]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 static int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 ring->space = __intel_ring_space(ring->head, ring->emit, ring->size);
53 }
54
55 static int
56 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
57 {
58 u32 cmd, *cs;
59
60 cmd = MI_FLUSH;
61
62 if (mode & EMIT_INVALIDATE)
63 cmd |= MI_READ_FLUSH;
64
65 cs = intel_ring_begin(req, 2);
66 if (IS_ERR(cs))
67 return PTR_ERR(cs);
68
69 *cs++ = cmd;
70 *cs++ = MI_NOOP;
71 intel_ring_advance(req, cs);
72
73 return 0;
74 }
75
76 static int
77 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
78 {
79 u32 cmd, *cs;
80
81 /*
82 * read/write caches:
83 *
84 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
85 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
86 * also flushed at 2d versus 3d pipeline switches.
87 *
88 * read-only caches:
89 *
90 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
91 * MI_READ_FLUSH is set, and is always flushed on 965.
92 *
93 * I915_GEM_DOMAIN_COMMAND may not exist?
94 *
95 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
96 * invalidated when MI_EXE_FLUSH is set.
97 *
98 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
99 * invalidated with every MI_FLUSH.
100 *
101 * TLBs:
102 *
103 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
104 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
105 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
106 * are flushed at any MI_FLUSH.
107 */
108
109 cmd = MI_FLUSH;
110 if (mode & EMIT_INVALIDATE) {
111 cmd |= MI_EXE_FLUSH;
112 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
113 cmd |= MI_INVALIDATE_ISP;
114 }
115
116 cs = intel_ring_begin(req, 2);
117 if (IS_ERR(cs))
118 return PTR_ERR(cs);
119
120 *cs++ = cmd;
121 *cs++ = MI_NOOP;
122 intel_ring_advance(req, cs);
123
124 return 0;
125 }
126
127 /**
128 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
129 * implementing two workarounds on gen6. From section 1.4.7.1
130 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
131 *
132 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
133 * produced by non-pipelined state commands), software needs to first
134 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
135 * 0.
136 *
137 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
138 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
139 *
140 * And the workaround for these two requires this workaround first:
141 *
142 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
143 * BEFORE the pipe-control with a post-sync op and no write-cache
144 * flushes.
145 *
146 * And this last workaround is tricky because of the requirements on
147 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
148 * volume 2 part 1:
149 *
150 * "1 of the following must also be set:
151 * - Render Target Cache Flush Enable ([12] of DW1)
152 * - Depth Cache Flush Enable ([0] of DW1)
153 * - Stall at Pixel Scoreboard ([1] of DW1)
154 * - Depth Stall ([13] of DW1)
155 * - Post-Sync Operation ([13] of DW1)
156 * - Notify Enable ([8] of DW1)"
157 *
158 * The cache flushes require the workaround flush that triggered this
159 * one, so we can't use it. Depth stall would trigger the same.
160 * Post-sync nonzero is what triggered this second workaround, so we
161 * can't use that one either. Notify enable is IRQs, which aren't
162 * really our business. That leaves only stall at scoreboard.
163 */
164 static int
165 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
166 {
167 u32 scratch_addr =
168 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
169 u32 *cs;
170
171 cs = intel_ring_begin(req, 6);
172 if (IS_ERR(cs))
173 return PTR_ERR(cs);
174
175 *cs++ = GFX_OP_PIPE_CONTROL(5);
176 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
177 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
178 *cs++ = 0; /* low dword */
179 *cs++ = 0; /* high dword */
180 *cs++ = MI_NOOP;
181 intel_ring_advance(req, cs);
182
183 cs = intel_ring_begin(req, 6);
184 if (IS_ERR(cs))
185 return PTR_ERR(cs);
186
187 *cs++ = GFX_OP_PIPE_CONTROL(5);
188 *cs++ = PIPE_CONTROL_QW_WRITE;
189 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
190 *cs++ = 0;
191 *cs++ = 0;
192 *cs++ = MI_NOOP;
193 intel_ring_advance(req, cs);
194
195 return 0;
196 }
197
198 static int
199 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
200 {
201 u32 scratch_addr =
202 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
203 u32 *cs, flags = 0;
204 int ret;
205
206 /* Force SNB workarounds for PIPE_CONTROL flushes */
207 ret = intel_emit_post_sync_nonzero_flush(req);
208 if (ret)
209 return ret;
210
211 /* Just flush everything. Experiments have shown that reducing the
212 * number of bits based on the write domains has little performance
213 * impact.
214 */
215 if (mode & EMIT_FLUSH) {
216 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
217 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
218 /*
219 * Ensure that any following seqno writes only happen
220 * when the render cache is indeed flushed.
221 */
222 flags |= PIPE_CONTROL_CS_STALL;
223 }
224 if (mode & EMIT_INVALIDATE) {
225 flags |= PIPE_CONTROL_TLB_INVALIDATE;
226 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
227 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
228 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
229 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
230 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
231 /*
232 * TLB invalidate requires a post-sync write.
233 */
234 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
235 }
236
237 cs = intel_ring_begin(req, 4);
238 if (IS_ERR(cs))
239 return PTR_ERR(cs);
240
241 *cs++ = GFX_OP_PIPE_CONTROL(4);
242 *cs++ = flags;
243 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
244 *cs++ = 0;
245 intel_ring_advance(req, cs);
246
247 return 0;
248 }
249
250 static int
251 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
252 {
253 u32 *cs;
254
255 cs = intel_ring_begin(req, 4);
256 if (IS_ERR(cs))
257 return PTR_ERR(cs);
258
259 *cs++ = GFX_OP_PIPE_CONTROL(4);
260 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
261 *cs++ = 0;
262 *cs++ = 0;
263 intel_ring_advance(req, cs);
264
265 return 0;
266 }
267
268 static int
269 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
270 {
271 u32 scratch_addr =
272 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
273 u32 *cs, flags = 0;
274
275 /*
276 * Ensure that any following seqno writes only happen when the render
277 * cache is indeed flushed.
278 *
279 * Workaround: 4th PIPE_CONTROL command (except the ones with only
280 * read-cache invalidate bits set) must have the CS_STALL bit set. We
281 * don't try to be clever and just set it unconditionally.
282 */
283 flags |= PIPE_CONTROL_CS_STALL;
284
285 /* Just flush everything. Experiments have shown that reducing the
286 * number of bits based on the write domains has little performance
287 * impact.
288 */
289 if (mode & EMIT_FLUSH) {
290 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
291 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
292 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
293 flags |= PIPE_CONTROL_FLUSH_ENABLE;
294 }
295 if (mode & EMIT_INVALIDATE) {
296 flags |= PIPE_CONTROL_TLB_INVALIDATE;
297 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
298 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
299 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
300 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
301 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
302 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
303 /*
304 * TLB invalidate requires a post-sync write.
305 */
306 flags |= PIPE_CONTROL_QW_WRITE;
307 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
308
309 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
310
311 /* Workaround: we must issue a pipe_control with CS-stall bit
312 * set before a pipe_control command that has the state cache
313 * invalidate bit set. */
314 gen7_render_ring_cs_stall_wa(req);
315 }
316
317 cs = intel_ring_begin(req, 4);
318 if (IS_ERR(cs))
319 return PTR_ERR(cs);
320
321 *cs++ = GFX_OP_PIPE_CONTROL(4);
322 *cs++ = flags;
323 *cs++ = scratch_addr;
324 *cs++ = 0;
325 intel_ring_advance(req, cs);
326
327 return 0;
328 }
329
330 static int
331 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
332 {
333 u32 flags;
334 u32 *cs;
335
336 cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
337 if (IS_ERR(cs))
338 return PTR_ERR(cs);
339
340 flags = PIPE_CONTROL_CS_STALL;
341
342 if (mode & EMIT_FLUSH) {
343 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
346 flags |= PIPE_CONTROL_FLUSH_ENABLE;
347 }
348 if (mode & EMIT_INVALIDATE) {
349 flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_QW_WRITE;
356 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
357
358 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
359 cs = gen8_emit_pipe_control(cs,
360 PIPE_CONTROL_CS_STALL |
361 PIPE_CONTROL_STALL_AT_SCOREBOARD,
362 0);
363 }
364
365 cs = gen8_emit_pipe_control(cs, flags,
366 i915_ggtt_offset(req->engine->scratch) +
367 2 * CACHELINE_BYTES);
368
369 intel_ring_advance(req, cs);
370
371 return 0;
372 }
373
374 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
375 {
376 struct drm_i915_private *dev_priv = engine->i915;
377 u32 addr;
378
379 addr = dev_priv->status_page_dmah->busaddr;
380 if (INTEL_GEN(dev_priv) >= 4)
381 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
382 I915_WRITE(HWS_PGA, addr);
383 }
384
385 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
386 {
387 struct drm_i915_private *dev_priv = engine->i915;
388 i915_reg_t mmio;
389
390 /* The ring status page addresses are no longer next to the rest of
391 * the ring registers as of gen7.
