]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 if (ring->last_retired_head != -1) {
53 ring->head = ring->last_retired_head;
54 ring->last_retired_head = -1;
55 }
56
57 ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64 struct intel_ring *ring = req->ring;
65 u32 cmd;
66 int ret;
67
68 cmd = MI_FLUSH;
69
70 if (mode & EMIT_INVALIDATE)
71 cmd |= MI_READ_FLUSH;
72
73 ret = intel_ring_begin(req, 2);
74 if (ret)
75 return ret;
76
77 intel_ring_emit(ring, cmd);
78 intel_ring_emit(ring, MI_NOOP);
79 intel_ring_advance(ring);
80
81 return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87 struct intel_ring *ring = req->ring;
88 u32 cmd;
89 int ret;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 ret = intel_ring_begin(req, 2);
127 if (ret)
128 return ret;
129
130 intel_ring_emit(ring, cmd);
131 intel_ring_emit(ring, MI_NOOP);
132 intel_ring_advance(ring);
133
134 return 0;
135 }
136
137 /**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 struct intel_ring *ring = req->ring;
178 u32 scratch_addr =
179 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 int ret;
181
182 ret = intel_ring_begin(req, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(req, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213 struct intel_ring *ring = req->ring;
214 u32 scratch_addr =
215 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 u32 flags = 0;
217 int ret;
218
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
221 if (ret)
222 return ret;
223
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
226 * impact.
227 */
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231 /*
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
234 */
235 flags |= PIPE_CONTROL_CS_STALL;
236 }
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244 /*
245 * TLB invalidate requires a post-sync write.
246 */
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248 }
249
250 ret = intel_ring_begin(req, 4);
251 if (ret)
252 return ret;
253
254 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring, flags);
256 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 intel_ring_emit(ring, 0);
258 intel_ring_advance(ring);
259
260 return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266 struct intel_ring *ring = req->ring;
267 int ret;
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring,
275 PIPE_CONTROL_CS_STALL |
276 PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 intel_ring_emit(ring, 0);
278 intel_ring_emit(ring, 0);
279 intel_ring_advance(ring);
280
281 return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287 struct intel_ring *ring = req->ring;
288 u32 scratch_addr =
289 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 u32 flags = 0;
291 int ret;
292
293 /*
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
296 *
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
300 */
301 flags |= PIPE_CONTROL_CS_STALL;
302
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
305 * impact.
306 */
307 if (mode & EMIT_FLUSH) {
308 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312 }
313 if (mode & EMIT_INVALIDATE) {
314 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 /*
322 * TLB invalidate requires a post-sync write.
323 */
324 flags |= PIPE_CONTROL_QW_WRITE;
325 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req);
333 }
334
335 ret = intel_ring_begin(req, 4);
336 if (ret)
337 return ret;
338
339 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring, flags);
341 intel_ring_emit(ring, scratch_addr);
342 intel_ring_emit(ring, 0);
343 intel_ring_advance(ring);
344
345 return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 u32 flags, u32 scratch_addr)
351 {
352 struct intel_ring *ring = req->ring;
353 int ret;
354
355 ret = intel_ring_begin(req, 6);
356 if (ret)
357 return ret;
358
359 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring, flags);
361 intel_ring_emit(ring, scratch_addr);
362 intel_ring_emit(ring, 0);
363 intel_ring_emit(ring, 0);
364 intel_ring_emit(ring, 0);
365 intel_ring_advance(ring);
366
367 return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373 u32 scratch_addr =
374 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375 u32 flags = 0;
376 int ret;
377
378 flags |= PIPE_CONTROL_CS_STALL;
379
380 if (mode & EMIT_FLUSH) {
381 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385 }
386 if (mode & EMIT_INVALIDATE) {
387 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393 flags |= PIPE_CONTROL_QW_WRITE;
394 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 ret = gen8_emit_pipe_control(req,
398 PIPE_CONTROL_CS_STALL |
399 PIPE_CONTROL_STALL_AT_SCOREBOARD,
400 0);
401 if (ret)
402 return ret;
403 }
404
405 return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410 struct drm_i915_private *dev_priv = engine->i915;
411 u32 addr;
412
413 addr = dev_priv->status_page_dmah->busaddr;
414 if (INTEL_GEN(dev_priv) >= 4)
415 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416 I915_WRITE(HWS_PGA, addr);
417 }
418
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421 struct drm_i915_private *dev_priv = engine->i915;
422 i915_reg_t mmio;
423
424 /* The ring status page addresses are no longer next to the rest of
425 * the ring registers as of gen7.
426 */
427 if (IS_GEN7(dev_priv)) {
428 switch (engine->id) {
429 case RCS:
430 mmio = RENDER_HWS_PGA_GEN7;
431 break;
432 case BCS:
433 mmio = BLT_HWS_PGA_GEN7;
434 break;
435 /*
436 * VCS2 actually doesn't exist on Gen7. Only shut up
437 * gcc switch check warning
438 */
439 case VCS2:
440 case VCS:
441 mmio = BSD_HWS_PGA_GEN7;
442 break;
443 case VECS:
444 mmio = VEBOX_HWS_PGA_GEN7;
445 break;
446 }
447 } else if (IS_GEN6(dev_priv)) {
448 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 } else {
450 /* XXX: gen8 returns to sanity */
451 mmio = RING_HWS_PGA(engine->mmio_base);
452 }
453
454 I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 POSTING_READ(mmio);
456
457 /*
458 * Flush the TLB for this page
459 *
460 * FIXME: These two bits have disappeared on gen8, so a question
461 * arises: do we still need this and if so how should we go about
462 * invalidating the TLB?
463 */
464 if (IS_GEN(dev_priv, 6, 7)) {
465 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466
467 /* ring should be idle before issuing a sync flush*/
468 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469
470 I915_WRITE(reg,
471 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472 INSTPM_SYNC_FLUSH));
473 if (intel_wait_for_register(dev_priv,
474 reg, INSTPM_SYNC_FLUSH, 0,
475 1000))
476 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477 engine->name);
478 }
479 }
480
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483 struct drm_i915_private *dev_priv = engine->i915;
484
485 if (INTEL_GEN(dev_priv) > 2) {
486 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 if (intel_wait_for_register(dev_priv,
488 RING_MI_MODE(engine->mmio_base),
489 MODE_IDLE,
490 MODE_IDLE,
491 1000)) {
492 DRM_ERROR("%s : timed out trying to stop ring\n",
493 engine->name);
494 /* Sometimes we observe that the idle flag is not
495 * set even though the ring is empty. So double
496 * check before giving up.
497 */
498 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499 return false;
500 }
501 }
502
503 I915_WRITE_CTL(engine, 0);
504 I915_WRITE_HEAD(engine, 0);
505 I915_WRITE_TAIL(engine, 0);
506
507 if (INTEL_GEN(dev_priv) > 2) {
508 (void)I915_READ_CTL(engine);
509 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510 }
511
512 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517 struct drm_i915_private *dev_priv = engine->i915;
518 struct intel_ring *ring = engine->buffer;
519 int ret = 0;
520
521 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522
523 if (!stop_ring(engine)) {
524 /* G45 ring initialization often fails to reset head to zero */
525 DRM_DEBUG_KMS("%s head not reset to zero "
526 "ctl %08x head %08x tail %08x start %08x\n",
527 engine->name,
528 I915_READ_CTL(engine),
529 I915_READ_HEAD(engine),
530 I915_READ_TAIL(engine),
531 I915_READ_START(engine));
532
533 if (!stop_ring(engine)) {
534 DRM_ERROR("failed to set %s head to zero "
535 "ctl %08x head %08x tail %08x start %08x\n",
536 engine->name,
537 I915_READ_CTL(engine),
538 I915_READ_HEAD(engine),
539 I915_READ_TAIL(engine),
540 I915_READ_START(engine));
541 ret = -EIO;
542 goto out;
543 }
544 }
545
546 if (HWS_NEEDS_PHYSICAL(dev_priv))
547 ring_setup_phys_status_page(engine);
548 else
549 intel_ring_setup_status_page(engine);
550
551 intel_engine_reset_breadcrumbs(engine);
552
553 /* Enforce ordering by reading HEAD register back */
554 I915_READ_HEAD(engine);
555
556 /* Initialize the ring. This must happen _after_ we've cleared the ring
557 * registers with the above sequence (the readback of the HEAD registers
558 * also enforces ordering), otherwise the hw might lose the new ring
559 * register values. */
560 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561
562 /* WaClearRingBufHeadRegAtInit:ctg,elk */
563 if (I915_READ_HEAD(engine))
564 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565 engine->name, I915_READ_HEAD(engine));
566
567 intel_ring_update_space(ring);
568 I915_WRITE_HEAD(engine, ring->head);
569 I915_WRITE_TAIL(engine, ring->tail);
570 (void)I915_READ_TAIL(engine);
571
572 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573
574 /* If the head is still not zero, the ring is dead */
575 if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576 RING_VALID, RING_VALID,
577 50)) {
578 DRM_ERROR("%s initialization failed "
579 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 engine->name,
581 I915_READ_CTL(engine),
582 I915_READ_CTL(engine) & RING_VALID,
583 I915_READ_HEAD(engine), ring->head,
584 I915_READ_TAIL(engine), ring->tail,
585 I915_READ_START(engine),
586 i915_ggtt_offset(ring->vma));
587 ret = -EIO;
588 goto out;
589 }
590
591 intel_engine_init_hangcheck(engine);
592
593 out:
594 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595
596 return ret;
597 }
598
599 static void reset_ring_common(struct intel_engine_cs *engine,
600 struct drm_i915_gem_request *request)
601 {
602 /* Try to restore the logical GPU state to match the continuation
603 * of the request queue. If we skip the context/PD restore, then
604 * the next request may try to execute assuming that its context
605 * is valid and loaded on the GPU and so may try to access invalid
606 * memory, prompting repeated GPU hangs.
