]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge tag 'drm-intel-next-2014-10-24' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86 {
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112 {
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164 }
165
166 /**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241 {
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335 {
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396 {
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417 {
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459 {
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
574 I915_WRITE_CTL(ring,
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576 | RING_VALID);
577
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588 ret = -EIO;
589 goto out;
590 }
591
592 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593 i915_kernel_lost_context(ring->dev);
594 else {
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597 ringbuf->space = intel_ring_space(ringbuf);
598 ringbuf->last_retired_head = -1;
599 }
600
601 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606 return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612 struct drm_device *dev = ring->dev;
613
614 if (ring->scratch.obj == NULL)
615 return;
616
617 if (INTEL_INFO(dev)->gen >= 5) {
618 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620 }
621
622 drm_gem_object_unreference(&ring->scratch.obj->base);
623 ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629 int ret;
630
631 if (ring->scratch.obj)
632 return 0;
633
634 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635 if (ring->scratch.obj == NULL) {
636 DRM_ERROR("Failed to allocate seqno page\n");
637 ret = -ENOMEM;
638 goto err;
639 }
640
641 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642 if (ret)
643 goto err_unref;
644
645 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646 if (ret)
647 goto err_unref;
648
649 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651 if (ring->scratch.cpu_page == NULL) {
652 ret = -ENOMEM;
653 goto err_unpin;
654 }
655
656 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657 ring->name, ring->scratch.gtt_offset);
658 return 0;
659
660 err_unpin:
661 i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663 drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665 return ret;
666 }
667
668 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring)
669 {
670 int ret, i;
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 struct i915_workarounds *w = &dev_priv->workarounds;
674
675 if (WARN_ON(w->count == 0))
676 return 0;
677
678 ring->gpu_caches_dirty = true;
679 ret = intel_ring_flush_all_caches(ring);
680 if (ret)
681 return ret;
682
683 ret = intel_ring_begin(ring, (w->count * 2 + 2));
684 if (ret)
685 return ret;
686
687 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
688 for (i = 0; i < w->count; i++) {
689 intel_ring_emit(ring, w->reg[i].addr);
690 intel_ring_emit(ring, w->reg[i].value);
691 }
692 intel_ring_emit(ring, MI_NOOP);
693
694 intel_ring_advance(ring);
695
696 ring->gpu_caches_dirty = true;
697 ret = intel_ring_flush_all_caches(ring);
698 if (ret)
699 return ret;
700
701 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
702
703 return 0;
704 }
705
706 static int wa_add(struct drm_i915_private *dev_priv,
707 const u32 addr, const u32 val, const u32 mask)
708 {
709 const u32 idx = dev_priv->workarounds.count;
710
711 if (WARN_ON(idx >= I915_MAX_WA_REGS))
712 return -ENOSPC;
713
714 dev_priv->workarounds.reg[idx].addr = addr;
715 dev_priv->workarounds.reg[idx].value = val;
716 dev_priv->workarounds.reg[idx].mask = mask;
717
718 dev_priv->workarounds.count++;
719
720 return 0;
721 }
722
723 #define WA_REG(addr, val, mask) { \
724 const int r = wa_add(dev_priv, (addr), (val), (mask)); \
725 if (r) \
726 return r; \
727 }
728
729 #define WA_SET_BIT_MASKED(addr, mask) \
730 WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
731
732 #define WA_CLR_BIT_MASKED(addr, mask) \
733 WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
734
735 #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
736 #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
737
738 #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
739
740 static int bdw_init_workarounds(struct intel_engine_cs *ring)
741 {
742 struct drm_device *dev = ring->dev;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744
745 /* WaDisablePartialInstShootdown:bdw */
746 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
747 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
748 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
749 STALL_DOP_GATING_DISABLE);
750
751 /* WaDisableDopClockGating:bdw */
752 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
753 DOP_CLOCK_GATING_DISABLE);
754
755 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
756 GEN8_SAMPLER_POWER_BYPASS_DIS);
757
758 /* Use Force Non-Coherent whenever executing a 3D context. This is a
759 * workaround for for a possible hang in the unlikely event a TLB
760 * invalidation occurs during a PSD flush.
761 */
762 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
763 WA_SET_BIT_MASKED(HDC_CHICKEN0,
764 HDC_FORCE_NON_COHERENT |
765 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
766
767 /* Wa4x4STCOptimizationDisable:bdw */
768 WA_SET_BIT_MASKED(CACHE_MODE_1,
769 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
770
771 /*
772 * BSpec recommends 8x4 when MSAA is used,
773 * however in practice 16x4 seems fastest.
774 *
775 * Note that PS/WM thread counts depend on the WIZ hashing
776 * disable bit, which we don't touch here, but it's good
777 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
778 */
779 WA_SET_BIT_MASKED(GEN7_GT_MODE,
780 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
781
782 return 0;
783 }
784
785 static int chv_init_workarounds(struct intel_engine_cs *ring)
786 {
787 struct drm_device *dev = ring->dev;
788 struct drm_i915_private *dev_priv = dev->dev_private;
789
790 /* WaDisablePartialInstShootdown:chv */
791 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
792 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
793
794 /* WaDisableThreadStallDopClockGating:chv */
795 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
796 STALL_DOP_GATING_DISABLE);
797
798 /* WaDisableDopClockGating:chv (pre-production hw) */
799 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
800 DOP_CLOCK_GATING_DISABLE);
801
802 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
803 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
804 GEN8_SAMPLER_POWER_BYPASS_DIS);
805
806 return 0;
807 }
808
809 static int init_workarounds_ring(struct intel_engine_cs *ring)
810 {
811 struct drm_device *dev = ring->dev;
812 struct drm_i915_private *dev_priv = dev->dev_private;
813
814 WARN_ON(ring->id != RCS);
815
816 dev_priv->workarounds.count = 0;
817
818 if (IS_BROADWELL(dev))
819 return bdw_init_workarounds(ring);
820
821 if (IS_CHERRYVIEW(dev))
822 return chv_init_workarounds(ring);
823
824 return 0;
825 }
826
827 static int init_render_ring(struct intel_engine_cs *ring)
828 {
829 struct drm_device *dev = ring->dev;
830 struct drm_i915_private *dev_priv = dev->dev_private;
831 int ret = init_ring_common(ring);
832 if (ret)
833 return ret;
834
835 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
836 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
837 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
838
839 /* We need to disable the AsyncFlip performance optimisations in order
840 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
841 * programmed to '1' on all products.
842 *
843 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
844 */
845 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
846 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
847
848 /* Required for the hardware to program scanline values for waiting */
849 /* WaEnableFlushTlbInvalidationMode:snb */
850 if (INTEL_INFO(dev)->gen == 6)
851 I915_WRITE(GFX_MODE,
852 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
853
854 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
855 if (IS_GEN7(dev))
856 I915_WRITE(GFX_MODE_GEN7,
857 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
858 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
859
860 if (INTEL_INFO(dev)->gen >= 5) {
861 ret = intel_init_pipe_control(ring);
862 if (ret)
863 return ret;
864 }
865
866 if (IS_GEN6(dev)) {
867 /* From the Sandybridge PRM, volume 1 part 3, page 24:
868 * "If this bit is set, STCunit will have LRA as replacement
869 * policy. [...] This bit must be reset. LRA replacement
870 * policy is not supported."
