]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 if (ring->last_retired_head != -1) {
53 ring->head = ring->last_retired_head;
54 ring->last_retired_head = -1;
55 }
56
57 ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64 struct intel_ring *ring = req->ring;
65 u32 cmd;
66 int ret;
67
68 cmd = MI_FLUSH;
69
70 if (mode & EMIT_INVALIDATE)
71 cmd |= MI_READ_FLUSH;
72
73 ret = intel_ring_begin(req, 2);
74 if (ret)
75 return ret;
76
77 intel_ring_emit(ring, cmd);
78 intel_ring_emit(ring, MI_NOOP);
79 intel_ring_advance(ring);
80
81 return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87 struct intel_ring *ring = req->ring;
88 u32 cmd;
89 int ret;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 ret = intel_ring_begin(req, 2);
127 if (ret)
128 return ret;
129
130 intel_ring_emit(ring, cmd);
131 intel_ring_emit(ring, MI_NOOP);
132 intel_ring_advance(ring);
133
134 return 0;
135 }
136
137 /**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 struct intel_ring *ring = req->ring;
178 u32 scratch_addr =
179 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 int ret;
181
182 ret = intel_ring_begin(req, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(req, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213 struct intel_ring *ring = req->ring;
214 u32 scratch_addr =
215 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 u32 flags = 0;
217 int ret;
218
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
221 if (ret)
222 return ret;
223
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
226 * impact.
227 */
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231 /*
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
234 */
235 flags |= PIPE_CONTROL_CS_STALL;
236 }
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244 /*
245 * TLB invalidate requires a post-sync write.
246 */
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248 }
249
250 ret = intel_ring_begin(req, 4);
251 if (ret)
252 return ret;
253
254 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring, flags);
256 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 intel_ring_emit(ring, 0);
258 intel_ring_advance(ring);
259
260 return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266 struct intel_ring *ring = req->ring;
267 int ret;
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring,
275 PIPE_CONTROL_CS_STALL |
276 PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 intel_ring_emit(ring, 0);
278 intel_ring_emit(ring, 0);
279 intel_ring_advance(ring);
280
281 return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287 struct intel_ring *ring = req->ring;
288 u32 scratch_addr =
289 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 u32 flags = 0;
291 int ret;
292
293 /*
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
296 *
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
300 */
301 flags |= PIPE_CONTROL_CS_STALL;
302
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
305 * impact.
306 */
307 if (mode & EMIT_FLUSH) {
308 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312 }
313 if (mode & EMIT_INVALIDATE) {
314 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 /*
322 * TLB invalidate requires a post-sync write.
323 */
324 flags |= PIPE_CONTROL_QW_WRITE;
325 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req);
333 }
334
335 ret = intel_ring_begin(req, 4);
336 if (ret)
337 return ret;
338
339 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring, flags);
341 intel_ring_emit(ring, scratch_addr);
342 intel_ring_emit(ring, 0);
343 intel_ring_advance(ring);
344
345 return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 u32 flags, u32 scratch_addr)
351 {
352 struct intel_ring *ring = req->ring;
353 int ret;
354
355 ret = intel_ring_begin(req, 6);
356 if (ret)
357 return ret;
358
359 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring, flags);
361 intel_ring_emit(ring, scratch_addr);
362 intel_ring_emit(ring, 0);
363 intel_ring_emit(ring, 0);
364 intel_ring_emit(ring, 0);
365 intel_ring_advance(ring);
366
367 return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373 u32 scratch_addr =
374 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375 u32 flags = 0;
376 int ret;
377
378 flags |= PIPE_CONTROL_CS_STALL;
379
380 if (mode & EMIT_FLUSH) {
381 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385 }
386 if (mode & EMIT_INVALIDATE) {
387 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393 flags |= PIPE_CONTROL_QW_WRITE;
394 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 ret = gen8_emit_pipe_control(req,
398 PIPE_CONTROL_CS_STALL |
399 PIPE_CONTROL_STALL_AT_SCOREBOARD,
400 0);
401 if (ret)
402 return ret;
403 }
404
405 return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410 struct drm_i915_private *dev_priv = engine->i915;
411 u32 addr;
412
413 addr = dev_priv->status_page_dmah->busaddr;
414 if (INTEL_GEN(dev_priv) >= 4)
415 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416 I915_WRITE(HWS_PGA, addr);
417 }
418
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421 struct drm_i915_private *dev_priv = engine->i915;
422 i915_reg_t mmio;
423
424 /* The ring status page addresses are no longer next to the rest of
425 * the ring registers as of gen7.
426 */
427 if (IS_GEN7(dev_priv)) {
428 switch (engine->id) {
429 case RCS:
430 mmio = RENDER_HWS_PGA_GEN7;
431 break;
432 case BCS:
433 mmio = BLT_HWS_PGA_GEN7;
434 break;
435 /*
436 * VCS2 actually doesn't exist on Gen7. Only shut up
437 * gcc switch check warning
438 */
439 case VCS2:
440 case VCS:
441 mmio = BSD_HWS_PGA_GEN7;
442 break;
443 case VECS:
444 mmio = VEBOX_HWS_PGA_GEN7;
445 break;
446 }
447 } else if (IS_GEN6(dev_priv)) {
448 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 } else {
450 /* XXX: gen8 returns to sanity */
451 mmio = RING_HWS_PGA(engine->mmio_base);
452 }
453
454 I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 POSTING_READ(mmio);
456
457 /*
458 * Flush the TLB for this page
459 *
460 * FIXME: These two bits have disappeared on gen8, so a question
461 * arises: do we still need this and if so how should we go about
462 * invalidating the TLB?
