFO(dev)->gen >= 5) {
410 ret = init_pipe_control(ring);
411 if (ret)
412 return ret;
413 }
414
415 if (INTEL_INFO(dev)->gen >= 6) {
416 I915_WRITE(INSTPM,
417 INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
418 }
419
420 return ret;
421 }
422
423 static void render_ring_cleanup(struct intel_ring_buffer *ring)
424 {
425 if (!ring->private)
426 return;
427
428 cleanup_pipe_control(ring);
429 }
430
431 static void
432 update_mboxes(struct intel_ring_buffer *ring,
433 u32 seqno,
434 u32 mmio_offset)
435 {
436 intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
437 MI_SEMAPHORE_GLOBAL_GTT |
438 MI_SEMAPHORE_REGISTER |
439 MI_SEMAPHORE_UPDATE);
440 intel_ring_emit(ring, seqno);
441 intel_ring_emit(ring, mmio_offset);
442 }
443
444 /**
445 * gen6_add_request - Update the semaphore mailbox registers
446 *
447 * @ring - ring that is adding a request
448 * @seqno - return seqno stuck into the ring
449 *
450 * Update the mailbox registers in the *other* rings with the current seqno.
451 * This acts like a signal in the canonical semaphore.
452 */
453 static int
454 gen6_add_request(struct intel_ring_buffer *ring,
455 u32 *seqno)
456 {
457 u32 mbox1_reg;
458 u32 mbox2_reg;
459 int ret;
460
461 ret = intel_ring_begin(ring, 10);
462 if (ret)
463 return ret;
464
465 mbox1_reg = ring->signal_mbox[0];
466 mbox2_reg = ring->signal_mbox[1];
467
468 *seqno = i915_gem_get_seqno(ring->dev);
469
470 update_mboxes(ring, *seqno, mbox1_reg);
471 update_mboxes(ring, *seqno, mbox2_reg);
472 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
473 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
474 intel_ring_emit(ring, *seqno);
475 intel_ring_emit(ring, MI_USER_INTERRUPT);
476 intel_ring_advance(ring);
477
478 return 0;
479 }
480
481 /**
482 * intel_ring_sync - sync the waiter to the signaller on seqno
483 *
484 * @waiter - ring that is waiting
485 * @signaller - ring which has, or will signal
486 * @seqno - seqno which the waiter will block on
487 */
488 static int
489 intel_ring_sync(struct intel_ring_buffer *waiter,
490 struct intel_ring_buffer *signaller,
491 int ring,
492 u32 seqno)
493 {
494 int ret;
495 u32 dw1 = MI_SEMAPHORE_MBOX |
496 MI_SEMAPHORE_COMPARE |
497 MI_SEMAPHORE_REGISTER;
498
499 ret = intel_ring_begin(waiter, 4);
500 if (ret)
501 return ret;
502
503 intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
504 intel_ring_emit(waiter, seqno);
505 intel_ring_emit(waiter, 0);
506 intel_ring_emit(waiter, MI_NOOP);
507 intel_ring_advance(waiter);
508
509 return 0;
510 }
511
512 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
513 int
514 render_ring_sync_to(struct intel_ring_buffer *waiter,
515 struct intel_ring_buffer *signaller,
516 u32 seqno)
517 {
518 WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
519 return intel_ring_sync(waiter,
520 signaller,
521 RCS,
522 seqno);
523 }
524
525 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
526 int
527 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
528 struct intel_ring_buffer *signaller,
529 u32 seqno)
530 {
531 WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
532 return intel_ring_sync(waiter,
533 signaller,
534 VCS,
535 seqno);
536 }
537
538 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
539 int
540 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
541 struct intel_ring_buffer *signaller,
542 u32 seqno)
543 {
544 WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
545 return intel_ring_sync(waiter,
546 signaller,
547 BCS,
548 seqno);
549 }
550
551
552
553 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
554 do { \
555 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
556 PIPE_CONTROL_DEPTH_STALL); \
557 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
558 intel_ring_emit(ring__, 0); \
559 intel_ring_emit(ring__, 0); \
560 } while (0)
561
562 static int
563 pc_render_add_request(struct intel_ring_buffer *ring,
564 u32 *result)
565 {
566 struct drm_device *dev = ring->dev;
567 u32 seqno = i915_gem_get_seqno(dev);
568 struct pipe_control *pc = ring->private;
569 u32 scratch_addr = pc->gtt_offset + 128;
570 int ret;
571
572 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
573 * incoherent with writes to memory, i.e. completely fubar,
574 * so we need to use PIPE_NOTIFY instead.