392 */
393 if (IS_GEN7(dev_priv)) {
394 switch (engine->id) {
395 case RCS:
396 mmio = RENDER_HWS_PGA_GEN7;
397 break;
398 case BCS:
399 mmio = BLT_HWS_PGA_GEN7;
400 break;
401 /*
402 * VCS2 actually doesn't exist on Gen7. Only shut up
403 * gcc switch check warning
404 */
405 case VCS2:
406 case VCS:
407 mmio = BSD_HWS_PGA_GEN7;
408 break;
409 case VECS:
410 mmio = VEBOX_HWS_PGA_GEN7;
411 break;
412 }
413 } else if (IS_GEN6(dev_priv)) {
414 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
415 } else {
416 /* XXX: gen8 returns to sanity */
417 mmio = RING_HWS_PGA(engine->mmio_base);
418 }
419
420 I915_WRITE(mmio, engine->status_page.ggtt_offset);
421 POSTING_READ(mmio);
422
423 /*
424 * Flush the TLB for this page
425 *
426 * FIXME: These two bits have disappeared on gen8, so a question
427 * arises: do we still need this and if so how should we go about
428 * invalidating the TLB?
429 */
430 if (IS_GEN(dev_priv, 6, 7)) {
431 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
432
433 /* ring should be idle before issuing a sync flush*/
434 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
435
436 I915_WRITE(reg,
437 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
438 INSTPM_SYNC_FLUSH));
439 if (intel_wait_for_register(dev_priv,
440 reg, INSTPM_SYNC_FLUSH, 0,
441 1000))
442 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
443 engine->name);
444 }
445 }
446
447 static bool stop_ring(struct intel_engine_cs *engine)
448 {
449 struct drm_i915_private *dev_priv = engine->i915;
450
451 if (INTEL_GEN(dev_priv) > 2) {
452 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
453 if (intel_wait_for_register(dev_priv,
454 RING_MI_MODE(engine->mmio_base),
455 MODE_IDLE,
456 MODE_IDLE,
457 1000)) {
458 DRM_ERROR("%s : timed out trying to stop ring\n",
459 engine->name);
460 /* Sometimes we observe that the idle flag is not
461 * set even though the ring is empty. So double
462 * check before giving up.
463 */
464 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
465 return false;
466 }
467 }
468
469 I915_WRITE_CTL(engine, 0);
470 I915_WRITE_HEAD(engine, 0);
471 I915_WRITE_TAIL(engine, 0);
472
473 if (INTEL_GEN(dev_priv) > 2) {
474 (void)I915_READ_CTL(engine);
475 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
476 }
477
478 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
479 }
480
481 static int init_ring_common(struct intel_engine_cs *engine)
482 {
483 struct drm_i915_private *dev_priv = engine->i915;
484 struct intel_ring *ring = engine->buffer;
485 int ret = 0;
486
487 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
488
489 if (!stop_ring(engine)) {
490 /* G45 ring initialization often fails to reset head to zero */
491 DRM_DEBUG_KMS("%s head not reset to zero "
492 "ctl %08x head %08x tail %08x start %08x\n",
493 engine->name,
494 I915_READ_CTL(engine),
495 I915_READ_HEAD(engine),
496 I915_READ_TAIL(engine),
497 I915_READ_START(engine));
498
499 if (!stop_ring(engine)) {
500 DRM_ERROR("failed to set %s head to zero "
501 "ctl %08x head %08x tail %08x start %08x\n",
502 engine->name,
503 I915_READ_CTL(engine),
504 I915_READ_HEAD(engine),
505 I915_READ_TAIL(engine),
506 I915_READ_START(engine));
507 ret = -EIO;
508 goto out;
509 }
510 }
511
512 if (HWS_NEEDS_PHYSICAL(dev_priv))
513 ring_setup_phys_status_page(engine);
514 else
515 intel_ring_setup_status_page(engine);
516
517 intel_engine_reset_breadcrumbs(engine);
518
519 /* Enforce ordering by reading HEAD register back */
520 I915_READ_HEAD(engine);
521
522 /* Initialize the ring. This must happen _after_ we've cleared the ring
523 * registers with the above sequence (the readback of the HEAD registers
524 * also enforces ordering), otherwise the hw might lose the new ring
525 * register values. */
526 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
527
528 /* WaClearRingBufHeadRegAtInit:ctg,elk */
529 if (I915_READ_HEAD(engine))
530 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
531 engine->name, I915_READ_HEAD(engine));
532
533 intel_ring_update_space(ring);
534 I915_WRITE_HEAD(engine, ring->head);
535 I915_WRITE_TAIL(engine, ring->tail);
536 (void)I915_READ_TAIL(engine);
537
538 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
539
540 /* If the head is still not zero, the ring is dead */
541 if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
542 RING_VALID, RING_VALID,
543 50)) {
544 DRM_ERROR("%s initialization failed "
545 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
546 engine->name,
547 I915_READ_CTL(engine),
548 I915_READ_CTL(engine) & RING_VALID,
549 I915_READ_HEAD(engine), ring->head,
550 I915_READ_TAIL(engine), ring->tail,
551 I915_READ_START(engine),
552 i915_ggtt_offset(ring->vma));
553 ret = -EIO;
554 goto out;
555 }
556
557 intel_engine_init_hangcheck(engine);
558
559 out:
560 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
561
562 return ret;
563 }
564
565 static void reset_ring_common(struct intel_engine_cs *engine,
566 struct drm_i915_gem_request *request)
567 {
568 /* Try to restore the logical GPU state to match the continuation
569 * of the request queue. If we skip the context/PD restore, then
570 * the next request may try to execute assuming that its context
571 * is valid and loaded on the GPU and so may try to access invalid
572 * memory, prompting repeated GPU hangs.
573 *
574 * If the request was guilty, we still restore the logical state
575 * in case the next request requires it (e.g. the aliasing ppgtt),
576 * but skip over the hung batch.
577 *
578 * If the request was innocent, we try to replay the request with
579 * the restored context.
580 */
581 if (request) {
582 struct drm_i915_private *dev_priv = request->i915;
583 struct intel_context *ce = &request->ctx->engine[engine->id];
584 struct i915_hw_ppgtt *ppgtt;
585
586 /* FIXME consider gen8 reset */
587
588 if (ce->state) {
589 I915_WRITE(CCID,
590 i915_ggtt_offset(ce->state) |
591 BIT(8) /* must be set! */ |
592 CCID_EXTENDED_STATE_SAVE |
593 CCID_EXTENDED_STATE_RESTORE |
594 CCID_EN);
595 }
596
597 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
598 if (ppgtt) {
599 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
600
601 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
602 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
603
604 /* Wait for the PD reload to complete */
605 if (intel_wait_for_register(dev_priv,
606 RING_PP_DIR_BASE(engine),
607 BIT(0), 0,
608 10))
609 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
610
611 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
612 }
613
614 /* If the rq hung, jump to its breadcrumb and skip the batch */
615 if (request->fence.error == -EIO)
616 request->ring->head = request->postfix;
617 } else {
618 engine->legacy_active_context = NULL;
619 }
620 }
621
622 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
623 {
624 int ret;
625
626 ret = intel_ring_workarounds_emit(req);
627 if (ret != 0)
628 return ret;
629
630 ret = i915_gem_render_state_emit(req);
631 if (ret)
632 return ret;
633
634 return 0;
635 }
636
637 static int init_render_ring(struct intel_engine_cs *engine)
638 {
639 struct drm_i915_private *dev_priv = engine->i915;
640 int ret = init_ring_common(engine);
641 if (ret)
642 return ret;
643
644 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
645 if (IS_GEN(dev_priv, 4, 6))
646 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
647
648 /* We need to disable the AsyncFlip performance optimisations in order
649 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
650 * programmed to '1' on all products.