871 */
872 I915_WRITE(CACHE_MODE_0,
873 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
874 }
875
876 if (INTEL_INFO(dev)->gen >= 6)
877 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
878
879 if (HAS_L3_DPF(dev))
880 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
881
882 return init_workarounds_ring(ring);
883 }
884
885 static void render_ring_cleanup(struct intel_engine_cs *ring)
886 {
887 struct drm_device *dev = ring->dev;
888 struct drm_i915_private *dev_priv = dev->dev_private;
889
890 if (dev_priv->semaphore_obj) {
891 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
892 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
893 dev_priv->semaphore_obj = NULL;
894 }
895
896 intel_fini_pipe_control(ring);
897 }
898
899 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
900 unsigned int num_dwords)
901 {
902 #define MBOX_UPDATE_DWORDS 8
903 struct drm_device *dev = signaller->dev;
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 struct intel_engine_cs *waiter;
906 int i, ret, num_rings;
907
908 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
909 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
910 #undef MBOX_UPDATE_DWORDS
911
912 ret = intel_ring_begin(signaller, num_dwords);
913 if (ret)
914 return ret;
915
916 for_each_ring(waiter, dev_priv, i) {
917 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
918 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
919 continue;
920
921 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
922 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
923 PIPE_CONTROL_QW_WRITE |
924 PIPE_CONTROL_FLUSH_ENABLE);
925 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
926 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
927 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
928 intel_ring_emit(signaller, 0);
929 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
930 MI_SEMAPHORE_TARGET(waiter->id));
931 intel_ring_emit(signaller, 0);
932 }
933
934 return 0;
935 }
936
937 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
938 unsigned int num_dwords)
939 {
940 #define MBOX_UPDATE_DWORDS 6
941 struct drm_device *dev = signaller->dev;
942 struct drm_i915_private *dev_priv = dev->dev_private;
943 struct intel_engine_cs *waiter;
944 int i, ret, num_rings;
945
946 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
947 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
948 #undef MBOX_UPDATE_DWORDS
949
950 ret = intel_ring_begin(signaller, num_dwords);
951 if (ret)
952 return ret;
953
954 for_each_ring(waiter, dev_priv, i) {
955 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
956 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
957 continue;
958
959 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
960 MI_FLUSH_DW_OP_STOREDW);
961 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
962 MI_FLUSH_DW_USE_GTT);
963 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
964 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
965 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
966 MI_SEMAPHORE_TARGET(waiter->id));
967 intel_ring_emit(signaller, 0);
968 }
969
970 return 0;
971 }
972
973 static int gen6_signal(struct intel_engine_cs *signaller,
974 unsigned int num_dwords)
975 {
976 struct drm_device *dev = signaller->dev;
977 struct drm_i915_private *dev_priv = dev->dev_private;
978 struct intel_engine_cs *useless;
979 int i, ret, num_rings;
980
981 #define MBOX_UPDATE_DWORDS 3
982 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
983 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
984 #undef MBOX_UPDATE_DWORDS
985
986 ret = intel_ring_begin(signaller, num_dwords);
987 if (ret)
988 return ret;
989
990 for_each_ring(useless, dev_priv, i) {
991 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
992 if (mbox_reg != GEN6_NOSYNC) {
993 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
994 intel_ring_emit(signaller, mbox_reg);
995 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
996 }
997 }
998
999 /* If num_dwords was rounded, make sure the tail pointer is correct */
1000 if (num_rings % 2 == 0)
1001 intel_ring_emit(signaller, MI_NOOP);
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * gen6_add_request - Update the semaphore mailbox registers
1008 *
1009 * @ring - ring that is adding a request
1010 * @seqno - return seqno stuck into the ring
1011 *
1012 * Update the mailbox registers in the *other* rings with the current seqno.
1013 * This acts like a signal in the canonical semaphore.
1014 */
1015 static int
1016 gen6_add_request(struct intel_engine_cs *ring)
1017 {
1018 int ret;
1019
1020 if (ring->semaphore.signal)
1021 ret = ring->semaphore.signal(ring, 4);
1022 else
1023 ret = intel_ring_begin(ring, 4);
1024
1025 if (ret)
1026 return ret;
1027
1028 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1029 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1030 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1031 intel_ring_emit(ring, MI_USER_INTERRUPT);
1032 __intel_ring_advance(ring);
1033
1034 return 0;
1035 }
1036
1037 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1038 u32 seqno)
1039 {
1040 struct drm_i915_private *dev_priv = dev->dev_private;
1041 return dev_priv->last_seqno < seqno;
1042 }
1043
1044 /**
1045 * intel_ring_sync - sync the waiter to the signaller on seqno
1046 *
1047 * @waiter - ring that is waiting
1048 * @signaller - ring which has, or will signal
1049 * @seqno - seqno which the waiter will block on
1050 */
1051
1052 static int
1053 gen8_ring_sync(struct intel_engine_cs *waiter,
1054 struct intel_engine_cs *signaller,
1055 u32 seqno)
1056 {
1057 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1058 int ret;
1059
1060 ret = intel_ring_begin(waiter, 4);
1061 if (ret)
1062 return ret;
1063
1064 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1065 MI_SEMAPHORE_GLOBAL_GTT |
1066 MI_SEMAPHORE_POLL |
1067 MI_SEMAPHORE_SAD_GTE_SDD);
1068 intel_ring_emit(waiter, seqno);
1069 intel_ring_emit(waiter,
1070 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1071 intel_ring_emit(waiter,
1072 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1073 intel_ring_advance(waiter);
1074 return 0;
1075 }
1076
1077 static int
1078 gen6_ring_sync(struct intel_engine_cs *waiter,
1079 struct intel_engine_cs *signaller,
1080 u32 seqno)
1081 {
1082 u32 dw1 = MI_SEMAPHORE_MBOX |
1083 MI_SEMAPHORE_COMPARE |
1084 MI_SEMAPHORE_REGISTER;
1085 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1086 int ret;
1087
1088 /* Throughout all of the GEM code, seqno passed implies our current
1089 * seqno is >= the last seqno executed. However for hardware the
1090 * comparison is strictly greater than.
1091 */
1092 seqno -= 1;
1093
1094 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1095
1096 ret = intel_ring_begin(waiter, 4);
1097 if (ret)
1098 return ret;
1099
1100 /* If seqno wrap happened, omit the wait with no-ops */
1101 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1102 intel_ring_emit(waiter, dw1 | wait_mbox);
1103 intel_ring_emit(waiter, seqno);
1104 intel_ring_emit(waiter, 0);
1105 intel_ring_emit(waiter, MI_NOOP);
1106 } else {
1107 intel_ring_emit(waiter, MI_NOOP);
1108 intel_ring_emit(waiter, MI_NOOP);
1109 intel_ring_emit(waiter, MI_NOOP);
1110 intel_ring_emit(waiter, MI_NOOP);
1111 }
1112 intel_ring_advance(waiter);
1113
1114 return 0;
1115 }
1116
1117 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1118 do { \
1119 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1120 PIPE_CONTROL_DEPTH_STALL); \
1121 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1122 intel_ring_emit(ring__, 0); \
1123 intel_ring_emit(ring__, 0); \
1124 } while (0)
1125
1126 static int
1127 pc_render_add_request(struct intel_engine_cs *ring)
1128 {
1129 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1130 int ret;
1131
1132 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1133 * incoherent with writes to memory, i.e. completely fubar,
1134 * so we need to use PIPE_NOTIFY instead.
1135 *
1136 * However, we also need to workaround the qword write
1137 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1138 * memory before requesting an interrupt.