575 *
576 * However, we also need to workaround the qword write
577 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
578 * memory before requesting an interrupt.
579 */
580 ret = intel_ring_begin(ring, 32);
581 if (ret)
582 return ret;
583
584 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
585 PIPE_CONTROL_WRITE_FLUSH |
586 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
587 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
588 intel_ring_emit(ring, seqno);
589 intel_ring_emit(ring, 0);
590 PIPE_CONTROL_FLUSH(ring, scratch_addr);
591 scratch_addr += 128; /* write to separate cachelines */
592 PIPE_CONTROL_FLUSH(ring, scratch_addr);
593 scratch_addr += 128;
594 PIPE_CONTROL_FLUSH(ring, scratch_addr);
595 scratch_addr += 128;
596 PIPE_CONTROL_FLUSH(ring, scratch_addr);
597 scratch_addr += 128;
598 PIPE_CONTROL_FLUSH(ring, scratch_addr);
599 scratch_addr += 128;
600 PIPE_CONTROL_FLUSH(ring, scratch_addr);
601 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
602 PIPE_CONTROL_WRITE_FLUSH |
603 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
604 PIPE_CONTROL_NOTIFY);
605 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
606 intel_ring_emit(ring, seqno);
607 intel_ring_emit(ring, 0);
608 intel_ring_advance(ring);
609
610 *result = seqno;
611 return 0;
612 }
613
614 static int
615 render_ring_add_request(struct intel_ring_buffer *ring,
616 u32 *result)
617 {
618 struct drm_device *dev = ring->dev;
619 u32 seqno = i915_gem_get_seqno(dev);
620 int ret;
621
622 ret = intel_ring_begin(ring, 4);
623 if (ret)
624 return ret;
625
626 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
627 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
628 intel_ring_emit(ring, seqno);
629 intel_ring_emit(ring, MI_USER_INTERRUPT);
630 intel_ring_advance(ring);
631
632 *result = seqno;
633 return 0;
634 }
635
636 static u32
637 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
638 {
639 struct drm_device *dev = ring->dev;
640
641 /* Workaround to force correct ordering between irq and seqno writes on
642 * ivb (and maybe also on snb) by reading from a CS register (like
643 * ACTHD) before reading the status page. */
644 if (IS_GEN7(dev))
645 intel_ring_get_active_head(ring);
646 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
647 }
648
649 static u32
650 ring_get_seqno(struct intel_ring_buffer *ring)
651 {
652 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
653 }
654
655 static u32
656 pc_render_get_seqno(struct intel_ring_buffer *ring)
657 {
658 struct pipe_control *pc = ring->private;
659 return pc->cpu_page[0];
660 }
661
662 static void
663 ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
664 {
665 dev_priv->gt_irq_mask &= ~mask;
666 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
667 POSTING_READ(GTIMR);
668 }
669
670 static void
671 ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
672 {
673 dev_priv->gt_irq_mask |= mask;
674 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
675 POSTING_READ(GTIMR);
676 }
677
678 static void
679 i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
680 {
681 dev_priv->irq_mask &= ~mask;
682 I915_WRITE(IMR, dev_priv->irq_mask);
683 POSTING_READ(IMR);
684 }
685
686 static void
687 i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
688 {
689 dev_priv->irq_mask |= mask;
690 I915_WRITE(IMR, dev_priv->irq_mask);
691 POSTING_READ(IMR);
692 }
693
694 static bool
695 render_ring_get_irq(struct intel_ring_buffer *ring)
696 {
697 struct drm_device *dev = ring->dev;
698 drm_i915_private_t *dev_priv = dev->dev_private;
699
700 if (!dev->irq_enabled)
701 return false;
702
703 spin_lock(&ring->irq_lock);
704 if (ring->irq_refcount++ == 0) {
705 if (HAS_PCH_SPLIT(dev))
706 ironlake_enable_irq(dev_priv,
707 GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
708 else
709 i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
710 }
711 spin_unlock(&ring->irq_lock);
712
713 return true;
714 }
715
716 static void
717 render_ring_put_irq(struct intel_ring_buffer *ring)
718 {
719 struct drm_device *dev = ring->dev;
720 drm_i915_private_t *dev_priv = dev->dev_private;
721
722 spin_lock(&ring->irq_lock);
723 if (--ring->irq_refcount == 0) {
724 if (HAS_PCH_SPLIT(dev))
725 ironlake_disable_irq(dev_priv,
726 GT_USER_INTERRUPT |
727 GT_PIPE_NOTIFY);
728 else
729 i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
730 }
731 spin_unlock(&ring->irq_lock);
732 }
733
734 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
735 {
736 struct drm_device *dev = ring->dev;
737 drm_i915_private_t *dev_priv = ring->dev->dev_private;
738 u32 mmio = 0;
739
740 /* The ring status page addresses are no longer next to the rest of
741 * the ring registers as of gen7.
