]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge remote-tracking branches 'asoc/topic/wm8904', 'asoc/topic/wm8955' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 flags |= PIPE_CONTROL_FLUSH_ENABLE;
351 }
352 if (invalidate_domains) {
353 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360 /*
361 * TLB invalidate requires a post-sync write.
362 */
363 flags |= PIPE_CONTROL_QW_WRITE;
364 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368 /* Workaround: we must issue a pipe_control with CS-stall bit
369 * set before a pipe_control command that has the state cache
370 * invalidate bit set. */
371 gen7_render_ring_cs_stall_wa(req);
372 }
373
374 ret = intel_ring_begin(req, 4);
375 if (ret)
376 return ret;
377
378 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379 intel_ring_emit(ring, flags);
380 intel_ring_emit(ring, scratch_addr);
381 intel_ring_emit(ring, 0);
382 intel_ring_advance(ring);
383
384 return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389 u32 flags, u32 scratch_addr)
390 {
391 struct intel_engine_cs *ring = req->ring;
392 int ret;
393
394 ret = intel_ring_begin(req, 6);
395 if (ret)
396 return ret;
397
398 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399 intel_ring_emit(ring, flags);
400 intel_ring_emit(ring, scratch_addr);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_emit(ring, 0);
404 intel_ring_advance(ring);
405
406 return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411 u32 invalidate_domains, u32 flush_domains)
412 {
413 u32 flags = 0;
414 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415 int ret;
416
417 flags |= PIPE_CONTROL_CS_STALL;
418
419 if (flush_domains) {
420 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422 flags |= PIPE_CONTROL_FLUSH_ENABLE;
423 }
424 if (invalidate_domains) {
425 flags |= PIPE_CONTROL_TLB_INVALIDATE;
426 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_QW_WRITE;
432 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433
434 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435 ret = gen8_emit_pipe_control(req,
436 PIPE_CONTROL_CS_STALL |
437 PIPE_CONTROL_STALL_AT_SCOREBOARD,
438 0);
439 if (ret)
440 return ret;
441 }
442
443 return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445
446 static void ring_write_tail(struct intel_engine_cs *ring,
447 u32 value)
448 {
449 struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 I915_WRITE_TAIL(ring, value);
451 }
452
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455 struct drm_i915_private *dev_priv = ring->dev->dev_private;
456 u64 acthd;
457
458 if (INTEL_INFO(ring->dev)->gen >= 8)
459 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460 RING_ACTHD_UDW(ring->mmio_base));
461 else if (INTEL_INFO(ring->dev)->gen >= 4)
462 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463 else
464 acthd = I915_READ(ACTHD);
465
466 return acthd;
467 }
468
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471 struct drm_i915_private *dev_priv = ring->dev->dev_private;
472 u32 addr;
473
474 addr = dev_priv->status_page_dmah->busaddr;
475 if (INTEL_INFO(ring->dev)->gen >= 4)
476 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477 I915_WRITE(HWS_PGA, addr);
478 }
479
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482 struct drm_device *dev = ring->dev;
483 struct drm_i915_private *dev_priv = ring->dev->dev_private;
484 u32 mmio = 0;
485
486 /* The ring status page addresses are no longer next to the rest of
487 * the ring registers as of gen7.
488 */
489 if (IS_GEN7(dev)) {
490 switch (ring->id) {
491 case RCS:
492 mmio = RENDER_HWS_PGA_GEN7;
493 break;
494 case BCS:
495 mmio = BLT_HWS_PGA_GEN7;
496 break;
497 /*
498 * VCS2 actually doesn't exist on Gen7. Only shut up
499 * gcc switch check warning
500 */
501 case VCS2:
502 case VCS:
503 mmio = BSD_HWS_PGA_GEN7;
504 break;
505 case VECS:
506 mmio = VEBOX_HWS_PGA_GEN7;
507 break;
508 }
509 } else if (IS_GEN6(ring->dev)) {
510 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511 } else {
512 /* XXX: gen8 returns to sanity */
513 mmio = RING_HWS_PGA(ring->mmio_base);
514 }
515
516 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517 POSTING_READ(mmio);
518
519 /*
520 * Flush the TLB for this page
521 *
522 * FIXME: These two bits have disappeared on gen8, so a question
523 * arises: do we still need this and if so how should we go about
524 * invalidating the TLB?
525 */
526 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527 u32 reg = RING_INSTPM(ring->mmio_base);
528
529 /* ring should be idle before issuing a sync flush*/
530 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531
532 I915_WRITE(reg,
533 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534 INSTPM_SYNC_FLUSH));
535 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536 1000))
537 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538 ring->name);
539 }
540 }
541
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544 struct drm_i915_private *dev_priv = to_i915(ring->dev);
545
546 if (!IS_GEN2(ring->dev)) {
547 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550 /* Sometimes we observe that the idle flag is not
551 * set even though the ring is empty. So double
552 * check before giving up.
553 */
554 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555 return false;
556 }
557 }
558
559 I915_WRITE_CTL(ring, 0);
560 I915_WRITE_HEAD(ring, 0);
561 ring->write_tail(ring, 0);
562
563 if (!IS_GEN2(ring->dev)) {
564 (void)I915_READ_CTL(ring);
565 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566 }
567
568 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573 struct drm_device *dev = ring->dev;
574 struct drm_i915_private *dev_priv = dev->dev_private;
575 struct intel_ringbuffer *ringbuf = ring->buffer;
576 struct drm_i915_gem_object *obj = ringbuf->obj;
577 int ret = 0;
578
579 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580
581 if (!stop_ring(ring)) {
582 /* G45 ring initialization often fails to reset head to zero */
583 DRM_DEBUG_KMS("%s head not reset to zero "
584 "ctl %08x head %08x tail %08x start %08x\n",
585 ring->name,
586 I915_READ_CTL(ring),
587 I915_READ_HEAD(ring),
588 I915_READ_TAIL(ring),
589 I915_READ_START(ring));
590
591 if (!stop_ring(ring)) {
592 DRM_ERROR("failed to set %s head to zero "
593 "ctl %08x head %08x tail %08x start %08x\n",
594 ring->name,
595 I915_READ_CTL(ring),
596 I915_READ_HEAD(ring),
597 I915_READ_TAIL(ring),
598 I915_READ_START(ring));
599 ret = -EIO;
600 goto out;
601 }
602 }
603
604 if (I915_NEED_GFX_HWS(dev))
605 intel_ring_setup_status_page(ring);
606 else
607 ring_setup_phys_status_page(ring);
608
609 /* Enforce ordering by reading HEAD register back */
610 I915_READ_HEAD(ring);
611
612 /* Initialize the ring. This must happen _after_ we've cleared the ring
613 * registers with the above sequence (the readback of the HEAD registers
614 * also enforces ordering), otherwise the hw might lose the new ring
615 * register values. */
616 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617
618 /* WaClearRingBufHeadRegAtInit:ctg,elk */
619 if (I915_READ_HEAD(ring))
620 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621 ring->name, I915_READ_HEAD(ring));
622 I915_WRITE_HEAD(ring, 0);
623 (void)I915_READ_HEAD(ring);
624
625 I915_WRITE_CTL(ring,
626 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627 | RING_VALID);
628
629 /* If the head is still not zero, the ring is dead */
630 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633 DRM_ERROR("%s initialization failed "
634 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635 ring->name,
636 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639 ret = -EIO;
640 goto out;
641 }
642
643 ringbuf->last_retired_head = -1;
644 ringbuf->head = I915_READ_HEAD(ring);
645 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646 intel_ring_update_space(ringbuf);
647
648 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649
650 out:
651 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652
653 return ret;
654 }
655
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659 struct drm_device *dev = ring->dev;
660
661 if (ring->scratch.obj == NULL)
662 return;
663
664 if (INTEL_INFO(dev)->gen >= 5) {
665 kunmap(sg_page(ring->scratch.obj->pages->sgl));
666 i915_gem_object_ggtt_unpin(ring->scratch.obj);
667 }
668
669 drm_gem_object_unreference(&ring->scratch.obj->base);
670 ring->scratch.obj = NULL;
671 }
672
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676 int ret;
677
678 WARN_ON(ring->scratch.obj);
679
680 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681 if (ring->scratch.obj == NULL) {
682 DRM_ERROR("Failed to allocate seqno page\n");
683 ret = -ENOMEM;
684 goto err;
685 }
686
687 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688 if (ret)
689 goto err_unref;
690
691 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692 if (ret)
693 goto err_unref;
694
695 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697 if (ring->scratch.cpu_page == NULL) {
698 ret = -ENOMEM;
699 goto err_unpin;
700 }
701
702 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703 ring->name, ring->scratch.gtt_offset);
704 return 0;
705
706 err_unpin:
707 i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709 drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711 return ret;
712 }
713
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716 int ret, i;
717 struct intel_engine_cs *ring = req->ring;
718 struct drm_device *dev = ring->dev;
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 struct i915_workarounds *w = &dev_priv->workarounds;
721
722 if (WARN_ON_ONCE(w->count == 0))
723 return 0;
724
725 ring->gpu_caches_dirty = true;
726 ret = intel_ring_flush_all_caches(req);
727 if (ret)
728 return ret;
729
730 ret = intel_ring_begin(req, (w->count * 2 + 2));
731 if (ret)
732 return ret;
733
734 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735 for (i = 0; i < w->count; i++) {
736 intel_ring_emit(ring, w->reg[i].addr);
737 intel_ring_emit(ring, w->reg[i].value);
738 }
739 intel_ring_emit(ring, MI_NOOP);
740
741 intel_ring_advance(ring);
742
743 ring->gpu_caches_dirty = true;
744 ret = intel_ring_flush_all_caches(req);
745 if (ret)
746 return ret;
747
748 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749
750 return 0;
751 }
752
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755 int ret;
756
757 ret = intel_ring_workarounds_emit(req);
758 if (ret != 0)
759 return ret;
760
761 ret = i915_gem_render_state_init(req);
762 if (ret)
763 DRM_ERROR("init render state: %d\n", ret);
764
765 return ret;
766 }
767
768 static int wa_add(struct drm_i915_private *dev_priv,
769 const u32 addr, const u32 mask, const u32 val)
770 {
771 const u32 idx = dev_priv->workarounds.count;
772
773 if (WARN_ON(idx >= I915_MAX_WA_REGS))
774 return -ENOSPC;
775
776 dev_priv->workarounds.reg[idx].addr = addr;
777 dev_priv->workarounds.reg[idx].value = val;
778 dev_priv->workarounds.reg[idx].mask = mask;
779
780 dev_priv->workarounds.count++;
781
782 return 0;
783 }
784
785 #define WA_REG(addr, mask, val) do { \
786 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787 if (r) \
788 return r; \
789 } while (0)
790
791 #define WA_SET_BIT_MASKED(addr, mask) \
792 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804
805 static int bdw_init_workarounds(struct intel_engine_cs *ring)
806 {
807 struct drm_device *dev = ring->dev;
808 struct drm_i915_private *dev_priv = dev->dev_private;
809
810 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811
812 /* WaDisableAsyncFlipPerfMode:bdw */
813 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814
815 /* WaDisablePartialInstShootdown:bdw */
816 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
817 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
818 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
819 STALL_DOP_GATING_DISABLE);
820
821 /* WaDisableDopClockGating:bdw */
822 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
823 DOP_CLOCK_GATING_DISABLE);
824
825 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
826 GEN8_SAMPLER_POWER_BYPASS_DIS);
827
828 /* Use Force Non-Coherent whenever executing a 3D context. This is a
829 * workaround for for a possible hang in the unlikely event a TLB
830 * invalidation occurs during a PSD flush.
