]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
spi: Setup the master controller driver before setting the chipselect
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 u32 mmio = 0;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 u32 reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (WARN_ON_ONCE(w->count == 0))
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 const u32 addr, const u32 mask, const u32 val)
768 {
769 const u32 idx = dev_priv->workarounds.count;
770
771 if (WARN_ON(idx >= I915_MAX_WA_REGS))
772 return -ENOSPC;
773
774 dev_priv->workarounds.reg[idx].addr = addr;
775 dev_priv->workarounds.reg[idx].value = val;
776 dev_priv->workarounds.reg[idx].mask = mask;
777
778 dev_priv->workarounds.count++;
779
780 return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785 if (r) \
786 return r; \
787 } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int bdw_init_workarounds(struct intel_engine_cs *ring)
804 {
805 struct drm_device *dev = ring->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807
808 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810 /* WaDisableAsyncFlipPerfMode:bdw */
811 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813 /* WaDisablePartialInstShootdown:bdw */
814 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
815 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
816 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
817 STALL_DOP_GATING_DISABLE);
818
819 /* WaDisableDopClockGating:bdw */
820 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
821 DOP_CLOCK_GATING_DISABLE);
822
823 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
824 GEN8_SAMPLER_POWER_BYPASS_DIS);
825
826 /* Use Force Non-Coherent whenever executing a 3D context. This is a
827 * workaround for for a possible hang in the unlikely event a TLB
828 * invalidation occurs during a PSD flush.
829 */
830 WA_SET_BIT_MASKED(HDC_CHICKEN0,
831 /* WaForceEnableNonCoherent:bdw */
832 HDC_FORCE_NON_COHERENT |
833 /* WaForceContextSaveRestoreNonCoherent:bdw */
834 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
835 /* WaHdcDisableFetchWhenMasked:bdw */
836 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
838 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
839
840 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
841 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
842 * polygons in the same 8x4 pixel/sample area to be processed without
843 * stalling waiting for the earlier ones to write to Hierarchical Z
844 * buffer."
845 *
846 * This optimization is off by default for Broadwell; turn it on.
847 */
848 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
849
850 /* Wa4x4STCOptimizationDisable:bdw */
851 WA_SET_BIT_MASKED(CACHE_MODE_1,
852 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
853
854 /*
855 * BSpec recommends 8x4 when MSAA is used,
856 * however in practice 16x4 seems fastest.
857 *
858 * Note that PS/WM thread counts depend on the WIZ hashing
859 * disable bit, which we don't touch here, but it's good
860 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
861 */
862 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
863 GEN6_WIZ_HASHING_MASK,
864 GEN6_WIZ_HASHING_16x4);
865
866 return 0;
867 }
868
869 static int chv_init_workarounds(struct intel_engine_cs *ring)
870 {
871 struct drm_device *dev = ring->dev;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873
874 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
875
876 /* WaDisableAsyncFlipPerfMode:chv */
877 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
878
879 /* WaDisablePartialInstShootdown:chv */
880 /* WaDisableThreadStallDopClockGating:chv */
881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
882 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
883 STALL_DOP_GATING_DISABLE);
884
885 /* Use Force Non-Coherent whenever executing a 3D context. This is a
886 * workaround for a possible hang in the unlikely event a TLB
887 * invalidation occurs during a PSD flush.
888 */
889 /* WaForceEnableNonCoherent:chv */
890 /* WaHdcDisableFetchWhenMasked:chv */
891 WA_SET_BIT_MASKED(HDC_CHICKEN0,
892 HDC_FORCE_NON_COHERENT |
893 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
894
895 /* According to the CACHE_MODE_0 default value documentation, some
896 * CHV platforms disable this optimization by default. Turn it on.
897 */
898 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
899
900 /* Wa4x4STCOptimizationDisable:chv */
901 WA_SET_BIT_MASKED(CACHE_MODE_1,
902 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
903
904 /* Improve HiZ throughput on CHV. */
905 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
906
907 /*
908 * BSpec recommends 8x4 when MSAA is used,
909 * however in practice 16x4 seems fastest.
910 *
911 * Note that PS/WM thread counts depend on the WIZ hashing
912 * disable bit, which we don't touch here, but it's good
913 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
914 */
915 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
916 GEN6_WIZ_HASHING_MASK,
917 GEN6_WIZ_HASHING_16x4);
918
919 return 0;
920 }
921
922 static int gen9_init_workarounds(struct intel_engine_cs *ring)
923 {
924 struct drm_device *dev = ring->dev;
925 struct drm_i915_private *dev_priv = dev->dev_private;
926 uint32_t tmp;
927
928 /* WaDisablePartialInstShootdown:skl,bxt */
929 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
931
932 /* Syncing dependencies between camera and graphics:skl,bxt */
933 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
934 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
935
936 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
937 INTEL_REVID(dev) == SKL_REVID_B0)) ||
938 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941 GEN9_DG_MIRROR_FIX_ENABLE);
942 }
943
944 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
945 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
946 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
947 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
948 GEN9_RHWO_OPTIMIZATION_DISABLE);
949 /*
950 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
951 * but we do that in per ctx batchbuffer as there is an issue
952 * with this register not getting restored on ctx restore
953 */
954 }
955
956 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
957 IS_BROXTON(dev)) {
958 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
959 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 GEN9_ENABLE_YV12_BUGFIX);
961 }
962
963 /* Wa4x4STCOptimizationDisable:skl,bxt */
964 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
965
966 /* WaDisablePartialResolveInVc:skl,bxt */
967 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
968
969 /* WaCcsTlbPrefetchDisable:skl,bxt */
970 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
971 GEN9_CCS_TLB_PREFETCH_ENABLE);
972
973 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
974 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
975 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
976 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
977 PIXEL_MASK_CAMMING_DISABLE);
978
979 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
980 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
981 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
982 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
983 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
984 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
985
986 return 0;
987 }
988
989 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
990 {
991 struct drm_device *dev = ring->dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 u8 vals[3] = { 0, 0, 0 };
994 unsigned int i;
995
996 for (i = 0; i < 3; i++) {
997 u8 ss;
998
999 /*
1000 * Only consider slices where one, and only one, subslice has 7
1001 * EUs
1002 */
1003 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1004 continue;
1005
1006 /*
1007 * subslice_7eu[i] != 0 (because of the check above) and
1008 * ss_max == 4 (maximum number of subslices possible per slice)
1009 *
1010 * -> 0 <= ss <= 3;
1011 */
1012 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1013 vals[i] = 3 - ss;
1014 }
1015
1016 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1017 return 0;
1018
1019 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1020 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1021 GEN9_IZ_HASHING_MASK(2) |
1022 GEN9_IZ_HASHING_MASK(1) |
1023 GEN9_IZ_HASHING_MASK(0),
1024 GEN9_IZ_HASHING(2, vals[2]) |
1025 GEN9_IZ_HASHING(1, vals[1]) |
1026 GEN9_IZ_HASHING(0, vals[0]));
1027
1028 return 0;
1029 }
1030
1031
1032 static int skl_init_workarounds(struct intel_engine_cs *ring)
1033 {
1034 struct drm_device *dev = ring->dev;
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1036
1037 gen9_init_workarounds(ring);
1038
1039 /* WaDisablePowerCompilerClockGating:skl */
1040 if (INTEL_REVID(dev) == SKL_REVID_B0)
1041 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1042 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1043
1044 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1045 /*
1046 *Use Force Non-Coherent whenever executing a 3D context. This
1047 * is a workaround for a possible hang in the unlikely event
1048 * a TLB invalidation occurs during a PSD flush.