742 */
743 if (IS_GEN7(dev)) {
744 switch (ring->id) {
745 case RCS:
746 mmio = RENDER_HWS_PGA_GEN7;
747 break;
748 case BCS:
749 mmio = BLT_HWS_PGA_GEN7;
750 break;
751 case VCS:
752 mmio = BSD_HWS_PGA_GEN7;
753 break;
754 }
755 } else if (IS_GEN6(ring->dev)) {
756 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
757 } else {
758 mmio = RING_HWS_PGA(ring->mmio_base);
759 }
760
761 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
762 POSTING_READ(mmio);
763 }
764
765 static int
766 bsd_ring_flush(struct intel_ring_buffer *ring,
767 u32 invalidate_domains,
768 u32 flush_domains)
769 {
770 int ret;
771
772 ret = intel_ring_begin(ring, 2);
773 if (ret)
774 return ret;
775
776 intel_ring_emit(ring, MI_FLUSH);
777 intel_ring_emit(ring, MI_NOOP);
778 intel_ring_advance(ring);
779 return 0;
780 }
781
782 static int
783 ring_add_request(struct intel_ring_buffer *ring,
784 u32 *result)
785 {
786 u32 seqno;
787 int ret;
788
789 ret = intel_ring_begin(ring, 4);
790 if (ret)
791 return ret;
792
793 seqno = i915_gem_get_seqno(ring->dev);
794
795 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
796 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
797 intel_ring_emit(ring, seqno);
798 intel_ring_emit(ring, MI_USER_INTERRUPT);
799 intel_ring_advance(ring);
800
801 *result = seqno;
802 return 0;
803 }
804
805 static bool
806 gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
807 {
808 struct drm_device *dev = ring->dev;
809 drm_i915_private_t *dev_priv = dev->dev_private;
810
811 if (!dev->irq_enabled)
812 return false;
813
814 /* It looks like we need to prevent the gt from suspending while waiting
815 * for an notifiy irq, otherwise irqs seem to get lost on at least the
816 * blt/bsd rings on ivb. */
817 if (IS_GEN7(dev))
818 gen6_gt_force_wake_get(dev_priv);
819
820 spin_lock(&ring->irq_lock);
821 if (ring->irq_refcount++ == 0) {
822 ring->irq_mask &= ~rflag;
823 I915_WRITE_IMR(ring, ring->irq_mask);
824 ironlake_enable_irq(dev_priv, gflag);
825 }
826 spin_unlock(&ring->irq_lock);
827
828 return true;
829 }
830
831 static void
832 gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
833 {
834 struct drm_device *dev = ring->dev;
835 drm_i915_private_t *dev_priv = dev->dev_private;
836
837 spin_lock(&ring->irq_lock);
838 if (--ring->irq_refcount == 0) {
839 ring->irq_mask |= rflag;
840 I915_WRITE_IMR(ring, ring->irq_mask);
841 ironlake_disable_irq(dev_priv, gflag);
842 }
843 spin_unlock(&ring->irq_lock);
844
845 if (IS_GEN7(dev))
846 gen6_gt_force_wake_put(dev_priv);
847 }
848
849 static bool
850 bsd_ring_get_irq(struct intel_ring_buffer *ring)
851 {
852 struct drm_device *dev = ring->dev;
853 drm_i915_private_t *dev_priv = dev->dev_private;
854
855 if (!dev->irq_enabled)
856 return false;
857
858 spin_lock(&ring->irq_lock);
859 if (ring->irq_refcount++ == 0) {
860 if (IS_G4X(dev))
861 i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
862 else
863 ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
864 }
865 spin_unlock(&ring->irq_lock);
866
867 return true;
868 }
869 static void
870 bsd_ring_put_irq(struct intel_ring_buffer *ring)
871 {
872 struct drm_device *dev = ring->dev;
873 drm_i915_private_t *dev_priv = dev->dev_private;
874
875 spin_lock(&ring->irq_lock);