607 *
608 * If the request was guilty, we still restore the logical state
609 * in case the next request requires it (e.g. the aliasing ppgtt),
610 * but skip over the hung batch.
611 *
612 * If the request was innocent, we try to replay the request with
613 * the restored context.
614 */
615 if (request) {
616 struct drm_i915_private *dev_priv = request->i915;
617 struct intel_context *ce = &request->ctx->engine[engine->id];
618 struct i915_hw_ppgtt *ppgtt;
619
620 /* FIXME consider gen8 reset */
621
622 if (ce->state) {
623 I915_WRITE(CCID,
624 i915_ggtt_offset(ce->state) |
625 BIT(8) /* must be set! */ |
626 CCID_EXTENDED_STATE_SAVE |
627 CCID_EXTENDED_STATE_RESTORE |
628 CCID_EN);
629 }
630
631 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
632 if (ppgtt) {
633 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
634
635 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
636 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
637
638 /* Wait for the PD reload to complete */
639 if (intel_wait_for_register(dev_priv,
640 RING_PP_DIR_BASE(engine),
641 BIT(0), 0,
642 10))
643 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
644
645 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
646 }
647
648 /* If the rq hung, jump to its breadcrumb and skip the batch */
649 if (request->fence.error == -EIO) {
650 struct intel_ring *ring = request->ring;
651
652 ring->head = request->postfix;
653 ring->last_retired_head = -1;
654 }
655 } else {
656 engine->legacy_active_context = NULL;
657 }
658 }
659
660 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
661 {
662 struct intel_ring *ring = req->ring;
663 struct i915_workarounds *w = &req->i915->workarounds;
664 int ret, i;
665
666 if (w->count == 0)
667 return 0;
668
669 ret = req->engine->emit_flush(req, EMIT_BARRIER);
670 if (ret)
671 return ret;
672
673 ret = intel_ring_begin(req, (w->count * 2 + 2));
674 if (ret)
675 return ret;
676
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
678 for (i = 0; i < w->count; i++) {
679 intel_ring_emit_reg(ring, w->reg[i].addr);
680 intel_ring_emit(ring, w->reg[i].value);
681 }
682 intel_ring_emit(ring, MI_NOOP);
683
684 intel_ring_advance(ring);
685
686 ret = req->engine->emit_flush(req, EMIT_BARRIER);
687 if (ret)
688 return ret;
689
690 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
691
692 return 0;
693 }
694
695 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
696 {
697 int ret;
698
699 ret = intel_ring_workarounds_emit(req);
700 if (ret != 0)
701 return ret;
702
703 ret = i915_gem_render_state_emit(req);
704 if (ret)
705 return ret;
706
707 return 0;
708 }
709
710 static int wa_add(struct drm_i915_private *dev_priv,
711 i915_reg_t addr,
712 const u32 mask, const u32 val)
713 {
714 const u32 idx = dev_priv->workarounds.count;
715
716 if (WARN_ON(idx >= I915_MAX_WA_REGS))
717 return -ENOSPC;
718
719 dev_priv->workarounds.reg[idx].addr = addr;
720 dev_priv->workarounds.reg[idx].value = val;
721 dev_priv->workarounds.reg[idx].mask = mask;
722
723 dev_priv->workarounds.count++;
724
725 return 0;
726 }
727
728 #define WA_REG(addr, mask, val) do { \
729 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
730 if (r) \
731 return r; \
732 } while (0)
733
734 #define WA_SET_BIT_MASKED(addr, mask) \
735 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
736
737 #define WA_CLR_BIT_MASKED(addr, mask) \
738 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
739
740 #define WA_SET_FIELD_MASKED(addr, mask, value) \
741 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
742
743 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
744 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
745
746 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
747
748 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
749 i915_reg_t reg)
750 {
751 struct drm_i915_private *dev_priv = engine->i915;
752 struct i915_workarounds *wa = &dev_priv->workarounds;
753 const uint32_t index = wa->hw_whitelist_count[engine->id];
754
755 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
756 return -EINVAL;
757
758 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
759 i915_mmio_reg_offset(reg));
760 wa->hw_whitelist_count[engine->id]++;
761
762 return 0;
763 }
764
765 static int gen8_init_workarounds(struct intel_engine_cs *engine)
766 {
767 struct drm_i915_private *dev_priv = engine->i915;
768
769 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
770
771 /* WaDisableAsyncFlipPerfMode:bdw,chv */
772 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
773
774 /* WaDisablePartialInstShootdown:bdw,chv */
775 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
776 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
777
778 /* Use Force Non-Coherent whenever executing a 3D context. This is a
779 * workaround for for a possible hang in the unlikely event a TLB
780 * invalidation occurs during a PSD flush.
781 */
782 /* WaForceEnableNonCoherent:bdw,chv */
783 /* WaHdcDisableFetchWhenMasked:bdw,chv */
784 WA_SET_BIT_MASKED(HDC_CHICKEN0,
785 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
786 HDC_FORCE_NON_COHERENT);
787
788 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
789 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
790 * polygons in the same 8x4 pixel/sample area to be processed without
791 * stalling waiting for the earlier ones to write to Hierarchical Z
792 * buffer."
793 *
794 * This optimization is off by default for BDW and CHV; turn it on.
795 */
796 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
797
798 /* Wa4x4STCOptimizationDisable:bdw,chv */
799 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
800
801 /*
802 * BSpec recommends 8x4 when MSAA is used,
803 * however in practice 16x4 seems fastest.
804 *
805 * Note that PS/WM thread counts depend on the WIZ hashing
806 * disable bit, which we don't touch here, but it's good
807 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
808 */
809 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
810 GEN6_WIZ_HASHING_MASK,
811 GEN6_WIZ_HASHING_16x4);
812
813 return 0;
814 }
815
816 static int bdw_init_workarounds(struct intel_engine_cs *engine)
817 {
818 struct drm_i915_private *dev_priv = engine->i915;
819 int ret;
820
821 ret = gen8_init_workarounds(engine);
822 if (ret)
823 return ret;
824
825 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
826 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
827
828 /* WaDisableDopClockGating:bdw */
829 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
830 DOP_CLOCK_GATING_DISABLE);
831
832 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
833 GEN8_SAMPLER_POWER_BYPASS_DIS);
834
835 WA_SET_BIT_MASKED(HDC_CHICKEN0,
836 /* WaForceContextSaveRestoreNonCoherent:bdw */
837 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
838 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
839 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
840
841 return 0;
842 }
843
844 static int chv_init_workarounds(struct intel_engine_cs *engine)
845 {
846 struct drm_i915_private *dev_priv = engine->i915;
847 int ret;
848
849 ret = gen8_init_workarounds(engine);
850 if (ret)
851 return ret;
852
853 /* WaDisableThreadStallDopClockGating:chv */
854 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
855
856 /* Improve HiZ throughput on CHV. */
857 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
858
859 return 0;
860 }
861
862 static int gen9_init_workarounds(struct intel_engine_cs *engine)
863 {
864 struct drm_i915_private *dev_priv = engine->i915;
865 int ret;
866
867 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
868 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
869
870 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
871 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
872 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
873
874 /* WaDisableKillLogic:bxt,skl,kbl */
875 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
876 ECOCHK_DIS_TLB);
877
878 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
879 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
880 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
881 FLOW_CONTROL_ENABLE |
882 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
883
884 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
885 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
886 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
887
888 /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
889 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
890 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
891 GEN9_DG_MIRROR_FIX_ENABLE);
892
893 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
894 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
896 GEN9_RHWO_OPTIMIZATION_DISABLE);
897 /*
898 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
899 * but we do that in per ctx batchbuffer as there is an issue
900 * with this register not getting restored on ctx restore
901 */
902 }
903
904 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
905 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
906 GEN9_ENABLE_GPGPU_PREEMPTION);
907
908 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
909 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
910 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
911 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
912
913 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
914 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
915 GEN9_CCS_TLB_PREFETCH_ENABLE);
916
917 /* WaDisableMaskBasedCammingInRCC:bxt */
918 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
919 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
920 PIXEL_MASK_CAMMING_DISABLE);
921
922 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
923 WA_SET_BIT_MASKED(HDC_CHICKEN0,
924 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
925 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
926
927 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
928 * both tied to WaForceContextSaveRestoreNonCoherent
929 * in some hsds for skl. We keep the tie for all gen9. The
930 * documentation is a bit hazy and so we want to get common behaviour,
931 * even though there is no clear evidence we would need both on kbl/bxt.
932 * This area has been source of system hangs so we play it safe
933 * and mimic the skl regardless of what bspec says.