1049 */
1050 /* WaForceEnableNonCoherent:skl */
1051 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1052 HDC_FORCE_NON_COHERENT);
1053 }
1054
1055 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1056 INTEL_REVID(dev) == SKL_REVID_D0)
1057 /* WaBarrierPerformanceFixDisable:skl */
1058 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1059 HDC_FENCE_DEST_SLM_DISABLE |
1060 HDC_BARRIER_PERFORMANCE_DISABLE);
1061
1062 /* WaDisableSbeCacheDispatchPortSharing:skl */
1063 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1064 WA_SET_BIT_MASKED(
1065 GEN7_HALF_SLICE_CHICKEN1,
1066 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1067 }
1068
1069 return skl_tune_iz_hashing(ring);
1070 }
1071
1072 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1073 {
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076
1077 gen9_init_workarounds(ring);
1078
1079 /* WaDisableThreadStallDopClockGating:bxt */
1080 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1081 STALL_DOP_GATING_DISABLE);
1082
1083 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1084 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1085 WA_SET_BIT_MASKED(
1086 GEN7_HALF_SLICE_CHICKEN1,
1087 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1088 }
1089
1090 return 0;
1091 }
1092
1093 int init_workarounds_ring(struct intel_engine_cs *ring)
1094 {
1095 struct drm_device *dev = ring->dev;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097
1098 WARN_ON(ring->id != RCS);
1099
1100 dev_priv->workarounds.count = 0;
1101
1102 if (IS_BROADWELL(dev))
1103 return bdw_init_workarounds(ring);
1104
1105 if (IS_CHERRYVIEW(dev))
1106 return chv_init_workarounds(ring);
1107
1108 if (IS_SKYLAKE(dev))
1109 return skl_init_workarounds(ring);
1110
1111 if (IS_BROXTON(dev))
1112 return bxt_init_workarounds(ring);
1113
1114 return 0;
1115 }
1116
1117 static int init_render_ring(struct intel_engine_cs *ring)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 int ret = init_ring_common(ring);
1122 if (ret)
1123 return ret;
1124
1125 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1126 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1127 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1128
1129 /* We need to disable the AsyncFlip performance optimisations in order
1130 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1131 * programmed to '1' on all products.
1132 *
1133 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1134 */
1135 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1136 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1137
1138 /* Required for the hardware to program scanline values for waiting */
1139 /* WaEnableFlushTlbInvalidationMode:snb */
1140 if (INTEL_INFO(dev)->gen == 6)
1141 I915_WRITE(GFX_MODE,
1142 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1143
1144 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1145 if (IS_GEN7(dev))
1146 I915_WRITE(GFX_MODE_GEN7,
1147 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1148 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1149
1150 if (IS_GEN6(dev)) {
1151 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1152 * "If this bit is set, STCunit will have LRA as replacement
1153 * policy. [...] This bit must be reset. LRA replacement
1154 * policy is not supported."
1155 */
1156 I915_WRITE(CACHE_MODE_0,
1157 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1158 }
1159
1160 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1161 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1162
1163 if (HAS_L3_DPF(dev))
1164 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1165
1166 return init_workarounds_ring(ring);
1167 }
1168
1169 static void render_ring_cleanup(struct intel_engine_cs *ring)
1170 {
1171 struct drm_device *dev = ring->dev;
1172 struct drm_i915_private *dev_priv = dev->dev_private;
1173
1174 if (dev_priv->semaphore_obj) {
1175 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1176 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1177 dev_priv->semaphore_obj = NULL;
1178 }
1179
1180 intel_fini_pipe_control(ring);
1181 }
1182
1183 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1184 unsigned int num_dwords)
1185 {
1186 #define MBOX_UPDATE_DWORDS 8
1187 struct intel_engine_cs *signaller = signaller_req->ring;
1188 struct drm_device *dev = signaller->dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 struct intel_engine_cs *waiter;
1191 int i, ret, num_rings;
1192
1193 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1194 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1195 #undef MBOX_UPDATE_DWORDS
1196
1197 ret = intel_ring_begin(signaller_req, num_dwords);
1198 if (ret)
1199 return ret;
1200
1201 for_each_ring(waiter, dev_priv, i) {
1202 u32 seqno;
1203 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1204 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1205 continue;
1206
1207 seqno = i915_gem_request_get_seqno(signaller_req);
1208 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1209 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1210 PIPE_CONTROL_QW_WRITE |
1211 PIPE_CONTROL_FLUSH_ENABLE);
1212 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1213 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1214 intel_ring_emit(signaller, seqno);
1215 intel_ring_emit(signaller, 0);
1216 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1217 MI_SEMAPHORE_TARGET(waiter->id));
1218 intel_ring_emit(signaller, 0);
1219 }
1220
1221 return 0;
1222 }
1223
1224 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1225 unsigned int num_dwords)
1226 {
1227 #define MBOX_UPDATE_DWORDS 6
1228 struct intel_engine_cs *signaller = signaller_req->ring;
1229 struct drm_device *dev = signaller->dev;
1230 struct drm_i915_private *dev_priv = dev->dev_private;
1231 struct intel_engine_cs *waiter;
1232 int i, ret, num_rings;
1233
1234 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1235 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1236 #undef MBOX_UPDATE_DWORDS
1237
1238 ret = intel_ring_begin(signaller_req, num_dwords);
1239 if (ret)
1240 return ret;
1241
1242 for_each_ring(waiter, dev_priv, i) {
1243 u32 seqno;
1244 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1245 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1246 continue;
1247
1248 seqno = i915_gem_request_get_seqno(signaller_req);
1249 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1250 MI_FLUSH_DW_OP_STOREDW);
1251 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1252 MI_FLUSH_DW_USE_GTT);
1253 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1254 intel_ring_emit(signaller, seqno);
1255 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1256 MI_SEMAPHORE_TARGET(waiter->id));
1257 intel_ring_emit(signaller, 0);
1258 }
1259
1260 return 0;
1261 }
1262
1263 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1264 unsigned int num_dwords)
1265 {
1266 struct intel_engine_cs *signaller = signaller_req->ring;
1267 struct drm_device *dev = signaller->dev;
1268 struct drm_i915_private *dev_priv = dev->dev_private;
1269 struct intel_engine_cs *useless;
1270 int i, ret, num_rings;
1271
1272 #define MBOX_UPDATE_DWORDS 3
1273 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1274 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1275 #undef MBOX_UPDATE_DWORDS
1276
1277 ret = intel_ring_begin(signaller_req, num_dwords);
1278 if (ret)
1279 return ret;
1280
1281 for_each_ring(useless, dev_priv, i) {
1282 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1283 if (mbox_reg != GEN6_NOSYNC) {
1284 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1285 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1286 intel_ring_emit(signaller, mbox_reg);
1287 intel_ring_emit(signaller, seqno);
1288 }
1289 }
1290
1291 /* If num_dwords was rounded, make sure the tail pointer is correct */
1292 if (num_rings % 2 == 0)
1293 intel_ring_emit(signaller, MI_NOOP);
1294
1295 return 0;
1296 }
1297
1298 /**
1299 * gen6_add_request - Update the semaphore mailbox registers
1300 *
1301 * @request - request to write to the ring
1302 *
1303 * Update the mailbox registers in the *other* rings with the current seqno.
1304 * This acts like a signal in the canonical semaphore.