831 */
832 WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 /* WaForceEnableNonCoherent:bdw */
834 HDC_FORCE_NON_COHERENT |
835 /* WaForceContextSaveRestoreNonCoherent:bdw */
836 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
837 /* WaHdcDisableFetchWhenMasked:bdw */
838 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
839 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
840 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
841
842 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844 * polygons in the same 8x4 pixel/sample area to be processed without
845 * stalling waiting for the earlier ones to write to Hierarchical Z
846 * buffer."
847 *
848 * This optimization is off by default for Broadwell; turn it on.
849 */
850 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851
852 /* Wa4x4STCOptimizationDisable:bdw */
853 WA_SET_BIT_MASKED(CACHE_MODE_1,
854 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
855
856 /*
857 * BSpec recommends 8x4 when MSAA is used,
858 * however in practice 16x4 seems fastest.
859 *
860 * Note that PS/WM thread counts depend on the WIZ hashing
861 * disable bit, which we don't touch here, but it's good
862 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
863 */
864 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
865 GEN6_WIZ_HASHING_MASK,
866 GEN6_WIZ_HASHING_16x4);
867
868 return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *ring)
872 {
873 struct drm_device *dev = ring->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875
876 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
877
878 /* WaDisableAsyncFlipPerfMode:chv */
879 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
880
881 /* WaDisablePartialInstShootdown:chv */
882 /* WaDisableThreadStallDopClockGating:chv */
883 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
884 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
885 STALL_DOP_GATING_DISABLE);
886
887 /* Use Force Non-Coherent whenever executing a 3D context. This is a
888 * workaround for a possible hang in the unlikely event a TLB
889 * invalidation occurs during a PSD flush.
890 */
891 /* WaForceEnableNonCoherent:chv */
892 /* WaHdcDisableFetchWhenMasked:chv */
893 WA_SET_BIT_MASKED(HDC_CHICKEN0,
894 HDC_FORCE_NON_COHERENT |
895 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
896
897 /* According to the CACHE_MODE_0 default value documentation, some
898 * CHV platforms disable this optimization by default. Turn it on.
899 */
900 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
901
902 /* Wa4x4STCOptimizationDisable:chv */
903 WA_SET_BIT_MASKED(CACHE_MODE_1,
904 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
905
906 /* Improve HiZ throughput on CHV. */
907 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909 /*
910 * BSpec recommends 8x4 when MSAA is used,
911 * however in practice 16x4 seems fastest.
912 *
913 * Note that PS/WM thread counts depend on the WIZ hashing
914 * disable bit, which we don't touch here, but it's good
915 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
916 */
917 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
918 GEN6_WIZ_HASHING_MASK,
919 GEN6_WIZ_HASHING_16x4);
920
921 return 0;
922 }
923
924 static int gen9_init_workarounds(struct intel_engine_cs *ring)
925 {
926 struct drm_device *dev = ring->dev;
927 struct drm_i915_private *dev_priv = dev->dev_private;
928 uint32_t tmp;
929
930 /* WaDisablePartialInstShootdown:skl,bxt */
931 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
933
934 /* Syncing dependencies between camera and graphics:skl,bxt */
935 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
936 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
937
938 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
939 INTEL_REVID(dev) == SKL_REVID_B0)) ||
940 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
941 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
942 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 GEN9_DG_MIRROR_FIX_ENABLE);
944 }
945
946 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
947 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
948 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
949 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
950 GEN9_RHWO_OPTIMIZATION_DISABLE);
951 /*
952 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
953 * but we do that in per ctx batchbuffer as there is an issue
954 * with this register not getting restored on ctx restore
955 */
956 }
957
958 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
959 IS_BROXTON(dev)) {
960 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
961 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
962 GEN9_ENABLE_YV12_BUGFIX);
963 }
964
965 /* Wa4x4STCOptimizationDisable:skl,bxt */
966 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
967
968 /* WaDisablePartialResolveInVc:skl,bxt */
969 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
970
971 /* WaCcsTlbPrefetchDisable:skl,bxt */
972 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
973 GEN9_CCS_TLB_PREFETCH_ENABLE);
974
975 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
976 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
977 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
978 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
979 PIXEL_MASK_CAMMING_DISABLE);
980
981 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
982 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
984 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
985 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
986 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
987
988 return 0;
989 }
990
991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993 struct drm_device *dev = ring->dev;
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 u8 vals[3] = { 0, 0, 0 };
996 unsigned int i;
997
998 for (i = 0; i < 3; i++) {
999 u8 ss;
1000
1001 /*
1002 * Only consider slices where one, and only one, subslice has 7
1003 * EUs
1004 */
1005 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006 continue;
1007
1008 /*
1009 * subslice_7eu[i] != 0 (because of the check above) and
1010 * ss_max == 4 (maximum number of subslices possible per slice)
1011 *
1012 * -> 0 <= ss <= 3;
1013 */
1014 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015 vals[i] = 3 - ss;
1016 }
1017
1018 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019 return 0;
1020
1021 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1022 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023 GEN9_IZ_HASHING_MASK(2) |
1024 GEN9_IZ_HASHING_MASK(1) |
1025 GEN9_IZ_HASHING_MASK(0),
1026 GEN9_IZ_HASHING(2, vals[2]) |
1027 GEN9_IZ_HASHING(1, vals[1]) |
1028 GEN9_IZ_HASHING(0, vals[0]));
1029
1030 return 0;
1031 }
1032
1033
1034 static int skl_init_workarounds(struct intel_engine_cs *ring)
1035 {
1036 struct drm_device *dev = ring->dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038
1039 gen9_init_workarounds(ring);
1040
1041 /* WaDisablePowerCompilerClockGating:skl */
1042 if (INTEL_REVID(dev) == SKL_REVID_B0)
1043 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1044 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1045
1046 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1047 /*
1048 *Use Force Non-Coherent whenever executing a 3D context. This
1049 * is a workaround for a possible hang in the unlikely event
1050 * a TLB invalidation occurs during a PSD flush.