463 */
464 if (IS_GEN(dev_priv, 6, 7)) {
465 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466
467 /* ring should be idle before issuing a sync flush*/
468 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469
470 I915_WRITE(reg,
471 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472 INSTPM_SYNC_FLUSH));
473 if (intel_wait_for_register(dev_priv,
474 reg, INSTPM_SYNC_FLUSH, 0,
475 1000))
476 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477 engine->name);
478 }
479 }
480
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483 struct drm_i915_private *dev_priv = engine->i915;
484
485 if (INTEL_GEN(dev_priv) > 2) {
486 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 if (intel_wait_for_register(dev_priv,
488 RING_MI_MODE(engine->mmio_base),
489 MODE_IDLE,
490 MODE_IDLE,
491 1000)) {
492 DRM_ERROR("%s : timed out trying to stop ring\n",
493 engine->name);
494 /* Sometimes we observe that the idle flag is not
495 * set even though the ring is empty. So double
496 * check before giving up.
497 */
498 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499 return false;
500 }
501 }
502
503 I915_WRITE_CTL(engine, 0);
504 I915_WRITE_HEAD(engine, 0);
505 I915_WRITE_TAIL(engine, 0);
506
507 if (INTEL_GEN(dev_priv) > 2) {
508 (void)I915_READ_CTL(engine);
509 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510 }
511
512 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517 struct drm_i915_private *dev_priv = engine->i915;
518 struct intel_ring *ring = engine->buffer;
519 int ret = 0;
520
521 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522
523 if (!stop_ring(engine)) {
524 /* G45 ring initialization often fails to reset head to zero */
525 DRM_DEBUG_KMS("%s head not reset to zero "
526 "ctl %08x head %08x tail %08x start %08x\n",
527 engine->name,
528 I915_READ_CTL(engine),
529 I915_READ_HEAD(engine),
530 I915_READ_TAIL(engine),
531 I915_READ_START(engine));
532
533 if (!stop_ring(engine)) {
534 DRM_ERROR("failed to set %s head to zero "
535 "ctl %08x head %08x tail %08x start %08x\n",
536 engine->name,
537 I915_READ_CTL(engine),
538 I915_READ_HEAD(engine),
539 I915_READ_TAIL(engine),
540 I915_READ_START(engine));
541 ret = -EIO;
542 goto out;
543 }
544 }
545
546 if (HWS_NEEDS_PHYSICAL(dev_priv))
547 ring_setup_phys_status_page(engine);
548 else
549 intel_ring_setup_status_page(engine);
550
551 intel_engine_reset_breadcrumbs(engine);
552
553 /* Enforce ordering by reading HEAD register back */
554 I915_READ_HEAD(engine);
555
556 /* Initialize the ring. This must happen _after_ we've cleared the ring
557 * registers with the above sequence (the readback of the HEAD registers
558 * also enforces ordering), otherwise the hw might lose the new ring
559 * register values. */
560 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561
562 /* WaClearRingBufHeadRegAtInit:ctg,elk */
563 if (I915_READ_HEAD(engine))
564 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565 engine->name, I915_READ_HEAD(engine));
566
567 intel_ring_update_space(ring);
568 I915_WRITE_HEAD(engine, ring->head);
569 I915_WRITE_TAIL(engine, ring->tail);
570 (void)I915_READ_TAIL(engine);
571
572 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573
574 /* If the head is still not zero, the ring is dead */
575 if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576 RING_VALID, RING_VALID,
577 50)) {
578 DRM_ERROR("%s initialization failed "
579 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 engine->name,
581 I915_READ_CTL(engine),
582 I915_READ_CTL(engine) & RING_VALID,
583 I915_READ_HEAD(engine), ring->head,
584 I915_READ_TAIL(engine), ring->tail,
585 I915_READ_START(engine),
586 i915_ggtt_offset(ring->vma));
587 ret = -EIO;
588 goto out;
589 }
590
591 intel_engine_init_hangcheck(engine);
592
593 out:
594 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595
596 return ret;
597 }
598
599 static void reset_ring_common(struct intel_engine_cs *engine,
600 struct drm_i915_gem_request *request)
601 {
602 struct intel_ring *ring = request->ring;
603
604 ring->head = request->postfix;
605 ring->last_retired_head = -1;
606 }
607
608 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609 {
610 struct intel_ring *ring = req->ring;
611 struct i915_workarounds *w = &req->i915->workarounds;
612 int ret, i;
613
614 if (w->count == 0)
615 return 0;
616
617 ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 if (ret)
619 return ret;
620
621 ret = intel_ring_begin(req, (w->count * 2 + 2));
622 if (ret)
623 return ret;
624
625 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626 for (i = 0; i < w->count; i++) {
627 intel_ring_emit_reg(ring, w->reg[i].addr);
628 intel_ring_emit(ring, w->reg[i].value);
629 }
630 intel_ring_emit(ring, MI_NOOP);
631
632 intel_ring_advance(ring);
633
634 ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 if (ret)
636 return ret;
637
638 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639
640 return 0;
641 }
642
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645 int ret;
646
647 ret = intel_ring_workarounds_emit(req);
648 if (ret != 0)
649 return ret;
650
651 ret = i915_gem_render_state_init(req);
652 if (ret)
653 return ret;
654
655 return 0;
656 }
657
658 static int wa_add(struct drm_i915_private *dev_priv,
659 i915_reg_t addr,
660 const u32 mask, const u32 val)
661 {
662 const u32 idx = dev_priv->workarounds.count;
663
664 if (WARN_ON(idx >= I915_MAX_WA_REGS))
665 return -ENOSPC;
666
667 dev_priv->workarounds.reg[idx].addr = addr;
668 dev_priv->workarounds.reg[idx].value = val;
669 dev_priv->workarounds.reg[idx].mask = mask;
670
671 dev_priv->workarounds.count++;
672
673 return 0;
674 }
675
676 #define WA_REG(addr, mask, val) do { \
677 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 if (r) \
679 return r; \
680 } while (0)
681
682 #define WA_SET_BIT_MASKED(addr, mask) \
683 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684
685 #define WA_CLR_BIT_MASKED(addr, mask) \
686 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687
688 #define WA_SET_FIELD_MASKED(addr, mask, value) \
689 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690
691 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
692 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693
694 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695