1305 */
1306 static int
1307 gen6_add_request(struct drm_i915_gem_request *req)
1308 {
1309 struct intel_engine_cs *ring = req->ring;
1310 int ret;
1311
1312 if (ring->semaphore.signal)
1313 ret = ring->semaphore.signal(req, 4);
1314 else
1315 ret = intel_ring_begin(req, 4);
1316
1317 if (ret)
1318 return ret;
1319
1320 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1321 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1322 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1323 intel_ring_emit(ring, MI_USER_INTERRUPT);
1324 __intel_ring_advance(ring);
1325
1326 return 0;
1327 }
1328
1329 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1330 u32 seqno)
1331 {
1332 struct drm_i915_private *dev_priv = dev->dev_private;
1333 return dev_priv->last_seqno < seqno;
1334 }
1335
1336 /**
1337 * intel_ring_sync - sync the waiter to the signaller on seqno
1338 *
1339 * @waiter - ring that is waiting
1340 * @signaller - ring which has, or will signal
1341 * @seqno - seqno which the waiter will block on
1342 */
1343
1344 static int
1345 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1346 struct intel_engine_cs *signaller,
1347 u32 seqno)
1348 {
1349 struct intel_engine_cs *waiter = waiter_req->ring;
1350 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1351 int ret;
1352
1353 ret = intel_ring_begin(waiter_req, 4);
1354 if (ret)
1355 return ret;
1356
1357 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1358 MI_SEMAPHORE_GLOBAL_GTT |
1359 MI_SEMAPHORE_POLL |
1360 MI_SEMAPHORE_SAD_GTE_SDD);
1361 intel_ring_emit(waiter, seqno);
1362 intel_ring_emit(waiter,
1363 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1364 intel_ring_emit(waiter,
1365 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366 intel_ring_advance(waiter);
1367 return 0;
1368 }
1369
1370 static int
1371 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1372 struct intel_engine_cs *signaller,
1373 u32 seqno)
1374 {
1375 struct intel_engine_cs *waiter = waiter_req->ring;
1376 u32 dw1 = MI_SEMAPHORE_MBOX |
1377 MI_SEMAPHORE_COMPARE |
1378 MI_SEMAPHORE_REGISTER;
1379 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1380 int ret;
1381
1382 /* Throughout all of the GEM code, seqno passed implies our current
1383 * seqno is >= the last seqno executed. However for hardware the
1384 * comparison is strictly greater than.
1385 */
1386 seqno -= 1;
1387
1388 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1389
1390 ret = intel_ring_begin(waiter_req, 4);
1391 if (ret)
1392 return ret;
1393
1394 /* If seqno wrap happened, omit the wait with no-ops */
1395 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1396 intel_ring_emit(waiter, dw1 | wait_mbox);
1397 intel_ring_emit(waiter, seqno);
1398 intel_ring_emit(waiter, 0);
1399 intel_ring_emit(waiter, MI_NOOP);
1400 } else {
1401 intel_ring_emit(waiter, MI_NOOP);
1402 intel_ring_emit(waiter, MI_NOOP);
1403 intel_ring_emit(waiter, MI_NOOP);
1404 intel_ring_emit(waiter, MI_NOOP);
1405 }
1406 intel_ring_advance(waiter);
1407
1408 return 0;
1409 }
1410
1411 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1412 do { \
1413 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1414 PIPE_CONTROL_DEPTH_STALL); \
1415 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1416 intel_ring_emit(ring__, 0); \
1417 intel_ring_emit(ring__, 0); \
1418 } while (0)
1419
1420 static int
1421 pc_render_add_request(struct drm_i915_gem_request *req)
1422 {
1423 struct intel_engine_cs *ring = req->ring;
1424 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1425 int ret;
1426
1427 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1428 * incoherent with writes to memory, i.e. completely fubar,
1429 * so we need to use PIPE_NOTIFY instead.
1430 *
1431 * However, we also need to workaround the qword write
1432 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1433 * memory before requesting an interrupt.
1434 */
1435 ret = intel_ring_begin(req, 32);
1436 if (ret)
1437 return ret;
1438
1439 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1440 PIPE_CONTROL_WRITE_FLUSH |
1441 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1442 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1443 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1444 intel_ring_emit(ring, 0);
1445 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1446 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1447 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448 scratch_addr += 2 * CACHELINE_BYTES;
1449 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450 scratch_addr += 2 * CACHELINE_BYTES;
1451 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452 scratch_addr += 2 * CACHELINE_BYTES;
1453 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454 scratch_addr += 2 * CACHELINE_BYTES;
1455 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456
1457 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1458 PIPE_CONTROL_WRITE_FLUSH |
1459 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1460 PIPE_CONTROL_NOTIFY);
1461 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1462 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1463 intel_ring_emit(ring, 0);
1464 __intel_ring_advance(ring);
1465
1466 return 0;
1467 }
1468
1469 static u32
1470 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1471 {
1472 /* Workaround to force correct ordering between irq and seqno writes on
1473 * ivb (and maybe also on snb) by reading from a CS register (like
1474 * ACTHD) before reading the status page. */
1475 if (!lazy_coherency) {
1476 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1477 POSTING_READ(RING_ACTHD(ring->mmio_base));
1478 }
1479
1480 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1481 }
1482
1483 static u32
1484 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1485 {
1486 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1487 }
1488
1489 static void
1490 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1491 {
1492 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1493 }
1494
1495 static u32
1496 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1497 {
1498 return ring->scratch.cpu_page[0];
1499 }
1500
1501 static void
1502 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1503 {
1504 ring->scratch.cpu_page[0] = seqno;
1505 }
1506
1507 static bool
1508 gen5_ring_get_irq(struct intel_engine_cs *ring)
1509 {
1510 struct drm_device *dev = ring->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 unsigned long flags;
1513
1514 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1515 return false;
1516
1517 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1518 if (ring->irq_refcount++ == 0)
1519 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1520 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1521
1522 return true;
1523 }
1524
1525 static void
1526 gen5_ring_put_irq(struct intel_engine_cs *ring)
1527 {
1528 struct drm_device *dev = ring->dev;
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 unsigned long flags;
1531
1532 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1533 if (--ring->irq_refcount == 0)
1534 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1535 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1536 }
1537
1538 static bool
1539 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1540 {
1541 struct drm_device *dev = ring->dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 unsigned long flags;
1544
1545 if (!intel_irqs_enabled(dev_priv))
1546 return false;
1547
1548 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1549 if (ring->irq_refcount++ == 0) {
1550 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1551 I915_WRITE(IMR, dev_priv->irq_mask);
1552 POSTING_READ(IMR);
1553 }
1554 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1555
1556 return true;
1557 }
1558
1559 static void
1560 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1561 {
1562 struct drm_device *dev = ring->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1567 if (--ring->irq_refcount == 0) {
1568 dev_priv->irq_mask |= ring->irq_enable_mask;
1569 I915_WRITE(IMR, dev_priv->irq_mask);
1570 POSTING_READ(IMR);
1571 }
1572 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1573 }
1574
1575 static bool
1576 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1577 {
1578 struct drm_device *dev = ring->dev;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 unsigned long flags;
1581
1582 if (!intel_irqs_enabled(dev_priv))
1583 return false;
1584
1585 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1586 if (ring->irq_refcount++ == 0) {
1587 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1588 I915_WRITE16(IMR, dev_priv->irq_mask);
1589 POSTING_READ16(IMR);
1590 }
1591 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1592
1593 return true;
1594 }
1595
1596 static void
1597 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1598 {
1599 struct drm_device *dev = ring->dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604 if (--ring->irq_refcount == 0) {
1605 dev_priv->irq_mask |= ring->irq_enable_mask;
1606 I915_WRITE16(IMR, dev_priv->irq_mask);