1051 */
1052 /* WaForceEnableNonCoherent:skl */
1053 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1054 HDC_FORCE_NON_COHERENT);
1055 }
1056
1057 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1058 INTEL_REVID(dev) == SKL_REVID_D0)
1059 /* WaBarrierPerformanceFixDisable:skl */
1060 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1061 HDC_FENCE_DEST_SLM_DISABLE |
1062 HDC_BARRIER_PERFORMANCE_DISABLE);
1063
1064 /* WaDisableSbeCacheDispatchPortSharing:skl */
1065 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1066 WA_SET_BIT_MASKED(
1067 GEN7_HALF_SLICE_CHICKEN1,
1068 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1069 }
1070
1071 return skl_tune_iz_hashing(ring);
1072 }
1073
1074 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1075 {
1076 struct drm_device *dev = ring->dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078
1079 gen9_init_workarounds(ring);
1080
1081 /* WaDisableThreadStallDopClockGating:bxt */
1082 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1083 STALL_DOP_GATING_DISABLE);
1084
1085 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1086 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1087 WA_SET_BIT_MASKED(
1088 GEN7_HALF_SLICE_CHICKEN1,
1089 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1090 }
1091
1092 return 0;
1093 }
1094
1095 int init_workarounds_ring(struct intel_engine_cs *ring)
1096 {
1097 struct drm_device *dev = ring->dev;
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099
1100 WARN_ON(ring->id != RCS);
1101
1102 dev_priv->workarounds.count = 0;
1103
1104 if (IS_BROADWELL(dev))
1105 return bdw_init_workarounds(ring);
1106
1107 if (IS_CHERRYVIEW(dev))
1108 return chv_init_workarounds(ring);
1109
1110 if (IS_SKYLAKE(dev))
1111 return skl_init_workarounds(ring);
1112
1113 if (IS_BROXTON(dev))
1114 return bxt_init_workarounds(ring);
1115
1116 return 0;
1117 }
1118
1119 static int init_render_ring(struct intel_engine_cs *ring)
1120 {
1121 struct drm_device *dev = ring->dev;
1122 struct drm_i915_private *dev_priv = dev->dev_private;
1123 int ret = init_ring_common(ring);
1124 if (ret)
1125 return ret;
1126
1127 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1128 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1129 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1130
1131 /* We need to disable the AsyncFlip performance optimisations in order
1132 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1133 * programmed to '1' on all products.
1134 *
1135 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1136 */
1137 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1138 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1139
1140 /* Required for the hardware to program scanline values for waiting */
1141 /* WaEnableFlushTlbInvalidationMode:snb */
1142 if (INTEL_INFO(dev)->gen == 6)
1143 I915_WRITE(GFX_MODE,
1144 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1145
1146 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1147 if (IS_GEN7(dev))
1148 I915_WRITE(GFX_MODE_GEN7,
1149 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1150 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1151
1152 if (IS_GEN6(dev)) {
1153 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1154 * "If this bit is set, STCunit will have LRA as replacement
1155 * policy. [...] This bit must be reset. LRA replacement
1156 * policy is not supported."
1157 */
1158 I915_WRITE(CACHE_MODE_0,
1159 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1160 }
1161
1162 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1163 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1164
1165 if (HAS_L3_DPF(dev))
1166 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1167
1168 return init_workarounds_ring(ring);
1169 }
1170
1171 static void render_ring_cleanup(struct intel_engine_cs *ring)
1172 {
1173 struct drm_device *dev = ring->dev;
1174 struct drm_i915_private *dev_priv = dev->dev_private;
1175
1176 if (dev_priv->semaphore_obj) {
1177 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1178 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1179 dev_priv->semaphore_obj = NULL;
1180 }
1181
1182 intel_fini_pipe_control(ring);
1183 }
1184
1185 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1186 unsigned int num_dwords)
1187 {
1188 #define MBOX_UPDATE_DWORDS 8
1189 struct intel_engine_cs *signaller = signaller_req->ring;
1190 struct drm_device *dev = signaller->dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_engine_cs *waiter;
1193 int i, ret, num_rings;
1194
1195 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1196 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1197 #undef MBOX_UPDATE_DWORDS
1198
1199 ret = intel_ring_begin(signaller_req, num_dwords);
1200 if (ret)
1201 return ret;
1202
1203 for_each_ring(waiter, dev_priv, i) {
1204 u32 seqno;
1205 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1206 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1207 continue;
1208
1209 seqno = i915_gem_request_get_seqno(signaller_req);
1210 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1211 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1212 PIPE_CONTROL_QW_WRITE |
1213 PIPE_CONTROL_FLUSH_ENABLE);
1214 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1215 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1216 intel_ring_emit(signaller, seqno);
1217 intel_ring_emit(signaller, 0);
1218 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1219 MI_SEMAPHORE_TARGET(waiter->id));
1220 intel_ring_emit(signaller, 0);
1221 }
1222
1223 return 0;
1224 }
1225
1226 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1227 unsigned int num_dwords)
1228 {
1229 #define MBOX_UPDATE_DWORDS 6
1230 struct intel_engine_cs *signaller = signaller_req->ring;
1231 struct drm_device *dev = signaller->dev;
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct intel_engine_cs *waiter;
1234 int i, ret, num_rings;
1235
1236 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1237 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1238 #undef MBOX_UPDATE_DWORDS
1239
1240 ret = intel_ring_begin(signaller_req, num_dwords);
1241 if (ret)
1242 return ret;
1243
1244 for_each_ring(waiter, dev_priv, i) {
1245 u32 seqno;
1246 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1247 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1248 continue;
1249
1250 seqno = i915_gem_request_get_seqno(signaller_req);
1251 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1252 MI_FLUSH_DW_OP_STOREDW);
1253 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1254 MI_FLUSH_DW_USE_GTT);
1255 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256 intel_ring_emit(signaller, seqno);
1257 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1258 MI_SEMAPHORE_TARGET(waiter->id));
1259 intel_ring_emit(signaller, 0);
1260 }
1261
1262 return 0;
1263 }
1264
1265 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1266 unsigned int num_dwords)
1267 {
1268 struct intel_engine_cs *signaller = signaller_req->ring;
1269 struct drm_device *dev = signaller->dev;
1270 struct drm_i915_private *dev_priv = dev->dev_private;
1271 struct intel_engine_cs *useless;
1272 int i, ret, num_rings;
1273
1274 #define MBOX_UPDATE_DWORDS 3
1275 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1276 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1277 #undef MBOX_UPDATE_DWORDS
1278
1279 ret = intel_ring_begin(signaller_req, num_dwords);
1280 if (ret)
1281 return ret;
1282
1283 for_each_ring(useless, dev_priv, i) {
1284 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1285 if (mbox_reg != GEN6_NOSYNC) {
1286 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1287 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1288 intel_ring_emit(signaller, mbox_reg);
1289 intel_ring_emit(signaller, seqno);
1290 }
1291 }
1292
1293 /* If num_dwords was rounded, make sure the tail pointer is correct */
1294 if (num_rings % 2 == 0)
1295 intel_ring_emit(signaller, MI_NOOP);
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * gen6_add_request - Update the semaphore mailbox registers
1302 *
1303 * @request - request to write to the ring
1304 *
1305 * Update the mailbox registers in the *other* rings with the current seqno.
1306 * This acts like a signal in the canonical semaphore.
1307 */
1308 static int
1309 gen6_add_request(struct drm_i915_gem_request *req)
1310 {
1311 struct intel_engine_cs *ring = req->ring;
1312 int ret;
1313
1314 if (ring->semaphore.signal)
1315 ret = ring->semaphore.signal(req, 4);
1316 else
1317 ret = intel_ring_begin(req, 4);
1318
1319 if (ret)
1320 return ret;
1321
1322 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1323 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1324 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1325 intel_ring_emit(ring, MI_USER_INTERRUPT);
1326 __intel_ring_advance(ring);
1327
1328 return 0;
1329 }
1330
1331 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1332 u32 seqno)
1333 {
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 return dev_priv->last_seqno < seqno;
1336 }
1337
1338 /**
1339 * intel_ring_sync - sync the waiter to the signaller on seqno
1340 *
1341 * @waiter - ring that is waiting
1342 * @signaller - ring which has, or will signal
1343 * @seqno - seqno which the waiter will block on
1344 */
1345
1346 static int
1347 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1348 struct intel_engine_cs *signaller,
1349 u32 seqno)
1350 {
1351 struct intel_engine_cs *waiter = waiter_req->ring;
1352 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1353 int ret;
1354
1355 ret = intel_ring_begin(waiter_req, 4);
1356 if (ret)
1357 return ret;
1358
1359 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1360 MI_SEMAPHORE_GLOBAL_GTT |
1361 MI_SEMAPHORE_POLL |
1362 MI_SEMAPHORE_SAD_GTE_SDD);
1363 intel_ring_emit(waiter, seqno);
1364 intel_ring_emit(waiter,
1365 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366 intel_ring_emit(waiter,
1367 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1368 intel_ring_advance(waiter);
1369 return 0;
1370 }
1371
1372 static int
1373 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1374 struct intel_engine_cs *signaller,
1375 u32 seqno)
1376 {
1377 struct intel_engine_cs *waiter = waiter_req->ring;
1378 u32 dw1 = MI_SEMAPHORE_MBOX |
1379 MI_SEMAPHORE_COMPARE |
1380 MI_SEMAPHORE_REGISTER;
1381 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1382 int ret;
1383
1384 /* Throughout all of the GEM code, seqno passed implies our current
1385 * seqno is >= the last seqno executed. However for hardware the
1386 * comparison is strictly greater than.