696 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
697 i915_reg_t reg)
698 {
699 struct drm_i915_private *dev_priv = engine->i915;
700 struct i915_workarounds *wa = &dev_priv->workarounds;
701 const uint32_t index = wa->hw_whitelist_count[engine->id];
702
703 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
704 return -EINVAL;
705
706 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707 i915_mmio_reg_offset(reg));
708 wa->hw_whitelist_count[engine->id]++;
709
710 return 0;
711 }
712
713 static int gen8_init_workarounds(struct intel_engine_cs *engine)
714 {
715 struct drm_i915_private *dev_priv = engine->i915;
716
717 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718
719 /* WaDisableAsyncFlipPerfMode:bdw,chv */
720 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
721
722 /* WaDisablePartialInstShootdown:bdw,chv */
723 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
724 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
725
726 /* Use Force Non-Coherent whenever executing a 3D context. This is a
727 * workaround for for a possible hang in the unlikely event a TLB
728 * invalidation occurs during a PSD flush.
729 */
730 /* WaForceEnableNonCoherent:bdw,chv */
731 /* WaHdcDisableFetchWhenMasked:bdw,chv */
732 WA_SET_BIT_MASKED(HDC_CHICKEN0,
733 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 HDC_FORCE_NON_COHERENT);
735
736 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
737 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
738 * polygons in the same 8x4 pixel/sample area to be processed without
739 * stalling waiting for the earlier ones to write to Hierarchical Z
740 * buffer."
741 *
742 * This optimization is off by default for BDW and CHV; turn it on.
743 */
744 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
745
746 /* Wa4x4STCOptimizationDisable:bdw,chv */
747 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
748
749 /*
750 * BSpec recommends 8x4 when MSAA is used,
751 * however in practice 16x4 seems fastest.
752 *
753 * Note that PS/WM thread counts depend on the WIZ hashing
754 * disable bit, which we don't touch here, but it's good
755 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
756 */
757 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
758 GEN6_WIZ_HASHING_MASK,
759 GEN6_WIZ_HASHING_16x4);
760
761 return 0;
762 }
763
764 static int bdw_init_workarounds(struct intel_engine_cs *engine)
765 {
766 struct drm_i915_private *dev_priv = engine->i915;
767 int ret;
768
769 ret = gen8_init_workarounds(engine);
770 if (ret)
771 return ret;
772
773 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775
776 /* WaDisableDopClockGating:bdw */
777 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
778 DOP_CLOCK_GATING_DISABLE);
779
780 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
781 GEN8_SAMPLER_POWER_BYPASS_DIS);
782
783 WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 /* WaForceContextSaveRestoreNonCoherent:bdw */
785 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
786 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788
789 return 0;
790 }
791
792 static int chv_init_workarounds(struct intel_engine_cs *engine)
793 {
794 struct drm_i915_private *dev_priv = engine->i915;
795 int ret;
796
797 ret = gen8_init_workarounds(engine);
798 if (ret)
799 return ret;
800
801 /* WaDisableThreadStallDopClockGating:chv */
802 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803
804 /* Improve HiZ throughput on CHV. */
805 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
806
807 return 0;
808 }
809
810 static int gen9_init_workarounds(struct intel_engine_cs *engine)
811 {
812 struct drm_i915_private *dev_priv = engine->i915;
813 int ret;
814
815 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
816 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
817
818 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
820 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
821
822 /* WaDisableKillLogic:bxt,skl,kbl */
823 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
824 ECOCHK_DIS_TLB);
825
826 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
827 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
828 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829 FLOW_CONTROL_ENABLE |
830 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831
832 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
834 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
835
836 /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
837 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
839 GEN9_DG_MIRROR_FIX_ENABLE);
840
841 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
842 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
844 GEN9_RHWO_OPTIMIZATION_DISABLE);
845 /*
846 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
847 * but we do that in per ctx batchbuffer as there is an issue
848 * with this register not getting restored on ctx restore
849 */
850 }
851
852 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
853 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
854 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
855 GEN9_ENABLE_YV12_BUGFIX |
856 GEN9_ENABLE_GPGPU_PREEMPTION);
857
858 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
859 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
860 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
861 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
862
863 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
864 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
865 GEN9_CCS_TLB_PREFETCH_ENABLE);
866
867 /* WaDisableMaskBasedCammingInRCC:bxt */
868 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
869 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
870 PIXEL_MASK_CAMMING_DISABLE);
871
872 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
873 WA_SET_BIT_MASKED(HDC_CHICKEN0,
874 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
875 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
876
877 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
878 * both tied to WaForceContextSaveRestoreNonCoherent
879 * in some hsds for skl. We keep the tie for all gen9. The
880 * documentation is a bit hazy and so we want to get common behaviour,
881 * even though there is no clear evidence we would need both on kbl/bxt.