876 if (--ring->irq_refcount == 0) {
877 if (IS_G4X(dev))
878 i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
879 else
880 ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
881 }
882 spin_unlock(&ring->irq_lock);
883 }
884
885 static int
886 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
887 {
888 int ret;
889
890 ret = intel_ring_begin(ring, 2);
891 if (ret)
892 return ret;
893
894 intel_ring_emit(ring,
895 MI_BATCH_BUFFER_START | (2 << 6) |
896 MI_BATCH_NON_SECURE_I965);
897 intel_ring_emit(ring, offset);
898 intel_ring_advance(ring);
899
900 return 0;
901 }
902
903 static int
904 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
905 u32 offset, u32 len)
906 {
907 struct drm_device *dev = ring->dev;
908 int ret;
909
910 if (IS_I830(dev) || IS_845G(dev)) {
911 ret = intel_ring_begin(ring, 4);
912 if (ret)
913 return ret;
914
915 intel_ring_emit(ring, MI_BATCH_BUFFER);
916 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
917 intel_ring_emit(ring, offset + len - 8);
918 intel_ring_emit(ring, 0);
919 } else {
920 ret = intel_ring_begin(ring, 2);
921 if (ret)
922 return ret;
923
924 if (INTEL_INFO(dev)->gen >= 4) {
925 intel_ring_emit(ring,
926 MI_BATCH_BUFFER_START | (2 << 6) |
927 MI_BATCH_NON_SECURE_I965);
928 intel_ring_emit(ring, offset);
929 } else {
930 intel_ring_emit(ring,
931 MI_BATCH_BUFFER_START | (2 << 6));
932 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
933 }
934 }
935 intel_ring_advance(ring);
936
937 return 0;
938 }
939
940 static void cleanup_status_page(struct intel_ring_buffer *ring)
941 {
942 drm_i915_private_t *dev_priv = ring->dev->dev_private;
943 struct drm_i915_gem_object *obj;
944
945 obj = ring->status_page.obj;
946 if (obj == NULL)
947 return;
948
949 kunmap(obj->pages[0]);
950 i915_gem_object_unpin(obj);
951 drm_gem_object_unreference(&obj->base);
952 ring->status_page.obj = NULL;
953
954 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
955 }
956
957 static int init_status_page(struct intel_ring_buffer *ring)
958 {
959 struct drm_device *dev = ring->dev;
960 drm_i915_private_t *dev_priv = dev->dev_private;
961 struct drm_i915_gem_object *obj;
962 int ret;
963
964 obj = i915_gem_alloc_object(dev, 4096);
965 if (obj == NULL) {
966 DRM_ERROR("Failed to allocate status page\n");
967 ret = -ENOMEM;
968 goto err;
969 }
970
971 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
972
973 ret = i915_gem_object_pin(obj, 4096, true);
974 if (ret != 0) {
975 goto err_unref;
976 }
977
978 ring->status_page.gfx_addr = obj->gtt_offset;
979 ring->status_page.page_addr = kmap(obj->pages[0]);
980 if (ring->status_page.page_addr == NULL) {
981 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
982 goto err_unpin;
983 }
984 ring->status_page.obj = obj;
985 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
986
987 intel_ring_setup_status_page(ring);
988 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
989 ring->name, ring->status_page.gfx_addr);
990
991 return 0;
992
993 err_unpin:
994 i915_gem_object_unpin(obj);
995 err_unref:
996 drm_gem_object_unreference(&obj->base);
997 err:
998 return ret;
999 }
1000
1001 int intel_init_ring_buffer(struct drm_device *dev,
1002 struct intel_ring_buffer *ring)
1003 {
1004 struct drm_i915_gem_object *obj;
1005 int ret;