1139 */
1140 ret = intel_ring_begin(ring, 32);
1141 if (ret)
1142 return ret;
1143
1144 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1145 PIPE_CONTROL_WRITE_FLUSH |
1146 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1147 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1148 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1149 intel_ring_emit(ring, 0);
1150 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1151 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1152 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1153 scratch_addr += 2 * CACHELINE_BYTES;
1154 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1155 scratch_addr += 2 * CACHELINE_BYTES;
1156 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1157 scratch_addr += 2 * CACHELINE_BYTES;
1158 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1159 scratch_addr += 2 * CACHELINE_BYTES;
1160 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1161
1162 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1163 PIPE_CONTROL_WRITE_FLUSH |
1164 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1165 PIPE_CONTROL_NOTIFY);
1166 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1167 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1168 intel_ring_emit(ring, 0);
1169 __intel_ring_advance(ring);
1170
1171 return 0;
1172 }
1173
1174 static u32
1175 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1176 {
1177 /* Workaround to force correct ordering between irq and seqno writes on
1178 * ivb (and maybe also on snb) by reading from a CS register (like
1179 * ACTHD) before reading the status page. */
1180 if (!lazy_coherency) {
1181 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1182 POSTING_READ(RING_ACTHD(ring->mmio_base));
1183 }
1184
1185 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1186 }
1187
1188 static u32
1189 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1190 {
1191 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1192 }
1193
1194 static void
1195 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1196 {
1197 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1198 }
1199
1200 static u32
1201 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1202 {
1203 return ring->scratch.cpu_page[0];
1204 }
1205
1206 static void
1207 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1208 {
1209 ring->scratch.cpu_page[0] = seqno;
1210 }
1211
1212 static bool
1213 gen5_ring_get_irq(struct intel_engine_cs *ring)
1214 {
1215 struct drm_device *dev = ring->dev;
1216 struct drm_i915_private *dev_priv = dev->dev_private;
1217 unsigned long flags;
1218
1219 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1220 return false;
1221
1222 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1223 if (ring->irq_refcount++ == 0)
1224 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1225 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1226
1227 return true;
1228 }
1229
1230 static void
1231 gen5_ring_put_irq(struct intel_engine_cs *ring)
1232 {
1233 struct drm_device *dev = ring->dev;
1234 struct drm_i915_private *dev_priv = dev->dev_private;
1235 unsigned long flags;
1236
1237 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1238 if (--ring->irq_refcount == 0)
1239 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1240 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1241 }
1242
1243 static bool
1244 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1245 {
1246 struct drm_device *dev = ring->dev;
1247 struct drm_i915_private *dev_priv = dev->dev_private;
1248 unsigned long flags;
1249
1250 if (!intel_irqs_enabled(dev_priv))
1251 return false;
1252
1253 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1254 if (ring->irq_refcount++ == 0) {
1255 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1256 I915_WRITE(IMR, dev_priv->irq_mask);
1257 POSTING_READ(IMR);
1258 }
1259 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1260
1261 return true;
1262 }
1263
1264 static void
1265 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1266 {
1267 struct drm_device *dev = ring->dev;
1268 struct drm_i915_private *dev_priv = dev->dev_private;
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1272 if (--ring->irq_refcount == 0) {
1273 dev_priv->irq_mask |= ring->irq_enable_mask;
1274 I915_WRITE(IMR, dev_priv->irq_mask);
1275 POSTING_READ(IMR);
1276 }
1277 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1278 }
1279
1280 static bool
1281 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1282 {
1283 struct drm_device *dev = ring->dev;
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1285 unsigned long flags;
1286
1287 if (!intel_irqs_enabled(dev_priv))
1288 return false;
1289
1290 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1291 if (ring->irq_refcount++ == 0) {
1292 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1293 I915_WRITE16(IMR, dev_priv->irq_mask);
1294 POSTING_READ16(IMR);
1295 }
1296 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1297
1298 return true;
1299 }
1300
1301 static void
1302 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1303 {
1304 struct drm_device *dev = ring->dev;
1305 struct drm_i915_private *dev_priv = dev->dev_private;
1306 unsigned long flags;
1307
1308 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1309 if (--ring->irq_refcount == 0) {
1310 dev_priv->irq_mask |= ring->irq_enable_mask;
1311 I915_WRITE16(IMR, dev_priv->irq_mask);
1312 POSTING_READ16(IMR);
1313 }
1314 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1315 }
1316
1317 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1318 {
1319 struct drm_device *dev = ring->dev;
1320 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1321 u32 mmio = 0;
1322
1323 /* The ring status page addresses are no longer next to the rest of
1324 * the ring registers as of gen7.
1325 */
1326 if (IS_GEN7(dev)) {
1327 switch (ring->id) {
1328 case RCS:
1329 mmio = RENDER_HWS_PGA_GEN7;
1330 break;
1331 case BCS:
1332 mmio = BLT_HWS_PGA_GEN7;
1333 break;
1334 /*
1335 * VCS2 actually doesn't exist on Gen7. Only shut up
1336 * gcc switch check warning
1337 */
1338 case VCS2:
1339 case VCS:
1340 mmio = BSD_HWS_PGA_GEN7;
1341 break;
1342 case VECS:
1343 mmio = VEBOX_HWS_PGA_GEN7;
1344 break;
1345 }
1346 } else if (IS_GEN6(ring->dev)) {
1347 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1348 } else {
1349 /* XXX: gen8 returns to sanity */
1350 mmio = RING_HWS_PGA(ring->mmio_base);
1351 }
1352
1353 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1354 POSTING_READ(mmio);
1355
1356 /*
1357 * Flush the TLB for this page
1358 *
1359 * FIXME: These two bits have disappeared on gen8, so a question
1360 * arises: do we still need this and if so how should we go about
1361 * invalidating the TLB?
1362 */
1363 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1364 u32 reg = RING_INSTPM(ring->mmio_base);
1365
1366 /* ring should be idle before issuing a sync flush*/
1367 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1368
1369 I915_WRITE(reg,
1370 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1371 INSTPM_SYNC_FLUSH));
1372 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1373 1000))
1374 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1375 ring->name);
1376 }
1377 }
1378
1379 static int
1380 bsd_ring_flush(struct intel_engine_cs *ring,
1381 u32 invalidate_domains,
1382 u32 flush_domains)
1383 {
1384 int ret;
1385
1386 ret = intel_ring_begin(ring, 2);
1387 if (ret)
1388 return ret;
1389
1390 intel_ring_emit(ring, MI_FLUSH);
1391 intel_ring_emit(ring, MI_NOOP);
1392 intel_ring_advance(ring);
1393 return 0;
1394 }
1395
1396 static int
1397 i9xx_add_request(struct intel_engine_cs *ring)
1398 {
1399 int ret;
1400
1401 ret = intel_ring_begin(ring, 4);
1402 if (ret)
1403 return ret;
1404
1405 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1406 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1407 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1408 intel_ring_emit(ring, MI_USER_INTERRUPT);
1409 __intel_ring_advance(ring);
1410
1411 return 0;
1412 }
1413
1414 static bool
1415 gen6_ring_get_irq(struct intel_engine_cs *ring)
1416 {
1417 struct drm_device *dev = ring->dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 unsigned long flags;
1420
1421 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1422 return false;
1423
1424 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1425 if (ring->irq_refcount++ == 0) {
1426 if (HAS_L3_DPF(dev) && ring->id == RCS)
1427 I915_WRITE_IMR(ring,
1428 ~(ring->irq_enable_mask |
1429 GT_PARITY_ERROR(dev)));
1430 else
1431 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1432 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1433 }
1434 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1435
1436 return true;
1437 }
1438
1439 static void
1440 gen6_ring_put_irq(struct intel_engine_cs *ring)
1441 {
1442 struct drm_device *dev = ring->dev;
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1447 if (--ring->irq_refcount == 0) {
1448 if (HAS_L3_DPF(dev) && ring->id == RCS)
1449 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1450 else
1451 I915_WRITE_IMR(ring, ~0);
1452 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1453 }
1454 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1455 }
1456
1457 static bool
1458 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1459 {
1460 struct drm_device *dev = ring->dev;
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 unsigned long flags;
1463
1464 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1465 return false;
1466
1467 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1468 if (ring->irq_refcount++ == 0) {
1469 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1470 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1471 }