651 *
652 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
653 */
654 if (IS_GEN(dev_priv, 6, 7))
655 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
656
657 /* Required for the hardware to program scanline values for waiting */
658 /* WaEnableFlushTlbInvalidationMode:snb */
659 if (IS_GEN6(dev_priv))
660 I915_WRITE(GFX_MODE,
661 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
662
663 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
664 if (IS_GEN7(dev_priv))
665 I915_WRITE(GFX_MODE_GEN7,
666 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
667 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
668
669 if (IS_GEN6(dev_priv)) {
670 /* From the Sandybridge PRM, volume 1 part 3, page 24:
671 * "If this bit is set, STCunit will have LRA as replacement
672 * policy. [...] This bit must be reset. LRA replacement
673 * policy is not supported."
674 */
675 I915_WRITE(CACHE_MODE_0,
676 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
677 }
678
679 if (IS_GEN(dev_priv, 6, 7))
680 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
681
682 if (INTEL_INFO(dev_priv)->gen >= 6)
683 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
684
685 return init_workarounds_ring(engine);
686 }
687
688 static void render_ring_cleanup(struct intel_engine_cs *engine)
689 {
690 struct drm_i915_private *dev_priv = engine->i915;
691
692 i915_vma_unpin_and_release(&dev_priv->semaphore);
693 }
694
695 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
696 {
697 struct drm_i915_private *dev_priv = req->i915;
698 struct intel_engine_cs *waiter;
699 enum intel_engine_id id;
700
701 for_each_engine(waiter, dev_priv, id) {
702 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
703 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
704 continue;
705
706 *cs++ = GFX_OP_PIPE_CONTROL(6);
707 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
708 PIPE_CONTROL_CS_STALL;
709 *cs++ = lower_32_bits(gtt_offset);
710 *cs++ = upper_32_bits(gtt_offset);
711 *cs++ = req->global_seqno;
712 *cs++ = 0;
713 *cs++ = MI_SEMAPHORE_SIGNAL |
714 MI_SEMAPHORE_TARGET(waiter->hw_id);
715 *cs++ = 0;
716 }
717
718 return cs;
719 }
720
721 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
722 {
723 struct drm_i915_private *dev_priv = req->i915;
724 struct intel_engine_cs *waiter;
725 enum intel_engine_id id;
726
727 for_each_engine(waiter, dev_priv, id) {
728 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
729 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
730 continue;
731
732 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
733 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
734 *cs++ = upper_32_bits(gtt_offset);
735 *cs++ = req->global_seqno;
736 *cs++ = MI_SEMAPHORE_SIGNAL |
737 MI_SEMAPHORE_TARGET(waiter->hw_id);
738 *cs++ = 0;
739 }
740
741 return cs;
742 }
743
744 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
745 {
746 struct drm_i915_private *dev_priv = req->i915;
747 struct intel_engine_cs *engine;
748 enum intel_engine_id id;
749 int num_rings = 0;
750
751 for_each_engine(engine, dev_priv, id) {
752 i915_reg_t mbox_reg;
753
754 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
755 continue;
756
757 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
758 if (i915_mmio_reg_valid(mbox_reg)) {
759 *cs++ = MI_LOAD_REGISTER_IMM(1);
760 *cs++ = i915_mmio_reg_offset(mbox_reg);
761 *cs++ = req->global_seqno;
762 num_rings++;
763 }
764 }
765 if (num_rings & 1)
766 *cs++ = MI_NOOP;
767
768 return cs;
769 }
770
771 static void i9xx_submit_request(struct drm_i915_gem_request *request)
772 {
773 struct drm_i915_private *dev_priv = request->i915;
774
775 i915_gem_request_submit(request);
776
777 I915_WRITE_TAIL(request->engine,
778 intel_ring_set_tail(request->ring, request->tail));
779 }
780
781 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
782 {
783 *cs++ = MI_STORE_DWORD_INDEX;
784 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
785 *cs++ = req->global_seqno;
786 *cs++ = MI_USER_INTERRUPT;
787
788 req->tail = intel_ring_offset(req, cs);
789 assert_ring_tail_valid(req->ring, req->tail);
790 }
791
792 static const int i9xx_emit_breadcrumb_sz = 4;
793
794 /**
795 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
796 *
797 * @request - request to write to the ring
798 *
799 * Update the mailbox registers in the *other* rings with the current seqno.
800 * This acts like a signal in the canonical semaphore.
801 */
802 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
803 {
804 return i9xx_emit_breadcrumb(req,
805 req->engine->semaphore.signal(req, cs));
806 }
807
808 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
809 u32 *cs)
810 {
811 struct intel_engine_cs *engine = req->engine;
812
813 if (engine->semaphore.signal)
814 cs = engine->semaphore.signal(req, cs);
815
816 *cs++ = GFX_OP_PIPE_CONTROL(6);
817 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
818 PIPE_CONTROL_QW_WRITE;
819 *cs++ = intel_hws_seqno_address(engine);
820 *cs++ = 0;
821 *cs++ = req->global_seqno;
822 /* We're thrashing one dword of HWS. */
823 *cs++ = 0;
824 *cs++ = MI_USER_INTERRUPT;
825 *cs++ = MI_NOOP;
826
827 req->tail = intel_ring_offset(req, cs);
828 assert_ring_tail_valid(req->ring, req->tail);
829 }
830
831 static const int gen8_render_emit_breadcrumb_sz = 8;
832
833 /**
834 * intel_ring_sync - sync the waiter to the signaller on seqno
835 *
836 * @waiter - ring that is waiting
837 * @signaller - ring which has, or will signal
838 * @seqno - seqno which the waiter will block on
839 */
840
841 static int
842 gen8_ring_sync_to(struct drm_i915_gem_request *req,
843 struct drm_i915_gem_request *signal)
844 {
845 struct drm_i915_private *dev_priv = req->i915;
846 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
847 struct i915_hw_ppgtt *ppgtt;
848 u32 *cs;
849
850 cs = intel_ring_begin(req, 4);
851 if (IS_ERR(cs))
852 return PTR_ERR(cs);
853
854 *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
855 MI_SEMAPHORE_SAD_GTE_SDD;
856 *cs++ = signal->global_seqno;
857 *cs++ = lower_32_bits(offset);
858 *cs++ = upper_32_bits(offset);
859 intel_ring_advance(req, cs);
860
861 /* When the !RCS engines idle waiting upon a semaphore, they lose their
862 * pagetables and we must reload them before executing the batch.
863 * We do this on the i915_switch_context() following the wait and
864 * before the dispatch.
865 */
866 ppgtt = req->ctx->ppgtt;
867 if (ppgtt && req->engine->id != RCS)
868 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
869 return 0;
870 }
871
872 static int
873 gen6_ring_sync_to(struct drm_i915_gem_request *req,
874 struct drm_i915_gem_request *signal)
875 {
876 u32 dw1 = MI_SEMAPHORE_MBOX |
877 MI_SEMAPHORE_COMPARE |
878 MI_SEMAPHORE_REGISTER;
879 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
880 u32 *cs;
881
882 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
883
884 cs = intel_ring_begin(req, 4);
885 if (IS_ERR(cs))
886 return PTR_ERR(cs);
887
888 *cs++ = dw1 | wait_mbox;
889 /* Throughout all of the GEM code, seqno passed implies our current
890 * seqno is >= the last seqno executed. However for hardware the
891 * comparison is strictly greater than.