934 *
935 * Use Force Non-Coherent whenever executing a 3D context. This
936 * is a workaround for a possible hang in the unlikely event
937 * a TLB invalidation occurs during a PSD flush.
938 */
939
940 /* WaForceEnableNonCoherent:skl,bxt,kbl */
941 WA_SET_BIT_MASKED(HDC_CHICKEN0,
942 HDC_FORCE_NON_COHERENT);
943
944 /* WaDisableHDCInvalidation:skl,bxt,kbl */
945 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
946 BDW_DISABLE_HDC_INVALIDATION);
947
948 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
949 if (IS_SKYLAKE(dev_priv) ||
950 IS_KABYLAKE(dev_priv) ||
951 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
952 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
953 GEN8_SAMPLER_POWER_BYPASS_DIS);
954
955 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
956 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
957
958 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
959 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
960 GEN8_LQSC_FLUSH_COHERENT_LINES));
961
962 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
963 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
964 if (ret)
965 return ret;
966
967 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
968 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
969 if (ret)
970 return ret;
971
972 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
973 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
974 if (ret)
975 return ret;
976
977 return 0;
978 }
979
980 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
981 {
982 struct drm_i915_private *dev_priv = engine->i915;
983 u8 vals[3] = { 0, 0, 0 };
984 unsigned int i;
985
986 for (i = 0; i < 3; i++) {
987 u8 ss;
988
989 /*
990 * Only consider slices where one, and only one, subslice has 7
991 * EUs
992 */
993 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
994 continue;
995
996 /*
997 * subslice_7eu[i] != 0 (because of the check above) and
998 * ss_max == 4 (maximum number of subslices possible per slice)
999 *
1000 * -> 0 <= ss <= 3;
1001 */
1002 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
1003 vals[i] = 3 - ss;
1004 }
1005
1006 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1007 return 0;
1008
1009 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1010 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1011 GEN9_IZ_HASHING_MASK(2) |
1012 GEN9_IZ_HASHING_MASK(1) |
1013 GEN9_IZ_HASHING_MASK(0),
1014 GEN9_IZ_HASHING(2, vals[2]) |
1015 GEN9_IZ_HASHING(1, vals[1]) |
1016 GEN9_IZ_HASHING(0, vals[0]));
1017
1018 return 0;
1019 }
1020
1021 static int skl_init_workarounds(struct intel_engine_cs *engine)
1022 {
1023 struct drm_i915_private *dev_priv = engine->i915;
1024 int ret;
1025
1026 ret = gen9_init_workarounds(engine);
1027 if (ret)
1028 return ret;
1029
1030 /*
1031 * Actual WA is to disable percontext preemption granularity control
1032 * until D0 which is the default case so this is equivalent to
1033 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1034 */
1035 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1036 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1037
1038 /* WaEnableGapsTsvCreditFix:skl */
1039 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1040 GEN9_GAPS_TSV_CREDIT_DISABLE));
1041
1042 /* WaDisableGafsUnitClkGating:skl */
1043 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1044
1045 /* WaInPlaceDecompressionHang:skl */
1046 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1047 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1048 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1049
1050 /* WaDisableLSQCROPERFforOCL:skl */
1051 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1052 if (ret)
1053 return ret;
1054
1055 return skl_tune_iz_hashing(engine);
1056 }
1057
1058 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1059 {
1060 struct drm_i915_private *dev_priv = engine->i915;
1061 int ret;
1062
1063 ret = gen9_init_workarounds(engine);
1064 if (ret)
1065 return ret;
1066
1067 /* WaStoreMultiplePTEenable:bxt */
1068 /* This is a requirement according to Hardware specification */
1069 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1070 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1071
1072 /* WaSetClckGatingDisableMedia:bxt */
1073 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1074 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1075 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1076 }
1077
1078 /* WaDisableThreadStallDopClockGating:bxt */
1079 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1080 STALL_DOP_GATING_DISABLE);
1081
1082 /* WaDisablePooledEuLoadBalancingFix:bxt */
1083 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1084 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1085 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1086 }
1087
1088 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1089 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1090 WA_SET_BIT_MASKED(
1091 GEN7_HALF_SLICE_CHICKEN1,
1092 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1093 }
1094
1095 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1096 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1097 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1098 /* WaDisableLSQCROPERFforOCL:bxt */
1099 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1100 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1101 if (ret)
1102 return ret;
1103
1104 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1105 if (ret)
1106 return ret;
1107 }
1108
1109 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1110 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1111 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1112 L3_HIGH_PRIO_CREDITS(2));
1113
1114 /* WaToEnableHwFixForPushConstHWBug:bxt */
1115 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1116 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1117 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1118
1119 /* WaInPlaceDecompressionHang:bxt */
1120 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1121 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1122 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1123
1124 return 0;
1125 }
1126
1127 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1128 {
1129 struct drm_i915_private *dev_priv = engine->i915;
1130 int ret;
1131
1132 ret = gen9_init_workarounds(engine);
1133 if (ret)
1134 return ret;
1135
1136 /* WaEnableGapsTsvCreditFix:kbl */
1137 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1138 GEN9_GAPS_TSV_CREDIT_DISABLE));
1139
1140 /* WaDisableDynamicCreditSharing:kbl */
1141 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1142 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1143 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1144
1145 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1146 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1147 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1148 HDC_FENCE_DEST_SLM_DISABLE);
1149
1150 /* WaToEnableHwFixForPushConstHWBug:kbl */
1151 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1152 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1153 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1154
1155 /* WaDisableGafsUnitClkGating:kbl */
1156 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1157
1158 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1159 WA_SET_BIT_MASKED(
1160 GEN7_HALF_SLICE_CHICKEN1,
1161 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1162
1163 /* WaInPlaceDecompressionHang:kbl */
1164 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1165 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1166
1167 /* WaDisableLSQCROPERFforOCL:kbl */
1168 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1169 if (ret)
1170 return ret;
1171
1172 return 0;
1173 }
1174
1175 int init_workarounds_ring(struct intel_engine_cs *engine)
1176 {
1177 struct drm_i915_private *dev_priv = engine->i915;
1178
1179 WARN_ON(engine->id != RCS);
1180
1181 dev_priv->workarounds.count = 0;
1182 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1183
1184 if (IS_BROADWELL(dev_priv))
1185 return bdw_init_workarounds(engine);
1186
1187 if (IS_CHERRYVIEW(dev_priv))
1188 return chv_init_workarounds(engine);
1189
1190 if (IS_SKYLAKE(dev_priv))
1191 return skl_init_workarounds(engine);
1192
1193 if (IS_BROXTON(dev_priv))
1194 return bxt_init_workarounds(engine);
1195
1196 if (IS_KABYLAKE(dev_priv))
1197 return kbl_init_workarounds(engine);
1198
1199 return 0;
1200 }
1201
1202 static int init_render_ring(struct intel_engine_cs *engine)
1203 {
1204 struct drm_i915_private *dev_priv = engine->i915;
1205 int ret = init_ring_common(engine);
1206 if (ret)
1207 return ret;
1208
1209 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1210 if (IS_GEN(dev_priv, 4, 6))
1211 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1212
1213 /* We need to disable the AsyncFlip performance optimisations in order
1214 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1215 * programmed to '1' on all products.
1216 *
1217 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1218 */
1219 if (IS_GEN(dev_priv, 6, 7))
1220 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1221
1222 /* Required for the hardware to program scanline values for waiting */
1223 /* WaEnableFlushTlbInvalidationMode:snb */
1224 if (IS_GEN6(dev_priv))
1225 I915_WRITE(GFX_MODE,
1226 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1227
1228 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1229 if (IS_GEN7(dev_priv))
1230 I915_WRITE(GFX_MODE_GEN7,
1231 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1232 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1233
1234 if (IS_GEN6(dev_priv)) {
1235 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1236 * "If this bit is set, STCunit will have LRA as replacement
1237 * policy. [...] This bit must be reset. LRA replacement
1238 * policy is not supported."