1472 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1473
1474 return true;
1475 }
1476
1477 static void
1478 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1479 {
1480 struct drm_device *dev = ring->dev;
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 unsigned long flags;
1483
1484 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1485 if (--ring->irq_refcount == 0) {
1486 I915_WRITE_IMR(ring, ~0);
1487 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1488 }
1489 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1490 }
1491
1492 static bool
1493 gen8_ring_get_irq(struct intel_engine_cs *ring)
1494 {
1495 struct drm_device *dev = ring->dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 unsigned long flags;
1498
1499 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1500 return false;
1501
1502 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1503 if (ring->irq_refcount++ == 0) {
1504 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1505 I915_WRITE_IMR(ring,
1506 ~(ring->irq_enable_mask |
1507 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1508 } else {
1509 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1510 }
1511 POSTING_READ(RING_IMR(ring->mmio_base));
1512 }
1513 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1514
1515 return true;
1516 }
1517
1518 static void
1519 gen8_ring_put_irq(struct intel_engine_cs *ring)
1520 {
1521 struct drm_device *dev = ring->dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 unsigned long flags;
1524
1525 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1526 if (--ring->irq_refcount == 0) {
1527 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1528 I915_WRITE_IMR(ring,
1529 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1530 } else {
1531 I915_WRITE_IMR(ring, ~0);
1532 }
1533 POSTING_READ(RING_IMR(ring->mmio_base));
1534 }
1535 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1536 }
1537
1538 static int
1539 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1540 u64 offset, u32 length,
1541 unsigned flags)
1542 {
1543 int ret;
1544
1545 ret = intel_ring_begin(ring, 2);
1546 if (ret)
1547 return ret;
1548
1549 intel_ring_emit(ring,
1550 MI_BATCH_BUFFER_START |
1551 MI_BATCH_GTT |
1552 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1553 intel_ring_emit(ring, offset);
1554 intel_ring_advance(ring);
1555
1556 return 0;
1557 }
1558
1559 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1560 #define I830_BATCH_LIMIT (256*1024)
1561 #define I830_TLB_ENTRIES (2)
1562 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1563 static int
1564 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1565 u64 offset, u32 len,
1566 unsigned flags)
1567 {
1568 u32 cs_offset = ring->scratch.gtt_offset;
1569 int ret;
1570
1571 ret = intel_ring_begin(ring, 6);
1572 if (ret)
1573 return ret;
1574
1575 /* Evict the invalid PTE TLBs */
1576 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1577 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1578 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1579 intel_ring_emit(ring, cs_offset);
1580 intel_ring_emit(ring, 0xdeadbeef);
1581 intel_ring_emit(ring, MI_NOOP);
1582 intel_ring_advance(ring);
1583
1584 if ((flags & I915_DISPATCH_PINNED) == 0) {
1585 if (len > I830_BATCH_LIMIT)
1586 return -ENOSPC;
1587
1588 ret = intel_ring_begin(ring, 6 + 2);
1589 if (ret)
1590 return ret;
1591
1592 /* Blit the batch (which has now all relocs applied) to the
1593 * stable batch scratch bo area (so that the CS never
1594 * stumbles over its tlb invalidation bug) ...
1595 */
1596 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1597 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1598 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1599 intel_ring_emit(ring, cs_offset);
1600 intel_ring_emit(ring, 4096);
1601 intel_ring_emit(ring, offset);
1602
1603 intel_ring_emit(ring, MI_FLUSH);
1604 intel_ring_emit(ring, MI_NOOP);
1605 intel_ring_advance(ring);
1606
1607 /* ... and execute it. */
1608 offset = cs_offset;
1609 }
1610
1611 ret = intel_ring_begin(ring, 4);
1612 if (ret)
1613 return ret;
1614
1615 intel_ring_emit(ring, MI_BATCH_BUFFER);
1616 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1617 intel_ring_emit(ring, offset + len - 8);
1618 intel_ring_emit(ring, MI_NOOP);
1619 intel_ring_advance(ring);
1620
1621 return 0;
1622 }
1623
1624 static int
1625 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1626 u64 offset, u32 len,
1627 unsigned flags)
1628 {
1629 int ret;
1630
1631 ret = intel_ring_begin(ring, 2);
1632 if (ret)
1633 return ret;
1634
1635 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1636 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1637 intel_ring_advance(ring);
1638
1639 return 0;
1640 }
1641
1642 static void cleanup_status_page(struct intel_engine_cs *ring)
1643 {
1644 struct drm_i915_gem_object *obj;
1645
1646 obj = ring->status_page.obj;
1647 if (obj == NULL)
1648 return;
1649
1650 kunmap(sg_page(obj->pages->sgl));
1651 i915_gem_object_ggtt_unpin(obj);
1652 drm_gem_object_unreference(&obj->base);
1653 ring->status_page.obj = NULL;
1654 }
1655
1656 static int init_status_page(struct intel_engine_cs *ring)
1657 {
1658 struct drm_i915_gem_object *obj;
1659
1660 if ((obj = ring->status_page.obj) == NULL) {
1661 unsigned flags;
1662 int ret;
1663
1664 obj = i915_gem_alloc_object(ring->dev, 4096);
1665 if (obj == NULL) {
1666 DRM_ERROR("Failed to allocate status page\n");
1667 return -ENOMEM;
1668 }
1669
1670 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1671 if (ret)
1672 goto err_unref;
1673
1674 flags = 0;
1675 if (!HAS_LLC(ring->dev))
1676 /* On g33, we cannot place HWS above 256MiB, so
1677 * restrict its pinning to the low mappable arena.
1678 * Though this restriction is not documented for
1679 * gen4, gen5, or byt, they also behave similarly
1680 * and hang if the HWS is placed at the top of the
1681 * GTT. To generalise, it appears that all !llc
1682 * platforms have issues with us placing the HWS
1683 * above the mappable region (even though we never
1684 * actualy map it).
1685 */
1686 flags |= PIN_MAPPABLE;
1687 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1688 if (ret) {
1689 err_unref:
1690 drm_gem_object_unreference(&obj->base);
1691 return ret;
1692 }
1693
1694 ring->status_page.obj = obj;
1695 }
1696
1697 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1698 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1699 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1700
1701 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1702 ring->name, ring->status_page.gfx_addr);
1703
1704 return 0;
1705 }
1706
1707 static int init_phys_status_page(struct intel_engine_cs *ring)
1708 {
1709 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1710
1711 if (!dev_priv->status_page_dmah) {
1712 dev_priv->status_page_dmah =
1713 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1714 if (!dev_priv->status_page_dmah)
1715 return -ENOMEM;
1716 }
1717
1718 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1719 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1720
1721 return 0;
1722 }
1723
1724 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1725 {
1726 if (!ringbuf->obj)
1727 return;
1728
1729 iounmap(ringbuf->virtual_start);
1730 i915_gem_object_ggtt_unpin(ringbuf->obj);
1731 drm_gem_object_unreference(&ringbuf->obj->base);
1732 ringbuf->obj = NULL;
1733 }
1734
1735 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1736 struct intel_ringbuffer *ringbuf)
1737 {
1738 struct drm_i915_private *dev_priv = to_i915(dev);
1739 struct drm_i915_gem_object *obj;
1740 int ret;
1741
1742 if (ringbuf->obj)
1743 return 0;
1744
1745 obj = NULL;
1746 if (!HAS_LLC(dev))
1747 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1748 if (obj == NULL)
1749 obj = i915_gem_alloc_object(dev, ringbuf->size);
1750 if (obj == NULL)
1751 return -ENOMEM;
1752
1753 /* mark ring buffers as read-only from GPU side by default */
1754 obj->gt_ro = 1;
1755
1756 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1757 if (ret)
1758 goto err_unref;
1759
1760 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1761 if (ret)
1762 goto err_unpin;
1763
1764 ringbuf->virtual_start =
1765 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1766 ringbuf->size);
1767 if (ringbuf->virtual_start == NULL) {
1768 ret = -EINVAL;
1769 goto err_unpin;
1770 }
1771
1772 ringbuf->obj = obj;
1773 return 0;
1774
1775 err_unpin:
1776 i915_gem_object_ggtt_unpin(obj);
1777 err_unref:
1778 drm_gem_object_unreference(&obj->base);
1779 return ret;
1780 }
1781
1782 static int intel_init_ring_buffer(struct drm_device *dev,
1783 struct intel_engine_cs *ring)
1784 {
1785 struct intel_ringbuffer *ringbuf = ring->buffer;
1786 int ret;
1787
1788 if (ringbuf == NULL) {
1789 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1790 if (!ringbuf)
1791 return -ENOMEM;
1792 ring->buffer = ringbuf;
1793 }
1794
1795 ring->dev = dev;
1796 INIT_LIST_HEAD(&ring->active_list);
1797 INIT_LIST_HEAD(&ring->request_list);
1798 INIT_LIST_HEAD(&ring->execlist_queue);
1799 ringbuf->size = 32 * PAGE_SIZE;
1800 ringbuf->ring = ring;
1801 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1802
1803 init_waitqueue_head(&ring->irq_queue);
1804
1805 if (I915_NEED_GFX_HWS(dev)) {
1806 ret = init_status_page(ring);
1807 if (ret)
1808 goto error;
1809 } else {
1810 BUG_ON(ring->id != RCS);
1811 ret = init_phys_status_page(ring);
1812 if (ret)
1813 goto error;
1814 }
1815
1816 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1817 if (ret) {
1818 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1819 goto error;
1820 }
1821
1822 /* Workaround an erratum on the i830 which causes a hang if
1823 * the TAIL pointer points to within the last 2 cachelines
1824 * of the buffer.