892 */
893 *cs++ = signal->global_seqno - 1;
894 *cs++ = 0;
895 *cs++ = MI_NOOP;
896 intel_ring_advance(req, cs);
897
898 return 0;
899 }
900
901 static void
902 gen5_seqno_barrier(struct intel_engine_cs *engine)
903 {
904 /* MI_STORE are internally buffered by the GPU and not flushed
905 * either by MI_FLUSH or SyncFlush or any other combination of
906 * MI commands.
907 *
908 * "Only the submission of the store operation is guaranteed.
909 * The write result will be complete (coherent) some time later
910 * (this is practically a finite period but there is no guaranteed
911 * latency)."
912 *
913 * Empirically, we observe that we need a delay of at least 75us to
914 * be sure that the seqno write is visible by the CPU.
915 */
916 usleep_range(125, 250);
917 }
918
919 static void
920 gen6_seqno_barrier(struct intel_engine_cs *engine)
921 {
922 struct drm_i915_private *dev_priv = engine->i915;
923
924 /* Workaround to force correct ordering between irq and seqno writes on
925 * ivb (and maybe also on snb) by reading from a CS register (like
926 * ACTHD) before reading the status page.
927 *
928 * Note that this effectively stalls the read by the time it takes to
929 * do a memory transaction, which more or less ensures that the write
930 * from the GPU has sufficient time to invalidate the CPU cacheline.
931 * Alternatively we could delay the interrupt from the CS ring to give
932 * the write time to land, but that would incur a delay after every
933 * batch i.e. much more frequent than a delay when waiting for the
934 * interrupt (with the same net latency).
935 *
936 * Also note that to prevent whole machine hangs on gen7, we have to
937 * take the spinlock to guard against concurrent cacheline access.
938 */
939 spin_lock_irq(&dev_priv->uncore.lock);
940 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
941 spin_unlock_irq(&dev_priv->uncore.lock);
942 }
943
944 static void
945 gen5_irq_enable(struct intel_engine_cs *engine)
946 {
947 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
948 }
949
950 static void
951 gen5_irq_disable(struct intel_engine_cs *engine)
952 {
953 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
954 }
955
956 static void
957 i9xx_irq_enable(struct intel_engine_cs *engine)
958 {
959 struct drm_i915_private *dev_priv = engine->i915;
960
961 dev_priv->irq_mask &= ~engine->irq_enable_mask;
962 I915_WRITE(IMR, dev_priv->irq_mask);
963 POSTING_READ_FW(RING_IMR(engine->mmio_base));
964 }
965
966 static void
967 i9xx_irq_disable(struct intel_engine_cs *engine)
968 {
969 struct drm_i915_private *dev_priv = engine->i915;
970
971 dev_priv->irq_mask |= engine->irq_enable_mask;
972 I915_WRITE(IMR, dev_priv->irq_mask);
973 }
974
975 static void
976 i8xx_irq_enable(struct intel_engine_cs *engine)
977 {
978 struct drm_i915_private *dev_priv = engine->i915;
979
980 dev_priv->irq_mask &= ~engine->irq_enable_mask;
981 I915_WRITE16(IMR, dev_priv->irq_mask);
982 POSTING_READ16(RING_IMR(engine->mmio_base));
983 }
984
985 static void
986 i8xx_irq_disable(struct intel_engine_cs *engine)
987 {
988 struct drm_i915_private *dev_priv = engine->i915;
989
990 dev_priv->irq_mask |= engine->irq_enable_mask;
991 I915_WRITE16(IMR, dev_priv->irq_mask);
992 }
993
994 static int
995 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
996 {
997 u32 *cs;
998
999 cs = intel_ring_begin(req, 2);
1000 if (IS_ERR(cs))
1001 return PTR_ERR(cs);
1002
1003 *cs++ = MI_FLUSH;
1004 *cs++ = MI_NOOP;
1005 intel_ring_advance(req, cs);
1006 return 0;
1007 }
1008
1009 static void
1010 gen6_irq_enable(struct intel_engine_cs *engine)
1011 {
1012 struct drm_i915_private *dev_priv = engine->i915;
1013
1014 I915_WRITE_IMR(engine,
1015 ~(engine->irq_enable_mask |
1016 engine->irq_keep_mask));
1017 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1018 }
1019
1020 static void
1021 gen6_irq_disable(struct intel_engine_cs *engine)
1022 {
1023 struct drm_i915_private *dev_priv = engine->i915;
1024
1025 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1026 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1027 }
1028
1029 static void
1030 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1031 {
1032 struct drm_i915_private *dev_priv = engine->i915;
1033
1034 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1035 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1036 }
1037
1038 static void
1039 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1040 {
1041 struct drm_i915_private *dev_priv = engine->i915;
1042
1043 I915_WRITE_IMR(engine, ~0);
1044 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1045 }
1046
1047 static void
1048 gen8_irq_enable(struct intel_engine_cs *engine)
1049 {
1050 struct drm_i915_private *dev_priv = engine->i915;
1051
1052 I915_WRITE_IMR(engine,
1053 ~(engine->irq_enable_mask |
1054 engine->irq_keep_mask));
1055 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1056 }
1057
1058 static void
1059 gen8_irq_disable(struct intel_engine_cs *engine)
1060 {
1061 struct drm_i915_private *dev_priv = engine->i915;
1062
1063 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1064 }
1065
1066 static int
1067 i965_emit_bb_start(struct drm_i915_gem_request *req,
1068 u64 offset, u32 length,
1069 unsigned int dispatch_flags)
1070 {
1071 u32 *cs;
1072
1073 cs = intel_ring_begin(req, 2);
1074 if (IS_ERR(cs))
1075 return PTR_ERR(cs);
1076
1077 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1078 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1079 *cs++ = offset;
1080 intel_ring_advance(req, cs);
1081
1082 return 0;
1083 }
1084
1085 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1086 #define I830_BATCH_LIMIT (256*1024)
1087 #define I830_TLB_ENTRIES (2)
1088 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1089 static int
1090 i830_emit_bb_start(struct drm_i915_gem_request *req,
1091 u64 offset, u32 len,
1092 unsigned int dispatch_flags)
1093 {
1094 u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1095
1096 cs = intel_ring_begin(req, 6);
1097 if (IS_ERR(cs))
1098 return PTR_ERR(cs);
1099
1100 /* Evict the invalid PTE TLBs */
1101 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1102 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1103 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1104 *cs++ = cs_offset;
1105 *cs++ = 0xdeadbeef;
1106 *cs++ = MI_NOOP;
1107 intel_ring_advance(req, cs);
1108
1109 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1110 if (len > I830_BATCH_LIMIT)
1111 return -ENOSPC;
1112
1113 cs = intel_ring_begin(req, 6 + 2);
1114 if (IS_ERR(cs))
1115 return PTR_ERR(cs);
1116
1117 /* Blit the batch (which has now all relocs applied) to the
1118 * stable batch scratch bo area (so that the CS never
1119 * stumbles over its tlb invalidation bug) ...