1239 */
1240 I915_WRITE(CACHE_MODE_0,
1241 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1242 }
1243
1244 if (IS_GEN(dev_priv, 6, 7))
1245 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1246
1247 if (INTEL_INFO(dev_priv)->gen >= 6)
1248 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1249
1250 return init_workarounds_ring(engine);
1251 }
1252
1253 static void render_ring_cleanup(struct intel_engine_cs *engine)
1254 {
1255 struct drm_i915_private *dev_priv = engine->i915;
1256
1257 i915_vma_unpin_and_release(&dev_priv->semaphore);
1258 }
1259
1260 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1261 {
1262 struct drm_i915_private *dev_priv = req->i915;
1263 struct intel_engine_cs *waiter;
1264 enum intel_engine_id id;
1265
1266 for_each_engine(waiter, dev_priv, id) {
1267 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1269 continue;
1270
1271 *out++ = GFX_OP_PIPE_CONTROL(6);
1272 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1273 PIPE_CONTROL_QW_WRITE |
1274 PIPE_CONTROL_CS_STALL);
1275 *out++ = lower_32_bits(gtt_offset);
1276 *out++ = upper_32_bits(gtt_offset);
1277 *out++ = req->global_seqno;
1278 *out++ = 0;
1279 *out++ = (MI_SEMAPHORE_SIGNAL |
1280 MI_SEMAPHORE_TARGET(waiter->hw_id));
1281 *out++ = 0;
1282 }
1283
1284 return out;
1285 }
1286
1287 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1288 {
1289 struct drm_i915_private *dev_priv = req->i915;
1290 struct intel_engine_cs *waiter;
1291 enum intel_engine_id id;
1292
1293 for_each_engine(waiter, dev_priv, id) {
1294 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1295 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1296 continue;
1297
1298 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1299 *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1300 *out++ = upper_32_bits(gtt_offset);
1301 *out++ = req->global_seqno;
1302 *out++ = (MI_SEMAPHORE_SIGNAL |
1303 MI_SEMAPHORE_TARGET(waiter->hw_id));
1304 *out++ = 0;
1305 }
1306
1307 return out;
1308 }
1309
1310 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1311 {
1312 struct drm_i915_private *dev_priv = req->i915;
1313 struct intel_engine_cs *engine;
1314 enum intel_engine_id id;
1315 int num_rings = 0;
1316
1317 for_each_engine(engine, dev_priv, id) {
1318 i915_reg_t mbox_reg;
1319
1320 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1321 continue;
1322
1323 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1324 if (i915_mmio_reg_valid(mbox_reg)) {
1325 *out++ = MI_LOAD_REGISTER_IMM(1);
1326 *out++ = i915_mmio_reg_offset(mbox_reg);
1327 *out++ = req->global_seqno;
1328 num_rings++;
1329 }
1330 }
1331 if (num_rings & 1)
1332 *out++ = MI_NOOP;
1333
1334 return out;
1335 }
1336
1337 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1338 {
1339 struct drm_i915_private *dev_priv = request->i915;
1340
1341 i915_gem_request_submit(request);
1342
1343 I915_WRITE_TAIL(request->engine, request->tail);
1344 }
1345
1346 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1347 u32 *out)
1348 {
1349 *out++ = MI_STORE_DWORD_INDEX;
1350 *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1351 *out++ = req->global_seqno;
1352 *out++ = MI_USER_INTERRUPT;
1353
1354 req->tail = intel_ring_offset(req->ring, out);
1355 }
1356
1357 static const int i9xx_emit_breadcrumb_sz = 4;
1358
1359 /**
1360 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1361 *
1362 * @request - request to write to the ring
1363 *
1364 * Update the mailbox registers in the *other* rings with the current seqno.
1365 * This acts like a signal in the canonical semaphore.
1366 */
1367 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1368 u32 *out)
1369 {
1370 return i9xx_emit_breadcrumb(req,
1371 req->engine->semaphore.signal(req, out));
1372 }
1373
1374 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1375 u32 *out)
1376 {
1377 struct intel_engine_cs *engine = req->engine;
1378
1379 if (engine->semaphore.signal)
1380 out = engine->semaphore.signal(req, out);
1381
1382 *out++ = GFX_OP_PIPE_CONTROL(6);
1383 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1384 PIPE_CONTROL_CS_STALL |
1385 PIPE_CONTROL_QW_WRITE);
1386 *out++ = intel_hws_seqno_address(engine);
1387 *out++ = 0;
1388 *out++ = req->global_seqno;
1389 /* We're thrashing one dword of HWS. */
1390 *out++ = 0;
1391 *out++ = MI_USER_INTERRUPT;
1392 *out++ = MI_NOOP;
1393
1394 req->tail = intel_ring_offset(req->ring, out);
1395 }
1396
1397 static const int gen8_render_emit_breadcrumb_sz = 8;
1398
1399 /**
1400 * intel_ring_sync - sync the waiter to the signaller on seqno
1401 *
1402 * @waiter - ring that is waiting
1403 * @signaller - ring which has, or will signal
1404 * @seqno - seqno which the waiter will block on
1405 */
1406
1407 static int
1408 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1409 struct drm_i915_gem_request *signal)
1410 {
1411 struct intel_ring *ring = req->ring;
1412 struct drm_i915_private *dev_priv = req->i915;
1413 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1414 struct i915_hw_ppgtt *ppgtt;
1415 int ret;
1416
1417 ret = intel_ring_begin(req, 4);
1418 if (ret)
1419 return ret;
1420
1421 intel_ring_emit(ring,
1422 MI_SEMAPHORE_WAIT |
1423 MI_SEMAPHORE_GLOBAL_GTT |
1424 MI_SEMAPHORE_SAD_GTE_SDD);
1425 intel_ring_emit(ring, signal->global_seqno);
1426 intel_ring_emit(ring, lower_32_bits(offset));
1427 intel_ring_emit(ring, upper_32_bits(offset));
1428 intel_ring_advance(ring);
1429
1430 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1431 * pagetables and we must reload them before executing the batch.
1432 * We do this on the i915_switch_context() following the wait and
1433 * before the dispatch.
1434 */
1435 ppgtt = req->ctx->ppgtt;
1436 if (ppgtt && req->engine->id != RCS)
1437 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1438 return 0;
1439 }
1440
1441 static int
1442 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1443 struct drm_i915_gem_request *signal)
1444 {
1445 struct intel_ring *ring = req->ring;
1446 u32 dw1 = MI_SEMAPHORE_MBOX |
1447 MI_SEMAPHORE_COMPARE |
1448 MI_SEMAPHORE_REGISTER;
1449 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1450 int ret;
1451
1452 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1453
1454 ret = intel_ring_begin(req, 4);
1455 if (ret)
1456 return ret;
1457
1458 intel_ring_emit(ring, dw1 | wait_mbox);
1459 /* Throughout all of the GEM code, seqno passed implies our current
1460 * seqno is >= the last seqno executed. However for hardware the
1461 * comparison is strictly greater than.
1462 */
1463 intel_ring_emit(ring, signal->global_seqno - 1);
1464 intel_ring_emit(ring, 0);
1465 intel_ring_emit(ring, MI_NOOP);
1466 intel_ring_advance(ring);
1467
1468 return 0;
1469 }
1470
1471 static void
1472 gen5_seqno_barrier(struct intel_engine_cs *engine)
1473 {
1474 /* MI_STORE are internally buffered by the GPU and not flushed
1475 * either by MI_FLUSH or SyncFlush or any other combination of
1476 * MI commands.
1477 *
1478 * "Only the submission of the store operation is guaranteed.
1479 * The write result will be complete (coherent) some time later
1480 * (this is practically a finite period but there is no guaranteed
1481 * latency)."
1482 *
1483 * Empirically, we observe that we need a delay of at least 75us to
1484 * be sure that the seqno write is visible by the CPU.
1485 */
1486 usleep_range(125, 250);
1487 }
1488
1489 static void
1490 gen6_seqno_barrier(struct intel_engine_cs *engine)
1491 {
1492 struct drm_i915_private *dev_priv = engine->i915;
1493
1494 /* Workaround to force correct ordering between irq and seqno writes on
1495 * ivb (and maybe also on snb) by reading from a CS register (like
1496 * ACTHD) before reading the status page.
1497 *
1498 * Note that this effectively stalls the read by the time it takes to
1499 * do a memory transaction, which more or less ensures that the write
1500 * from the GPU has sufficient time to invalidate the CPU cacheline.
1501 * Alternatively we could delay the interrupt from the CS ring to give
1502 * the write time to land, but that would incur a delay after every
1503 * batch i.e. much more frequent than a delay when waiting for the
1504 * interrupt (with the same net latency).
1505 *
1506 * Also note that to prevent whole machine hangs on gen7, we have to
1507 * take the spinlock to guard against concurrent cacheline access.