1607 POSTING_READ16(IMR);
1608 }
1609 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1610 }
1611
1612 static int
1613 bsd_ring_flush(struct drm_i915_gem_request *req,
1614 u32 invalidate_domains,
1615 u32 flush_domains)
1616 {
1617 struct intel_engine_cs *ring = req->ring;
1618 int ret;
1619
1620 ret = intel_ring_begin(req, 2);
1621 if (ret)
1622 return ret;
1623
1624 intel_ring_emit(ring, MI_FLUSH);
1625 intel_ring_emit(ring, MI_NOOP);
1626 intel_ring_advance(ring);
1627 return 0;
1628 }
1629
1630 static int
1631 i9xx_add_request(struct drm_i915_gem_request *req)
1632 {
1633 struct intel_engine_cs *ring = req->ring;
1634 int ret;
1635
1636 ret = intel_ring_begin(req, 4);
1637 if (ret)
1638 return ret;
1639
1640 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1641 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1642 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1643 intel_ring_emit(ring, MI_USER_INTERRUPT);
1644 __intel_ring_advance(ring);
1645
1646 return 0;
1647 }
1648
1649 static bool
1650 gen6_ring_get_irq(struct intel_engine_cs *ring)
1651 {
1652 struct drm_device *dev = ring->dev;
1653 struct drm_i915_private *dev_priv = dev->dev_private;
1654 unsigned long flags;
1655
1656 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1657 return false;
1658
1659 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1660 if (ring->irq_refcount++ == 0) {
1661 if (HAS_L3_DPF(dev) && ring->id == RCS)
1662 I915_WRITE_IMR(ring,
1663 ~(ring->irq_enable_mask |
1664 GT_PARITY_ERROR(dev)));
1665 else
1666 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1667 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1668 }
1669 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1670
1671 return true;
1672 }
1673
1674 static void
1675 gen6_ring_put_irq(struct intel_engine_cs *ring)
1676 {
1677 struct drm_device *dev = ring->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 unsigned long flags;
1680
1681 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1682 if (--ring->irq_refcount == 0) {
1683 if (HAS_L3_DPF(dev) && ring->id == RCS)
1684 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1685 else
1686 I915_WRITE_IMR(ring, ~0);
1687 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1688 }
1689 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1690 }
1691
1692 static bool
1693 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1694 {
1695 struct drm_device *dev = ring->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 unsigned long flags;
1698
1699 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1700 return false;
1701
1702 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703 if (ring->irq_refcount++ == 0) {
1704 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1705 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1706 }
1707 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708
1709 return true;
1710 }
1711
1712 static void
1713 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1714 {
1715 struct drm_device *dev = ring->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1720 if (--ring->irq_refcount == 0) {
1721 I915_WRITE_IMR(ring, ~0);
1722 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1723 }
1724 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1725 }
1726
1727 static bool
1728 gen8_ring_get_irq(struct intel_engine_cs *ring)
1729 {
1730 struct drm_device *dev = ring->dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 unsigned long flags;
1733
1734 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1735 return false;
1736
1737 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1738 if (ring->irq_refcount++ == 0) {
1739 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1740 I915_WRITE_IMR(ring,
1741 ~(ring->irq_enable_mask |
1742 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1743 } else {
1744 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1745 }
1746 POSTING_READ(RING_IMR(ring->mmio_base));
1747 }
1748 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1749
1750 return true;
1751 }
1752
1753 static void
1754 gen8_ring_put_irq(struct intel_engine_cs *ring)
1755 {
1756 struct drm_device *dev = ring->dev;
1757 struct drm_i915_private *dev_priv = dev->dev_private;
1758 unsigned long flags;
1759
1760 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1761 if (--ring->irq_refcount == 0) {
1762 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1763 I915_WRITE_IMR(ring,
1764 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1765 } else {
1766 I915_WRITE_IMR(ring, ~0);
1767 }
1768 POSTING_READ(RING_IMR(ring->mmio_base));
1769 }
1770 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771 }
1772
1773 static int
1774 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1775 u64 offset, u32 length,
1776 unsigned dispatch_flags)
1777 {
1778 struct intel_engine_cs *ring = req->ring;
1779 int ret;
1780
1781 ret = intel_ring_begin(req, 2);
1782 if (ret)
1783 return ret;
1784
1785 intel_ring_emit(ring,
1786 MI_BATCH_BUFFER_START |
1787 MI_BATCH_GTT |
1788 (dispatch_flags & I915_DISPATCH_SECURE ?
1789 0 : MI_BATCH_NON_SECURE_I965));
1790 intel_ring_emit(ring, offset);
1791 intel_ring_advance(ring);
1792
1793 return 0;
1794 }
1795
1796 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1797 #define I830_BATCH_LIMIT (256*1024)
1798 #define I830_TLB_ENTRIES (2)
1799 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1800 static int
1801 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1802 u64 offset, u32 len,
1803 unsigned dispatch_flags)
1804 {
1805 struct intel_engine_cs *ring = req->ring;
1806 u32 cs_offset = ring->scratch.gtt_offset;
1807 int ret;
1808
1809 ret = intel_ring_begin(req, 6);
1810 if (ret)
1811 return ret;
1812
1813 /* Evict the invalid PTE TLBs */
1814 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1815 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1816 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1817 intel_ring_emit(ring, cs_offset);
1818 intel_ring_emit(ring, 0xdeadbeef);
1819 intel_ring_emit(ring, MI_NOOP);
1820 intel_ring_advance(ring);
1821
1822 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1823 if (len > I830_BATCH_LIMIT)
1824 return -ENOSPC;
1825
1826 ret = intel_ring_begin(req, 6 + 2);
1827 if (ret)
1828 return ret;
1829
1830 /* Blit the batch (which has now all relocs applied) to the
1831 * stable batch scratch bo area (so that the CS never
1832 * stumbles over its tlb invalidation bug) ...
1833 */
1834 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1835 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1836 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1837 intel_ring_emit(ring, cs_offset);
1838 intel_ring_emit(ring, 4096);
1839 intel_ring_emit(ring, offset);
1840
1841 intel_ring_emit(ring, MI_FLUSH);
1842 intel_ring_emit(ring, MI_NOOP);
1843 intel_ring_advance(ring);
1844
1845 /* ... and execute it. */
1846 offset = cs_offset;
1847 }
1848
1849 ret = intel_ring_begin(req, 4);
1850 if (ret)
1851 return ret;
1852
1853 intel_ring_emit(ring, MI_BATCH_BUFFER);
1854 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1855 0 : MI_BATCH_NON_SECURE));
1856 intel_ring_emit(ring, offset + len - 8);
1857 intel_ring_emit(ring, MI_NOOP);
1858 intel_ring_advance(ring);
1859
1860 return 0;
1861 }
1862
1863 static int
1864 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1865 u64 offset, u32 len,
1866 unsigned dispatch_flags)
1867 {
1868 struct intel_engine_cs *ring = req->ring;
1869 int ret;
1870
1871 ret = intel_ring_begin(req, 2);
1872 if (ret)
1873 return ret;
1874
1875 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1876 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1877 0 : MI_BATCH_NON_SECURE));
1878 intel_ring_advance(ring);
1879
1880 return 0;
1881 }
1882
1883 static void cleanup_status_page(struct intel_engine_cs *ring)
1884 {
1885 struct drm_i915_gem_object *obj;
1886
1887 obj = ring->status_page.obj;
1888 if (obj == NULL)
1889 return;
1890
1891 kunmap(sg_page(obj->pages->sgl));
1892 i915_gem_object_ggtt_unpin(obj);
1893 drm_gem_object_unreference(&obj->base);
1894 ring->status_page.obj = NULL;
1895 }
1896
1897 static int init_status_page(struct intel_engine_cs *ring)
1898 {
1899 struct drm_i915_gem_object *obj;
1900
1901 if ((obj = ring->status_page.obj) == NULL) {
1902 unsigned flags;
1903 int ret;
1904
1905 obj = i915_gem_alloc_object(ring->dev, 4096);
1906 if (obj == NULL) {
1907 DRM_ERROR("Failed to allocate status page\n");
1908 return -ENOMEM;
1909 }
1910
1911 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1912 if (ret)
1913 goto err_unref;
1914
1915 flags = 0;
1916 if (!HAS_LLC(ring->dev))
1917 /* On g33, we cannot place HWS above 256MiB, so
1918 * restrict its pinning to the low mappable arena.
1919 * Though this restriction is not documented for
1920 * gen4, gen5, or byt, they also behave similarly
1921 * and hang if the HWS is placed at the top of the
1922 * GTT. To generalise, it appears that all !llc
1923 * platforms have issues with us placing the HWS
1924 * above the mappable region (even though we never
1925 * actualy map it).