1120 */
1121 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1122 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1123 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1124 *cs++ = cs_offset;
1125 *cs++ = 4096;
1126 *cs++ = offset;
1127
1128 *cs++ = MI_FLUSH;
1129 *cs++ = MI_NOOP;
1130 intel_ring_advance(req, cs);
1131
1132 /* ... and execute it. */
1133 offset = cs_offset;
1134 }
1135
1136 cs = intel_ring_begin(req, 2);
1137 if (IS_ERR(cs))
1138 return PTR_ERR(cs);
1139
1140 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1141 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1142 MI_BATCH_NON_SECURE);
1143 intel_ring_advance(req, cs);
1144
1145 return 0;
1146 }
1147
1148 static int
1149 i915_emit_bb_start(struct drm_i915_gem_request *req,
1150 u64 offset, u32 len,
1151 unsigned int dispatch_flags)
1152 {
1153 u32 *cs;
1154
1155 cs = intel_ring_begin(req, 2);
1156 if (IS_ERR(cs))
1157 return PTR_ERR(cs);
1158
1159 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1160 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1161 MI_BATCH_NON_SECURE);
1162 intel_ring_advance(req, cs);
1163
1164 return 0;
1165 }
1166
1167 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1168 {
1169 struct drm_i915_private *dev_priv = engine->i915;
1170
1171 if (!dev_priv->status_page_dmah)
1172 return;
1173
1174 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1175 engine->status_page.page_addr = NULL;
1176 }
1177
1178 static void cleanup_status_page(struct intel_engine_cs *engine)
1179 {
1180 struct i915_vma *vma;
1181 struct drm_i915_gem_object *obj;
1182
1183 vma = fetch_and_zero(&engine->status_page.vma);
1184 if (!vma)
1185 return;
1186
1187 obj = vma->obj;
1188
1189 i915_vma_unpin(vma);
1190 i915_vma_close(vma);
1191
1192 i915_gem_object_unpin_map(obj);
1193 __i915_gem_object_release_unless_active(obj);
1194 }
1195
1196 static int init_status_page(struct intel_engine_cs *engine)
1197 {
1198 struct drm_i915_gem_object *obj;
1199 struct i915_vma *vma;
1200 unsigned int flags;
1201 void *vaddr;
1202 int ret;
1203
1204 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1205 if (IS_ERR(obj)) {
1206 DRM_ERROR("Failed to allocate status page\n");
1207 return PTR_ERR(obj);
1208 }
1209
1210 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1211 if (ret)
1212 goto err;
1213
1214 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1215 if (IS_ERR(vma)) {
1216 ret = PTR_ERR(vma);
1217 goto err;
1218 }
1219
1220 flags = PIN_GLOBAL;
1221 if (!HAS_LLC(engine->i915))
1222 /* On g33, we cannot place HWS above 256MiB, so
1223 * restrict its pinning to the low mappable arena.
1224 * Though this restriction is not documented for
1225 * gen4, gen5, or byt, they also behave similarly
1226 * and hang if the HWS is placed at the top of the
1227 * GTT. To generalise, it appears that all !llc
1228 * platforms have issues with us placing the HWS
1229 * above the mappable region (even though we never
1230 * actualy map it).
1231 */
1232 flags |= PIN_MAPPABLE;
1233 ret = i915_vma_pin(vma, 0, 4096, flags);
1234 if (ret)
1235 goto err;
1236
1237 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1238 if (IS_ERR(vaddr)) {
1239 ret = PTR_ERR(vaddr);
1240 goto err_unpin;
1241 }
1242
1243 engine->status_page.vma = vma;
1244 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1245 engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1246
1247 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1248 engine->name, i915_ggtt_offset(vma));
1249 return 0;
1250
1251 err_unpin:
1252 i915_vma_unpin(vma);
1253 err:
1254 i915_gem_object_put(obj);
1255 return ret;
1256 }
1257
1258 static int init_phys_status_page(struct intel_engine_cs *engine)
1259 {
1260 struct drm_i915_private *dev_priv = engine->i915;
1261
1262 dev_priv->status_page_dmah =
1263 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1264 if (!dev_priv->status_page_dmah)
1265 return -ENOMEM;
1266
1267 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1268 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1269
1270 return 0;
1271 }
1272
1273 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1274 {
1275 unsigned int flags;
1276 enum i915_map_type map;
1277 struct i915_vma *vma = ring->vma;
1278 void *addr;
1279 int ret;
1280
1281 GEM_BUG_ON(ring->vaddr);
1282
1283 map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1284
1285 flags = PIN_GLOBAL;
1286 if (offset_bias)
1287 flags |= PIN_OFFSET_BIAS | offset_bias;
1288 if (vma->obj->stolen)
1289 flags |= PIN_MAPPABLE;
1290
1291 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1292 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1293 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1294 else
1295 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1296 if (unlikely(ret))
1297 return ret;
1298 }
1299
1300 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1301 if (unlikely(ret))
1302 return ret;
1303
1304 if (i915_vma_is_map_and_fenceable(vma))
1305 addr = (void __force *)i915_vma_pin_iomap(vma);
1306 else
1307 addr = i915_gem_object_pin_map(vma->obj, map);
1308 if (IS_ERR(addr))
1309 goto err;
1310
1311 ring->vaddr = addr;
1312 return 0;
1313
1314 err:
1315 i915_vma_unpin(vma);
1316 return PTR_ERR(addr);
1317 }
1318
1319 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1320 {
1321 GEM_BUG_ON(!list_empty(&ring->request_list));
1322 ring->tail = tail;
1323 ring->head = tail;
1324 ring->emit = tail;
1325 intel_ring_update_space(ring);
1326 }
1327
1328 void intel_ring_unpin(struct intel_ring *ring)
1329 {
1330 GEM_BUG_ON(!ring->vma);
1331 GEM_BUG_ON(!ring->vaddr);
1332
1333 /* Discard any unused bytes beyond that submitted to hw. */
1334 intel_ring_reset(ring, ring->tail);
1335
1336 if (i915_vma_is_map_and_fenceable(ring->vma))
1337 i915_vma_unpin_iomap(ring->vma);
1338 else
1339 i915_gem_object_unpin_map(ring->vma->obj);
1340 ring->vaddr = NULL;
1341
1342 i915_vma_unpin(ring->vma);
1343 }
1344
1345 static struct i915_vma *
1346 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1347 {
1348 struct drm_i915_gem_object *obj;
1349 struct i915_vma *vma;
1350
1351 obj = i915_gem_object_create_stolen(dev_priv, size);
1352 if (!obj)
1353 obj = i915_gem_object_create(dev_priv, size);
1354 if (IS_ERR(obj))
1355 return ERR_CAST(obj);
1356
1357 /* mark ring buffers as read-only from GPU side by default */
1358 obj->gt_ro = 1;
1359
1360 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1361 if (IS_ERR(vma))
1362 goto err;
1363
1364 return vma;
1365
1366 err:
1367 i915_gem_object_put(obj);
1368 return vma;
1369 }
1370
1371 struct intel_ring *
1372 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1373 {
1374 struct intel_ring *ring;
1375 struct i915_vma *vma;
1376
1377 GEM_BUG_ON(!is_power_of_2(size));
1378 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1379
1380 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1381 if (!ring)
1382 return ERR_PTR(-ENOMEM);
1383
1384 ring->engine = engine;
1385
1386 INIT_LIST_HEAD(&ring->request_list);
1387
1388 ring->size = size;
1389 /* Workaround an erratum on the i830 which causes a hang if
1390 * the TAIL pointer points to within the last 2 cachelines
1391 * of the buffer.
1392 */
1393 ring->effective_size = size;
1394 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1395 ring->effective_size -= 2 * CACHELINE_BYTES;
1396
1397 intel_ring_update_space(ring);
1398
1399 vma = intel_ring_create_vma(engine->i915, size);
1400 if (IS_ERR(vma)) {
1401 kfree(ring);
1402 return ERR_CAST(vma);
1403 }
1404 ring->vma = vma;
1405
1406 return ring;
1407 }
1408
1409 void
1410 intel_ring_free(struct intel_ring *ring)
1411 {
1412 struct drm_i915_gem_object *obj = ring->vma->obj;
1413
1414 i915_vma_close(ring->vma);
1415 __i915_gem_object_release_unless_active(obj);
1416
1417 kfree(ring);
1418 }
1419
1420 static int context_pin(struct i915_gem_context *ctx)
1421 {
1422 struct i915_vma *vma = ctx->engine[RCS].state;
1423 int ret;
1424
1425 /* Clear this page out of any CPU caches for coherent swap-in/out.
1426 * We only want to do this on the first bind so that we do not stall
1427 * on an active context (which by nature is already on the GPU).