1387 */
1388 seqno -= 1;
1389
1390 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1391
1392 ret = intel_ring_begin(waiter_req, 4);
1393 if (ret)
1394 return ret;
1395
1396 /* If seqno wrap happened, omit the wait with no-ops */
1397 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1398 intel_ring_emit(waiter, dw1 | wait_mbox);
1399 intel_ring_emit(waiter, seqno);
1400 intel_ring_emit(waiter, 0);
1401 intel_ring_emit(waiter, MI_NOOP);
1402 } else {
1403 intel_ring_emit(waiter, MI_NOOP);
1404 intel_ring_emit(waiter, MI_NOOP);
1405 intel_ring_emit(waiter, MI_NOOP);
1406 intel_ring_emit(waiter, MI_NOOP);
1407 }
1408 intel_ring_advance(waiter);
1409
1410 return 0;
1411 }
1412
1413 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1414 do { \
1415 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1416 PIPE_CONTROL_DEPTH_STALL); \
1417 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1418 intel_ring_emit(ring__, 0); \
1419 intel_ring_emit(ring__, 0); \
1420 } while (0)
1421
1422 static int
1423 pc_render_add_request(struct drm_i915_gem_request *req)
1424 {
1425 struct intel_engine_cs *ring = req->ring;
1426 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1427 int ret;
1428
1429 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1430 * incoherent with writes to memory, i.e. completely fubar,
1431 * so we need to use PIPE_NOTIFY instead.
1432 *
1433 * However, we also need to workaround the qword write
1434 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1435 * memory before requesting an interrupt.
1436 */
1437 ret = intel_ring_begin(req, 32);
1438 if (ret)
1439 return ret;
1440
1441 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1442 PIPE_CONTROL_WRITE_FLUSH |
1443 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1444 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1445 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1446 intel_ring_emit(ring, 0);
1447 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1449 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450 scratch_addr += 2 * CACHELINE_BYTES;
1451 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452 scratch_addr += 2 * CACHELINE_BYTES;
1453 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454 scratch_addr += 2 * CACHELINE_BYTES;
1455 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456 scratch_addr += 2 * CACHELINE_BYTES;
1457 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1458
1459 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1460 PIPE_CONTROL_WRITE_FLUSH |
1461 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1462 PIPE_CONTROL_NOTIFY);
1463 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465 intel_ring_emit(ring, 0);
1466 __intel_ring_advance(ring);
1467
1468 return 0;
1469 }
1470
1471 static u32
1472 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1473 {
1474 /* Workaround to force correct ordering between irq and seqno writes on
1475 * ivb (and maybe also on snb) by reading from a CS register (like
1476 * ACTHD) before reading the status page. */
1477 if (!lazy_coherency) {
1478 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1479 POSTING_READ(RING_ACTHD(ring->mmio_base));
1480 }
1481
1482 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1483 }
1484
1485 static u32
1486 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1489 }
1490
1491 static void
1492 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1493 {
1494 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1495 }
1496
1497 static u32
1498 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1499 {
1500 return ring->scratch.cpu_page[0];
1501 }
1502
1503 static void
1504 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1505 {
1506 ring->scratch.cpu_page[0] = seqno;
1507 }
1508
1509 static bool
1510 gen5_ring_get_irq(struct intel_engine_cs *ring)
1511 {
1512 struct drm_device *dev = ring->dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 unsigned long flags;
1515
1516 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1517 return false;
1518
1519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1520 if (ring->irq_refcount++ == 0)
1521 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1522 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523
1524 return true;
1525 }
1526
1527 static void
1528 gen5_ring_put_irq(struct intel_engine_cs *ring)
1529 {
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 unsigned long flags;
1533
1534 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1535 if (--ring->irq_refcount == 0)
1536 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1537 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1538 }
1539
1540 static bool
1541 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1542 {
1543 struct drm_device *dev = ring->dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 unsigned long flags;
1546
1547 if (!intel_irqs_enabled(dev_priv))
1548 return false;
1549
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 if (ring->irq_refcount++ == 0) {
1552 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1553 I915_WRITE(IMR, dev_priv->irq_mask);
1554 POSTING_READ(IMR);
1555 }
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557
1558 return true;
1559 }
1560
1561 static void
1562 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1563 {
1564 struct drm_device *dev = ring->dev;
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 unsigned long flags;
1567
1568 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1569 if (--ring->irq_refcount == 0) {
1570 dev_priv->irq_mask |= ring->irq_enable_mask;
1571 I915_WRITE(IMR, dev_priv->irq_mask);
1572 POSTING_READ(IMR);
1573 }
1574 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1575 }
1576
1577 static bool
1578 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1579 {
1580 struct drm_device *dev = ring->dev;
1581 struct drm_i915_private *dev_priv = dev->dev_private;
1582 unsigned long flags;
1583
1584 if (!intel_irqs_enabled(dev_priv))
1585 return false;
1586
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 if (ring->irq_refcount++ == 0) {
1589 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1590 I915_WRITE16(IMR, dev_priv->irq_mask);
1591 POSTING_READ16(IMR);
1592 }
1593 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594
1595 return true;
1596 }
1597
1598 static void
1599 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1600 {
1601 struct drm_device *dev = ring->dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1606 if (--ring->irq_refcount == 0) {
1607 dev_priv->irq_mask |= ring->irq_enable_mask;
1608 I915_WRITE16(IMR, dev_priv->irq_mask);
1609 POSTING_READ16(IMR);
1610 }
1611 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1612 }
1613
1614 static int
1615 bsd_ring_flush(struct drm_i915_gem_request *req,
1616 u32 invalidate_domains,
1617 u32 flush_domains)
1618 {
1619 struct intel_engine_cs *ring = req->ring;
1620 int ret;
1621
1622 ret = intel_ring_begin(req, 2);
1623 if (ret)
1624 return ret;
1625
1626 intel_ring_emit(ring, MI_FLUSH);
1627 intel_ring_emit(ring, MI_NOOP);
1628 intel_ring_advance(ring);
1629 return 0;
1630 }
1631
1632 static int
1633 i9xx_add_request(struct drm_i915_gem_request *req)
1634 {
1635 struct intel_engine_cs *ring = req->ring;
1636 int ret;
1637
1638 ret = intel_ring_begin(req, 4);
1639 if (ret)
1640 return ret;
1641
1642 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1643 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1644 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1645 intel_ring_emit(ring, MI_USER_INTERRUPT);
1646 __intel_ring_advance(ring);
1647
1648 return 0;
1649 }
1650
1651 static bool
1652 gen6_ring_get_irq(struct intel_engine_cs *ring)
1653 {
1654 struct drm_device *dev = ring->dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 unsigned long flags;
1657
1658 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1659 return false;
1660
1661 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1662 if (ring->irq_refcount++ == 0) {
1663 if (HAS_L3_DPF(dev) && ring->id == RCS)
1664 I915_WRITE_IMR(ring,
1665 ~(ring->irq_enable_mask |
1666 GT_PARITY_ERROR(dev)));
1667 else
1668 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1669 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1670 }
1671 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1672
1673 return true;
1674 }
1675
1676 static void
1677 gen6_ring_put_irq(struct intel_engine_cs *ring)
1678 {
1679 struct drm_device *dev = ring->dev;
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 unsigned long flags;
1682
1683 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1684 if (--ring->irq_refcount == 0) {
1685 if (HAS_L3_DPF(dev) && ring->id == RCS)
1686 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1687 else
1688 I915_WRITE_IMR(ring, ~0);
1689 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1690 }
1691 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692 }
1693
1694 static bool
1695 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1696 {
1697 struct drm_device *dev = ring->dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 unsigned long flags;
1700
1701 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1702 return false;
1703
1704 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1705 if (ring->irq_refcount++ == 0) {
1706 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1707 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1708 }
1709 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1710
1711 return true;
1712 }
1713
1714 static void
1715 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1716 {
1717 struct drm_device *dev = ring->dev;
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 unsigned long flags;
1720
1721 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722 if (--ring->irq_refcount == 0) {
1723 I915_WRITE_IMR(ring, ~0);
1724 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1725 }
1726 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1727 }
1728
1729 static bool
1730 gen8_ring_get_irq(struct intel_engine_cs *ring)
1731 {
1732 struct drm_device *dev = ring->dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 unsigned long flags;
1735
1736 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1737 return false;
1738
1739 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1740 if (ring->irq_refcount++ == 0) {
1741 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1742 I915_WRITE_IMR(ring,
1743 ~(ring->irq_enable_mask |
1744 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1745 } else {
1746 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1747 }
1748 POSTING_READ(RING_IMR(ring->mmio_base));
1749 }
1750 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1751
1752 return true;
1753 }
1754
1755 static void
1756 gen8_ring_put_irq(struct intel_engine_cs *ring)
1757 {
1758 struct drm_device *dev = ring->dev;
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 unsigned long flags;
1761
1762 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1763 if (--ring->irq_refcount == 0) {
1764 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1765 I915_WRITE_IMR(ring,
1766 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1767 } else {
1768 I915_WRITE_IMR(ring, ~0);
1769 }
1770 POSTING_READ(RING_IMR(ring->mmio_base));
1771 }
1772 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773 }
1774
1775 static int
1776 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1777 u64 offset, u32 length,
1778 unsigned dispatch_flags)
1779 {
1780 struct intel_engine_cs *ring = req->ring;
1781 int ret;
1782
1783 ret = intel_ring_begin(req, 2);
1784 if (ret)
1785 return ret;
1786
1787 intel_ring_emit(ring,
1788 MI_BATCH_BUFFER_START |
1789 MI_BATCH_GTT |
1790 (dispatch_flags & I915_DISPATCH_SECURE ?