882 * This area has been source of system hangs so we play it safe
883 * and mimic the skl regardless of what bspec says.
884 *
885 * Use Force Non-Coherent whenever executing a 3D context. This
886 * is a workaround for a possible hang in the unlikely event
887 * a TLB invalidation occurs during a PSD flush.
888 */
889
890 /* WaForceEnableNonCoherent:skl,bxt,kbl */
891 WA_SET_BIT_MASKED(HDC_CHICKEN0,
892 HDC_FORCE_NON_COHERENT);
893
894 /* WaDisableHDCInvalidation:skl,bxt,kbl */
895 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
896 BDW_DISABLE_HDC_INVALIDATION);
897
898 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
899 if (IS_SKYLAKE(dev_priv) ||
900 IS_KABYLAKE(dev_priv) ||
901 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
902 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
903 GEN8_SAMPLER_POWER_BYPASS_DIS);
904
905 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
906 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
907
908 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
909 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
910 GEN8_LQSC_FLUSH_COHERENT_LINES));
911
912 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
913 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
914 if (ret)
915 return ret;
916
917 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
918 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
919 if (ret)
920 return ret;
921
922 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
923 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
924 if (ret)
925 return ret;
926
927 return 0;
928 }
929
930 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
931 {
932 struct drm_i915_private *dev_priv = engine->i915;
933 u8 vals[3] = { 0, 0, 0 };
934 unsigned int i;
935
936 for (i = 0; i < 3; i++) {
937 u8 ss;
938
939 /*
940 * Only consider slices where one, and only one, subslice has 7
941 * EUs
942 */
943 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
944 continue;
945
946 /*
947 * subslice_7eu[i] != 0 (because of the check above) and
948 * ss_max == 4 (maximum number of subslices possible per slice)
949 *
950 * -> 0 <= ss <= 3;
951 */
952 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
953 vals[i] = 3 - ss;
954 }
955
956 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
957 return 0;
958
959 /* Tune IZ hashing. See intel_device_info_runtime_init() */
960 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
961 GEN9_IZ_HASHING_MASK(2) |
962 GEN9_IZ_HASHING_MASK(1) |
963 GEN9_IZ_HASHING_MASK(0),
964 GEN9_IZ_HASHING(2, vals[2]) |
965 GEN9_IZ_HASHING(1, vals[1]) |
966 GEN9_IZ_HASHING(0, vals[0]));
967
968 return 0;
969 }
970
971 static int skl_init_workarounds(struct intel_engine_cs *engine)
972 {
973 struct drm_i915_private *dev_priv = engine->i915;
974 int ret;
975
976 ret = gen9_init_workarounds(engine);
977 if (ret)
978 return ret;
979
980 /*
981 * Actual WA is to disable percontext preemption granularity control
982 * until D0 which is the default case so this is equivalent to
983 * !WaDisablePerCtxtPreemptionGranularityControl:skl
984 */
985 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
986 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
987
988 /* WaEnableGapsTsvCreditFix:skl */
989 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
990 GEN9_GAPS_TSV_CREDIT_DISABLE));
991
992 /* WaDisableGafsUnitClkGating:skl */
993 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
994
995 /* WaInPlaceDecompressionHang:skl */
996 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
997 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
998 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
999
1000 /* WaDisableLSQCROPERFforOCL:skl */
1001 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1002 if (ret)
1003 return ret;
1004
1005 return skl_tune_iz_hashing(engine);
1006 }
1007
1008 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1009 {
1010 struct drm_i915_private *dev_priv = engine->i915;
1011 int ret;
1012
1013 ret = gen9_init_workarounds(engine);
1014 if (ret)
1015 return ret;
1016
1017 /* WaStoreMultiplePTEenable:bxt */
1018 /* This is a requirement according to Hardware specification */
1019 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1020 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1021
1022 /* WaSetClckGatingDisableMedia:bxt */
1023 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1024 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1025 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1026 }
1027
1028 /* WaDisableThreadStallDopClockGating:bxt */
1029 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1030 STALL_DOP_GATING_DISABLE);
1031
1032 /* WaDisablePooledEuLoadBalancingFix:bxt */
1033 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1034 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1035 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1036 }
1037
1038 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1039 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1040 WA_SET_BIT_MASKED(
1041 GEN7_HALF_SLICE_CHICKEN1,
1042 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1043 }
1044
1045 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1046 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1047 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1048 /* WaDisableLSQCROPERFforOCL:bxt */
1049 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1050 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1051 if (ret)
1052 return ret;
1053
1054 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1055 if (ret)
1056 return ret;
1057 }
1058
1059 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1060 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1061 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1062 L3_HIGH_PRIO_CREDITS(2));
1063
1064 /* WaToEnableHwFixForPushConstHWBug:bxt */
1065 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1066 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1067 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1068
1069 /* WaInPlaceDecompressionHang:bxt */
1070 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1071 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1072 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1073
1074 return 0;
1075 }
1076
1077 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1078 {
1079 struct drm_i915_private *dev_priv = engine->i915;
1080 int ret;
1081
1082 ret = gen9_init_workarounds(engine);
1083 if (ret)
1084 return ret;
1085
1086 /* WaEnableGapsTsvCreditFix:kbl */
1087 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1088 GEN9_GAPS_TSV_CREDIT_DISABLE));
1089
1090 /* WaDisableDynamicCreditSharing:kbl */
1091 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1092 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1093 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1094
1095 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1096 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1097 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1098 HDC_FENCE_DEST_SLM_DISABLE);
1099
1100 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1101 * involving this register should also be added to WA batch as required.