1428 */
1429 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1430 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1431 if (ret)
1432 return ret;
1433 }
1434
1435 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1436 PIN_GLOBAL | PIN_HIGH);
1437 }
1438
1439 static int intel_ring_context_pin(struct intel_engine_cs *engine,
1440 struct i915_gem_context *ctx)
1441 {
1442 struct intel_context *ce = &ctx->engine[engine->id];
1443 int ret;
1444
1445 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1446
1447 if (ce->pin_count++)
1448 return 0;
1449 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1450
1451 if (ce->state) {
1452 ret = context_pin(ctx);
1453 if (ret)
1454 goto error;
1455
1456 ce->state->obj->mm.dirty = true;
1457 }
1458
1459 /* The kernel context is only used as a placeholder for flushing the
1460 * active context. It is never used for submitting user rendering and
1461 * as such never requires the golden render context, and so we can skip
1462 * emitting it when we switch to the kernel context. This is required
1463 * as during eviction we cannot allocate and pin the renderstate in
1464 * order to initialise the context.
1465 */
1466 if (i915_gem_context_is_kernel(ctx))
1467 ce->initialised = true;
1468
1469 i915_gem_context_get(ctx);
1470 return 0;
1471
1472 error:
1473 ce->pin_count = 0;
1474 return ret;
1475 }
1476
1477 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1478 struct i915_gem_context *ctx)
1479 {
1480 struct intel_context *ce = &ctx->engine[engine->id];
1481
1482 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1483 GEM_BUG_ON(ce->pin_count == 0);
1484
1485 if (--ce->pin_count)
1486 return;
1487
1488 if (ce->state)
1489 i915_vma_unpin(ce->state);
1490
1491 i915_gem_context_put(ctx);
1492 }
1493
1494 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1495 {
1496 struct drm_i915_private *dev_priv = engine->i915;
1497 struct intel_ring *ring;
1498 int ret;
1499
1500 WARN_ON(engine->buffer);
1501
1502 intel_engine_setup_common(engine);
1503
1504 ret = intel_engine_init_common(engine);
1505 if (ret)
1506 goto error;
1507
1508 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1509 if (IS_ERR(ring)) {
1510 ret = PTR_ERR(ring);
1511 goto error;
1512 }
1513
1514 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1515 WARN_ON(engine->id != RCS);
1516 ret = init_phys_status_page(engine);
1517 if (ret)
1518 goto error;
1519 } else {
1520 ret = init_status_page(engine);
1521 if (ret)
1522 goto error;
1523 }
1524
1525 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1526 ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
1527 if (ret) {
1528 intel_ring_free(ring);
1529 goto error;
1530 }
1531 engine->buffer = ring;
1532
1533 return 0;
1534
1535 error:
1536 intel_engine_cleanup(engine);
1537 return ret;
1538 }
1539
1540 void intel_engine_cleanup(struct intel_engine_cs *engine)
1541 {
1542 struct drm_i915_private *dev_priv;
1543
1544 dev_priv = engine->i915;
1545
1546 if (engine->buffer) {
1547 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1548 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1549
1550 intel_ring_unpin(engine->buffer);
1551 intel_ring_free(engine->buffer);
1552 engine->buffer = NULL;
1553 }
1554
1555 if (engine->cleanup)
1556 engine->cleanup(engine);
1557
1558 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1559 WARN_ON(engine->id != RCS);
1560 cleanup_phys_status_page(engine);
1561 } else {
1562 cleanup_status_page(engine);
1563 }
1564
1565 intel_engine_cleanup_common(engine);
1566
1567 engine->i915 = NULL;
1568 dev_priv->engine[engine->id] = NULL;
1569 kfree(engine);
1570 }
1571
1572 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1573 {
1574 struct intel_engine_cs *engine;
1575 enum intel_engine_id id;
1576
1577 /* Restart from the beginning of the rings for convenience */
1578 for_each_engine(engine, dev_priv, id)
1579 intel_ring_reset(engine->buffer, 0);
1580 }
1581
1582 static int ring_request_alloc(struct drm_i915_gem_request *request)
1583 {
1584 u32 *cs;
1585
1586 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1587
1588 /* Flush enough space to reduce the likelihood of waiting after
1589 * we start building the request - in which case we will just
1590 * have to repeat work.
1591 */
1592 request->reserved_space += LEGACY_REQUEST_SIZE;
1593
1594 GEM_BUG_ON(!request->engine->buffer);
1595 request->ring = request->engine->buffer;
1596
1597 cs = intel_ring_begin(request, 0);
1598 if (IS_ERR(cs))
1599 return PTR_ERR(cs);
1600
1601 request->reserved_space -= LEGACY_REQUEST_SIZE;
1602 return 0;
1603 }
1604
1605 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
1606 {
1607 struct intel_ring *ring = req->ring;
1608 struct drm_i915_gem_request *target;
1609 long timeout;
1610
1611 lockdep_assert_held(&req->i915->drm.struct_mutex);
1612
1613 intel_ring_update_space(ring);
1614 if (ring->space >= bytes)
1615 return 0;
1616
1617 /*
1618 * Space is reserved in the ringbuffer for finalising the request,
1619 * as that cannot be allowed to fail. During request finalisation,
1620 * reserved_space is set to 0 to stop the overallocation and the
1621 * assumption is that then we never need to wait (which has the
1622 * risk of failing with EINTR).
1623 *
1624 * See also i915_gem_request_alloc() and i915_add_request().
1625 */
1626 GEM_BUG_ON(!req->reserved_space);
1627
1628 list_for_each_entry(target, &ring->request_list, ring_link) {
1629 unsigned space;
1630
1631 /* Would completion of this request free enough space? */
1632 space = __intel_ring_space(target->postfix, ring->emit,
1633 ring->size);
1634 if (space >= bytes)
1635 break;
1636 }
1637
1638 if (WARN_ON(&target->ring_link == &ring->request_list))
1639 return -ENOSPC;
1640
1641 timeout = i915_wait_request(target,
1642 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1643 MAX_SCHEDULE_TIMEOUT);
1644 if (timeout < 0)
1645 return timeout;
1646
1647 i915_gem_request_retire_upto(target);
1648
1649 intel_ring_update_space(ring);
1650 GEM_BUG_ON(ring->space < bytes);
1651 return 0;
1652 }
1653
1654 u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
1655 {
1656 struct intel_ring *ring = req->ring;
1657 int remain_actual = ring->size - ring->emit;
1658 int remain_usable = ring->effective_size - ring->emit;
1659 int bytes = num_dwords * sizeof(u32);
1660 int total_bytes, wait_bytes;
1661 bool need_wrap = false;
1662 u32 *cs;
1663
1664 total_bytes = bytes + req->reserved_space;
1665
1666 if (unlikely(bytes > remain_usable)) {
1667 /*
1668 * Not enough space for the basic request. So need to flush
1669 * out the remainder and then wait for base + reserved.
1670 */
1671 wait_bytes = remain_actual + total_bytes;
1672 need_wrap = true;
1673 } else if (unlikely(total_bytes > remain_usable)) {
1674 /*
1675 * The base request will fit but the reserved space
1676 * falls off the end. So we don't need an immediate wrap
1677 * and only need to effectively wait for the reserved
1678 * size space from the start of ringbuffer.
1679 */
1680 wait_bytes = remain_actual + req->reserved_space;
1681 } else {
1682 /* No wrapping required, just waiting. */
1683 wait_bytes = total_bytes;
1684 }
1685
1686 if (wait_bytes > ring->space) {
1687 int ret = wait_for_space(req, wait_bytes);
1688 if (unlikely(ret))
1689 return ERR_PTR(ret);
1690 }
1691
1692 if (unlikely(need_wrap)) {
1693 GEM_BUG_ON(remain_actual > ring->space);
1694 GEM_BUG_ON(ring->emit + remain_actual > ring->size);
1695
1696 /* Fill the tail with MI_NOOP */
1697 memset(ring->vaddr + ring->emit, 0, remain_actual);
1698 ring->emit = 0;
1699 ring->space -= remain_actual;
1700 }
1701
1702 GEM_BUG_ON(ring->emit > ring->size - bytes);
1703 cs = ring->vaddr + ring->emit;
1704 ring->emit += bytes;
1705 ring->space -= bytes;
1706 GEM_BUG_ON(ring->space < 0);
1707
1708 return cs;
1709 }
1710
1711 /* Align the ring tail to a cacheline boundary */
1712 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1713 {
1714 int num_dwords =
1715 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1716 u32 *cs;
1717
1718 if (num_dwords == 0)
1719 return 0;
1720
1721 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1722 cs = intel_ring_begin(req, num_dwords);
1723 if (IS_ERR(cs))
1724 return PTR_ERR(cs);
1725
1726 while (num_dwords--)
1727 *cs++ = MI_NOOP;
1728
1729 intel_ring_advance(req, cs);
1730
1731 return 0;
1732 }
1733
1734 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1735 {
1736 struct drm_i915_private *dev_priv = request->i915;
1737
1738 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1739
1740 /* Every tail move must follow the sequence below */
1741
1742 /* Disable notification that the ring is IDLE. The GT
1743 * will then assume that it is busy and bring it out of rc6.