1791 0 : MI_BATCH_NON_SECURE_I965));
1792 intel_ring_emit(ring, offset);
1793 intel_ring_advance(ring);
1794
1795 return 0;
1796 }
1797
1798 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1799 #define I830_BATCH_LIMIT (256*1024)
1800 #define I830_TLB_ENTRIES (2)
1801 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1802 static int
1803 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1804 u64 offset, u32 len,
1805 unsigned dispatch_flags)
1806 {
1807 struct intel_engine_cs *ring = req->ring;
1808 u32 cs_offset = ring->scratch.gtt_offset;
1809 int ret;
1810
1811 ret = intel_ring_begin(req, 6);
1812 if (ret)
1813 return ret;
1814
1815 /* Evict the invalid PTE TLBs */
1816 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1817 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1818 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1819 intel_ring_emit(ring, cs_offset);
1820 intel_ring_emit(ring, 0xdeadbeef);
1821 intel_ring_emit(ring, MI_NOOP);
1822 intel_ring_advance(ring);
1823
1824 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1825 if (len > I830_BATCH_LIMIT)
1826 return -ENOSPC;
1827
1828 ret = intel_ring_begin(req, 6 + 2);
1829 if (ret)
1830 return ret;
1831
1832 /* Blit the batch (which has now all relocs applied) to the
1833 * stable batch scratch bo area (so that the CS never
1834 * stumbles over its tlb invalidation bug) ...
1835 */
1836 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1837 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1838 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1839 intel_ring_emit(ring, cs_offset);
1840 intel_ring_emit(ring, 4096);
1841 intel_ring_emit(ring, offset);
1842
1843 intel_ring_emit(ring, MI_FLUSH);
1844 intel_ring_emit(ring, MI_NOOP);
1845 intel_ring_advance(ring);
1846
1847 /* ... and execute it. */
1848 offset = cs_offset;
1849 }
1850
1851 ret = intel_ring_begin(req, 4);
1852 if (ret)
1853 return ret;
1854
1855 intel_ring_emit(ring, MI_BATCH_BUFFER);
1856 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1857 0 : MI_BATCH_NON_SECURE));
1858 intel_ring_emit(ring, offset + len - 8);
1859 intel_ring_emit(ring, MI_NOOP);
1860 intel_ring_advance(ring);
1861
1862 return 0;
1863 }
1864
1865 static int
1866 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1867 u64 offset, u32 len,
1868 unsigned dispatch_flags)
1869 {
1870 struct intel_engine_cs *ring = req->ring;
1871 int ret;
1872
1873 ret = intel_ring_begin(req, 2);
1874 if (ret)
1875 return ret;
1876
1877 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1878 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1879 0 : MI_BATCH_NON_SECURE));
1880 intel_ring_advance(ring);
1881
1882 return 0;
1883 }
1884
1885 static void cleanup_status_page(struct intel_engine_cs *ring)
1886 {
1887 struct drm_i915_gem_object *obj;
1888
1889 obj = ring->status_page.obj;
1890 if (obj == NULL)
1891 return;
1892
1893 kunmap(sg_page(obj->pages->sgl));
1894 i915_gem_object_ggtt_unpin(obj);
1895 drm_gem_object_unreference(&obj->base);
1896 ring->status_page.obj = NULL;
1897 }
1898
1899 static int init_status_page(struct intel_engine_cs *ring)
1900 {
1901 struct drm_i915_gem_object *obj;
1902
1903 if ((obj = ring->status_page.obj) == NULL) {
1904 unsigned flags;
1905 int ret;
1906
1907 obj = i915_gem_alloc_object(ring->dev, 4096);
1908 if (obj == NULL) {
1909 DRM_ERROR("Failed to allocate status page\n");
1910 return -ENOMEM;
1911 }
1912
1913 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1914 if (ret)
1915 goto err_unref;
1916
1917 flags = 0;
1918 if (!HAS_LLC(ring->dev))
1919 /* On g33, we cannot place HWS above 256MiB, so
1920 * restrict its pinning to the low mappable arena.
1921 * Though this restriction is not documented for
1922 * gen4, gen5, or byt, they also behave similarly
1923 * and hang if the HWS is placed at the top of the
1924 * GTT. To generalise, it appears that all !llc
1925 * platforms have issues with us placing the HWS
1926 * above the mappable region (even though we never
1927 * actualy map it).
1928 */
1929 flags |= PIN_MAPPABLE;
1930 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1931 if (ret) {
1932 err_unref:
1933 drm_gem_object_unreference(&obj->base);
1934 return ret;
1935 }
1936
1937 ring->status_page.obj = obj;
1938 }
1939
1940 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1941 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1942 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1943
1944 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1945 ring->name, ring->status_page.gfx_addr);
1946
1947 return 0;
1948 }
1949
1950 static int init_phys_status_page(struct intel_engine_cs *ring)
1951 {
1952 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1953
1954 if (!dev_priv->status_page_dmah) {
1955 dev_priv->status_page_dmah =
1956 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1957 if (!dev_priv->status_page_dmah)
1958 return -ENOMEM;
1959 }
1960
1961 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1962 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1963
1964 return 0;
1965 }
1966
1967 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1968 {
1969 iounmap(ringbuf->virtual_start);
1970 ringbuf->virtual_start = NULL;
1971 i915_gem_object_ggtt_unpin(ringbuf->obj);
1972 }
1973
1974 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1975 struct intel_ringbuffer *ringbuf)
1976 {
1977 struct drm_i915_private *dev_priv = to_i915(dev);
1978 struct drm_i915_gem_object *obj = ringbuf->obj;
1979 int ret;
1980
1981 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1982 if (ret)
1983 return ret;
1984
1985 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1986 if (ret) {
1987 i915_gem_object_ggtt_unpin(obj);
1988 return ret;
1989 }
1990
1991 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1992 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1993 if (ringbuf->virtual_start == NULL) {
1994 i915_gem_object_ggtt_unpin(obj);
1995 return -EINVAL;
1996 }
1997
1998 return 0;
1999 }
2000
2001 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2002 {
2003 drm_gem_object_unreference(&ringbuf->obj->base);
2004 ringbuf->obj = NULL;
2005 }
2006
2007 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2008 struct intel_ringbuffer *ringbuf)
2009 {
2010 struct drm_i915_gem_object *obj;
2011
2012 obj = NULL;
2013 if (!HAS_LLC(dev))
2014 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2015 if (obj == NULL)
2016 obj = i915_gem_alloc_object(dev, ringbuf->size);
2017 if (obj == NULL)
2018 return -ENOMEM;
2019
2020 /* mark ring buffers as read-only from GPU side by default */
2021 obj->gt_ro = 1;
2022
2023 ringbuf->obj = obj;
2024
2025 return 0;
2026 }
2027
2028 static int intel_init_ring_buffer(struct drm_device *dev,
2029 struct intel_engine_cs *ring)
2030 {
2031 struct intel_ringbuffer *ringbuf;
2032 int ret;
2033
2034 WARN_ON(ring->buffer);
2035
2036 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2037 if (!ringbuf)
2038 return -ENOMEM;
2039 ring->buffer = ringbuf;
2040
2041 ring->dev = dev;
2042 INIT_LIST_HEAD(&ring->active_list);
2043 INIT_LIST_HEAD(&ring->request_list);
2044 INIT_LIST_HEAD(&ring->execlist_queue);
2045 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2046 ringbuf->size = 32 * PAGE_SIZE;
2047 ringbuf->ring = ring;
2048 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2049
2050 init_waitqueue_head(&ring->irq_queue);
2051
2052 if (I915_NEED_GFX_HWS(dev)) {
2053 ret = init_status_page(ring);
2054 if (ret)
2055 goto error;
2056 } else {
2057 BUG_ON(ring->id != RCS);
2058 ret = init_phys_status_page(ring);
2059 if (ret)
2060 goto error;
2061 }
2062
2063 WARN_ON(ringbuf->obj);
2064
2065 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2066 if (ret) {
2067 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2068 ring->name, ret);
2069 goto error;
2070 }
2071
2072 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2073 if (ret) {
2074 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2075 ring->name, ret);
2076 intel_destroy_ringbuffer_obj(ringbuf);
2077 goto error;
2078 }
2079
2080 /* Workaround an erratum on the i830 which causes a hang if
2081 * the TAIL pointer points to within the last 2 cachelines
2082 * of the buffer.