1102 */
1103 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1104 /* WaDisableLSQCROPERFforOCL:kbl */
1105 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1106 GEN8_LQSC_RO_PERF_DIS);
1107
1108 /* WaToEnableHwFixForPushConstHWBug:kbl */
1109 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1110 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1111 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1112
1113 /* WaDisableGafsUnitClkGating:kbl */
1114 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1115
1116 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1117 WA_SET_BIT_MASKED(
1118 GEN7_HALF_SLICE_CHICKEN1,
1119 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1120
1121 /* WaInPlaceDecompressionHang:kbl */
1122 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1123 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1124
1125 /* WaDisableLSQCROPERFforOCL:kbl */
1126 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1127 if (ret)
1128 return ret;
1129
1130 return 0;
1131 }
1132
1133 int init_workarounds_ring(struct intel_engine_cs *engine)
1134 {
1135 struct drm_i915_private *dev_priv = engine->i915;
1136
1137 WARN_ON(engine->id != RCS);
1138
1139 dev_priv->workarounds.count = 0;
1140 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1141
1142 if (IS_BROADWELL(dev_priv))
1143 return bdw_init_workarounds(engine);
1144
1145 if (IS_CHERRYVIEW(dev_priv))
1146 return chv_init_workarounds(engine);
1147
1148 if (IS_SKYLAKE(dev_priv))
1149 return skl_init_workarounds(engine);
1150
1151 if (IS_BROXTON(dev_priv))
1152 return bxt_init_workarounds(engine);
1153
1154 if (IS_KABYLAKE(dev_priv))
1155 return kbl_init_workarounds(engine);
1156
1157 return 0;
1158 }
1159
1160 static int init_render_ring(struct intel_engine_cs *engine)
1161 {
1162 struct drm_i915_private *dev_priv = engine->i915;
1163 int ret = init_ring_common(engine);
1164 if (ret)
1165 return ret;
1166
1167 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168 if (IS_GEN(dev_priv, 4, 6))
1169 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1170
1171 /* We need to disable the AsyncFlip performance optimisations in order
1172 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1173 * programmed to '1' on all products.
1174 *
1175 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1176 */
1177 if (IS_GEN(dev_priv, 6, 7))
1178 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1179
1180 /* Required for the hardware to program scanline values for waiting */
1181 /* WaEnableFlushTlbInvalidationMode:snb */
1182 if (IS_GEN6(dev_priv))
1183 I915_WRITE(GFX_MODE,
1184 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1185
1186 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1187 if (IS_GEN7(dev_priv))
1188 I915_WRITE(GFX_MODE_GEN7,
1189 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1190 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1191
1192 if (IS_GEN6(dev_priv)) {
1193 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1194 * "If this bit is set, STCunit will have LRA as replacement
1195 * policy. [...] This bit must be reset. LRA replacement
1196 * policy is not supported."
1197 */
1198 I915_WRITE(CACHE_MODE_0,
1199 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1200 }
1201
1202 if (IS_GEN(dev_priv, 6, 7))
1203 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204
1205 if (INTEL_INFO(dev_priv)->gen >= 6)
1206 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1207
1208 return init_workarounds_ring(engine);
1209 }
1210
1211 static void render_ring_cleanup(struct intel_engine_cs *engine)
1212 {
1213 struct drm_i915_private *dev_priv = engine->i915;
1214
1215 i915_vma_unpin_and_release(&dev_priv->semaphore);
1216 }
1217
1218 static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1219 {
1220 struct intel_ring *ring = req->ring;
1221 struct drm_i915_private *dev_priv = req->i915;
1222 struct intel_engine_cs *waiter;
1223 enum intel_engine_id id;
1224 int ret, num_rings;
1225
1226 num_rings = INTEL_INFO(dev_priv)->num_rings;
1227 ret = intel_ring_begin(req, (num_rings-1) * 8);
1228 if (ret)
1229 return ret;
1230
1231 for_each_engine(waiter, dev_priv, id) {
1232 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1233 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1234 continue;
1235
1236 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1237 intel_ring_emit(ring,
1238 PIPE_CONTROL_GLOBAL_GTT_IVB |
1239 PIPE_CONTROL_QW_WRITE |
1240 PIPE_CONTROL_CS_STALL);
1241 intel_ring_emit(ring, lower_32_bits(gtt_offset));
1242 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1243 intel_ring_emit(ring, req->fence.seqno);
1244 intel_ring_emit(ring, 0);
1245 intel_ring_emit(ring,
1246 MI_SEMAPHORE_SIGNAL |
1247 MI_SEMAPHORE_TARGET(waiter->hw_id));
1248 intel_ring_emit(ring, 0);
1249 }
1250 intel_ring_advance(ring);
1251
1252 return 0;
1253 }
1254
1255 static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1256 {
1257 struct intel_ring *ring = req->ring;
1258 struct drm_i915_private *dev_priv = req->i915;
1259 struct intel_engine_cs *waiter;
1260 enum intel_engine_id id;
1261 int ret, num_rings;