1744 */
1745 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1746 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1747
1748 /* Clear the context id. Here be magic! */
1749 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1750
1751 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1752 if (intel_wait_for_register_fw(dev_priv,
1753 GEN6_BSD_SLEEP_PSMI_CONTROL,
1754 GEN6_BSD_SLEEP_INDICATOR,
1755 0,
1756 50))
1757 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1758
1759 /* Now that the ring is fully powered up, update the tail */
1760 i9xx_submit_request(request);
1761
1762 /* Let the ring send IDLE messages to the GT again,
1763 * and so let it sleep to conserve power when idle.
1764 */
1765 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1766 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1767
1768 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1769 }
1770
1771 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1772 {
1773 u32 cmd, *cs;
1774
1775 cs = intel_ring_begin(req, 4);
1776 if (IS_ERR(cs))
1777 return PTR_ERR(cs);
1778
1779 cmd = MI_FLUSH_DW;
1780 if (INTEL_GEN(req->i915) >= 8)
1781 cmd += 1;
1782
1783 /* We always require a command barrier so that subsequent
1784 * commands, such as breadcrumb interrupts, are strictly ordered
1785 * wrt the contents of the write cache being flushed to memory
1786 * (and thus being coherent from the CPU).
1787 */
1788 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1789
1790 /*
1791 * Bspec vol 1c.5 - video engine command streamer:
1792 * "If ENABLED, all TLBs will be invalidated once the flush
1793 * operation is complete. This bit is only valid when the
1794 * Post-Sync Operation field is a value of 1h or 3h."
1795 */
1796 if (mode & EMIT_INVALIDATE)
1797 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1798
1799 *cs++ = cmd;
1800 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1801 if (INTEL_GEN(req->i915) >= 8) {
1802 *cs++ = 0; /* upper addr */
1803 *cs++ = 0; /* value */
1804 } else {
1805 *cs++ = 0;
1806 *cs++ = MI_NOOP;
1807 }
1808 intel_ring_advance(req, cs);
1809 return 0;
1810 }
1811
1812 static int
1813 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1814 u64 offset, u32 len,
1815 unsigned int dispatch_flags)
1816 {
1817 bool ppgtt = USES_PPGTT(req->i915) &&
1818 !(dispatch_flags & I915_DISPATCH_SECURE);
1819 u32 *cs;
1820
1821 cs = intel_ring_begin(req, 4);
1822 if (IS_ERR(cs))
1823 return PTR_ERR(cs);
1824
1825 /* FIXME(BDW): Address space and security selectors. */
1826 *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1827 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1828 *cs++ = lower_32_bits(offset);
1829 *cs++ = upper_32_bits(offset);
1830 *cs++ = MI_NOOP;
1831 intel_ring_advance(req, cs);
1832
1833 return 0;
1834 }
1835
1836 static int
1837 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1838 u64 offset, u32 len,
1839 unsigned int dispatch_flags)
1840 {
1841 u32 *cs;
1842
1843 cs = intel_ring_begin(req, 2);
1844 if (IS_ERR(cs))
1845 return PTR_ERR(cs);
1846
1847 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1848 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1849 (dispatch_flags & I915_DISPATCH_RS ?
1850 MI_BATCH_RESOURCE_STREAMER : 0);
1851 /* bit0-7 is the length on GEN6+ */
1852 *cs++ = offset;
1853 intel_ring_advance(req, cs);
1854
1855 return 0;
1856 }
1857
1858 static int
1859 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1860 u64 offset, u32 len,
1861 unsigned int dispatch_flags)
1862 {
1863 u32 *cs;
1864
1865 cs = intel_ring_begin(req, 2);
1866 if (IS_ERR(cs))
1867 return PTR_ERR(cs);
1868
1869 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1870 0 : MI_BATCH_NON_SECURE_I965);
1871 /* bit0-7 is the length on GEN6+ */
1872 *cs++ = offset;
1873 intel_ring_advance(req, cs);
1874
1875 return 0;
1876 }
1877
1878 /* Blitter support (SandyBridge+) */
1879
1880 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1881 {
1882 u32 cmd, *cs;
1883
1884 cs = intel_ring_begin(req, 4);
1885 if (IS_ERR(cs))
1886 return PTR_ERR(cs);
1887
1888 cmd = MI_FLUSH_DW;
1889 if (INTEL_GEN(req->i915) >= 8)
1890 cmd += 1;
1891
1892 /* We always require a command barrier so that subsequent
1893 * commands, such as breadcrumb interrupts, are strictly ordered
1894 * wrt the contents of the write cache being flushed to memory
1895 * (and thus being coherent from the CPU).
1896 */
1897 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1898
1899 /*
1900 * Bspec vol 1c.3 - blitter engine command streamer:
1901 * "If ENABLED, all TLBs will be invalidated once the flush
1902 * operation is complete. This bit is only valid when the
1903 * Post-Sync Operation field is a value of 1h or 3h."
1904 */
1905 if (mode & EMIT_INVALIDATE)
1906 cmd |= MI_INVALIDATE_TLB;
1907 *cs++ = cmd;
1908 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1909 if (INTEL_GEN(req->i915) >= 8) {
1910 *cs++ = 0; /* upper addr */
1911 *cs++ = 0; /* value */
1912 } else {
1913 *cs++ = 0;
1914 *cs++ = MI_NOOP;
1915 }
1916 intel_ring_advance(req, cs);
1917
1918 return 0;
1919 }
1920
1921 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1922 struct intel_engine_cs *engine)
1923 {
1924 struct drm_i915_gem_object *obj;
1925 int ret, i;
1926
1927 if (!i915.semaphores)
1928 return;
1929
1930 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1931 struct i915_vma *vma;
1932
1933 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1934 if (IS_ERR(obj))
1935 goto err;
1936
1937 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1938 if (IS_ERR(vma))
1939 goto err_obj;
1940
1941 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1942 if (ret)
1943 goto err_obj;
1944
1945 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1946 if (ret)
1947 goto err_obj;
1948
1949 dev_priv->semaphore = vma;
1950 }
1951
1952 if (INTEL_GEN(dev_priv) >= 8) {
1953 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1954
1955 engine->semaphore.sync_to = gen8_ring_sync_to;
1956 engine->semaphore.signal = gen8_xcs_signal;
1957
1958 for (i = 0; i < I915_NUM_ENGINES; i++) {
1959 u32 ring_offset;
1960
1961 if (i != engine->id)
1962 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
1963 else
1964 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
1965
1966 engine->semaphore.signal_ggtt[i] = ring_offset;
1967 }
1968 } else if (INTEL_GEN(dev_priv) >= 6) {
1969 engine->semaphore.sync_to = gen6_ring_sync_to;
1970 engine->semaphore.signal = gen6_signal;
1971
1972 /*
1973 * The current semaphore is only applied on pre-gen8
1974 * platform. And there is no VCS2 ring on the pre-gen8
1975 * platform. So the semaphore between RCS and VCS2 is
1976 * initialized as INVALID. Gen8 will initialize the
1977 * sema between VCS2 and RCS later.