1926 */
1927 flags |= PIN_MAPPABLE;
1928 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1929 if (ret) {
1930 err_unref:
1931 drm_gem_object_unreference(&obj->base);
1932 return ret;
1933 }
1934
1935 ring->status_page.obj = obj;
1936 }
1937
1938 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1939 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1940 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1941
1942 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1943 ring->name, ring->status_page.gfx_addr);
1944
1945 return 0;
1946 }
1947
1948 static int init_phys_status_page(struct intel_engine_cs *ring)
1949 {
1950 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1951
1952 if (!dev_priv->status_page_dmah) {
1953 dev_priv->status_page_dmah =
1954 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1955 if (!dev_priv->status_page_dmah)
1956 return -ENOMEM;
1957 }
1958
1959 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1960 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1961
1962 return 0;
1963 }
1964
1965 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1966 {
1967 iounmap(ringbuf->virtual_start);
1968 ringbuf->virtual_start = NULL;
1969 i915_gem_object_ggtt_unpin(ringbuf->obj);
1970 }
1971
1972 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1973 struct intel_ringbuffer *ringbuf)
1974 {
1975 struct drm_i915_private *dev_priv = to_i915(dev);
1976 struct drm_i915_gem_object *obj = ringbuf->obj;
1977 int ret;
1978
1979 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1980 if (ret)
1981 return ret;
1982
1983 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1984 if (ret) {
1985 i915_gem_object_ggtt_unpin(obj);
1986 return ret;
1987 }
1988
1989 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1990 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1991 if (ringbuf->virtual_start == NULL) {
1992 i915_gem_object_ggtt_unpin(obj);
1993 return -EINVAL;
1994 }
1995
1996 return 0;
1997 }
1998
1999 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2000 {
2001 drm_gem_object_unreference(&ringbuf->obj->base);
2002 ringbuf->obj = NULL;
2003 }
2004
2005 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2006 struct intel_ringbuffer *ringbuf)
2007 {
2008 struct drm_i915_gem_object *obj;
2009
2010 obj = NULL;
2011 if (!HAS_LLC(dev))
2012 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2013 if (obj == NULL)
2014 obj = i915_gem_alloc_object(dev, ringbuf->size);
2015 if (obj == NULL)
2016 return -ENOMEM;
2017
2018 /* mark ring buffers as read-only from GPU side by default */
2019 obj->gt_ro = 1;
2020
2021 ringbuf->obj = obj;
2022
2023 return 0;
2024 }
2025
2026 static int intel_init_ring_buffer(struct drm_device *dev,
2027 struct intel_engine_cs *ring)
2028 {
2029 struct intel_ringbuffer *ringbuf;
2030 int ret;
2031
2032 WARN_ON(ring->buffer);
2033
2034 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2035 if (!ringbuf)
2036 return -ENOMEM;
2037 ring->buffer = ringbuf;
2038
2039 ring->dev = dev;
2040 INIT_LIST_HEAD(&ring->active_list);
2041 INIT_LIST_HEAD(&ring->request_list);
2042 INIT_LIST_HEAD(&ring->execlist_queue);
2043 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2044 ringbuf->size = 32 * PAGE_SIZE;
2045 ringbuf->ring = ring;
2046 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2047
2048 init_waitqueue_head(&ring->irq_queue);
2049
2050 if (I915_NEED_GFX_HWS(dev)) {
2051 ret = init_status_page(ring);
2052 if (ret)
2053 goto error;
2054 } else {
2055 BUG_ON(ring->id != RCS);
2056 ret = init_phys_status_page(ring);
2057 if (ret)
2058 goto error;
2059 }
2060
2061 WARN_ON(ringbuf->obj);
2062
2063 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2064 if (ret) {
2065 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2066 ring->name, ret);
2067 goto error;
2068 }
2069
2070 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2071 if (ret) {
2072 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2073 ring->name, ret);
2074 intel_destroy_ringbuffer_obj(ringbuf);
2075 goto error;
2076 }
2077
2078 /* Workaround an erratum on the i830 which causes a hang if
2079 * the TAIL pointer points to within the last 2 cachelines
2080 * of the buffer.
2081 */
2082 ringbuf->effective_size = ringbuf->size;
2083 if (IS_I830(dev) || IS_845G(dev))
2084 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2085
2086 ret = i915_cmd_parser_init_ring(ring);
2087 if (ret)
2088 goto error;
2089
2090 return 0;
2091
2092 error:
2093 kfree(ringbuf);
2094 ring->buffer = NULL;
2095 return ret;
2096 }
2097
2098 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2099 {
2100 struct drm_i915_private *dev_priv;
2101 struct intel_ringbuffer *ringbuf;
2102
2103 if (!intel_ring_initialized(ring))
2104 return;
2105
2106 dev_priv = to_i915(ring->dev);
2107 ringbuf = ring->buffer;
2108
2109 intel_stop_ring_buffer(ring);
2110 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2111
2112 intel_unpin_ringbuffer_obj(ringbuf);
2113 intel_destroy_ringbuffer_obj(ringbuf);
2114
2115 if (ring->cleanup)
2116 ring->cleanup(ring);
2117
2118 cleanup_status_page(ring);
2119
2120 i915_cmd_parser_fini_ring(ring);
2121 i915_gem_batch_pool_fini(&ring->batch_pool);
2122
2123 kfree(ringbuf);
2124 ring->buffer = NULL;
2125 }
2126
2127 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2128 {
2129 struct intel_ringbuffer *ringbuf = ring->buffer;
2130 struct drm_i915_gem_request *request;
2131 unsigned space;
2132 int ret;
2133
2134 if (intel_ring_space(ringbuf) >= n)
2135 return 0;
2136
2137 /* The whole point of reserving space is to not wait! */
2138 WARN_ON(ringbuf->reserved_in_use);
2139
2140 list_for_each_entry(request, &ring->request_list, list) {
2141 space = __intel_ring_space(request->postfix, ringbuf->tail,
2142 ringbuf->size);
2143 if (space >= n)
2144 break;
2145 }
2146
2147 if (WARN_ON(&request->list == &ring->request_list))
2148 return -ENOSPC;
2149
2150 ret = i915_wait_request(request);
2151 if (ret)
2152 return ret;
2153
2154 ringbuf->space = space;
2155 return 0;
2156 }
2157
2158 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2159 {
2160 uint32_t __iomem *virt;
2161 int rem = ringbuf->size - ringbuf->tail;
2162
2163 virt = ringbuf->virtual_start + ringbuf->tail;
2164 rem /= 4;
2165 while (rem--)
2166 iowrite32(MI_NOOP, virt++);
2167
2168 ringbuf->tail = 0;
2169 intel_ring_update_space(ringbuf);
2170 }
2171
2172 int intel_ring_idle(struct intel_engine_cs *ring)
2173 {
2174 struct drm_i915_gem_request *req;
2175
2176 /* Wait upon the last request to be completed */
2177 if (list_empty(&ring->request_list))
2178 return 0;
2179
2180 req = list_entry(ring->request_list.prev,
2181 struct drm_i915_gem_request,
2182 list);
2183
2184 /* Make sure we do not trigger any retires */
2185 return __i915_wait_request(req,
2186 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2187 to_i915(ring->dev)->mm.interruptible,
2188 NULL, NULL);
2189 }
2190
2191 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2192 {
2193 request->ringbuf = request->ring->buffer;
2194 return 0;
2195 }
2196
2197 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2198 {
2199 /*
2200 * The first call merely notes the reserve request and is common for
2201 * all back ends. The subsequent localised _begin() call actually
2202 * ensures that the reservation is available. Without the begin, if
2203 * the request creator immediately submitted the request without
2204 * adding any commands to it then there might not actually be
2205 * sufficient room for the submission commands.
2206 */
2207 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2208
2209 return intel_ring_begin(request, 0);
2210 }
2211
2212 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2213 {
2214 WARN_ON(ringbuf->reserved_size);
2215 WARN_ON(ringbuf->reserved_in_use);
2216
2217 ringbuf->reserved_size = size;
2218 }
2219
2220 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2221 {
2222 WARN_ON(ringbuf->reserved_in_use);
2223
2224 ringbuf->reserved_size = 0;
2225 ringbuf->reserved_in_use = false;
2226 }
2227
2228 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2229 {
2230 WARN_ON(ringbuf->reserved_in_use);
2231
2232 ringbuf->reserved_in_use = true;
2233 ringbuf->reserved_tail = ringbuf->tail;
2234 }
2235
2236 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2237 {
2238 WARN_ON(!ringbuf->reserved_in_use);
2239 if (ringbuf->tail > ringbuf->reserved_tail) {
2240 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2241 "request reserved size too small: %d vs %d!\n",
2242 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2243 } else {
2244 /*
2245 * The ring was wrapped while the reserved space was in use.