1825 */
1826 ringbuf->effective_size = ringbuf->size;
1827 if (IS_I830(dev) || IS_845G(dev))
1828 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1829
1830 ret = i915_cmd_parser_init_ring(ring);
1831 if (ret)
1832 goto error;
1833
1834 ret = ring->init(ring);
1835 if (ret)
1836 goto error;
1837
1838 return 0;
1839
1840 error:
1841 kfree(ringbuf);
1842 ring->buffer = NULL;
1843 return ret;
1844 }
1845
1846 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1847 {
1848 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1849 struct intel_ringbuffer *ringbuf = ring->buffer;
1850
1851 if (!intel_ring_initialized(ring))
1852 return;
1853
1854 intel_stop_ring_buffer(ring);
1855 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1856
1857 intel_destroy_ringbuffer_obj(ringbuf);
1858 ring->preallocated_lazy_request = NULL;
1859 ring->outstanding_lazy_seqno = 0;
1860
1861 if (ring->cleanup)
1862 ring->cleanup(ring);
1863
1864 cleanup_status_page(ring);
1865
1866 i915_cmd_parser_fini_ring(ring);
1867
1868 kfree(ringbuf);
1869 ring->buffer = NULL;
1870 }
1871
1872 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1873 {
1874 struct intel_ringbuffer *ringbuf = ring->buffer;
1875 struct drm_i915_gem_request *request;
1876 u32 seqno = 0;
1877 int ret;
1878
1879 if (ringbuf->last_retired_head != -1) {
1880 ringbuf->head = ringbuf->last_retired_head;
1881 ringbuf->last_retired_head = -1;
1882
1883 ringbuf->space = intel_ring_space(ringbuf);
1884 if (ringbuf->space >= n)
1885 return 0;
1886 }
1887
1888 list_for_each_entry(request, &ring->request_list, list) {
1889 if (__intel_ring_space(request->tail, ringbuf->tail,
1890 ringbuf->size) >= n) {
1891 seqno = request->seqno;
1892 break;
1893 }
1894 }
1895
1896 if (seqno == 0)
1897 return -ENOSPC;
1898
1899 ret = i915_wait_seqno(ring, seqno);
1900 if (ret)
1901 return ret;
1902
1903 i915_gem_retire_requests_ring(ring);
1904 ringbuf->head = ringbuf->last_retired_head;
1905 ringbuf->last_retired_head = -1;
1906
1907 ringbuf->space = intel_ring_space(ringbuf);
1908 return 0;
1909 }
1910
1911 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1912 {
1913 struct drm_device *dev = ring->dev;
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915 struct intel_ringbuffer *ringbuf = ring->buffer;
1916 unsigned long end;
1917 int ret;
1918
1919 ret = intel_ring_wait_request(ring, n);
1920 if (ret != -ENOSPC)
1921 return ret;
1922
1923 /* force the tail write in case we have been skipping them */
1924 __intel_ring_advance(ring);
1925
1926 /* With GEM the hangcheck timer should kick us out of the loop,
1927 * leaving it early runs the risk of corrupting GEM state (due
1928 * to running on almost untested codepaths). But on resume
1929 * timers don't work yet, so prevent a complete hang in that
1930 * case by choosing an insanely large timeout. */
1931 end = jiffies + 60 * HZ;
1932
1933 trace_i915_ring_wait_begin(ring);
1934 do {
1935 ringbuf->head = I915_READ_HEAD(ring);
1936 ringbuf->space = intel_ring_space(ringbuf);
1937 if (ringbuf->space >= n) {
1938 ret = 0;
1939 break;
1940 }
1941
1942 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1943 dev->primary->master) {
1944 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1945 if (master_priv->sarea_priv)
1946 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1947 }
1948
1949 msleep(1);
1950
1951 if (dev_priv->mm.interruptible && signal_pending(current)) {
1952 ret = -ERESTARTSYS;
1953 break;
1954 }
1955
1956 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1957 dev_priv->mm.interruptible);
1958 if (ret)
1959 break;
1960
1961 if (time_after(jiffies, end)) {
1962 ret = -EBUSY;
1963 break;
1964 }
1965 } while (1);
1966 trace_i915_ring_wait_end(ring);
1967 return ret;
1968 }
1969
1970 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1971 {
1972 uint32_t __iomem *virt;
1973 struct intel_ringbuffer *ringbuf = ring->buffer;
1974 int rem = ringbuf->size - ringbuf->tail;
1975
1976 if (ringbuf->space < rem) {
1977 int ret = ring_wait_for_space(ring, rem);
1978 if (ret)
1979 return ret;
1980 }
1981
1982 virt = ringbuf->virtual_start + ringbuf->tail;
1983 rem /= 4;
1984 while (rem--)
1985 iowrite32(MI_NOOP, virt++);
1986
1987 ringbuf->tail = 0;
1988 ringbuf->space = intel_ring_space(ringbuf);
1989
1990 return 0;
1991 }
1992
1993 int intel_ring_idle(struct intel_engine_cs *ring)
1994 {
1995 u32 seqno;
1996 int ret;
1997
1998 /* We need to add any requests required to flush the objects and ring */
1999 if (ring->outstanding_lazy_seqno) {
2000 ret = i915_add_request(ring, NULL);
2001 if (ret)
2002 return ret;
2003 }
2004
2005 /* Wait upon the last request to be completed */
2006 if (list_empty(&ring->request_list))
2007 return 0;
2008
2009 seqno = list_entry(ring->request_list.prev,
2010 struct drm_i915_gem_request,
2011 list)->seqno;
2012
2013 return i915_wait_seqno(ring, seqno);
2014 }
2015
2016 static int
2017 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
2018 {
2019 if (ring->outstanding_lazy_seqno)
2020 return 0;
2021
2022 if (ring->preallocated_lazy_request == NULL) {
2023 struct drm_i915_gem_request *request;
2024
2025 request = kmalloc(sizeof(*request), GFP_KERNEL);
2026 if (request == NULL)
2027 return -ENOMEM;
2028
2029 ring->preallocated_lazy_request = request;
2030 }
2031
2032 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2033 }
2034
2035 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2036 int bytes)
2037 {
2038 struct intel_ringbuffer *ringbuf = ring->buffer;
2039 int ret;
2040
2041 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2042 ret = intel_wrap_ring_buffer(ring);
2043 if (unlikely(ret))
2044 return ret;
2045 }
2046
2047 if (unlikely(ringbuf->space < bytes)) {
2048 ret = ring_wait_for_space(ring, bytes);
2049 if (unlikely(ret))
2050 return ret;
2051 }
2052
2053 return 0;
2054 }
2055
2056 int intel_ring_begin(struct intel_engine_cs *ring,
2057 int num_dwords)
2058 {
2059 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2060 int ret;
2061
2062 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2063 dev_priv->mm.interruptible);
2064 if (ret)
2065 return ret;
2066
2067 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2068 if (ret)
2069 return ret;
2070
2071 /* Preallocate the olr before touching the ring */
2072 ret = intel_ring_alloc_seqno(ring);
2073 if (ret)
2074 return ret;
2075
2076 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2077 return 0;
2078 }
2079
2080 /* Align the ring tail to a cacheline boundary */
2081 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2082 {
2083 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2084 int ret;
2085
2086 if (num_dwords == 0)
2087 return 0;
2088
2089 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2090 ret = intel_ring_begin(ring, num_dwords);
2091 if (ret)
2092 return ret;
2093
2094 while (num_dwords--)
2095 intel_ring_emit(ring, MI_NOOP);
2096
2097 intel_ring_advance(ring);
2098
2099 return 0;
2100 }
2101
2102 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2103 {
2104 struct drm_device *dev = ring->dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106
2107 BUG_ON(ring->outstanding_lazy_seqno);
2108
2109 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2110 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2111 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2112 if (HAS_VEBOX(dev))
2113 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2114 }
2115
2116 ring->set_seqno(ring, seqno);
2117 ring->hangcheck.seqno = seqno;
2118 }
2119
2120 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2121 u32 value)
2122 {
2123 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2124
2125 /* Every tail move must follow the sequence below */
2126
2127 /* Disable notification that the ring is IDLE. The GT
2128 * will then assume that it is busy and bring it out of rc6.