1508 */
1509 spin_lock_irq(&dev_priv->uncore.lock);
1510 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1511 spin_unlock_irq(&dev_priv->uncore.lock);
1512 }
1513
1514 static void
1515 gen5_irq_enable(struct intel_engine_cs *engine)
1516 {
1517 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1518 }
1519
1520 static void
1521 gen5_irq_disable(struct intel_engine_cs *engine)
1522 {
1523 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1524 }
1525
1526 static void
1527 i9xx_irq_enable(struct intel_engine_cs *engine)
1528 {
1529 struct drm_i915_private *dev_priv = engine->i915;
1530
1531 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1532 I915_WRITE(IMR, dev_priv->irq_mask);
1533 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1534 }
1535
1536 static void
1537 i9xx_irq_disable(struct intel_engine_cs *engine)
1538 {
1539 struct drm_i915_private *dev_priv = engine->i915;
1540
1541 dev_priv->irq_mask |= engine->irq_enable_mask;
1542 I915_WRITE(IMR, dev_priv->irq_mask);
1543 }
1544
1545 static void
1546 i8xx_irq_enable(struct intel_engine_cs *engine)
1547 {
1548 struct drm_i915_private *dev_priv = engine->i915;
1549
1550 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1551 I915_WRITE16(IMR, dev_priv->irq_mask);
1552 POSTING_READ16(RING_IMR(engine->mmio_base));
1553 }
1554
1555 static void
1556 i8xx_irq_disable(struct intel_engine_cs *engine)
1557 {
1558 struct drm_i915_private *dev_priv = engine->i915;
1559
1560 dev_priv->irq_mask |= engine->irq_enable_mask;
1561 I915_WRITE16(IMR, dev_priv->irq_mask);
1562 }
1563
1564 static int
1565 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1566 {
1567 struct intel_ring *ring = req->ring;
1568 int ret;
1569
1570 ret = intel_ring_begin(req, 2);
1571 if (ret)
1572 return ret;
1573
1574 intel_ring_emit(ring, MI_FLUSH);
1575 intel_ring_emit(ring, MI_NOOP);
1576 intel_ring_advance(ring);
1577 return 0;
1578 }
1579
1580 static void
1581 gen6_irq_enable(struct intel_engine_cs *engine)
1582 {
1583 struct drm_i915_private *dev_priv = engine->i915;
1584
1585 I915_WRITE_IMR(engine,
1586 ~(engine->irq_enable_mask |
1587 engine->irq_keep_mask));
1588 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1589 }
1590
1591 static void
1592 gen6_irq_disable(struct intel_engine_cs *engine)
1593 {
1594 struct drm_i915_private *dev_priv = engine->i915;
1595
1596 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1597 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1598 }
1599
1600 static void
1601 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1602 {
1603 struct drm_i915_private *dev_priv = engine->i915;
1604
1605 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1606 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1607 }
1608
1609 static void
1610 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1611 {
1612 struct drm_i915_private *dev_priv = engine->i915;
1613
1614 I915_WRITE_IMR(engine, ~0);
1615 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1616 }
1617
1618 static void
1619 gen8_irq_enable(struct intel_engine_cs *engine)
1620 {
1621 struct drm_i915_private *dev_priv = engine->i915;
1622
1623 I915_WRITE_IMR(engine,
1624 ~(engine->irq_enable_mask |
1625 engine->irq_keep_mask));
1626 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1627 }
1628
1629 static void
1630 gen8_irq_disable(struct intel_engine_cs *engine)
1631 {
1632 struct drm_i915_private *dev_priv = engine->i915;
1633
1634 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1635 }
1636
1637 static int
1638 i965_emit_bb_start(struct drm_i915_gem_request *req,
1639 u64 offset, u32 length,
1640 unsigned int dispatch_flags)
1641 {
1642 struct intel_ring *ring = req->ring;
1643 int ret;
1644
1645 ret = intel_ring_begin(req, 2);
1646 if (ret)
1647 return ret;
1648
1649 intel_ring_emit(ring,
1650 MI_BATCH_BUFFER_START |
1651 MI_BATCH_GTT |
1652 (dispatch_flags & I915_DISPATCH_SECURE ?
1653 0 : MI_BATCH_NON_SECURE_I965));
1654 intel_ring_emit(ring, offset);
1655 intel_ring_advance(ring);
1656
1657 return 0;
1658 }
1659
1660 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1661 #define I830_BATCH_LIMIT (256*1024)
1662 #define I830_TLB_ENTRIES (2)
1663 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1664 static int
1665 i830_emit_bb_start(struct drm_i915_gem_request *req,
1666 u64 offset, u32 len,
1667 unsigned int dispatch_flags)
1668 {
1669 struct intel_ring *ring = req->ring;
1670 u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1671 int ret;
1672
1673 ret = intel_ring_begin(req, 6);
1674 if (ret)
1675 return ret;
1676
1677 /* Evict the invalid PTE TLBs */
1678 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1679 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1680 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1681 intel_ring_emit(ring, cs_offset);
1682 intel_ring_emit(ring, 0xdeadbeef);
1683 intel_ring_emit(ring, MI_NOOP);
1684 intel_ring_advance(ring);
1685
1686 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1687 if (len > I830_BATCH_LIMIT)
1688 return -ENOSPC;
1689
1690 ret = intel_ring_begin(req, 6 + 2);
1691 if (ret)
1692 return ret;
1693
1694 /* Blit the batch (which has now all relocs applied) to the
1695 * stable batch scratch bo area (so that the CS never
1696 * stumbles over its tlb invalidation bug) ...
1697 */
1698 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1699 intel_ring_emit(ring,
1700 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1701 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1702 intel_ring_emit(ring, cs_offset);
1703 intel_ring_emit(ring, 4096);
1704 intel_ring_emit(ring, offset);
1705
1706 intel_ring_emit(ring, MI_FLUSH);
1707 intel_ring_emit(ring, MI_NOOP);
1708 intel_ring_advance(ring);
1709
1710 /* ... and execute it. */
1711 offset = cs_offset;
1712 }
1713
1714 ret = intel_ring_begin(req, 2);
1715 if (ret)
1716 return ret;
1717
1718 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1719 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1720 0 : MI_BATCH_NON_SECURE));
1721 intel_ring_advance(ring);
1722
1723 return 0;
1724 }
1725
1726 static int
1727 i915_emit_bb_start(struct drm_i915_gem_request *req,
1728 u64 offset, u32 len,
1729 unsigned int dispatch_flags)
1730 {
1731 struct intel_ring *ring = req->ring;
1732 int ret;
1733
1734 ret = intel_ring_begin(req, 2);
1735 if (ret)
1736 return ret;
1737
1738 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1739 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1740 0 : MI_BATCH_NON_SECURE));
1741 intel_ring_advance(ring);
1742
1743 return 0;
1744 }
1745
1746 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1747 {
1748 struct drm_i915_private *dev_priv = engine->i915;
1749
1750 if (!dev_priv->status_page_dmah)
1751 return;
1752
1753 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1754 engine->status_page.page_addr = NULL;
1755 }
1756
1757 static void cleanup_status_page(struct intel_engine_cs *engine)
1758 {
1759 struct i915_vma *vma;
1760 struct drm_i915_gem_object *obj;
1761
1762 vma = fetch_and_zero(&engine->status_page.vma);
1763 if (!vma)
1764 return;
1765
1766 obj = vma->obj;
1767
1768 i915_vma_unpin(vma);
1769 i915_vma_close(vma);
1770
1771 i915_gem_object_unpin_map(obj);
1772 __i915_gem_object_release_unless_active(obj);
1773 }
1774
1775 static int init_status_page(struct intel_engine_cs *engine)
1776 {
1777 struct drm_i915_gem_object *obj;
1778 struct i915_vma *vma;
1779 unsigned int flags;
1780 void *vaddr;
1781 int ret;
1782
1783 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1784 if (IS_ERR(obj)) {
1785 DRM_ERROR("Failed to allocate status page\n");
1786 return PTR_ERR(obj);
1787 }
1788
1789 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1790 if (ret)
1791 goto err;
1792
1793 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1794 if (IS_ERR(vma)) {
1795 ret = PTR_ERR(vma);
1796 goto err;
1797 }
1798
1799 flags = PIN_GLOBAL;
1800 if (!HAS_LLC(engine->i915))
1801 /* On g33, we cannot place HWS above 256MiB, so
1802 * restrict its pinning to the low mappable arena.
1803 * Though this restriction is not documented for
1804 * gen4, gen5, or byt, they also behave similarly
1805 * and hang if the HWS is placed at the top of the
1806 * GTT. To generalise, it appears that all !llc
1807 * platforms have issues with us placing the HWS
1808 * above the mappable region (even though we never
1809 * actualy map it).
1810 */
1811 flags |= PIN_MAPPABLE;
1812 ret = i915_vma_pin(vma, 0, 4096, flags);
1813 if (ret)
1814 goto err;
1815
1816 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1817 if (IS_ERR(vaddr)) {
1818 ret = PTR_ERR(vaddr);
1819 goto err_unpin;
1820 }
1821
1822 engine->status_page.vma = vma;
1823 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1824 engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1825
1826 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1827 engine->name, i915_ggtt_offset(vma));
1828 return 0;
1829
1830 err_unpin:
1831 i915_vma_unpin(vma);
1832 err:
1833 i915_gem_object_put(obj);
1834 return ret;
1835 }
1836
1837 static int init_phys_status_page(struct intel_engine_cs *engine)
1838 {
1839 struct drm_i915_private *dev_priv = engine->i915;
1840
1841 dev_priv->status_page_dmah =
1842 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1843 if (!dev_priv->status_page_dmah)
1844 return -ENOMEM;
1845
1846 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1847 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1848
1849 return 0;
1850 }
1851
1852 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1853 {
1854 unsigned int flags;
1855 enum i915_map_type map;
1856 struct i915_vma *vma = ring->vma;
1857 void *addr;
1858 int ret;
1859
1860 GEM_BUG_ON(ring->vaddr);
1861
1862 map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1863
1864 flags = PIN_GLOBAL;
1865 if (offset_bias)
1866 flags |= PIN_OFFSET_BIAS | offset_bias;
1867 if (vma->obj->stolen)
1868 flags |= PIN_MAPPABLE;
1869
1870 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1871 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1872 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1873 else
1874 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1875 if (unlikely(ret))
1876 return ret;
1877 }
1878
1879 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1880 if (unlikely(ret))
1881 return ret;
1882
1883 if (i915_vma_is_map_and_fenceable(vma))
1884 addr = (void __force *)i915_vma_pin_iomap(vma);
1885 else
1886 addr = i915_gem_object_pin_map(vma->obj, map);
1887 if (IS_ERR(addr))
1888 goto err;
1889
1890 ring->vaddr = addr;
1891 return 0;
1892
1893 err:
1894 i915_vma_unpin(vma);
1895 return PTR_ERR(addr);
1896 }
1897
1898 void intel_ring_unpin(struct intel_ring *ring)
1899 {
1900 GEM_BUG_ON(!ring->vma);
1901 GEM_BUG_ON(!ring->vaddr);
1902
1903 if (i915_vma_is_map_and_fenceable(ring->vma))
1904 i915_vma_unpin_iomap(ring->vma);
1905 else
1906 i915_gem_object_unpin_map(ring->vma->obj);
1907 ring->vaddr = NULL;
1908
1909 i915_vma_unpin(ring->vma);
1910 }
1911
1912 static struct i915_vma *
1913 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1914 {
1915 struct drm_i915_gem_object *obj;
1916 struct i915_vma *vma;
1917
1918 obj = i915_gem_object_create_stolen(dev_priv, size);
1919 if (!obj)
1920 obj = i915_gem_object_create(dev_priv, size);
1921 if (IS_ERR(obj))
1922 return ERR_CAST(obj);
1923
1924 /* mark ring buffers as read-only from GPU side by default */
1925 obj->gt_ro = 1;
1926
1927 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1928 if (IS_ERR(vma))
1929 goto err;
1930
1931 return vma;
1932
1933 err:
1934 i915_gem_object_put(obj);
1935 return vma;
1936 }
1937
1938 struct intel_ring *
1939 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1940 {
1941 struct intel_ring *ring;
1942 struct i915_vma *vma;
1943
1944 GEM_BUG_ON(!is_power_of_2(size));
1945 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1946
1947 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1948 if (!ring)
1949 return ERR_PTR(-ENOMEM);
1950
1951 ring->engine = engine;
1952
1953 INIT_LIST_HEAD(&ring->request_list);
1954
1955 ring->size = size;
1956 /* Workaround an erratum on the i830 which causes a hang if
1957 * the TAIL pointer points to within the last 2 cachelines
1958 * of the buffer.