1006
1007 ring->dev = dev;
1008 INIT_LIST_HEAD(&ring->active_list);
1009 INIT_LIST_HEAD(&ring->request_list);
1010 INIT_LIST_HEAD(&ring->gpu_write_list);
1011
1012 init_waitqueue_head(&ring->irq_queue);
1013 spin_lock_init(&ring->irq_lock);
1014 ring->irq_mask = ~0;
1015
1016 if (I915_NEED_GFX_HWS(dev)) {
1017 ret = init_status_page(ring);
1018 if (ret)
1019 return ret;
1020 }
1021
1022 obj = i915_gem_alloc_object(dev, ring->size);
1023 if (obj == NULL) {
1024 DRM_ERROR("Failed to allocate ringbuffer\n");
1025 ret = -ENOMEM;
1026 goto err_hws;
1027 }
1028
1029 ring->obj = obj;
1030
1031 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1032 if (ret)
1033 goto err_unref;
1034
1035 ring->map.size = ring->size;
1036 ring->map.offset = dev->agp->base + obj->gtt_offset;
1037 ring->map.type = 0;
1038 ring->map.flags = 0;
1039 ring->map.mtrr = 0;
1040
1041 drm_core_ioremap_wc(&ring->map, dev);
1042 if (ring->map.handle == NULL) {
1043 DRM_ERROR("Failed to map ringbuffer.\n");
1044 ret = -EINVAL;
1045 goto err_unpin;
1046 }
1047
1048 ring->virtual_start = ring->map.handle;
1049 ret = ring->init(ring);
1050 if (ret)
1051 goto err_unmap;
1052
1053 /* Workaround an erratum on the i830 which causes a hang if
1054 * the TAIL pointer points to within the last 2 cachelines
1055 * of the buffer.
1056 */
1057 ring->effective_size = ring->size;
1058 if (IS_I830(ring->dev))
1059 ring->effective_size -= 128;
1060
1061 return 0;
1062
1063 err_unmap:
1064 drm_core_ioremapfree(&ring->map, dev);
1065 err_unpin:
1066 i915_gem_object_unpin(obj);
1067 err_unref:
1068 drm_gem_object_unreference(&obj->base);
1069 ring->obj = NULL;
1070 err_hws:
1071 cleanup_status_page(ring);
1072 return ret;
1073 }
1074
1075 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1076 {
1077 struct drm_i915_private *dev_priv;
1078 int ret;
1079
1080 if (ring->obj == NULL)
1081 return;
1082
1083 /* Disable the ring buffer. The ring must be idle at this point */
1084 dev_priv = ring->dev->dev_private;
1085 ret = intel_wait_ring_idle(ring);
1086 if (ret)
1087 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1088 ring->name, ret);
1089
1090 I915_WRITE_CTL(ring, 0);
1091
1092 drm_core_ioremapfree(&ring->map, ring->dev);
1093
1094 i915_gem_object_unpin(ring->obj);
1095 drm_gem_object_unreference(&ring->obj->base);
1096 ring->obj = NULL;
1097
1098 if (ring->cleanup)
1099 ring->cleanup(ring);
1100
1101 cleanup_status_page(ring);
1102 }
1103
1104 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1105 {
1106 unsigned int *virt;
1107 int rem = ring->size - ring->tail;
1108
1109 if (ring->space < rem) {
1110 int ret = intel_wait_ring_buffer(ring, rem);
1111 if (ret)
1112 return ret;
1113 }
1114
1115 virt = (unsigned int *)(ring->virtual_start + ring->tail);
1116 rem /= 8;
1117 while (rem--) {
1118 *virt++ = MI_NOOP;
1119 *virt++ = MI_NOOP;
1120 }
1121
1122 ring->tail = 0;
1123 ring->space = ring_space(ring);
1124
1125 return 0;
1126 }
1127
1128 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1129 {
1130 struct drm_device *dev = ring->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 unsigned long end;
1133 u32 head;
1134
1135 /* If the reported head position has wrapped or hasn't advanced,
1136 * fallback to the slow and accurate path.