2246 * That means that some unknown amount of the ring tail was
2247 * no-op filled and skipped. Thus simply adding the ring size
2248 * to the tail and doing the above space check will not work.
2249 * Rather than attempt to track how much tail was skipped,
2250 * it is much simpler to say that also skipping the sanity
2251 * check every once in a while is not a big issue.
2252 */
2253 }
2254
2255 ringbuf->reserved_size = 0;
2256 ringbuf->reserved_in_use = false;
2257 }
2258
2259 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2260 {
2261 struct intel_ringbuffer *ringbuf = ring->buffer;
2262 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2263 int remain_actual = ringbuf->size - ringbuf->tail;
2264 int ret, total_bytes, wait_bytes = 0;
2265 bool need_wrap = false;
2266
2267 if (ringbuf->reserved_in_use)
2268 total_bytes = bytes;
2269 else
2270 total_bytes = bytes + ringbuf->reserved_size;
2271
2272 if (unlikely(bytes > remain_usable)) {
2273 /*
2274 * Not enough space for the basic request. So need to flush
2275 * out the remainder and then wait for base + reserved.
2276 */
2277 wait_bytes = remain_actual + total_bytes;
2278 need_wrap = true;
2279 } else {
2280 if (unlikely(total_bytes > remain_usable)) {
2281 /*
2282 * The base request will fit but the reserved space
2283 * falls off the end. So only need to to wait for the
2284 * reserved size after flushing out the remainder.
2285 */
2286 wait_bytes = remain_actual + ringbuf->reserved_size;
2287 need_wrap = true;
2288 } else if (total_bytes > ringbuf->space) {
2289 /* No wrapping required, just waiting. */
2290 wait_bytes = total_bytes;
2291 }
2292 }
2293
2294 if (wait_bytes) {
2295 ret = ring_wait_for_space(ring, wait_bytes);
2296 if (unlikely(ret))
2297 return ret;
2298
2299 if (need_wrap)
2300 __wrap_ring_buffer(ringbuf);
2301 }
2302
2303 return 0;
2304 }
2305
2306 int intel_ring_begin(struct drm_i915_gem_request *req,
2307 int num_dwords)
2308 {
2309 struct intel_engine_cs *ring;
2310 struct drm_i915_private *dev_priv;
2311 int ret;
2312
2313 WARN_ON(req == NULL);
2314 ring = req->ring;
2315 dev_priv = ring->dev->dev_private;
2316
2317 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2318 dev_priv->mm.interruptible);
2319 if (ret)
2320 return ret;
2321
2322 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2323 if (ret)
2324 return ret;
2325
2326 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2327 return 0;
2328 }
2329
2330 /* Align the ring tail to a cacheline boundary */
2331 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2332 {
2333 struct intel_engine_cs *ring = req->ring;
2334 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2335 int ret;
2336
2337 if (num_dwords == 0)
2338 return 0;
2339
2340 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2341 ret = intel_ring_begin(req, num_dwords);
2342 if (ret)
2343 return ret;
2344
2345 while (num_dwords--)
2346 intel_ring_emit(ring, MI_NOOP);
2347
2348 intel_ring_advance(ring);
2349
2350 return 0;
2351 }
2352
2353 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2354 {
2355 struct drm_device *dev = ring->dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2359 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2360 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2361 if (HAS_VEBOX(dev))
2362 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2363 }
2364
2365 ring->set_seqno(ring, seqno);
2366 ring->hangcheck.seqno = seqno;
2367 }
2368
2369 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2370 u32 value)
2371 {
2372 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2373
2374 /* Every tail move must follow the sequence below */
2375
2376 /* Disable notification that the ring is IDLE. The GT
2377 * will then assume that it is busy and bring it out of rc6.
2378 */
2379 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2380 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2381
2382 /* Clear the context id. Here be magic! */
2383 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2384
2385 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2386 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2387 GEN6_BSD_SLEEP_INDICATOR) == 0,
2388 50))
2389 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2390
2391 /* Now that the ring is fully powered up, update the tail */
2392 I915_WRITE_TAIL(ring, value);
2393 POSTING_READ(RING_TAIL(ring->mmio_base));
2394
2395 /* Let the ring send IDLE messages to the GT again,
2396 * and so let it sleep to conserve power when idle.
2397 */
2398 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2399 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2400 }
2401
2402 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2403 u32 invalidate, u32 flush)
2404 {
2405 struct intel_engine_cs *ring = req->ring;
2406 uint32_t cmd;
2407 int ret;
2408
2409 ret = intel_ring_begin(req, 4);
2410 if (ret)
2411 return ret;
2412
2413 cmd = MI_FLUSH_DW;
2414 if (INTEL_INFO(ring->dev)->gen >= 8)
2415 cmd += 1;
2416
2417 /* We always require a command barrier so that subsequent
2418 * commands, such as breadcrumb interrupts, are strictly ordered
2419 * wrt the contents of the write cache being flushed to memory
2420 * (and thus being coherent from the CPU).
2421 */
2422 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2423
2424 /*
2425 * Bspec vol 1c.5 - video engine command streamer:
2426 * "If ENABLED, all TLBs will be invalidated once the flush
2427 * operation is complete. This bit is only valid when the
2428 * Post-Sync Operation field is a value of 1h or 3h."
2429 */
2430 if (invalidate & I915_GEM_GPU_DOMAINS)
2431 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2432
2433 intel_ring_emit(ring, cmd);
2434 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2435 if (INTEL_INFO(ring->dev)->gen >= 8) {
2436 intel_ring_emit(ring, 0); /* upper addr */
2437 intel_ring_emit(ring, 0); /* value */
2438 } else {
2439 intel_ring_emit(ring, 0);
2440 intel_ring_emit(ring, MI_NOOP);
2441 }
2442 intel_ring_advance(ring);
2443 return 0;
2444 }
2445
2446 static int
2447 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2448 u64 offset, u32 len,
2449 unsigned dispatch_flags)
2450 {
2451 struct intel_engine_cs *ring = req->ring;
2452 bool ppgtt = USES_PPGTT(ring->dev) &&
2453 !(dispatch_flags & I915_DISPATCH_SECURE);
2454 int ret;
2455
2456 ret = intel_ring_begin(req, 4);
2457 if (ret)
2458 return ret;
2459
2460 /* FIXME(BDW): Address space and security selectors. */
2461 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2462 (dispatch_flags & I915_DISPATCH_RS ?
2463 MI_BATCH_RESOURCE_STREAMER : 0));
2464 intel_ring_emit(ring, lower_32_bits(offset));
2465 intel_ring_emit(ring, upper_32_bits(offset));
2466 intel_ring_emit(ring, MI_NOOP);
2467 intel_ring_advance(ring);
2468
2469 return 0;
2470 }
2471
2472 static int
2473 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2474 u64 offset, u32 len,
2475 unsigned dispatch_flags)
2476 {
2477 struct intel_engine_cs *ring = req->ring;
2478 int ret;
2479
2480 ret = intel_ring_begin(req, 2);
2481 if (ret)
2482 return ret;
2483
2484 intel_ring_emit(ring,
2485 MI_BATCH_BUFFER_START |
2486 (dispatch_flags & I915_DISPATCH_SECURE ?
2487 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2488 (dispatch_flags & I915_DISPATCH_RS ?
2489 MI_BATCH_RESOURCE_STREAMER : 0));
2490 /* bit0-7 is the length on GEN6+ */
2491 intel_ring_emit(ring, offset);
2492 intel_ring_advance(ring);
2493
2494 return 0;
2495 }
2496
2497 static int
2498 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2499 u64 offset, u32 len,
2500 unsigned dispatch_flags)
2501 {
2502 struct intel_engine_cs *ring = req->ring;
2503 int ret;
2504
2505 ret = intel_ring_begin(req, 2);
2506 if (ret)
2507 return ret;
2508
2509 intel_ring_emit(ring,
2510 MI_BATCH_BUFFER_START |
2511 (dispatch_flags & I915_DISPATCH_SECURE ?