1959 */
1960 ring->effective_size = size;
1961 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1962 ring->effective_size -= 2 * CACHELINE_BYTES;
1963
1964 ring->last_retired_head = -1;
1965 intel_ring_update_space(ring);
1966
1967 vma = intel_ring_create_vma(engine->i915, size);
1968 if (IS_ERR(vma)) {
1969 kfree(ring);
1970 return ERR_CAST(vma);
1971 }
1972 ring->vma = vma;
1973
1974 return ring;
1975 }
1976
1977 void
1978 intel_ring_free(struct intel_ring *ring)
1979 {
1980 struct drm_i915_gem_object *obj = ring->vma->obj;
1981
1982 i915_vma_close(ring->vma);
1983 __i915_gem_object_release_unless_active(obj);
1984
1985 kfree(ring);
1986 }
1987
1988 static int context_pin(struct i915_gem_context *ctx, unsigned int flags)
1989 {
1990 struct i915_vma *vma = ctx->engine[RCS].state;
1991 int ret;
1992
1993 /* Clear this page out of any CPU caches for coherent swap-in/out.
1994 * We only want to do this on the first bind so that we do not stall
1995 * on an active context (which by nature is already on the GPU).
1996 */
1997 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1998 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1999 if (ret)
2000 return ret;
2001 }
2002
2003 return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags);
2004 }
2005
2006 static int intel_ring_context_pin(struct intel_engine_cs *engine,
2007 struct i915_gem_context *ctx)
2008 {
2009 struct intel_context *ce = &ctx->engine[engine->id];
2010 int ret;
2011
2012 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2013
2014 if (ce->pin_count++)
2015 return 0;
2016
2017 if (ce->state) {
2018 unsigned int flags;
2019
2020 flags = 0;
2021 if (i915_gem_context_is_kernel(ctx))
2022 flags = PIN_HIGH;
2023
2024 ret = context_pin(ctx, flags);
2025 if (ret)
2026 goto error;
2027 }
2028
2029 /* The kernel context is only used as a placeholder for flushing the
2030 * active context. It is never used for submitting user rendering and
2031 * as such never requires the golden render context, and so we can skip
2032 * emitting it when we switch to the kernel context. This is required
2033 * as during eviction we cannot allocate and pin the renderstate in
2034 * order to initialise the context.
2035 */
2036 if (i915_gem_context_is_kernel(ctx))
2037 ce->initialised = true;
2038
2039 i915_gem_context_get(ctx);
2040 return 0;
2041
2042 error:
2043 ce->pin_count = 0;
2044 return ret;
2045 }
2046
2047 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
2048 struct i915_gem_context *ctx)
2049 {
2050 struct intel_context *ce = &ctx->engine[engine->id];
2051
2052 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2053 GEM_BUG_ON(ce->pin_count == 0);
2054
2055 if (--ce->pin_count)
2056 return;
2057
2058 if (ce->state)
2059 i915_vma_unpin(ce->state);
2060
2061 i915_gem_context_put(ctx);
2062 }
2063
2064 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2065 {
2066 struct drm_i915_private *dev_priv = engine->i915;
2067 struct intel_ring *ring;
2068 int ret;
2069
2070 WARN_ON(engine->buffer);
2071
2072 intel_engine_setup_common(engine);
2073
2074 ret = intel_engine_init_common(engine);
2075 if (ret)
2076 goto error;
2077
2078 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2079 if (IS_ERR(ring)) {
2080 ret = PTR_ERR(ring);
2081 goto error;
2082 }
2083
2084 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2085 WARN_ON(engine->id != RCS);
2086 ret = init_phys_status_page(engine);
2087 if (ret)
2088 goto error;
2089 } else {
2090 ret = init_status_page(engine);
2091 if (ret)
2092 goto error;
2093 }
2094
2095 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2096 ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
2097 if (ret) {
2098 intel_ring_free(ring);
2099 goto error;
2100 }
2101 engine->buffer = ring;
2102
2103 return 0;
2104
2105 error:
2106 intel_engine_cleanup(engine);
2107 return ret;
2108 }
2109
2110 void intel_engine_cleanup(struct intel_engine_cs *engine)
2111 {
2112 struct drm_i915_private *dev_priv;
2113
2114 dev_priv = engine->i915;
2115
2116 if (engine->buffer) {
2117 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2118 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2119
2120 intel_ring_unpin(engine->buffer);
2121 intel_ring_free(engine->buffer);
2122 engine->buffer = NULL;
2123 }
2124
2125 if (engine->cleanup)
2126 engine->cleanup(engine);
2127
2128 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2129 WARN_ON(engine->id != RCS);
2130 cleanup_phys_status_page(engine);
2131 } else {
2132 cleanup_status_page(engine);
2133 }
2134
2135 intel_engine_cleanup_common(engine);
2136
2137 engine->i915 = NULL;
2138 dev_priv->engine[engine->id] = NULL;
2139 kfree(engine);
2140 }
2141
2142 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2143 {
2144 struct intel_engine_cs *engine;
2145 enum intel_engine_id id;
2146
2147 for_each_engine(engine, dev_priv, id) {
2148 engine->buffer->head = engine->buffer->tail;
2149 engine->buffer->last_retired_head = -1;
2150 }
2151 }
2152
2153 static int ring_request_alloc(struct drm_i915_gem_request *request)
2154 {
2155 int ret;
2156
2157 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
2158
2159 /* Flush enough space to reduce the likelihood of waiting after
2160 * we start building the request - in which case we will just
2161 * have to repeat work.
2162 */
2163 request->reserved_space += LEGACY_REQUEST_SIZE;
2164
2165 GEM_BUG_ON(!request->engine->buffer);
2166 request->ring = request->engine->buffer;
2167
2168 ret = intel_ring_begin(request, 0);
2169 if (ret)
2170 return ret;
2171
2172 request->reserved_space -= LEGACY_REQUEST_SIZE;
2173 return 0;
2174 }
2175
2176 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2177 {
2178 struct intel_ring *ring = req->ring;
2179 struct drm_i915_gem_request *target;
2180 long timeout;
2181
2182 lockdep_assert_held(&req->i915->drm.struct_mutex);
2183
2184 intel_ring_update_space(ring);
2185 if (ring->space >= bytes)
2186 return 0;
2187
2188 /*
2189 * Space is reserved in the ringbuffer for finalising the request,
2190 * as that cannot be allowed to fail. During request finalisation,
2191 * reserved_space is set to 0 to stop the overallocation and the
2192 * assumption is that then we never need to wait (which has the
2193 * risk of failing with EINTR).
2194 *
2195 * See also i915_gem_request_alloc() and i915_add_request().
2196 */
2197 GEM_BUG_ON(!req->reserved_space);
2198
2199 list_for_each_entry(target, &ring->request_list, ring_link) {
2200 unsigned space;
2201
2202 /* Would completion of this request free enough space? */
2203 space = __intel_ring_space(target->postfix, ring->tail,
2204 ring->size);
2205 if (space >= bytes)
2206 break;
2207 }
2208
2209 if (WARN_ON(&target->ring_link == &ring->request_list))
2210 return -ENOSPC;
2211
2212 timeout = i915_wait_request(target,
2213 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2214 MAX_SCHEDULE_TIMEOUT);
2215 if (timeout < 0)
2216 return timeout;
2217
2218 i915_gem_request_retire_upto(target);
2219
2220 intel_ring_update_space(ring);
2221 GEM_BUG_ON(ring->space < bytes);
2222 return 0;
2223 }
2224
2225 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2226 {
2227 struct intel_ring *ring = req->ring;
2228 int remain_actual = ring->size - ring->tail;
2229 int remain_usable = ring->effective_size - ring->tail;
2230 int bytes = num_dwords * sizeof(u32);
2231 int total_bytes, wait_bytes;
2232 bool need_wrap = false;
2233
2234 total_bytes = bytes + req->reserved_space;
2235
2236 if (unlikely(bytes > remain_usable)) {
2237 /*
2238 * Not enough space for the basic request. So need to flush
2239 * out the remainder and then wait for base + reserved.