1137 */
1138 head = intel_read_status_page(ring, 4);
1139 if (head > ring->head) {
1140 ring->head = head;
1141 ring->space = ring_space(ring);
1142 if (ring->space >= n)
1143 return 0;
1144 }
1145
1146 trace_i915_ring_wait_begin(ring);
1147 if (drm_core_check_feature(dev, DRIVER_GEM))
1148 /* With GEM the hangcheck timer should kick us out of the loop,
1149 * leaving it early runs the risk of corrupting GEM state (due
1150 * to running on almost untested codepaths). But on resume
1151 * timers don't work yet, so prevent a complete hang in that
1152 * case by choosing an insanely large timeout. */
1153 end = jiffies + 60 * HZ;
1154 else
1155 end = jiffies + 3 * HZ;
1156
1157 do {
1158 ring->head = I915_READ_HEAD(ring);
1159 ring->space = ring_space(ring);
1160 if (ring->space >= n) {
1161 trace_i915_ring_wait_end(ring);
1162 return 0;
1163 }
1164
1165 if (dev->primary->master) {
1166 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1167 if (master_priv->sarea_priv)
1168 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1169 }
1170
1171 msleep(1);
1172 if (atomic_read(&dev_priv->mm.wedged))
1173 return -EAGAIN;
1174 } while (!time_after(jiffies, end));
1175 trace_i915_ring_wait_end(ring);
1176 return -EBUSY;
1177 }
1178
1179 int intel_ring_begin(struct intel_ring_buffer *ring,
1180 int num_dwords)
1181 {
1182 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1183 int n = 4*num_dwords;
1184 int ret;
1185
1186 if (unlikely(atomic_read(&dev_priv->mm.wedged)))
1187 return -EIO;
1188
1189 if (unlikely(ring->tail + n > ring->effective_size)) {
1190 ret = intel_wrap_ring_buffer(ring);
1191 if (unlikely(ret))
1192 return ret;
1193 }
1194
1195 if (unlikely(ring->space < n)) {
1196 ret = intel_wait_ring_buffer(ring, n);
1197 if (unlikely(ret))
1198 return ret;
1199 }
1200
1201 ring->space -= n;
1202 return 0;
1203 }
1204
1205 void intel_ring_advance(struct intel_ring_buffer *ring)
1206 {
1207 ring->tail &= ring->size - 1;
1208 ring->write_tail(ring, ring->tail);
1209 }
1210
1211 static const struct intel_ring_buffer render_ring = {
1212 .name = "render ring",
1213 .id = RCS,
1214 .mmio_base = RENDER_RING_BASE,
1215 .size = 32 * PAGE_SIZE,
1216 .init = init_render_ring,
1217 .write_tail = ring_write_tail,
1218 .flush = render_ring_flush,
1219 .add_request = render_ring_add_request,
1220 .get_seqno = ring_get_seqno,
1221 .irq_get = render_ring_get_irq,
1222 .irq_put = render_ring_put_irq,
1223 .dispatch_execbuffer = render_ring_dispatch_execbuffer,
1224 .cleanup = render_ring_cleanup,
1225 .sync_to = render_ring_sync_to,
1226 .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID,
1227 MI_SEMAPHORE_SYNC_RV,
1228 MI_SEMAPHORE_SYNC_RB},
1229 .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC},
1230 };
1231
1232 /* ring buffer for bit-stream decoder */
1233
1234 static const struct intel_ring_buffer bsd_ring = {
1235 .name = "bsd ring",
1236 .id = VCS,
1237 .mmio_base = BSD_RING_BASE,
1238 .size = 32 * PAGE_SIZE,
1239 .init = init_ring_common,
1240 .write_tail = ring_write_tail,
1241 .flush = bsd_ring_flush,
1242 .add_request = ring_add_request,
1243 .get_seqno = ring_get_seqno,
1244 .irq_get = bsd_ring_get_irq,
1245 .irq_put = bsd_ring_put_irq,
1246 .dispatch_execbuffer = ring_dispatch_execbuffer,
1247 };
1248
1249
1250 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1251 u32 value)
1252 {
1253 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1254
1255 /* Every tail move must follow the sequence below */
1256 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1257 GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1258 GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1259 I915_WRITE(GEN6_BSD_RNCID, 0x0);