1262
1263 num_rings = INTEL_INFO(dev_priv)->num_rings;
1264 ret = intel_ring_begin(req, (num_rings-1) * 6);
1265 if (ret)
1266 return ret;
1267
1268 for_each_engine(waiter, dev_priv, id) {
1269 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1270 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1271 continue;
1272
1273 intel_ring_emit(ring,
1274 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1275 intel_ring_emit(ring,
1276 lower_32_bits(gtt_offset) |
1277 MI_FLUSH_DW_USE_GTT);
1278 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1279 intel_ring_emit(ring, req->fence.seqno);
1280 intel_ring_emit(ring,
1281 MI_SEMAPHORE_SIGNAL |
1282 MI_SEMAPHORE_TARGET(waiter->hw_id));
1283 intel_ring_emit(ring, 0);
1284 }
1285 intel_ring_advance(ring);
1286
1287 return 0;
1288 }
1289
1290 static int gen6_signal(struct drm_i915_gem_request *req)
1291 {
1292 struct intel_ring *ring = req->ring;
1293 struct drm_i915_private *dev_priv = req->i915;
1294 struct intel_engine_cs *engine;
1295 enum intel_engine_id id;
1296 int ret, num_rings;
1297
1298 num_rings = INTEL_INFO(dev_priv)->num_rings;
1299 ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1300 if (ret)
1301 return ret;
1302
1303 for_each_engine(engine, dev_priv, id) {
1304 i915_reg_t mbox_reg;
1305
1306 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1307 continue;
1308
1309 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1310 if (i915_mmio_reg_valid(mbox_reg)) {
1311 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1312 intel_ring_emit_reg(ring, mbox_reg);
1313 intel_ring_emit(ring, req->fence.seqno);
1314 }
1315 }
1316
1317 /* If num_dwords was rounded, make sure the tail pointer is correct */
1318 if (num_rings % 2 == 0)
1319 intel_ring_emit(ring, MI_NOOP);
1320 intel_ring_advance(ring);
1321
1322 return 0;
1323 }
1324
1325 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1326 {
1327 struct drm_i915_private *dev_priv = request->i915;
1328
1329 I915_WRITE_TAIL(request->engine,
1330 intel_ring_offset(request->ring, request->tail));
1331 }
1332
1333 static int i9xx_emit_request(struct drm_i915_gem_request *req)
1334 {
1335 struct intel_ring *ring = req->ring;
1336 int ret;
1337
1338 ret = intel_ring_begin(req, 4);
1339 if (ret)
1340 return ret;
1341
1342 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1343 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1344 intel_ring_emit(ring, req->fence.seqno);
1345 intel_ring_emit(ring, MI_USER_INTERRUPT);
1346 intel_ring_advance(ring);
1347
1348 req->tail = ring->tail;
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * gen6_sema_emit_request - Update the semaphore mailbox registers
1355 *
1356 * @request - request to write to the ring
1357 *
1358 * Update the mailbox registers in the *other* rings with the current seqno.
1359 * This acts like a signal in the canonical semaphore.
1360 */
1361 static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1362 {
1363 int ret;
1364
1365 ret = req->engine->semaphore.signal(req);
1366 if (ret)
1367 return ret;
1368
1369 return i9xx_emit_request(req);
1370 }
1371
1372 static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1373 {
1374 struct intel_engine_cs *engine = req->engine;
1375 struct intel_ring *ring = req->ring;
1376 int ret;
1377
1378 if (engine->semaphore.signal) {
1379 ret = engine->semaphore.signal(req);
1380 if (ret)
1381 return ret;
1382 }
1383
1384 ret = intel_ring_begin(req, 8);
1385 if (ret)
1386 return ret;
1387
1388 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1389 intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1390 PIPE_CONTROL_CS_STALL |
1391 PIPE_CONTROL_QW_WRITE));
1392 intel_ring_emit(ring, intel_hws_seqno_address(engine));
1393 intel_ring_emit(ring, 0);
1394 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1395 /* We're thrashing one dword of HWS. */
1396 intel_ring_emit(ring, 0);
1397 intel_ring_emit(ring, MI_USER_INTERRUPT);
1398 intel_ring_emit(ring, MI_NOOP);
1399 intel_ring_advance(ring);
1400
1401 req->tail = ring->tail;
1402
1403 return 0;
1404 }
1405
1406 /**
1407 * intel_ring_sync - sync the waiter to the signaller on seqno
1408 *
1409 * @waiter - ring that is waiting
1410 * @signaller - ring which has, or will signal
1411 * @seqno - seqno which the waiter will block on
1412 */
1413
1414 static int
1415 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1416 struct drm_i915_gem_request *signal)
1417 {
1418 struct intel_ring *ring = req->ring;
1419 struct drm_i915_private *dev_priv = req->i915;
1420 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1421 struct i915_hw_ppgtt *ppgtt;
1422 int ret;
1423
1424 ret = intel_ring_begin(req, 4);
1425 if (ret)
1426 return ret;
1427
1428 intel_ring_emit(ring,
1429 MI_SEMAPHORE_WAIT |
1430 MI_SEMAPHORE_GLOBAL_GTT |
1431 MI_SEMAPHORE_SAD_GTE_SDD);
1432 intel_ring_emit(ring, signal->fence.seqno);
1433 intel_ring_emit(ring, lower_32_bits(offset));
1434 intel_ring_emit(ring, upper_32_bits(offset));
1435 intel_ring_advance(ring);
1436
1437 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1438 * pagetables and we must reload them before executing the batch.