1978 */
1979 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1980 static const struct {
1981 u32 wait_mbox;
1982 i915_reg_t mbox_reg;
1983 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1984 [RCS_HW] = {
1985 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
1986 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
1987 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1988 },
1989 [VCS_HW] = {
1990 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
1991 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
1992 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1993 },
1994 [BCS_HW] = {
1995 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
1996 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
1997 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1998 },
1999 [VECS_HW] = {
2000 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2001 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2002 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2003 },
2004 };
2005 u32 wait_mbox;
2006 i915_reg_t mbox_reg;
2007
2008 if (i == engine->hw_id) {
2009 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2010 mbox_reg = GEN6_NOSYNC;
2011 } else {
2012 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2013 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2014 }
2015
2016 engine->semaphore.mbox.wait[i] = wait_mbox;
2017 engine->semaphore.mbox.signal[i] = mbox_reg;
2018 }
2019 }
2020
2021 return;
2022
2023 err_obj:
2024 i915_gem_object_put(obj);
2025 err:
2026 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2027 i915.semaphores = 0;
2028 }
2029
2030 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2031 struct intel_engine_cs *engine)
2032 {
2033 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2034
2035 if (INTEL_GEN(dev_priv) >= 8) {
2036 engine->irq_enable = gen8_irq_enable;
2037 engine->irq_disable = gen8_irq_disable;
2038 engine->irq_seqno_barrier = gen6_seqno_barrier;
2039 } else if (INTEL_GEN(dev_priv) >= 6) {
2040 engine->irq_enable = gen6_irq_enable;
2041 engine->irq_disable = gen6_irq_disable;
2042 engine->irq_seqno_barrier = gen6_seqno_barrier;
2043 } else if (INTEL_GEN(dev_priv) >= 5) {
2044 engine->irq_enable = gen5_irq_enable;
2045 engine->irq_disable = gen5_irq_disable;
2046 engine->irq_seqno_barrier = gen5_seqno_barrier;
2047 } else if (INTEL_GEN(dev_priv) >= 3) {
2048 engine->irq_enable = i9xx_irq_enable;
2049 engine->irq_disable = i9xx_irq_disable;
2050 } else {
2051 engine->irq_enable = i8xx_irq_enable;
2052 engine->irq_disable = i8xx_irq_disable;
2053 }
2054 }
2055
2056 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2057 {
2058 engine->submit_request = i9xx_submit_request;
2059 }
2060
2061 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2062 {
2063 engine->submit_request = gen6_bsd_submit_request;
2064 }
2065
2066 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2067 struct intel_engine_cs *engine)
2068 {
2069 intel_ring_init_irq(dev_priv, engine);
2070 intel_ring_init_semaphores(dev_priv, engine);
2071
2072 engine->init_hw = init_ring_common;
2073 engine->reset_hw = reset_ring_common;
2074
2075 engine->context_pin = intel_ring_context_pin;
2076 engine->context_unpin = intel_ring_context_unpin;
2077
2078 engine->request_alloc = ring_request_alloc;
2079
2080 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2081 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2082 if (i915.semaphores) {
2083 int num_rings;
2084
2085 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2086
2087 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2088 if (INTEL_GEN(dev_priv) >= 8) {
2089 engine->emit_breadcrumb_sz += num_rings * 6;
2090 } else {
2091 engine->emit_breadcrumb_sz += num_rings * 3;
2092 if (num_rings & 1)
2093 engine->emit_breadcrumb_sz++;
2094 }
2095 }
2096
2097 engine->set_default_submission = i9xx_set_default_submission;
2098
2099 if (INTEL_GEN(dev_priv) >= 8)
2100 engine->emit_bb_start = gen8_emit_bb_start;
2101 else if (INTEL_GEN(dev_priv) >= 6)
2102 engine->emit_bb_start = gen6_emit_bb_start;
2103 else if (INTEL_GEN(dev_priv) >= 4)
2104 engine->emit_bb_start = i965_emit_bb_start;
2105 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2106 engine->emit_bb_start = i830_emit_bb_start;
2107 else
2108 engine->emit_bb_start = i915_emit_bb_start;
2109 }
2110
2111 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2112 {
2113 struct drm_i915_private *dev_priv = engine->i915;
2114 int ret;
2115
2116 intel_ring_default_vfuncs(dev_priv, engine);
2117
2118 if (HAS_L3_DPF(dev_priv))
2119 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2120
2121 if (INTEL_GEN(dev_priv) >= 8) {
2122 engine->init_context = intel_rcs_ctx_init;
2123 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2124 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2125 engine->emit_flush = gen8_render_ring_flush;
2126 if (i915.semaphores) {
2127 int num_rings;
2128
2129 engine->semaphore.signal = gen8_rcs_signal;
2130
2131 num_rings =
2132 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2133 engine->emit_breadcrumb_sz += num_rings * 8;
2134 }
2135 } else if (INTEL_GEN(dev_priv) >= 6) {
2136 engine->init_context = intel_rcs_ctx_init;
2137 engine->emit_flush = gen7_render_ring_flush;
2138 if (IS_GEN6(dev_priv))
2139 engine->emit_flush = gen6_render_ring_flush;
2140 } else if (IS_GEN5(dev_priv)) {
2141 engine->emit_flush = gen4_render_ring_flush;
2142 } else {
2143 if (INTEL_GEN(dev_priv) < 4)
2144 engine->emit_flush = gen2_render_ring_flush;
2145 else
2146 engine->emit_flush = gen4_render_ring_flush;
2147 engine->irq_enable_mask = I915_USER_INTERRUPT;
2148 }
2149
2150 if (IS_HASWELL(dev_priv))
2151 engine->emit_bb_start = hsw_emit_bb_start;
2152
2153 engine->init_hw = init_render_ring;
2154 engine->cleanup = render_ring_cleanup;
2155
2156 ret = intel_init_ring_buffer(engine);
2157 if (ret)
2158 return ret;
2159
2160 if (INTEL_GEN(dev_priv) >= 6) {
2161 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2162 if (ret)
2163 return ret;
2164 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2165 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2166 if (ret)
2167 return ret;
2168 }
2169
2170 return 0;
2171 }
2172
2173 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2174 {
2175 struct drm_i915_private *dev_priv = engine->i915;
2176
2177 intel_ring_default_vfuncs(dev_priv, engine);
2178
2179 if (INTEL_GEN(dev_priv) >= 6) {
2180 /* gen6 bsd needs a special wa for tail updates */
2181 if (IS_GEN6(dev_priv))
2182 engine->set_default_submission = gen6_bsd_set_default_submission;
2183 engine->emit_flush = gen6_bsd_ring_flush;
2184 if (INTEL_GEN(dev_priv) < 8)
2185 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2186 } else {
2187 engine->mmio_base = BSD_RING_BASE;
2188 engine->emit_flush = bsd_ring_flush;
2189 if (IS_GEN5(dev_priv))
2190 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2191 else
2192 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2193 }
2194
2195 return intel_init_ring_buffer(engine);
2196 }
2197
2198 /**
2199 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2200 */
2201 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2202 {
2203 struct drm_i915_private *dev_priv = engine->i915;
2204
2205 intel_ring_default_vfuncs(dev_priv, engine);
2206
2207 engine->emit_flush = gen6_bsd_ring_flush;
2208
2209 return intel_init_ring_buffer(engine);
2210 }
2211
2212 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2213 {
2214 struct drm_i915_private *dev_priv = engine->i915;
2215
2216 intel_ring_default_vfuncs(dev_priv, engine);
2217
2218 engine->emit_flush = gen6_ring_flush;
2219 if (INTEL_GEN(dev_priv) < 8)
2220 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2221
2222 return intel_init_ring_buffer(engine);
2223 }
2224
2225 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2226 {
2227 struct drm_i915_private *dev_priv = engine->i915;
2228
2229 intel_ring_default_vfuncs(dev_priv, engine);
2230
2231 engine->emit_flush = gen6_ring_flush;
2232
2233 if (INTEL_GEN(dev_priv) < 8) {
2234 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2235 engine->irq_enable = hsw_vebox_irq_enable;
2236 engine->irq_disable = hsw_vebox_irq_disable;
2237 }
2238
2239 return intel_init_ring_buffer(engine);
2240 }