1260
1261 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1262 GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
1263 50))
1264 DRM_ERROR("timed out waiting for IDLE Indicator\n");
1265
1266 I915_WRITE_TAIL(ring, value);
1267 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1268 GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1269 GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1270 }
1271
1272 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1273 u32 invalidate, u32 flush)
1274 {
1275 uint32_t cmd;
1276 int ret;
1277
1278 ret = intel_ring_begin(ring, 4);
1279 if (ret)
1280 return ret;
1281
1282 cmd = MI_FLUSH_DW;
1283 if (invalidate & I915_GEM_GPU_DOMAINS)
1284 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1285 intel_ring_emit(ring, cmd);
1286 intel_ring_emit(ring, 0);
1287 intel_ring_emit(ring, 0);
1288 intel_ring_emit(ring, MI_NOOP);
1289 intel_ring_advance(ring);
1290 return 0;
1291 }
1292
1293 static int
1294 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1295 u32 offset, u32 len)
1296 {
1297 int ret;
1298
1299 ret = intel_ring_begin(ring, 2);
1300 if (ret)
1301 return ret;
1302
1303 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1304 /* bit0-7 is the length on GEN6+ */
1305 intel_ring_emit(ring, offset);
1306 intel_ring_advance(ring);
1307
1308 return 0;
1309 }
1310
1311 static bool
1312 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1313 {
1314 return gen6_ring_get_irq(ring,
1315 GT_USER_INTERRUPT,
1316 GEN6_RENDER_USER_INTERRUPT);
1317 }
1318
1319 static void
1320 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1321 {
1322 return gen6_ring_put_irq(ring,
1323 GT_USER_INTERRUPT,
1324 GEN6_RENDER_USER_INTERRUPT);
1325 }
1326
1327 static bool
1328 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1329 {
1330 return gen6_ring_get_irq(ring,
1331 GT_GEN6_BSD_USER_INTERRUPT,
1332 GEN6_BSD_USER_INTERRUPT);
1333 }
1334
1335 static void
1336 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1337 {
1338 return gen6_ring_put_irq(ring,
1339 GT_GEN6_BSD_USER_INTERRUPT,
1340 GEN6_BSD_USER_INTERRUPT);
1341 }
1342
1343 /* ring buffer for Video Codec for Gen6+ */
1344 static const struct intel_ring_buffer gen6_bsd_ring = {
1345 .name = "gen6 bsd ring",
1346 .id = VCS,
1347 .mmio_base = GEN6_BSD_RING_BASE,
1348 .size = 32 * PAGE_SIZE,
1349 .init = init_ring_common,
1350 .write_tail = gen6_bsd_ring_write_tail,
1351 .flush = gen6_ring_flush,
1352 .add_request = gen6_add_request,
1353 .get_seqno = gen6_ring_get_seqno,
1354 .irq_get = gen6_bsd_ring_get_irq,
1355 .irq_put = gen6_bsd_ring_put_irq,
1356 .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
1357 .sync_to = gen6_bsd_ring_sync_to,
1358 .semaphore_register = {MI_SEMAPHORE_SYNC_VR,
1359 MI_SEMAPHORE_SYNC_INVALID,
1360 MI_SEMAPHORE_SYNC_VB},
1361 .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC},
1362 };
1363
1364 /* Blitter support (SandyBridge+) */
1365
1366 static bool
1367 blt_ring_get_irq(struct intel_ring_buffer *ring)
1368 {
1369 return gen6_ring_get_irq(ring,
1370 GT_BLT_USER_INTERRUPT,
1371 GEN6_BLITTER_USER_INTERRUPT);
1372 }
1373
1374 static void
1375 blt_ring_put_irq(struct intel_ring_buffer *ring)
1376 {
1377 gen6_ring_put_irq(ring,
1378 GT_BLT_USER_INTERRUPT,
1379 GEN6_BLITTER_USER_INTERRUPT);
1380 }
1381
1382 static int blt_ring_flush(struct intel_ring_buffer *ring,
1383 u32 invalidate, u32 flush)
1384 {
1385 uint32_t cmd;
1386 int ret;
1387
1388 ret = intel_ring_begin(ring, 4);
1389 if (ret)
1390 return ret;
1391
1392 cmd = MI_FLUSH_DW;
1393 if (invalidate & I915_GEM_DOMAIN_RENDER)
1394 cmd |= MI_INVALIDATE_TLB;