1439 * We do this on the i915_switch_context() following the wait and
1440 * before the dispatch.
1441 */
1442 ppgtt = req->ctx->ppgtt;
1443 if (ppgtt && req->engine->id != RCS)
1444 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1445 return 0;
1446 }
1447
1448 static int
1449 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1450 struct drm_i915_gem_request *signal)
1451 {
1452 struct intel_ring *ring = req->ring;
1453 u32 dw1 = MI_SEMAPHORE_MBOX |
1454 MI_SEMAPHORE_COMPARE |
1455 MI_SEMAPHORE_REGISTER;
1456 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1457 int ret;
1458
1459 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1460
1461 ret = intel_ring_begin(req, 4);
1462 if (ret)
1463 return ret;
1464
1465 intel_ring_emit(ring, dw1 | wait_mbox);
1466 /* Throughout all of the GEM code, seqno passed implies our current
1467 * seqno is >= the last seqno executed. However for hardware the
1468 * comparison is strictly greater than.
1469 */
1470 intel_ring_emit(ring, signal->fence.seqno - 1);
1471 intel_ring_emit(ring, 0);
1472 intel_ring_emit(ring, MI_NOOP);
1473 intel_ring_advance(ring);
1474
1475 return 0;
1476 }
1477
1478 static void
1479 gen5_seqno_barrier(struct intel_engine_cs *engine)
1480 {
1481 /* MI_STORE are internally buffered by the GPU and not flushed
1482 * either by MI_FLUSH or SyncFlush or any other combination of
1483 * MI commands.
1484 *
1485 * "Only the submission of the store operation is guaranteed.
1486 * The write result will be complete (coherent) some time later
1487 * (this is practically a finite period but there is no guaranteed
1488 * latency)."
1489 *
1490 * Empirically, we observe that we need a delay of at least 75us to
1491 * be sure that the seqno write is visible by the CPU.
1492 */
1493 usleep_range(125, 250);
1494 }
1495
1496 static void
1497 gen6_seqno_barrier(struct intel_engine_cs *engine)
1498 {
1499 struct drm_i915_private *dev_priv = engine->i915;
1500
1501 /* Workaround to force correct ordering between irq and seqno writes on
1502 * ivb (and maybe also on snb) by reading from a CS register (like
1503 * ACTHD) before reading the status page.
1504 *
1505 * Note that this effectively stalls the read by the time it takes to
1506 * do a memory transaction, which more or less ensures that the write
1507 * from the GPU has sufficient time to invalidate the CPU cacheline.
1508 * Alternatively we could delay the interrupt from the CS ring to give
1509 * the write time to land, but that would incur a delay after every
1510 * batch i.e. much more frequent than a delay when waiting for the
1511 * interrupt (with the same net latency).
1512 *
1513 * Also note that to prevent whole machine hangs on gen7, we have to
1514 * take the spinlock to guard against concurrent cacheline access.
1515 */
1516 spin_lock_irq(&dev_priv->uncore.lock);
1517 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1518 spin_unlock_irq(&dev_priv->uncore.lock);
1519 }
1520
1521 static void
1522 gen5_irq_enable(struct intel_engine_cs *engine)
1523 {
1524 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1525 }
1526
1527 static void
1528 gen5_irq_disable(struct intel_engine_cs *engine)
1529 {
1530 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1531 }
1532
1533 static void
1534 i9xx_irq_enable(struct intel_engine_cs *engine)
1535 {
1536 struct drm_i915_private *dev_priv = engine->i915;
1537
1538 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1539 I915_WRITE(IMR, dev_priv->irq_mask);
1540 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1541 }
1542
1543 static void
1544 i9xx_irq_disable(struct intel_engine_cs *engine)
1545 {
1546 struct drm_i915_private *dev_priv = engine->i915;
1547
1548 dev_priv->irq_mask |= engine->irq_enable_mask;
1549 I915_WRITE(IMR, dev_priv->irq_mask);
1550 }
1551
1552 static void
1553 i8xx_irq_enable(struct intel_engine_cs *engine)
1554 {
1555 struct drm_i915_private *dev_priv = engine->i915;
1556
1557 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1558 I915_WRITE16(IMR, dev_priv->irq_mask);
1559 POSTING_READ16(RING_IMR(engine->mmio_base));
1560 }
1561
1562 static void
1563 i8xx_irq_disable(struct intel_engine_cs *engine)
1564 {
1565 struct drm_i915_private *dev_priv = engine->i915;
1566
1567 dev_priv->irq_mask |= engine->irq_enable_mask;
1568 I915_WRITE16(IMR, dev_priv->irq_mask);
1569 }
1570
1571 static int
1572 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1573 {
1574 struct intel_ring *ring = req->ring;
1575 int ret;
1576
1577 ret = intel_ring_begin(req, 2);
1578 if (ret)
1579 return ret;
1580
1581 intel_ring_emit(ring, MI_FLUSH);
1582 intel_ring_emit(ring, MI_NOOP);
1583 intel_ring_advance(ring);
1584 return 0;
1585 }
1586
1587 static void
1588 gen6_irq_enable(struct intel_engine_cs *engine)
1589 {
1590 struct drm_i915_private *dev_priv = engine->i915;
1591
1592 I915_WRITE_IMR(engine,
1593 ~(engine->irq_enable_mask |
1594 engine->irq_keep_mask));
1595 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1596 }
1597
1598 static void
1599 gen6_irq_disable(struct intel_engine_cs *engine)
1600 {
1601 struct drm_i915_private *dev_priv = engine->i915;
1602
1603 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1604 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1605 }
1606
1607 static void
1608 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1609 {
1610 struct drm_i915_private *dev_priv = engine->i915;
1611
1612 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1613 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1614 }
1615
1616 static void
1617 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1618 {
1619 struct drm_i915_private *dev_priv = engine->i915;
1620
1621 I915_WRITE_IMR(engine, ~0);
1622 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1623 }
1624
1625 static void
1626 gen8_irq_enable(struct intel_engine_cs *engine)
1627 {
1628 struct drm_i915_private *dev_priv = engine->i915;
1629
1630 I915_WRITE_IMR(engine,
1631 ~(engine->irq_enable_mask |
1632 engine->irq_keep_mask));
1633 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1634 }
1635
1636 static void
1637 gen8_irq_disable(struct intel_engine_cs *engine)
1638 {
1639 struct drm_i915_private *dev_priv = engine->i915;
1640
1641 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1642 }
1643
1644 static int
1645 i965_emit_bb_start(struct drm_i915_gem_request *req,
1646 u64 offset, u32 length,
1647 unsigned int dispatch_flags)
1648 {
1649 struct intel_ring *ring = req->ring;
1650 int ret;
1651
1652 ret = intel_ring_begin(req, 2);
1653 if (ret)
1654 return ret;
1655
1656 intel_ring_emit(ring,
1657 MI_BATCH_BUFFER_START |
1658 MI_BATCH_GTT |
1659 (dispatch_flags & I915_DISPATCH_SECURE ?