2240 */
2241 wait_bytes = remain_actual + total_bytes;
2242 need_wrap = true;
2243 } else if (unlikely(total_bytes > remain_usable)) {
2244 /*
2245 * The base request will fit but the reserved space
2246 * falls off the end. So we don't need an immediate wrap
2247 * and only need to effectively wait for the reserved
2248 * size space from the start of ringbuffer.
2249 */
2250 wait_bytes = remain_actual + req->reserved_space;
2251 } else {
2252 /* No wrapping required, just waiting. */
2253 wait_bytes = total_bytes;
2254 }
2255
2256 if (wait_bytes > ring->space) {
2257 int ret = wait_for_space(req, wait_bytes);
2258 if (unlikely(ret))
2259 return ret;
2260 }
2261
2262 if (unlikely(need_wrap)) {
2263 GEM_BUG_ON(remain_actual > ring->space);
2264 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2265
2266 /* Fill the tail with MI_NOOP */
2267 memset(ring->vaddr + ring->tail, 0, remain_actual);
2268 ring->tail = 0;
2269 ring->space -= remain_actual;
2270 }
2271
2272 ring->space -= bytes;
2273 GEM_BUG_ON(ring->space < 0);
2274 return 0;
2275 }
2276
2277 /* Align the ring tail to a cacheline boundary */
2278 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2279 {
2280 struct intel_ring *ring = req->ring;
2281 int num_dwords =
2282 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2283 int ret;
2284
2285 if (num_dwords == 0)
2286 return 0;
2287
2288 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2289 ret = intel_ring_begin(req, num_dwords);
2290 if (ret)
2291 return ret;
2292
2293 while (num_dwords--)
2294 intel_ring_emit(ring, MI_NOOP);
2295
2296 intel_ring_advance(ring);
2297
2298 return 0;
2299 }
2300
2301 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2302 {
2303 struct drm_i915_private *dev_priv = request->i915;
2304
2305 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2306
2307 /* Every tail move must follow the sequence below */
2308
2309 /* Disable notification that the ring is IDLE. The GT
2310 * will then assume that it is busy and bring it out of rc6.
2311 */
2312 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2313 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2314
2315 /* Clear the context id. Here be magic! */
2316 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2317
2318 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2319 if (intel_wait_for_register_fw(dev_priv,
2320 GEN6_BSD_SLEEP_PSMI_CONTROL,
2321 GEN6_BSD_SLEEP_INDICATOR,
2322 0,
2323 50))
2324 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2325
2326 /* Now that the ring is fully powered up, update the tail */
2327 i9xx_submit_request(request);
2328
2329 /* Let the ring send IDLE messages to the GT again,
2330 * and so let it sleep to conserve power when idle.
2331 */
2332 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2333 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2334
2335 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2336 }
2337
2338 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2339 {
2340 struct intel_ring *ring = req->ring;
2341 uint32_t cmd;
2342 int ret;
2343
2344 ret = intel_ring_begin(req, 4);
2345 if (ret)
2346 return ret;
2347
2348 cmd = MI_FLUSH_DW;
2349 if (INTEL_GEN(req->i915) >= 8)
2350 cmd += 1;
2351
2352 /* We always require a command barrier so that subsequent
2353 * commands, such as breadcrumb interrupts, are strictly ordered
2354 * wrt the contents of the write cache being flushed to memory
2355 * (and thus being coherent from the CPU).
2356 */
2357 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2358
2359 /*
2360 * Bspec vol 1c.5 - video engine command streamer:
2361 * "If ENABLED, all TLBs will be invalidated once the flush
2362 * operation is complete. This bit is only valid when the
2363 * Post-Sync Operation field is a value of 1h or 3h."
2364 */
2365 if (mode & EMIT_INVALIDATE)
2366 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2367
2368 intel_ring_emit(ring, cmd);
2369 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2370 if (INTEL_GEN(req->i915) >= 8) {
2371 intel_ring_emit(ring, 0); /* upper addr */
2372 intel_ring_emit(ring, 0); /* value */
2373 } else {
2374 intel_ring_emit(ring, 0);
2375 intel_ring_emit(ring, MI_NOOP);
2376 }
2377 intel_ring_advance(ring);
2378 return 0;
2379 }
2380
2381 static int
2382 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2383 u64 offset, u32 len,
2384 unsigned int dispatch_flags)
2385 {
2386 struct intel_ring *ring = req->ring;
2387 bool ppgtt = USES_PPGTT(req->i915) &&
2388 !(dispatch_flags & I915_DISPATCH_SECURE);
2389 int ret;
2390
2391 ret = intel_ring_begin(req, 4);
2392 if (ret)
2393 return ret;
2394
2395 /* FIXME(BDW): Address space and security selectors. */
2396 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2397 (dispatch_flags & I915_DISPATCH_RS ?
2398 MI_BATCH_RESOURCE_STREAMER : 0));
2399 intel_ring_emit(ring, lower_32_bits(offset));
2400 intel_ring_emit(ring, upper_32_bits(offset));
2401 intel_ring_emit(ring, MI_NOOP);
2402 intel_ring_advance(ring);
2403
2404 return 0;
2405 }
2406
2407 static int
2408 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2409 u64 offset, u32 len,
2410 unsigned int dispatch_flags)
2411 {
2412 struct intel_ring *ring = req->ring;
2413 int ret;
2414
2415 ret = intel_ring_begin(req, 2);
2416 if (ret)
2417 return ret;
2418
2419 intel_ring_emit(ring,
2420 MI_BATCH_BUFFER_START |
2421 (dispatch_flags & I915_DISPATCH_SECURE ?
2422 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2423 (dispatch_flags & I915_DISPATCH_RS ?
2424 MI_BATCH_RESOURCE_STREAMER : 0));
2425 /* bit0-7 is the length on GEN6+ */
2426 intel_ring_emit(ring, offset);
2427 intel_ring_advance(ring);
2428
2429 return 0;
2430 }
2431
2432 static int
2433 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2434 u64 offset, u32 len,
2435 unsigned int dispatch_flags)
2436 {
2437 struct intel_ring *ring = req->ring;
2438 int ret;
2439
2440 ret = intel_ring_begin(req, 2);
2441 if (ret)
2442 return ret;
2443
2444 intel_ring_emit(ring,
2445 MI_BATCH_BUFFER_START |
2446 (dispatch_flags & I915_DISPATCH_SECURE ?
2447 0 : MI_BATCH_NON_SECURE_I965));
2448 /* bit0-7 is the length on GEN6+ */
2449 intel_ring_emit(ring, offset);
2450 intel_ring_advance(ring);
2451
2452 return 0;
2453 }
2454
2455 /* Blitter support (SandyBridge+) */
2456
2457 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2458 {
2459 struct intel_ring *ring = req->ring;
2460 uint32_t cmd;
2461 int ret;
2462
2463 ret = intel_ring_begin(req, 4);
2464 if (ret)
2465 return ret;
2466
2467 cmd = MI_FLUSH_DW;
2468 if (INTEL_GEN(req->i915) >= 8)
2469 cmd += 1;
2470
2471 /* We always require a command barrier so that subsequent
2472 * commands, such as breadcrumb interrupts, are strictly ordered
2473 * wrt the contents of the write cache being flushed to memory
2474 * (and thus being coherent from the CPU).
2475 */
2476 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2477
2478 /*
2479 * Bspec vol 1c.3 - blitter engine command streamer:
2480 * "If ENABLED, all TLBs will be invalidated once the flush
2481 * operation is complete. This bit is only valid when the
2482 * Post-Sync Operation field is a value of 1h or 3h."