2512 0 : MI_BATCH_NON_SECURE_I965));
2513 /* bit0-7 is the length on GEN6+ */
2514 intel_ring_emit(ring, offset);
2515 intel_ring_advance(ring);
2516
2517 return 0;
2518 }
2519
2520 /* Blitter support (SandyBridge+) */
2521
2522 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2523 u32 invalidate, u32 flush)
2524 {
2525 struct intel_engine_cs *ring = req->ring;
2526 struct drm_device *dev = ring->dev;
2527 uint32_t cmd;
2528 int ret;
2529
2530 ret = intel_ring_begin(req, 4);
2531 if (ret)
2532 return ret;
2533
2534 cmd = MI_FLUSH_DW;
2535 if (INTEL_INFO(dev)->gen >= 8)
2536 cmd += 1;
2537
2538 /* We always require a command barrier so that subsequent
2539 * commands, such as breadcrumb interrupts, are strictly ordered
2540 * wrt the contents of the write cache being flushed to memory
2541 * (and thus being coherent from the CPU).
2542 */
2543 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2544
2545 /*
2546 * Bspec vol 1c.3 - blitter engine command streamer:
2547 * "If ENABLED, all TLBs will be invalidated once the flush
2548 * operation is complete. This bit is only valid when the
2549 * Post-Sync Operation field is a value of 1h or 3h."
2550 */
2551 if (invalidate & I915_GEM_DOMAIN_RENDER)
2552 cmd |= MI_INVALIDATE_TLB;
2553 intel_ring_emit(ring, cmd);
2554 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2555 if (INTEL_INFO(dev)->gen >= 8) {
2556 intel_ring_emit(ring, 0); /* upper addr */
2557 intel_ring_emit(ring, 0); /* value */
2558 } else {
2559 intel_ring_emit(ring, 0);
2560 intel_ring_emit(ring, MI_NOOP);
2561 }
2562 intel_ring_advance(ring);
2563
2564 return 0;
2565 }
2566
2567 int intel_init_render_ring_buffer(struct drm_device *dev)
2568 {
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2571 struct drm_i915_gem_object *obj;
2572 int ret;
2573
2574 ring->name = "render ring";
2575 ring->id = RCS;
2576 ring->mmio_base = RENDER_RING_BASE;
2577
2578 if (INTEL_INFO(dev)->gen >= 8) {
2579 if (i915_semaphore_is_enabled(dev)) {
2580 obj = i915_gem_alloc_object(dev, 4096);
2581 if (obj == NULL) {
2582 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2583 i915.semaphores = 0;
2584 } else {
2585 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2586 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2587 if (ret != 0) {
2588 drm_gem_object_unreference(&obj->base);
2589 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2590 i915.semaphores = 0;
2591 } else
2592 dev_priv->semaphore_obj = obj;
2593 }
2594 }
2595
2596 ring->init_context = intel_rcs_ctx_init;
2597 ring->add_request = gen6_add_request;
2598 ring->flush = gen8_render_ring_flush;
2599 ring->irq_get = gen8_ring_get_irq;
2600 ring->irq_put = gen8_ring_put_irq;
2601 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2602 ring->get_seqno = gen6_ring_get_seqno;
2603 ring->set_seqno = ring_set_seqno;
2604 if (i915_semaphore_is_enabled(dev)) {
2605 WARN_ON(!dev_priv->semaphore_obj);
2606 ring->semaphore.sync_to = gen8_ring_sync;
2607 ring->semaphore.signal = gen8_rcs_signal;
2608 GEN8_RING_SEMAPHORE_INIT;
2609 }
2610 } else if (INTEL_INFO(dev)->gen >= 6) {
2611 ring->add_request = gen6_add_request;
2612 ring->flush = gen7_render_ring_flush;
2613 if (INTEL_INFO(dev)->gen == 6)
2614 ring->flush = gen6_render_ring_flush;
2615 ring->irq_get = gen6_ring_get_irq;
2616 ring->irq_put = gen6_ring_put_irq;
2617 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2618 ring->get_seqno = gen6_ring_get_seqno;
2619 ring->set_seqno = ring_set_seqno;
2620 if (i915_semaphore_is_enabled(dev)) {
2621 ring->semaphore.sync_to = gen6_ring_sync;
2622 ring->semaphore.signal = gen6_signal;
2623 /*
2624 * The current semaphore is only applied on pre-gen8
2625 * platform. And there is no VCS2 ring on the pre-gen8
2626 * platform. So the semaphore between RCS and VCS2 is
2627 * initialized as INVALID. Gen8 will initialize the
2628 * sema between VCS2 and RCS later.
2629 */
2630 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2631 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2632 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2633 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2634 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2635 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2636 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2637 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2638 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2639 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2640 }
2641 } else if (IS_GEN5(dev)) {
2642 ring->add_request = pc_render_add_request;
2643 ring->flush = gen4_render_ring_flush;
2644 ring->get_seqno = pc_render_get_seqno;
2645 ring->set_seqno = pc_render_set_seqno;
2646 ring->irq_get = gen5_ring_get_irq;
2647 ring->irq_put = gen5_ring_put_irq;
2648 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2649 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2650 } else {
2651 ring->add_request = i9xx_add_request;
2652 if (INTEL_INFO(dev)->gen < 4)
2653 ring->flush = gen2_render_ring_flush;
2654 else
2655 ring->flush = gen4_render_ring_flush;
2656 ring->get_seqno = ring_get_seqno;
2657 ring->set_seqno = ring_set_seqno;
2658 if (IS_GEN2(dev)) {
2659 ring->irq_get = i8xx_ring_get_irq;
2660 ring->irq_put = i8xx_ring_put_irq;
2661 } else {
2662 ring->irq_get = i9xx_ring_get_irq;
2663 ring->irq_put = i9xx_ring_put_irq;
2664 }
2665 ring->irq_enable_mask = I915_USER_INTERRUPT;
2666 }
2667 ring->write_tail = ring_write_tail;
2668
2669 if (IS_HASWELL(dev))
2670 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2671 else if (IS_GEN8(dev))
2672 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2673 else if (INTEL_INFO(dev)->gen >= 6)
2674 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2675 else if (INTEL_INFO(dev)->gen >= 4)
2676 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2677 else if (IS_I830(dev) || IS_845G(dev))
2678 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2679 else
2680 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2681 ring->init_hw = init_render_ring;
2682 ring->cleanup = render_ring_cleanup;
2683
2684 /* Workaround batchbuffer to combat CS tlb bug. */
2685 if (HAS_BROKEN_CS_TLB(dev)) {
2686 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2687 if (obj == NULL) {
2688 DRM_ERROR("Failed to allocate batch bo\n");
2689 return -ENOMEM;
2690 }
2691
2692 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2693 if (ret != 0) {
2694 drm_gem_object_unreference(&obj->base);
2695 DRM_ERROR("Failed to ping batch bo\n");
2696 return ret;
2697 }
2698
2699 ring->scratch.obj = obj;
2700 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2701 }
2702
2703 ret = intel_init_ring_buffer(dev, ring);
2704 if (ret)
2705 return ret;
2706
2707 if (INTEL_INFO(dev)->gen >= 5) {
2708 ret = intel_init_pipe_control(ring);
2709 if (ret)
2710 return ret;
2711 }
2712
2713 return 0;
2714 }
2715
2716 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2717 {
2718 struct drm_i915_private *dev_priv = dev->dev_private;
2719 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2720
2721 ring->name = "bsd ring";
2722 ring->id = VCS;
2723
2724 ring->write_tail = ring_write_tail;
2725 if (INTEL_INFO(dev)->gen >= 6) {
2726 ring->mmio_base = GEN6_BSD_RING_BASE;
2727 /* gen6 bsd needs a special wa for tail updates */
2728 if (IS_GEN6(dev))
2729 ring->write_tail = gen6_bsd_ring_write_tail;
2730 ring->flush = gen6_bsd_ring_flush;
2731 ring->add_request = gen6_add_request;
2732 ring->get_seqno = gen6_ring_get_seqno;
2733 ring->set_seqno = ring_set_seqno;
2734 if (INTEL_INFO(dev)->gen >= 8) {
2735 ring->irq_enable_mask =
2736 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2737 ring->irq_get = gen8_ring_get_irq;
2738 ring->irq_put = gen8_ring_put_irq;
2739 ring->dispatch_execbuffer =
2740 gen8_ring_dispatch_execbuffer;
2741 if (i915_semaphore_is_enabled(dev)) {
2742 ring->semaphore.sync_to = gen8_ring_sync;
2743 ring->semaphore.signal = gen8_xcs_signal;
2744 GEN8_RING_SEMAPHORE_INIT;
2745 }
2746 } else {