2083 */
2084 ringbuf->effective_size = ringbuf->size;
2085 if (IS_I830(dev) || IS_845G(dev))
2086 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2087
2088 ret = i915_cmd_parser_init_ring(ring);
2089 if (ret)
2090 goto error;
2091
2092 return 0;
2093
2094 error:
2095 kfree(ringbuf);
2096 ring->buffer = NULL;
2097 return ret;
2098 }
2099
2100 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2101 {
2102 struct drm_i915_private *dev_priv;
2103 struct intel_ringbuffer *ringbuf;
2104
2105 if (!intel_ring_initialized(ring))
2106 return;
2107
2108 dev_priv = to_i915(ring->dev);
2109 ringbuf = ring->buffer;
2110
2111 intel_stop_ring_buffer(ring);
2112 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2113
2114 intel_unpin_ringbuffer_obj(ringbuf);
2115 intel_destroy_ringbuffer_obj(ringbuf);
2116
2117 if (ring->cleanup)
2118 ring->cleanup(ring);
2119
2120 cleanup_status_page(ring);
2121
2122 i915_cmd_parser_fini_ring(ring);
2123 i915_gem_batch_pool_fini(&ring->batch_pool);
2124
2125 kfree(ringbuf);
2126 ring->buffer = NULL;
2127 }
2128
2129 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2130 {
2131 struct intel_ringbuffer *ringbuf = ring->buffer;
2132 struct drm_i915_gem_request *request;
2133 unsigned space;
2134 int ret;
2135
2136 if (intel_ring_space(ringbuf) >= n)
2137 return 0;
2138
2139 /* The whole point of reserving space is to not wait! */
2140 WARN_ON(ringbuf->reserved_in_use);
2141
2142 list_for_each_entry(request, &ring->request_list, list) {
2143 space = __intel_ring_space(request->postfix, ringbuf->tail,
2144 ringbuf->size);
2145 if (space >= n)
2146 break;
2147 }
2148
2149 if (WARN_ON(&request->list == &ring->request_list))
2150 return -ENOSPC;
2151
2152 ret = i915_wait_request(request);
2153 if (ret)
2154 return ret;
2155
2156 ringbuf->space = space;
2157 return 0;
2158 }
2159
2160 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2161 {
2162 uint32_t __iomem *virt;
2163 int rem = ringbuf->size - ringbuf->tail;
2164
2165 virt = ringbuf->virtual_start + ringbuf->tail;
2166 rem /= 4;
2167 while (rem--)
2168 iowrite32(MI_NOOP, virt++);
2169
2170 ringbuf->tail = 0;
2171 intel_ring_update_space(ringbuf);
2172 }
2173
2174 int intel_ring_idle(struct intel_engine_cs *ring)
2175 {
2176 struct drm_i915_gem_request *req;
2177
2178 /* Wait upon the last request to be completed */
2179 if (list_empty(&ring->request_list))
2180 return 0;
2181
2182 req = list_entry(ring->request_list.prev,
2183 struct drm_i915_gem_request,
2184 list);
2185
2186 /* Make sure we do not trigger any retires */
2187 return __i915_wait_request(req,
2188 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2189 to_i915(ring->dev)->mm.interruptible,
2190 NULL, NULL);
2191 }
2192
2193 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2194 {
2195 request->ringbuf = request->ring->buffer;
2196 return 0;
2197 }
2198
2199 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2200 {
2201 /*
2202 * The first call merely notes the reserve request and is common for
2203 * all back ends. The subsequent localised _begin() call actually
2204 * ensures that the reservation is available. Without the begin, if
2205 * the request creator immediately submitted the request without
2206 * adding any commands to it then there might not actually be
2207 * sufficient room for the submission commands.
2208 */
2209 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2210
2211 return intel_ring_begin(request, 0);
2212 }
2213
2214 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2215 {
2216 WARN_ON(ringbuf->reserved_size);
2217 WARN_ON(ringbuf->reserved_in_use);
2218
2219 ringbuf->reserved_size = size;
2220 }
2221
2222 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2223 {
2224 WARN_ON(ringbuf->reserved_in_use);
2225
2226 ringbuf->reserved_size = 0;
2227 ringbuf->reserved_in_use = false;
2228 }
2229
2230 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2231 {
2232 WARN_ON(ringbuf->reserved_in_use);
2233
2234 ringbuf->reserved_in_use = true;
2235 ringbuf->reserved_tail = ringbuf->tail;
2236 }
2237
2238 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2239 {
2240 WARN_ON(!ringbuf->reserved_in_use);
2241 if (ringbuf->tail > ringbuf->reserved_tail) {
2242 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2243 "request reserved size too small: %d vs %d!\n",
2244 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2245 } else {
2246 /*
2247 * The ring was wrapped while the reserved space was in use.
2248 * That means that some unknown amount of the ring tail was
2249 * no-op filled and skipped. Thus simply adding the ring size
2250 * to the tail and doing the above space check will not work.
2251 * Rather than attempt to track how much tail was skipped,
2252 * it is much simpler to say that also skipping the sanity
2253 * check every once in a while is not a big issue.
2254 */
2255 }
2256
2257 ringbuf->reserved_size = 0;
2258 ringbuf->reserved_in_use = false;
2259 }
2260
2261 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2262 {
2263 struct intel_ringbuffer *ringbuf = ring->buffer;
2264 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2265 int remain_actual = ringbuf->size - ringbuf->tail;
2266 int ret, total_bytes, wait_bytes = 0;
2267 bool need_wrap = false;
2268
2269 if (ringbuf->reserved_in_use)
2270 total_bytes = bytes;
2271 else
2272 total_bytes = bytes + ringbuf->reserved_size;
2273
2274 if (unlikely(bytes > remain_usable)) {
2275 /*
2276 * Not enough space for the basic request. So need to flush
2277 * out the remainder and then wait for base + reserved.
2278 */
2279 wait_bytes = remain_actual + total_bytes;
2280 need_wrap = true;
2281 } else {
2282 if (unlikely(total_bytes > remain_usable)) {
2283 /*
2284 * The base request will fit but the reserved space
2285 * falls off the end. So only need to to wait for the
2286 * reserved size after flushing out the remainder.
2287 */
2288 wait_bytes = remain_actual + ringbuf->reserved_size;
2289 need_wrap = true;
2290 } else if (total_bytes > ringbuf->space) {
2291 /* No wrapping required, just waiting. */
2292 wait_bytes = total_bytes;
2293 }
2294 }
2295
2296 if (wait_bytes) {
2297 ret = ring_wait_for_space(ring, wait_bytes);
2298 if (unlikely(ret))
2299 return ret;
2300
2301 if (need_wrap)
2302 __wrap_ring_buffer(ringbuf);
2303 }
2304
2305 return 0;
2306 }
2307
2308 int intel_ring_begin(struct drm_i915_gem_request *req,
2309 int num_dwords)
2310 {
2311 struct intel_engine_cs *ring;
2312 struct drm_i915_private *dev_priv;
2313 int ret;
2314
2315 WARN_ON(req == NULL);
2316 ring = req->ring;
2317 dev_priv = ring->dev->dev_private;
2318
2319 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2320 dev_priv->mm.interruptible);
2321 if (ret)
2322 return ret;
2323
2324 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2325 if (ret)
2326 return ret;
2327
2328 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2329 return 0;
2330 }
2331
2332 /* Align the ring tail to a cacheline boundary */
2333 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2334 {
2335 struct intel_engine_cs *ring = req->ring;
2336 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2337 int ret;
2338
2339 if (num_dwords == 0)
2340 return 0;
2341
2342 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2343 ret = intel_ring_begin(req, num_dwords);
2344 if (ret)
2345 return ret;
2346
2347 while (num_dwords--)
2348 intel_ring_emit(ring, MI_NOOP);
2349
2350 intel_ring_advance(ring);
2351
2352 return 0;
2353 }
2354
2355 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2356 {
2357 struct drm_device *dev = ring->dev;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359
2360 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2361 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2362 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2363 if (HAS_VEBOX(dev))
2364 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2365 }
2366
2367 ring->set_seqno(ring, seqno);
2368 ring->hangcheck.seqno = seqno;
2369 }
2370
2371 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2372 u32 value)
2373 {
2374 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2375
2376 /* Every tail move must follow the sequence below */
2377
2378 /* Disable notification that the ring is IDLE. The GT
2379 * will then assume that it is busy and bring it out of rc6.
2380 */
2381 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2382 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2383
2384 /* Clear the context id. Here be magic! */
2385 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2386
2387 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2388 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2389 GEN6_BSD_SLEEP_INDICATOR) == 0,
2390 50))
2391 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2392
2393 /* Now that the ring is fully powered up, update the tail */
2394 I915_WRITE_TAIL(ring, value);
2395 POSTING_READ(RING_TAIL(ring->mmio_base));
2396
2397 /* Let the ring send IDLE messages to the GT again,
2398 * and so let it sleep to conserve power when idle.
2399 */
2400 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2401 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2402 }
2403
2404 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2405 u32 invalidate, u32 flush)
2406 {
2407 struct intel_engine_cs *ring = req->ring;
2408 uint32_t cmd;
2409 int ret;
2410
2411 ret = intel_ring_begin(req, 4);
2412 if (ret)
2413 return ret;
2414
2415 cmd = MI_FLUSH_DW;
2416 if (INTEL_INFO(ring->dev)->gen >= 8)
2417 cmd += 1;
2418
2419 /* We always require a command barrier so that subsequent
2420 * commands, such as breadcrumb interrupts, are strictly ordered
2421 * wrt the contents of the write cache being flushed to memory
2422 * (and thus being coherent from the CPU).
2423 */
2424 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2425
2426 /*
2427 * Bspec vol 1c.5 - video engine command streamer:
2428 * "If ENABLED, all TLBs will be invalidated once the flush
2429 * operation is complete. This bit is only valid when the
2430 * Post-Sync Operation field is a value of 1h or 3h."