1395 intel_ring_emit(ring, cmd);
1396 intel_ring_emit(ring, 0);
1397 intel_ring_emit(ring, 0);
1398 intel_ring_emit(ring, MI_NOOP);
1399 intel_ring_advance(ring);
1400 return 0;
1401 }
1402
1403 static const struct intel_ring_buffer gen6_blt_ring = {
1404 .name = "blt ring",
1405 .id = BCS,
1406 .mmio_base = BLT_RING_BASE,
1407 .size = 32 * PAGE_SIZE,
1408 .init = init_ring_common,
1409 .write_tail = ring_write_tail,
1410 .flush = blt_ring_flush,
1411 .add_request = gen6_add_request,
1412 .get_seqno = gen6_ring_get_seqno,
1413 .irq_get = blt_ring_get_irq,
1414 .irq_put = blt_ring_put_irq,
1415 .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
1416 .sync_to = gen6_blt_ring_sync_to,
1417 .semaphore_register = {MI_SEMAPHORE_SYNC_BR,
1418 MI_SEMAPHORE_SYNC_BV,
1419 MI_SEMAPHORE_SYNC_INVALID},
1420 .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC},
1421 };
1422
1423 int intel_init_render_ring_buffer(struct drm_device *dev)
1424 {
1425 drm_i915_private_t *dev_priv = dev->dev_private;
1426 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1427
1428 *ring = render_ring;
1429 if (INTEL_INFO(dev)->gen >= 6) {
1430 ring->add_request = gen6_add_request;
1431 ring->flush = gen6_render_ring_flush;
1432 ring->irq_get = gen6_render_ring_get_irq;
1433 ring->irq_put = gen6_render_ring_put_irq;
1434 ring->get_seqno = gen6_ring_get_seqno;
1435 } else if (IS_GEN5(dev)) {
1436 ring->add_request = pc_render_add_request;
1437 ring->get_seqno = pc_render_get_seqno;
1438 }
1439
1440 if (!I915_NEED_GFX_HWS(dev)) {
1441 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1442 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1443 }
1444
1445 return intel_init_ring_buffer(dev, ring);
1446 }
1447
1448 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1449 {
1450 drm_i915_private_t *dev_priv = dev->dev_private;
1451 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1452
1453 *ring = render_ring;
1454 if (INTEL_INFO(dev)->gen >= 6) {
1455 ring->add_request = gen6_add_request;
1456 ring->irq_get = gen6_render_ring_get_irq;
1457 ring->irq_put = gen6_render_ring_put_irq;
1458 } else if (IS_GEN5(dev)) {
1459 ring->add_request = pc_render_add_request;
1460 ring->get_seqno = pc_render_get_seqno;
1461 }
1462
1463 if (!I915_NEED_GFX_HWS(dev))
1464 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1465
1466 ring->dev = dev;
1467 INIT_LIST_HEAD(&ring->active_list);
1468 INIT_LIST_HEAD(&ring->request_list);
1469 INIT_LIST_HEAD(&ring->gpu_write_list);
1470
1471 ring->size = size;
1472 ring->effective_size = ring->size;
1473 if (IS_I830(ring->dev))
1474 ring->effective_size -= 128;
1475
1476 ring->map.offset = start;
1477 ring->map.size = size;
1478 ring->map.type = 0;
1479 ring->map.flags = 0;
1480 ring->map.mtrr = 0;
1481
1482 drm_core_ioremap_wc(&ring->map, dev);
1483 if (ring->map.handle == NULL) {
1484 DRM_ERROR("can not ioremap virtual address for"
1485 " ring buffer\n");
1486 return -ENOMEM;
1487 }
1488
1489 ring->virtual_start = (void __force __iomem *)ring->map.handle;
1490 return 0;
1491 }
1492
1493 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1494 {
1495 drm_i915_private_t *dev_priv = dev->dev_private;
1496 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1497
1498 if (IS_GEN6(dev) || IS_GEN7(dev))
1499 *ring = gen6_bsd_ring;
1500 else
1501 *ring = bsd_ring;
1502
1503 return intel_init_ring_buffer(dev, ring);
1504 }
1505
1506 int intel_init_blt_ring_buffer(struct drm_device *dev)
1507 {
1508 drm_i915_private_t *dev_priv = dev->dev_private;
1509 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1510
1511 *ring = gen6_blt_ring;
1512
1513 return intel_init_ring_buffer(dev, ring);
1514 }