2747 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2748 ring->irq_get = gen6_ring_get_irq;
2749 ring->irq_put = gen6_ring_put_irq;
2750 ring->dispatch_execbuffer =
2751 gen6_ring_dispatch_execbuffer;
2752 if (i915_semaphore_is_enabled(dev)) {
2753 ring->semaphore.sync_to = gen6_ring_sync;
2754 ring->semaphore.signal = gen6_signal;
2755 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2756 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2757 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2758 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2759 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2760 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2761 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2762 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2763 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2764 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2765 }
2766 }
2767 } else {
2768 ring->mmio_base = BSD_RING_BASE;
2769 ring->flush = bsd_ring_flush;
2770 ring->add_request = i9xx_add_request;
2771 ring->get_seqno = ring_get_seqno;
2772 ring->set_seqno = ring_set_seqno;
2773 if (IS_GEN5(dev)) {
2774 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2775 ring->irq_get = gen5_ring_get_irq;
2776 ring->irq_put = gen5_ring_put_irq;
2777 } else {
2778 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2779 ring->irq_get = i9xx_ring_get_irq;
2780 ring->irq_put = i9xx_ring_put_irq;
2781 }
2782 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2783 }
2784 ring->init_hw = init_ring_common;
2785
2786 return intel_init_ring_buffer(dev, ring);
2787 }
2788
2789 /**
2790 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2791 */
2792 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2793 {
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2796
2797 ring->name = "bsd2 ring";
2798 ring->id = VCS2;
2799
2800 ring->write_tail = ring_write_tail;
2801 ring->mmio_base = GEN8_BSD2_RING_BASE;
2802 ring->flush = gen6_bsd_ring_flush;
2803 ring->add_request = gen6_add_request;
2804 ring->get_seqno = gen6_ring_get_seqno;
2805 ring->set_seqno = ring_set_seqno;
2806 ring->irq_enable_mask =
2807 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2808 ring->irq_get = gen8_ring_get_irq;
2809 ring->irq_put = gen8_ring_put_irq;
2810 ring->dispatch_execbuffer =
2811 gen8_ring_dispatch_execbuffer;
2812 if (i915_semaphore_is_enabled(dev)) {
2813 ring->semaphore.sync_to = gen8_ring_sync;
2814 ring->semaphore.signal = gen8_xcs_signal;
2815 GEN8_RING_SEMAPHORE_INIT;
2816 }
2817 ring->init_hw = init_ring_common;
2818
2819 return intel_init_ring_buffer(dev, ring);
2820 }
2821
2822 int intel_init_blt_ring_buffer(struct drm_device *dev)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2826
2827 ring->name = "blitter ring";
2828 ring->id = BCS;
2829
2830 ring->mmio_base = BLT_RING_BASE;
2831 ring->write_tail = ring_write_tail;
2832 ring->flush = gen6_ring_flush;
2833 ring->add_request = gen6_add_request;
2834 ring->get_seqno = gen6_ring_get_seqno;
2835 ring->set_seqno = ring_set_seqno;
2836 if (INTEL_INFO(dev)->gen >= 8) {
2837 ring->irq_enable_mask =
2838 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2839 ring->irq_get = gen8_ring_get_irq;
2840 ring->irq_put = gen8_ring_put_irq;
2841 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2842 if (i915_semaphore_is_enabled(dev)) {
2843 ring->semaphore.sync_to = gen8_ring_sync;
2844 ring->semaphore.signal = gen8_xcs_signal;
2845 GEN8_RING_SEMAPHORE_INIT;
2846 }
2847 } else {
2848 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2849 ring->irq_get = gen6_ring_get_irq;
2850 ring->irq_put = gen6_ring_put_irq;
2851 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2852 if (i915_semaphore_is_enabled(dev)) {
2853 ring->semaphore.signal = gen6_signal;
2854 ring->semaphore.sync_to = gen6_ring_sync;
2855 /*
2856 * The current semaphore is only applied on pre-gen8
2857 * platform. And there is no VCS2 ring on the pre-gen8
2858 * platform. So the semaphore between BCS and VCS2 is
2859 * initialized as INVALID. Gen8 will initialize the
2860 * sema between BCS and VCS2 later.
2861 */
2862 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2863 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2864 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2865 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2866 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2867 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2868 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2869 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2870 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2871 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2872 }
2873 }
2874 ring->init_hw = init_ring_common;
2875
2876 return intel_init_ring_buffer(dev, ring);
2877 }
2878
2879 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2880 {
2881 struct drm_i915_private *dev_priv = dev->dev_private;
2882 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2883
2884 ring->name = "video enhancement ring";
2885 ring->id = VECS;
2886
2887 ring->mmio_base = VEBOX_RING_BASE;
2888 ring->write_tail = ring_write_tail;
2889 ring->flush = gen6_ring_flush;
2890 ring->add_request = gen6_add_request;
2891 ring->get_seqno = gen6_ring_get_seqno;
2892 ring->set_seqno = ring_set_seqno;
2893
2894 if (INTEL_INFO(dev)->gen >= 8) {
2895 ring->irq_enable_mask =
2896 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2897 ring->irq_get = gen8_ring_get_irq;
2898 ring->irq_put = gen8_ring_put_irq;
2899 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2900 if (i915_semaphore_is_enabled(dev)) {
2901 ring->semaphore.sync_to = gen8_ring_sync;
2902 ring->semaphore.signal = gen8_xcs_signal;
2903 GEN8_RING_SEMAPHORE_INIT;
2904 }
2905 } else {
2906 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2907 ring->irq_get = hsw_vebox_get_irq;
2908 ring->irq_put = hsw_vebox_put_irq;
2909 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2910 if (i915_semaphore_is_enabled(dev)) {
2911 ring->semaphore.sync_to = gen6_ring_sync;
2912 ring->semaphore.signal = gen6_signal;
2913 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2914 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2915 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2916 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2917 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2918 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2919 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2920 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2921 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2922 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2923 }
2924 }
2925 ring->init_hw = init_ring_common;
2926
2927 return intel_init_ring_buffer(dev, ring);
2928 }
2929
2930 int
2931 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2932 {
2933 struct intel_engine_cs *ring = req->ring;
2934 int ret;
2935
2936 if (!ring->gpu_caches_dirty)
2937 return 0;
2938
2939 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2940 if (ret)
2941 return ret;
2942
2943 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2944
2945 ring->gpu_caches_dirty = false;
2946 return 0;
2947 }
2948
2949 int
2950 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2951 {
2952 struct intel_engine_cs *ring = req->ring;
2953 uint32_t flush_domains;
2954 int ret;
2955
2956 flush_domains = 0;
2957 if (ring->gpu_caches_dirty)
2958 flush_domains = I915_GEM_GPU_DOMAINS;
2959
2960 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2961 if (ret)
2962 return ret;
2963
2964 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2965
2966 ring->gpu_caches_dirty = false;
2967 return 0;
2968 }
2969
2970 void
2971 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2972 {
2973 int ret;
2974
2975 if (!intel_ring_initialized(ring))
2976 return;
2977
2978 ret = intel_ring_idle(ring);
2979 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2980 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2981 ring->name, ret);
2982
2983 stop_ring(ring);
2984 }