2129 */
2130 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2131 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2132
2133 /* Clear the context id. Here be magic! */
2134 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2135
2136 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2137 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2138 GEN6_BSD_SLEEP_INDICATOR) == 0,
2139 50))
2140 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2141
2142 /* Now that the ring is fully powered up, update the tail */
2143 I915_WRITE_TAIL(ring, value);
2144 POSTING_READ(RING_TAIL(ring->mmio_base));
2145
2146 /* Let the ring send IDLE messages to the GT again,
2147 * and so let it sleep to conserve power when idle.
2148 */
2149 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2150 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2151 }
2152
2153 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2154 u32 invalidate, u32 flush)
2155 {
2156 uint32_t cmd;
2157 int ret;
2158
2159 ret = intel_ring_begin(ring, 4);
2160 if (ret)
2161 return ret;
2162
2163 cmd = MI_FLUSH_DW;
2164 if (INTEL_INFO(ring->dev)->gen >= 8)
2165 cmd += 1;
2166 /*
2167 * Bspec vol 1c.5 - video engine command streamer:
2168 * "If ENABLED, all TLBs will be invalidated once the flush
2169 * operation is complete. This bit is only valid when the
2170 * Post-Sync Operation field is a value of 1h or 3h."
2171 */
2172 if (invalidate & I915_GEM_GPU_DOMAINS)
2173 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2174 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2175 intel_ring_emit(ring, cmd);
2176 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2177 if (INTEL_INFO(ring->dev)->gen >= 8) {
2178 intel_ring_emit(ring, 0); /* upper addr */
2179 intel_ring_emit(ring, 0); /* value */
2180 } else {
2181 intel_ring_emit(ring, 0);
2182 intel_ring_emit(ring, MI_NOOP);
2183 }
2184 intel_ring_advance(ring);
2185 return 0;
2186 }
2187
2188 static int
2189 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2190 u64 offset, u32 len,
2191 unsigned flags)
2192 {
2193 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2194 int ret;
2195
2196 ret = intel_ring_begin(ring, 4);
2197 if (ret)
2198 return ret;
2199
2200 /* FIXME(BDW): Address space and security selectors. */
2201 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2202 intel_ring_emit(ring, lower_32_bits(offset));
2203 intel_ring_emit(ring, upper_32_bits(offset));
2204 intel_ring_emit(ring, MI_NOOP);
2205 intel_ring_advance(ring);
2206
2207 return 0;
2208 }
2209
2210 static int
2211 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2212 u64 offset, u32 len,
2213 unsigned flags)
2214 {
2215 int ret;
2216
2217 ret = intel_ring_begin(ring, 2);
2218 if (ret)
2219 return ret;
2220
2221 intel_ring_emit(ring,
2222 MI_BATCH_BUFFER_START |
2223 (flags & I915_DISPATCH_SECURE ?
2224 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2225 /* bit0-7 is the length on GEN6+ */
2226 intel_ring_emit(ring, offset);
2227 intel_ring_advance(ring);
2228
2229 return 0;
2230 }
2231
2232 static int
2233 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2234 u64 offset, u32 len,
2235 unsigned flags)
2236 {
2237 int ret;
2238
2239 ret = intel_ring_begin(ring, 2);
2240 if (ret)
2241 return ret;
2242
2243 intel_ring_emit(ring,
2244 MI_BATCH_BUFFER_START |
2245 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2246 /* bit0-7 is the length on GEN6+ */
2247 intel_ring_emit(ring, offset);
2248 intel_ring_advance(ring);
2249
2250 return 0;
2251 }
2252
2253 /* Blitter support (SandyBridge+) */
2254
2255 static int gen6_ring_flush(struct intel_engine_cs *ring,
2256 u32 invalidate, u32 flush)
2257 {
2258 struct drm_device *dev = ring->dev;
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 uint32_t cmd;
2261 int ret;
2262
2263 ret = intel_ring_begin(ring, 4);
2264 if (ret)
2265 return ret;
2266
2267 cmd = MI_FLUSH_DW;
2268 if (INTEL_INFO(ring->dev)->gen >= 8)
2269 cmd += 1;
2270 /*
2271 * Bspec vol 1c.3 - blitter engine command streamer:
2272 * "If ENABLED, all TLBs will be invalidated once the flush
2273 * operation is complete. This bit is only valid when the
2274 * Post-Sync Operation field is a value of 1h or 3h."
2275 */
2276 if (invalidate & I915_GEM_DOMAIN_RENDER)
2277 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2278 MI_FLUSH_DW_OP_STOREDW;
2279 intel_ring_emit(ring, cmd);
2280 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2281 if (INTEL_INFO(ring->dev)->gen >= 8) {
2282 intel_ring_emit(ring, 0); /* upper addr */
2283 intel_ring_emit(ring, 0); /* value */
2284 } else {
2285 intel_ring_emit(ring, 0);
2286 intel_ring_emit(ring, MI_NOOP);
2287 }
2288 intel_ring_advance(ring);
2289
2290 if (!invalidate && flush) {
2291 if (IS_GEN7(dev))
2292 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2293 else if (IS_BROADWELL(dev))
2294 dev_priv->fbc.need_sw_cache_clean = true;
2295 }
2296
2297 return 0;
2298 }
2299
2300 int intel_init_render_ring_buffer(struct drm_device *dev)
2301 {
2302 struct drm_i915_private *dev_priv = dev->dev_private;
2303 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2304 struct drm_i915_gem_object *obj;
2305 int ret;
2306
2307 ring->name = "render ring";
2308 ring->id = RCS;
2309 ring->mmio_base = RENDER_RING_BASE;
2310
2311 if (INTEL_INFO(dev)->gen >= 8) {
2312 if (i915_semaphore_is_enabled(dev)) {
2313 obj = i915_gem_alloc_object(dev, 4096);
2314 if (obj == NULL) {
2315 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2316 i915.semaphores = 0;
2317 } else {
2318 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2319 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2320 if (ret != 0) {
2321 drm_gem_object_unreference(&obj->base);
2322 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2323 i915.semaphores = 0;
2324 } else
2325 dev_priv->semaphore_obj = obj;
2326 }
2327 }
2328
2329 ring->init_context = intel_ring_workarounds_emit;
2330 ring->add_request = gen6_add_request;
2331 ring->flush = gen8_render_ring_flush;
2332 ring->irq_get = gen8_ring_get_irq;
2333 ring->irq_put = gen8_ring_put_irq;
2334 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2335 ring->get_seqno = gen6_ring_get_seqno;
2336 ring->set_seqno = ring_set_seqno;
2337 if (i915_semaphore_is_enabled(dev)) {
2338 WARN_ON(!dev_priv->semaphore_obj);
2339 ring->semaphore.sync_to = gen8_ring_sync;
2340 ring->semaphore.signal = gen8_rcs_signal;
2341 GEN8_RING_SEMAPHORE_INIT;
2342 }
2343 } else if (INTEL_INFO(dev)->gen >= 6) {
2344 ring->add_request = gen6_add_request;
2345 ring->flush = gen7_render_ring_flush;
2346 if (INTEL_INFO(dev)->gen == 6)
2347 ring->flush = gen6_render_ring_flush;
2348 ring->irq_get = gen6_ring_get_irq;
2349 ring->irq_put = gen6_ring_put_irq;
2350 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2351 ring->get_seqno = gen6_ring_get_seqno;
2352 ring->set_seqno = ring_set_seqno;
2353 if (i915_semaphore_is_enabled(dev)) {
2354 ring->semaphore.sync_to = gen6_ring_sync;
2355 ring->semaphore.signal = gen6_signal;
2356 /*
2357 * The current semaphore is only applied on pre-gen8
2358 * platform. And there is no VCS2 ring on the pre-gen8
2359 * platform. So the semaphore between RCS and VCS2 is
2360 * initialized as INVALID. Gen8 will initialize the
2361 * sema between VCS2 and RCS later.