2431 */
2432 if (invalidate & I915_GEM_GPU_DOMAINS)
2433 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2434
2435 intel_ring_emit(ring, cmd);
2436 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2437 if (INTEL_INFO(ring->dev)->gen >= 8) {
2438 intel_ring_emit(ring, 0); /* upper addr */
2439 intel_ring_emit(ring, 0); /* value */
2440 } else {
2441 intel_ring_emit(ring, 0);
2442 intel_ring_emit(ring, MI_NOOP);
2443 }
2444 intel_ring_advance(ring);
2445 return 0;
2446 }
2447
2448 static int
2449 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2450 u64 offset, u32 len,
2451 unsigned dispatch_flags)
2452 {
2453 struct intel_engine_cs *ring = req->ring;
2454 bool ppgtt = USES_PPGTT(ring->dev) &&
2455 !(dispatch_flags & I915_DISPATCH_SECURE);
2456 int ret;
2457
2458 ret = intel_ring_begin(req, 4);
2459 if (ret)
2460 return ret;
2461
2462 /* FIXME(BDW): Address space and security selectors. */
2463 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2464 (dispatch_flags & I915_DISPATCH_RS ?
2465 MI_BATCH_RESOURCE_STREAMER : 0));
2466 intel_ring_emit(ring, lower_32_bits(offset));
2467 intel_ring_emit(ring, upper_32_bits(offset));
2468 intel_ring_emit(ring, MI_NOOP);
2469 intel_ring_advance(ring);
2470
2471 return 0;
2472 }
2473
2474 static int
2475 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2476 u64 offset, u32 len,
2477 unsigned dispatch_flags)
2478 {
2479 struct intel_engine_cs *ring = req->ring;
2480 int ret;
2481
2482 ret = intel_ring_begin(req, 2);
2483 if (ret)
2484 return ret;
2485
2486 intel_ring_emit(ring,
2487 MI_BATCH_BUFFER_START |
2488 (dispatch_flags & I915_DISPATCH_SECURE ?
2489 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2490 (dispatch_flags & I915_DISPATCH_RS ?
2491 MI_BATCH_RESOURCE_STREAMER : 0));
2492 /* bit0-7 is the length on GEN6+ */
2493 intel_ring_emit(ring, offset);
2494 intel_ring_advance(ring);
2495
2496 return 0;
2497 }
2498
2499 static int
2500 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2501 u64 offset, u32 len,
2502 unsigned dispatch_flags)
2503 {
2504 struct intel_engine_cs *ring = req->ring;
2505 int ret;
2506
2507 ret = intel_ring_begin(req, 2);
2508 if (ret)
2509 return ret;
2510
2511 intel_ring_emit(ring,
2512 MI_BATCH_BUFFER_START |
2513 (dispatch_flags & I915_DISPATCH_SECURE ?
2514 0 : MI_BATCH_NON_SECURE_I965));
2515 /* bit0-7 is the length on GEN6+ */
2516 intel_ring_emit(ring, offset);
2517 intel_ring_advance(ring);
2518
2519 return 0;
2520 }
2521
2522 /* Blitter support (SandyBridge+) */
2523
2524 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2525 u32 invalidate, u32 flush)
2526 {
2527 struct intel_engine_cs *ring = req->ring;
2528 struct drm_device *dev = ring->dev;
2529 uint32_t cmd;
2530 int ret;
2531
2532 ret = intel_ring_begin(req, 4);
2533 if (ret)
2534 return ret;
2535
2536 cmd = MI_FLUSH_DW;
2537 if (INTEL_INFO(dev)->gen >= 8)
2538 cmd += 1;
2539
2540 /* We always require a command barrier so that subsequent
2541 * commands, such as breadcrumb interrupts, are strictly ordered
2542 * wrt the contents of the write cache being flushed to memory
2543 * (and thus being coherent from the CPU).
2544 */
2545 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2546
2547 /*
2548 * Bspec vol 1c.3 - blitter engine command streamer:
2549 * "If ENABLED, all TLBs will be invalidated once the flush
2550 * operation is complete. This bit is only valid when the
2551 * Post-Sync Operation field is a value of 1h or 3h."
2552 */
2553 if (invalidate & I915_GEM_DOMAIN_RENDER)
2554 cmd |= MI_INVALIDATE_TLB;
2555 intel_ring_emit(ring, cmd);
2556 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2557 if (INTEL_INFO(dev)->gen >= 8) {
2558 intel_ring_emit(ring, 0); /* upper addr */
2559 intel_ring_emit(ring, 0); /* value */
2560 } else {
2561 intel_ring_emit(ring, 0);
2562 intel_ring_emit(ring, MI_NOOP);
2563 }
2564 intel_ring_advance(ring);
2565
2566 return 0;
2567 }
2568
2569 int intel_init_render_ring_buffer(struct drm_device *dev)
2570 {
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2573 struct drm_i915_gem_object *obj;
2574 int ret;
2575
2576 ring->name = "render ring";
2577 ring->id = RCS;
2578 ring->mmio_base = RENDER_RING_BASE;
2579
2580 if (INTEL_INFO(dev)->gen >= 8) {
2581 if (i915_semaphore_is_enabled(dev)) {
2582 obj = i915_gem_alloc_object(dev, 4096);
2583 if (obj == NULL) {
2584 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2585 i915.semaphores = 0;
2586 } else {
2587 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2588 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2589 if (ret != 0) {
2590 drm_gem_object_unreference(&obj->base);
2591 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2592 i915.semaphores = 0;
2593 } else
2594 dev_priv->semaphore_obj = obj;
2595 }
2596 }
2597
2598 ring->init_context = intel_rcs_ctx_init;
2599 ring->add_request = gen6_add_request;
2600 ring->flush = gen8_render_ring_flush;
2601 ring->irq_get = gen8_ring_get_irq;
2602 ring->irq_put = gen8_ring_put_irq;
2603 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2604 ring->get_seqno = gen6_ring_get_seqno;
2605 ring->set_seqno = ring_set_seqno;
2606 if (i915_semaphore_is_enabled(dev)) {
2607 WARN_ON(!dev_priv->semaphore_obj);
2608 ring->semaphore.sync_to = gen8_ring_sync;
2609 ring->semaphore.signal = gen8_rcs_signal;
2610 GEN8_RING_SEMAPHORE_INIT;
2611 }
2612 } else if (INTEL_INFO(dev)->gen >= 6) {
2613 ring->add_request = gen6_add_request;
2614 ring->flush = gen7_render_ring_flush;
2615 if (INTEL_INFO(dev)->gen == 6)
2616 ring->flush = gen6_render_ring_flush;
2617 ring->irq_get = gen6_ring_get_irq;
2618 ring->irq_put = gen6_ring_put_irq;
2619 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2620 ring->get_seqno = gen6_ring_get_seqno;
2621 ring->set_seqno = ring_set_seqno;
2622 if (i915_semaphore_is_enabled(dev)) {
2623 ring->semaphore.sync_to = gen6_ring_sync;
2624 ring->semaphore.signal = gen6_signal;
2625 /*
2626 * The current semaphore is only applied on pre-gen8
2627 * platform. And there is no VCS2 ring on the pre-gen8
2628 * platform. So the semaphore between RCS and VCS2 is
2629 * initialized as INVALID. Gen8 will initialize the
2630 * sema between VCS2 and RCS later.