2483 */
2484 if (mode & EMIT_INVALIDATE)
2485 cmd |= MI_INVALIDATE_TLB;
2486 intel_ring_emit(ring, cmd);
2487 intel_ring_emit(ring,
2488 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2489 if (INTEL_GEN(req->i915) >= 8) {
2490 intel_ring_emit(ring, 0); /* upper addr */
2491 intel_ring_emit(ring, 0); /* value */
2492 } else {
2493 intel_ring_emit(ring, 0);
2494 intel_ring_emit(ring, MI_NOOP);
2495 }
2496 intel_ring_advance(ring);
2497
2498 return 0;
2499 }
2500
2501 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2502 struct intel_engine_cs *engine)
2503 {
2504 struct drm_i915_gem_object *obj;
2505 int ret, i;
2506
2507 if (!i915.semaphores)
2508 return;
2509
2510 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2511 struct i915_vma *vma;
2512
2513 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
2514 if (IS_ERR(obj))
2515 goto err;
2516
2517 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2518 if (IS_ERR(vma))
2519 goto err_obj;
2520
2521 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2522 if (ret)
2523 goto err_obj;
2524
2525 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2526 if (ret)
2527 goto err_obj;
2528
2529 dev_priv->semaphore = vma;
2530 }
2531
2532 if (INTEL_GEN(dev_priv) >= 8) {
2533 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2534
2535 engine->semaphore.sync_to = gen8_ring_sync_to;
2536 engine->semaphore.signal = gen8_xcs_signal;
2537
2538 for (i = 0; i < I915_NUM_ENGINES; i++) {
2539 u32 ring_offset;
2540
2541 if (i != engine->id)
2542 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2543 else
2544 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2545
2546 engine->semaphore.signal_ggtt[i] = ring_offset;
2547 }
2548 } else if (INTEL_GEN(dev_priv) >= 6) {
2549 engine->semaphore.sync_to = gen6_ring_sync_to;
2550 engine->semaphore.signal = gen6_signal;
2551
2552 /*
2553 * The current semaphore is only applied on pre-gen8
2554 * platform. And there is no VCS2 ring on the pre-gen8
2555 * platform. So the semaphore between RCS and VCS2 is
2556 * initialized as INVALID. Gen8 will initialize the
2557 * sema between VCS2 and RCS later.
2558 */
2559 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2560 static const struct {
2561 u32 wait_mbox;
2562 i915_reg_t mbox_reg;
2563 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2564 [RCS_HW] = {
2565 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2566 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2567 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2568 },
2569 [VCS_HW] = {
2570 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2571 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2572 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2573 },
2574 [BCS_HW] = {
2575 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2576 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2577 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2578 },
2579 [VECS_HW] = {
2580 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2581 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2582 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2583 },
2584 };
2585 u32 wait_mbox;
2586 i915_reg_t mbox_reg;
2587
2588 if (i == engine->hw_id) {
2589 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2590 mbox_reg = GEN6_NOSYNC;
2591 } else {
2592 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2593 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2594 }
2595
2596 engine->semaphore.mbox.wait[i] = wait_mbox;
2597 engine->semaphore.mbox.signal[i] = mbox_reg;
2598 }
2599 }
2600
2601 return;
2602
2603 err_obj:
2604 i915_gem_object_put(obj);
2605 err:
2606 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2607 i915.semaphores = 0;
2608 }
2609
2610 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2611 struct intel_engine_cs *engine)
2612 {
2613 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2614
2615 if (INTEL_GEN(dev_priv) >= 8) {
2616 engine->irq_enable = gen8_irq_enable;
2617 engine->irq_disable = gen8_irq_disable;
2618 engine->irq_seqno_barrier = gen6_seqno_barrier;
2619 } else if (INTEL_GEN(dev_priv) >= 6) {
2620 engine->irq_enable = gen6_irq_enable;
2621 engine->irq_disable = gen6_irq_disable;
2622 engine->irq_seqno_barrier = gen6_seqno_barrier;
2623 } else if (INTEL_GEN(dev_priv) >= 5) {
2624 engine->irq_enable = gen5_irq_enable;
2625 engine->irq_disable = gen5_irq_disable;
2626 engine->irq_seqno_barrier = gen5_seqno_barrier;
2627 } else if (INTEL_GEN(dev_priv) >= 3) {
2628 engine->irq_enable = i9xx_irq_enable;
2629 engine->irq_disable = i9xx_irq_disable;
2630 } else {
2631 engine->irq_enable = i8xx_irq_enable;
2632 engine->irq_disable = i8xx_irq_disable;
2633 }
2634 }
2635
2636 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2637 struct intel_engine_cs *engine)
2638 {
2639 intel_ring_init_irq(dev_priv, engine);
2640 intel_ring_init_semaphores(dev_priv, engine);
2641
2642 engine->init_hw = init_ring_common;
2643 engine->reset_hw = reset_ring_common;
2644
2645 engine->context_pin = intel_ring_context_pin;
2646 engine->context_unpin = intel_ring_context_unpin;
2647
2648 engine->request_alloc = ring_request_alloc;
2649
2650 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2651 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2652 if (i915.semaphores) {
2653 int num_rings;
2654
2655 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2656
2657 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2658 if (INTEL_GEN(dev_priv) >= 8) {
2659 engine->emit_breadcrumb_sz += num_rings * 6;
2660 } else {
2661 engine->emit_breadcrumb_sz += num_rings * 3;
2662 if (num_rings & 1)
2663 engine->emit_breadcrumb_sz++;
2664 }
2665 }
2666 engine->submit_request = i9xx_submit_request;
2667
2668 if (INTEL_GEN(dev_priv) >= 8)
2669 engine->emit_bb_start = gen8_emit_bb_start;
2670 else if (INTEL_GEN(dev_priv) >= 6)
2671 engine->emit_bb_start = gen6_emit_bb_start;
2672 else if (INTEL_GEN(dev_priv) >= 4)
2673 engine->emit_bb_start = i965_emit_bb_start;
2674 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2675 engine->emit_bb_start = i830_emit_bb_start;
2676 else
2677 engine->emit_bb_start = i915_emit_bb_start;
2678 }
2679
2680 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2681 {
2682 struct drm_i915_private *dev_priv = engine->i915;
2683 int ret;
2684
2685 intel_ring_default_vfuncs(dev_priv, engine);
2686
2687 if (HAS_L3_DPF(dev_priv))
2688 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2689
2690 if (INTEL_GEN(dev_priv) >= 8) {
2691 engine->init_context = intel_rcs_ctx_init;
2692 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2693 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2694 engine->emit_flush = gen8_render_ring_flush;
2695 if (i915.semaphores) {
2696 int num_rings;
2697
2698 engine->semaphore.signal = gen8_rcs_signal;
2699
2700 num_rings =
2701 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2702 engine->emit_breadcrumb_sz += num_rings * 6;
2703 }
2704 } else if (INTEL_GEN(dev_priv) >= 6) {
2705 engine->init_context = intel_rcs_ctx_init;
2706 engine->emit_flush = gen7_render_ring_flush;
2707 if (IS_GEN6(dev_priv))
2708 engine->emit_flush = gen6_render_ring_flush;
2709 } else if (IS_GEN5(dev_priv)) {
2710 engine->emit_flush = gen4_render_ring_flush;
2711 } else {
2712 if (INTEL_GEN(dev_priv) < 4)
2713 engine->emit_flush = gen2_render_ring_flush;
2714 else
2715 engine->emit_flush = gen4_render_ring_flush;
2716 engine->irq_enable_mask = I915_USER_INTERRUPT;
2717 }
2718
2719 if (IS_HASWELL(dev_priv))
2720 engine->emit_bb_start = hsw_emit_bb_start;
2721
2722 engine->init_hw = init_render_ring;
2723 engine->cleanup = render_ring_cleanup;
2724
2725 ret = intel_init_ring_buffer(engine);
2726 if (ret)
2727 return ret;
2728
2729 if (INTEL_GEN(dev_priv) >= 6) {
2730 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2731 if (ret)
2732 return ret;
2733 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2734 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2735 if (ret)
2736 return ret;
2737 }
2738
2739 return 0;
2740 }
2741
2742 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2743 {
2744 struct drm_i915_private *dev_priv = engine->i915;
2745
2746 intel_ring_default_vfuncs(dev_priv, engine);
2747
2748 if (INTEL_GEN(dev_priv) >= 6) {
2749 /* gen6 bsd needs a special wa for tail updates */
2750 if (IS_GEN6(dev_priv))
2751 engine->submit_request = gen6_bsd_submit_request;
2752 engine->emit_flush = gen6_bsd_ring_flush;
2753 if (INTEL_GEN(dev_priv) < 8)
2754 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2755 } else {
2756 engine->mmio_base = BSD_RING_BASE;
2757 engine->emit_flush = bsd_ring_flush;
2758 if (IS_GEN5(dev_priv))
2759 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2760 else
2761 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2762 }
2763
2764 return intel_init_ring_buffer(engine);
2765 }
2766
2767 /**
2768 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2769 */
2770 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2771 {
2772 struct drm_i915_private *dev_priv = engine->i915;
2773
2774 intel_ring_default_vfuncs(dev_priv, engine);
2775
2776 engine->emit_flush = gen6_bsd_ring_flush;
2777
2778 return intel_init_ring_buffer(engine);
2779 }
2780
2781 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2782 {
2783 struct drm_i915_private *dev_priv = engine->i915;
2784
2785 intel_ring_default_vfuncs(dev_priv, engine);
2786
2787 engine->emit_flush = gen6_ring_flush;
2788 if (INTEL_GEN(dev_priv) < 8)
2789 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2790
2791 return intel_init_ring_buffer(engine);
2792 }
2793
2794 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2795 {
2796 struct drm_i915_private *dev_priv = engine->i915;
2797
2798 intel_ring_default_vfuncs(dev_priv, engine);
2799
2800 engine->emit_flush = gen6_ring_flush;
2801
2802 if (INTEL_GEN(dev_priv) < 8) {
2803 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2804 engine->irq_enable = hsw_vebox_irq_enable;
2805 engine->irq_disable = hsw_vebox_irq_disable;
2806 }
2807
2808 return intel_init_ring_buffer(engine);
2809 }