2362 */
2363 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2364 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2365 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2366 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2367 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2368 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2369 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2370 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2371 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2372 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2373 }
2374 } else if (IS_GEN5(dev)) {
2375 ring->add_request = pc_render_add_request;
2376 ring->flush = gen4_render_ring_flush;
2377 ring->get_seqno = pc_render_get_seqno;
2378 ring->set_seqno = pc_render_set_seqno;
2379 ring->irq_get = gen5_ring_get_irq;
2380 ring->irq_put = gen5_ring_put_irq;
2381 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2382 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2383 } else {
2384 ring->add_request = i9xx_add_request;
2385 if (INTEL_INFO(dev)->gen < 4)
2386 ring->flush = gen2_render_ring_flush;
2387 else
2388 ring->flush = gen4_render_ring_flush;
2389 ring->get_seqno = ring_get_seqno;
2390 ring->set_seqno = ring_set_seqno;
2391 if (IS_GEN2(dev)) {
2392 ring->irq_get = i8xx_ring_get_irq;
2393 ring->irq_put = i8xx_ring_put_irq;
2394 } else {
2395 ring->irq_get = i9xx_ring_get_irq;
2396 ring->irq_put = i9xx_ring_put_irq;
2397 }
2398 ring->irq_enable_mask = I915_USER_INTERRUPT;
2399 }
2400 ring->write_tail = ring_write_tail;
2401
2402 if (IS_HASWELL(dev))
2403 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2404 else if (IS_GEN8(dev))
2405 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2406 else if (INTEL_INFO(dev)->gen >= 6)
2407 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2408 else if (INTEL_INFO(dev)->gen >= 4)
2409 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2410 else if (IS_I830(dev) || IS_845G(dev))
2411 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2412 else
2413 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2414 ring->init = init_render_ring;
2415 ring->cleanup = render_ring_cleanup;
2416
2417 /* Workaround batchbuffer to combat CS tlb bug. */
2418 if (HAS_BROKEN_CS_TLB(dev)) {
2419 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2420 if (obj == NULL) {
2421 DRM_ERROR("Failed to allocate batch bo\n");
2422 return -ENOMEM;
2423 }
2424
2425 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2426 if (ret != 0) {
2427 drm_gem_object_unreference(&obj->base);
2428 DRM_ERROR("Failed to ping batch bo\n");
2429 return ret;
2430 }
2431
2432 ring->scratch.obj = obj;
2433 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2434 }
2435
2436 return intel_init_ring_buffer(dev, ring);
2437 }
2438
2439 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2440 {
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2443 struct intel_ringbuffer *ringbuf = ring->buffer;
2444 int ret;
2445
2446 if (ringbuf == NULL) {
2447 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2448 if (!ringbuf)
2449 return -ENOMEM;
2450 ring->buffer = ringbuf;
2451 }
2452
2453 ring->name = "render ring";
2454 ring->id = RCS;
2455 ring->mmio_base = RENDER_RING_BASE;
2456
2457 if (INTEL_INFO(dev)->gen >= 6) {
2458 /* non-kms not supported on gen6+ */
2459 ret = -ENODEV;
2460 goto err_ringbuf;
2461 }
2462
2463 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2464 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2465 * the special gen5 functions. */
2466 ring->add_request = i9xx_add_request;
2467 if (INTEL_INFO(dev)->gen < 4)
2468 ring->flush = gen2_render_ring_flush;
2469 else
2470 ring->flush = gen4_render_ring_flush;
2471 ring->get_seqno = ring_get_seqno;
2472 ring->set_seqno = ring_set_seqno;
2473 if (IS_GEN2(dev)) {
2474 ring->irq_get = i8xx_ring_get_irq;
2475 ring->irq_put = i8xx_ring_put_irq;
2476 } else {
2477 ring->irq_get = i9xx_ring_get_irq;
2478 ring->irq_put = i9xx_ring_put_irq;
2479 }
2480 ring->irq_enable_mask = I915_USER_INTERRUPT;
2481 ring->write_tail = ring_write_tail;
2482 if (INTEL_INFO(dev)->gen >= 4)
2483 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2484 else if (IS_I830(dev) || IS_845G(dev))
2485 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2486 else
2487 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2488 ring->init = init_render_ring;
2489 ring->cleanup = render_ring_cleanup;
2490
2491 ring->dev = dev;
2492 INIT_LIST_HEAD(&ring->active_list);
2493 INIT_LIST_HEAD(&ring->request_list);
2494
2495 ringbuf->size = size;
2496 ringbuf->effective_size = ringbuf->size;
2497 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2498 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2499
2500 ringbuf->virtual_start = ioremap_wc(start, size);
2501 if (ringbuf->virtual_start == NULL) {
2502 DRM_ERROR("can not ioremap virtual address for"
2503 " ring buffer\n");
2504 ret = -ENOMEM;
2505 goto err_ringbuf;
2506 }
2507
2508 if (!I915_NEED_GFX_HWS(dev)) {
2509 ret = init_phys_status_page(ring);
2510 if (ret)
2511 goto err_vstart;
2512 }
2513
2514 return 0;
2515
2516 err_vstart:
2517 iounmap(ringbuf->virtual_start);
2518 err_ringbuf:
2519 kfree(ringbuf);
2520 ring->buffer = NULL;
2521 return ret;
2522 }
2523
2524 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2525 {
2526 struct drm_i915_private *dev_priv = dev->dev_private;
2527 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2528
2529 ring->name = "bsd ring";
2530 ring->id = VCS;
2531
2532 ring->write_tail = ring_write_tail;
2533 if (INTEL_INFO(dev)->gen >= 6) {
2534 ring->mmio_base = GEN6_BSD_RING_BASE;
2535 /* gen6 bsd needs a special wa for tail updates */
2536 if (IS_GEN6(dev))
2537 ring->write_tail = gen6_bsd_ring_write_tail;
2538 ring->flush = gen6_bsd_ring_flush;
2539 ring->add_request = gen6_add_request;
2540 ring->get_seqno = gen6_ring_get_seqno;
2541 ring->set_seqno = ring_set_seqno;
2542 if (INTEL_INFO(dev)->gen >= 8) {
2543 ring->irq_enable_mask =
2544 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2545 ring->irq_get = gen8_ring_get_irq;
2546 ring->irq_put = gen8_ring_put_irq;
2547 ring->dispatch_execbuffer =
2548 gen8_ring_dispatch_execbuffer;
2549 if (i915_semaphore_is_enabled(dev)) {
2550 ring->semaphore.sync_to = gen8_ring_sync;
2551 ring->semaphore.signal = gen8_xcs_signal;
2552 GEN8_RING_SEMAPHORE_INIT;
2553 }
2554 } else {
2555 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2556 ring->irq_get = gen6_ring_get_irq;
2557 ring->irq_put = gen6_ring_put_irq;
2558 ring->dispatch_execbuffer =
2559 gen6_ring_dispatch_execbuffer;
2560 if (i915_semaphore_is_enabled(dev)) {
2561 ring->semaphore.sync_to = gen6_ring_sync;
2562 ring->semaphore.signal = gen6_signal;
2563 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2564 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2565 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2566 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2567 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2568 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2569 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2570 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2571 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2572 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2573 }
2574 }
2575 } else {
2576 ring->mmio_base = BSD_RING_BASE;
2577 ring->flush = bsd_ring_flush;
2578 ring->add_request = i9xx_add_request;
2579 ring->get_seqno = ring_get_seqno;
2580 ring->set_seqno = ring_set_seqno;
2581 if (IS_GEN5(dev)) {
2582 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2583 ring->irq_get = gen5_ring_get_irq;
2584 ring->irq_put = gen5_ring_put_irq;
2585 } else {
2586 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2587 ring->irq_get = i9xx_ring_get_irq;
2588 ring->irq_put = i9xx_ring_put_irq;
2589 }
2590 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2591 }
2592 ring->init = init_ring_common;
2593
2594 return intel_init_ring_buffer(dev, ring);
2595 }
2596
2597 /**
2598 * Initialize the second BSD ring for Broadwell GT3.