2631 */
2632 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2633 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2634 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2635 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2636 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2637 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2638 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2639 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2640 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2641 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2642 }
2643 } else if (IS_GEN5(dev)) {
2644 ring->add_request = pc_render_add_request;
2645 ring->flush = gen4_render_ring_flush;
2646 ring->get_seqno = pc_render_get_seqno;
2647 ring->set_seqno = pc_render_set_seqno;
2648 ring->irq_get = gen5_ring_get_irq;
2649 ring->irq_put = gen5_ring_put_irq;
2650 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2651 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2652 } else {
2653 ring->add_request = i9xx_add_request;
2654 if (INTEL_INFO(dev)->gen < 4)
2655 ring->flush = gen2_render_ring_flush;
2656 else
2657 ring->flush = gen4_render_ring_flush;
2658 ring->get_seqno = ring_get_seqno;
2659 ring->set_seqno = ring_set_seqno;
2660 if (IS_GEN2(dev)) {
2661 ring->irq_get = i8xx_ring_get_irq;
2662 ring->irq_put = i8xx_ring_put_irq;
2663 } else {
2664 ring->irq_get = i9xx_ring_get_irq;
2665 ring->irq_put = i9xx_ring_put_irq;
2666 }
2667 ring->irq_enable_mask = I915_USER_INTERRUPT;
2668 }
2669 ring->write_tail = ring_write_tail;
2670
2671 if (IS_HASWELL(dev))
2672 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2673 else if (IS_GEN8(dev))
2674 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2675 else if (INTEL_INFO(dev)->gen >= 6)
2676 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2677 else if (INTEL_INFO(dev)->gen >= 4)
2678 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2679 else if (IS_I830(dev) || IS_845G(dev))
2680 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2681 else
2682 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2683 ring->init_hw = init_render_ring;
2684 ring->cleanup = render_ring_cleanup;
2685
2686 /* Workaround batchbuffer to combat CS tlb bug. */
2687 if (HAS_BROKEN_CS_TLB(dev)) {
2688 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2689 if (obj == NULL) {
2690 DRM_ERROR("Failed to allocate batch bo\n");
2691 return -ENOMEM;
2692 }
2693
2694 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2695 if (ret != 0) {
2696 drm_gem_object_unreference(&obj->base);
2697 DRM_ERROR("Failed to ping batch bo\n");
2698 return ret;
2699 }
2700
2701 ring->scratch.obj = obj;
2702 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2703 }
2704
2705 ret = intel_init_ring_buffer(dev, ring);
2706 if (ret)
2707 return ret;
2708
2709 if (INTEL_INFO(dev)->gen >= 5) {
2710 ret = intel_init_pipe_control(ring);
2711 if (ret)
2712 return ret;
2713 }
2714
2715 return 0;
2716 }
2717
2718 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2722
2723 ring->name = "bsd ring";
2724 ring->id = VCS;
2725
2726 ring->write_tail = ring_write_tail;
2727 if (INTEL_INFO(dev)->gen >= 6) {
2728 ring->mmio_base = GEN6_BSD_RING_BASE;
2729 /* gen6 bsd needs a special wa for tail updates */
2730 if (IS_GEN6(dev))
2731 ring->write_tail = gen6_bsd_ring_write_tail;
2732 ring->flush = gen6_bsd_ring_flush;
2733 ring->add_request = gen6_add_request;
2734 ring->get_seqno = gen6_ring_get_seqno;
2735 ring->set_seqno = ring_set_seqno;
2736 if (INTEL_INFO(dev)->gen >= 8) {
2737 ring->irq_enable_mask =
2738 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2739 ring->irq_get = gen8_ring_get_irq;
2740 ring->irq_put = gen8_ring_put_irq;
2741 ring->dispatch_execbuffer =
2742 gen8_ring_dispatch_execbuffer;
2743 if (i915_semaphore_is_enabled(dev)) {
2744 ring->semaphore.sync_to = gen8_ring_sync;
2745 ring->semaphore.signal = gen8_xcs_signal;
2746 GEN8_RING_SEMAPHORE_INIT;
2747 }
2748 } else {
2749 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2750 ring->irq_get = gen6_ring_get_irq;
2751 ring->irq_put = gen6_ring_put_irq;
2752 ring->dispatch_execbuffer =
2753 gen6_ring_dispatch_execbuffer;
2754 if (i915_semaphore_is_enabled(dev)) {
2755 ring->semaphore.sync_to = gen6_ring_sync;
2756 ring->semaphore.signal = gen6_signal;
2757 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2758 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2759 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2760 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2761 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2762 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2763 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2764 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2765 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2766 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2767 }
2768 }
2769 } else {
2770 ring->mmio_base = BSD_RING_BASE;
2771 ring->flush = bsd_ring_flush;
2772 ring->add_request = i9xx_add_request;
2773 ring->get_seqno = ring_get_seqno;
2774 ring->set_seqno = ring_set_seqno;
2775 if (IS_GEN5(dev)) {
2776 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2777 ring->irq_get = gen5_ring_get_irq;
2778 ring->irq_put = gen5_ring_put_irq;
2779 } else {
2780 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2781 ring->irq_get = i9xx_ring_get_irq;
2782 ring->irq_put = i9xx_ring_put_irq;
2783 }
2784 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2785 }
2786 ring->init_hw = init_ring_common;
2787
2788 return intel_init_ring_buffer(dev, ring);
2789 }
2790
2791 /**
2792 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2793 */
2794 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2795 {
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2798
2799 ring->name = "bsd2 ring";
2800 ring->id = VCS2;
2801
2802 ring->write_tail = ring_write_tail;
2803 ring->mmio_base = GEN8_BSD2_RING_BASE;
2804 ring->flush = gen6_bsd_ring_flush;
2805 ring->add_request = gen6_add_request;
2806 ring->get_seqno = gen6_ring_get_seqno;
2807 ring->set_seqno = ring_set_seqno;
2808 ring->irq_enable_mask =
2809 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2810 ring->irq_get = gen8_ring_get_irq;
2811 ring->irq_put = gen8_ring_put_irq;
2812 ring->dispatch_execbuffer =
2813 gen8_ring_dispatch_execbuffer;
2814 if (i915_semaphore_is_enabled(dev)) {
2815 ring->semaphore.sync_to = gen8_ring_sync;
2816 ring->semaphore.signal = gen8_xcs_signal;
2817 GEN8_RING_SEMAPHORE_INIT;
2818 }
2819 ring->init_hw = init_ring_common;
2820
2821 return intel_init_ring_buffer(dev, ring);
2822 }
2823
2824 int intel_init_blt_ring_buffer(struct drm_device *dev)
2825 {
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2828
2829 ring->name = "blitter ring";
2830 ring->id = BCS;
2831
2832 ring->mmio_base = BLT_RING_BASE;
2833 ring->write_tail = ring_write_tail;
2834 ring->flush = gen6_ring_flush;
2835 ring->add_request = gen6_add_request;
2836 ring->get_seqno = gen6_ring_get_seqno;
2837 ring->set_seqno = ring_set_seqno;
2838 if (INTEL_INFO(dev)->gen >= 8) {
2839 ring->irq_enable_mask =
2840 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2841 ring->irq_get = gen8_ring_get_irq;
2842 ring->irq_put = gen8_ring_put_irq;
2843 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2844 if (i915_semaphore_is_enabled(dev)) {
2845 ring->semaphore.sync_to = gen8_ring_sync;
2846 ring->semaphore.signal = gen8_xcs_signal;
2847 GEN8_RING_SEMAPHORE_INIT;
2848 }
2849 } else {
2850 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2851 ring->irq_get = gen6_ring_get_irq;
2852 ring->irq_put = gen6_ring_put_irq;
2853 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2854 if (i915_semaphore_is_enabled(dev)) {
2855 ring->semaphore.signal = gen6_signal;
2856 ring->semaphore.sync_to = gen6_ring_sync;
2857 /*
2858 * The current semaphore is only applied on pre-gen8
2859 * platform. And there is no VCS2 ring on the pre-gen8
2860 * platform. So the semaphore between BCS and VCS2 is
2861 * initialized as INVALID. Gen8 will initialize the
2862 * sema between BCS and VCS2 later.
2863 */
2864 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2865 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2866 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2867 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2868 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2869 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2870 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2871 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2872 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2873 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2874 }
2875 }
2876 ring->init_hw = init_ring_common;
2877
2878 return intel_init_ring_buffer(dev, ring);
2879 }
2880
2881 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2882 {
2883 struct drm_i915_private *dev_priv = dev->dev_private;
2884 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2885
2886 ring->name = "video enhancement ring";
2887 ring->id = VECS;
2888
2889 ring->mmio_base = VEBOX_RING_BASE;
2890 ring->write_tail = ring_write_tail;
2891 ring->flush = gen6_ring_flush;
2892 ring->add_request = gen6_add_request;
2893 ring->get_seqno = gen6_ring_get_seqno;
2894 ring->set_seqno = ring_set_seqno;
2895
2896 if (INTEL_INFO(dev)->gen >= 8) {
2897 ring->irq_enable_mask =
2898 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2899 ring->irq_get = gen8_ring_get_irq;
2900 ring->irq_put = gen8_ring_put_irq;
2901 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2902 if (i915_semaphore_is_enabled(dev)) {
2903 ring->semaphore.sync_to = gen8_ring_sync;
2904 ring->semaphore.signal = gen8_xcs_signal;
2905 GEN8_RING_SEMAPHORE_INIT;
2906 }
2907 } else {
2908 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2909 ring->irq_get = hsw_vebox_get_irq;
2910 ring->irq_put = hsw_vebox_put_irq;
2911 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2912 if (i915_semaphore_is_enabled(dev)) {
2913 ring->semaphore.sync_to = gen6_ring_sync;
2914 ring->semaphore.signal = gen6_signal;
2915 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2916 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2917 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2918 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2919 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2920 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2921 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2922 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2923 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2924 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2925 }
2926 }
2927 ring->init_hw = init_ring_common;
2928
2929 return intel_init_ring_buffer(dev, ring);
2930 }
2931
2932 int
2933 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2934 {
2935 struct intel_engine_cs *ring = req->ring;
2936 int ret;
2937
2938 if (!ring->gpu_caches_dirty)
2939 return 0;
2940
2941 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2942 if (ret)
2943 return ret;
2944
2945 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2946
2947 ring->gpu_caches_dirty = false;
2948 return 0;
2949 }
2950
2951 int
2952 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2953 {
2954 struct intel_engine_cs *ring = req->ring;
2955 uint32_t flush_domains;
2956 int ret;
2957
2958 flush_domains = 0;
2959 if (ring->gpu_caches_dirty)
2960 flush_domains = I915_GEM_GPU_DOMAINS;
2961
2962 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2963 if (ret)
2964 return ret;
2965
2966 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2967
2968 ring->gpu_caches_dirty = false;
2969 return 0;
2970 }
2971
2972 void
2973 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2974 {
2975 int ret;
2976
2977 if (!intel_ring_initialized(ring))
2978 return;
2979
2980 ret = intel_ring_idle(ring);
2981 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2982 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2983 ring->name, ret);
2984
2985 stop_ring(ring);
2986 }