2599 * It is noted that this only exists on Broadwell GT3.
2600 */
2601 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2602 {
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2605
2606 if ((INTEL_INFO(dev)->gen != 8)) {
2607 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2608 return -EINVAL;
2609 }
2610
2611 ring->name = "bsd2 ring";
2612 ring->id = VCS2;
2613
2614 ring->write_tail = ring_write_tail;
2615 ring->mmio_base = GEN8_BSD2_RING_BASE;
2616 ring->flush = gen6_bsd_ring_flush;
2617 ring->add_request = gen6_add_request;
2618 ring->get_seqno = gen6_ring_get_seqno;
2619 ring->set_seqno = ring_set_seqno;
2620 ring->irq_enable_mask =
2621 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2622 ring->irq_get = gen8_ring_get_irq;
2623 ring->irq_put = gen8_ring_put_irq;
2624 ring->dispatch_execbuffer =
2625 gen8_ring_dispatch_execbuffer;
2626 if (i915_semaphore_is_enabled(dev)) {
2627 ring->semaphore.sync_to = gen8_ring_sync;
2628 ring->semaphore.signal = gen8_xcs_signal;
2629 GEN8_RING_SEMAPHORE_INIT;
2630 }
2631 ring->init = init_ring_common;
2632
2633 return intel_init_ring_buffer(dev, ring);
2634 }
2635
2636 int intel_init_blt_ring_buffer(struct drm_device *dev)
2637 {
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2639 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2640
2641 ring->name = "blitter ring";
2642 ring->id = BCS;
2643
2644 ring->mmio_base = BLT_RING_BASE;
2645 ring->write_tail = ring_write_tail;
2646 ring->flush = gen6_ring_flush;
2647 ring->add_request = gen6_add_request;
2648 ring->get_seqno = gen6_ring_get_seqno;
2649 ring->set_seqno = ring_set_seqno;
2650 if (INTEL_INFO(dev)->gen >= 8) {
2651 ring->irq_enable_mask =
2652 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2653 ring->irq_get = gen8_ring_get_irq;
2654 ring->irq_put = gen8_ring_put_irq;
2655 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2656 if (i915_semaphore_is_enabled(dev)) {
2657 ring->semaphore.sync_to = gen8_ring_sync;
2658 ring->semaphore.signal = gen8_xcs_signal;
2659 GEN8_RING_SEMAPHORE_INIT;
2660 }
2661 } else {
2662 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2663 ring->irq_get = gen6_ring_get_irq;
2664 ring->irq_put = gen6_ring_put_irq;
2665 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2666 if (i915_semaphore_is_enabled(dev)) {
2667 ring->semaphore.signal = gen6_signal;
2668 ring->semaphore.sync_to = gen6_ring_sync;
2669 /*
2670 * The current semaphore is only applied on pre-gen8
2671 * platform. And there is no VCS2 ring on the pre-gen8
2672 * platform. So the semaphore between BCS and VCS2 is
2673 * initialized as INVALID. Gen8 will initialize the
2674 * sema between BCS and VCS2 later.
2675 */
2676 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2677 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2678 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2679 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2680 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2681 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2682 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2683 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2684 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2685 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2686 }
2687 }
2688 ring->init = init_ring_common;
2689
2690 return intel_init_ring_buffer(dev, ring);
2691 }
2692
2693 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2694 {
2695 struct drm_i915_private *dev_priv = dev->dev_private;
2696 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2697
2698 ring->name = "video enhancement ring";
2699 ring->id = VECS;
2700
2701 ring->mmio_base = VEBOX_RING_BASE;
2702 ring->write_tail = ring_write_tail;
2703 ring->flush = gen6_ring_flush;
2704 ring->add_request = gen6_add_request;
2705 ring->get_seqno = gen6_ring_get_seqno;
2706 ring->set_seqno = ring_set_seqno;
2707
2708 if (INTEL_INFO(dev)->gen >= 8) {
2709 ring->irq_enable_mask =
2710 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2711 ring->irq_get = gen8_ring_get_irq;
2712 ring->irq_put = gen8_ring_put_irq;
2713 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2714 if (i915_semaphore_is_enabled(dev)) {
2715 ring->semaphore.sync_to = gen8_ring_sync;
2716 ring->semaphore.signal = gen8_xcs_signal;
2717 GEN8_RING_SEMAPHORE_INIT;
2718 }
2719 } else {
2720 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2721 ring->irq_get = hsw_vebox_get_irq;
2722 ring->irq_put = hsw_vebox_put_irq;
2723 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2724 if (i915_semaphore_is_enabled(dev)) {
2725 ring->semaphore.sync_to = gen6_ring_sync;
2726 ring->semaphore.signal = gen6_signal;
2727 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2728 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2729 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2730 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2731 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2732 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2733 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2734 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2735 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2736 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2737 }
2738 }
2739 ring->init = init_ring_common;
2740
2741 return intel_init_ring_buffer(dev, ring);
2742 }
2743
2744 int
2745 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2746 {
2747 int ret;
2748
2749 if (!ring->gpu_caches_dirty)
2750 return 0;
2751
2752 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2753 if (ret)
2754 return ret;
2755
2756 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2757
2758 ring->gpu_caches_dirty = false;
2759 return 0;
2760 }
2761
2762 int
2763 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2764 {
2765 uint32_t flush_domains;
2766 int ret;
2767
2768 flush_domains = 0;
2769 if (ring->gpu_caches_dirty)
2770 flush_domains = I915_GEM_GPU_DOMAINS;
2771
2772 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2773 if (ret)
2774 return ret;
2775
2776 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2777
2778 ring->gpu_caches_dirty = false;
2779 return 0;
2780 }
2781
2782 void
2783 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2784 {
2785 int ret;
2786
2787 if (!intel_ring_initialized(ring))
2788 return;
2789
2790 ret = intel_ring_idle(ring);
2791 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2792 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2793 ring->name, ret);
2794
2795 stop_ring(ring);
2796 }