1660 0 : MI_BATCH_NON_SECURE_I965));
1661 intel_ring_emit(ring, offset);
1662 intel_ring_advance(ring);
1663
1664 return 0;
1665 }
1666
1667 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1668 #define I830_BATCH_LIMIT (256*1024)
1669 #define I830_TLB_ENTRIES (2)
1670 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1671 static int
1672 i830_emit_bb_start(struct drm_i915_gem_request *req,
1673 u64 offset, u32 len,
1674 unsigned int dispatch_flags)
1675 {
1676 struct intel_ring *ring = req->ring;
1677 u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1678 int ret;
1679
1680 ret = intel_ring_begin(req, 6);
1681 if (ret)
1682 return ret;
1683
1684 /* Evict the invalid PTE TLBs */
1685 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1686 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1687 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1688 intel_ring_emit(ring, cs_offset);
1689 intel_ring_emit(ring, 0xdeadbeef);
1690 intel_ring_emit(ring, MI_NOOP);
1691 intel_ring_advance(ring);
1692
1693 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1694 if (len > I830_BATCH_LIMIT)
1695 return -ENOSPC;
1696
1697 ret = intel_ring_begin(req, 6 + 2);
1698 if (ret)
1699 return ret;
1700
1701 /* Blit the batch (which has now all relocs applied) to the
1702 * stable batch scratch bo area (so that the CS never
1703 * stumbles over its tlb invalidation bug) ...
1704 */
1705 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1706 intel_ring_emit(ring,
1707 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1708 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1709 intel_ring_emit(ring, cs_offset);
1710 intel_ring_emit(ring, 4096);
1711 intel_ring_emit(ring, offset);
1712
1713 intel_ring_emit(ring, MI_FLUSH);
1714 intel_ring_emit(ring, MI_NOOP);
1715 intel_ring_advance(ring);
1716
1717 /* ... and execute it. */
1718 offset = cs_offset;
1719 }
1720
1721 ret = intel_ring_begin(req, 2);
1722 if (ret)
1723 return ret;
1724
1725 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1726 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1727 0 : MI_BATCH_NON_SECURE));
1728 intel_ring_advance(ring);
1729
1730 return 0;
1731 }
1732
1733 static int
1734 i915_emit_bb_start(struct drm_i915_gem_request *req,
1735 u64 offset, u32 len,
1736 unsigned int dispatch_flags)
1737 {
1738 struct intel_ring *ring = req->ring;
1739 int ret;
1740
1741 ret = intel_ring_begin(req, 2);
1742 if (ret)
1743 return ret;
1744
1745 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1746 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1747 0 : MI_BATCH_NON_SECURE));
1748 intel_ring_advance(ring);
1749
1750 return 0;
1751 }
1752
1753 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1754 {
1755 struct drm_i915_private *dev_priv = engine->i915;
1756
1757 if (!dev_priv->status_page_dmah)
1758 return;
1759
1760 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1761 engine->status_page.page_addr = NULL;
1762 }
1763
1764 static void cleanup_status_page(struct intel_engine_cs *engine)
1765 {
1766 struct i915_vma *vma;
1767
1768 vma = fetch_and_zero(&engine->status_page.vma);
1769 if (!vma)
1770 return;
1771
1772 i915_vma_unpin(vma);
1773 i915_gem_object_unpin_map(vma->obj);
1774 i915_vma_put(vma);
1775 }
1776
1777 static int init_status_page(struct intel_engine_cs *engine)
1778 {
1779 struct drm_i915_gem_object *obj;
1780 struct i915_vma *vma;
1781 unsigned int flags;
1782 int ret;
1783
1784 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1785 if (IS_ERR(obj)) {
1786 DRM_ERROR("Failed to allocate status page\n");
1787 return PTR_ERR(obj);
1788 }
1789
1790 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1791 if (ret)
1792 goto err;
1793
1794 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1795 if (IS_ERR(vma)) {
1796 ret = PTR_ERR(vma);
1797 goto err;
1798 }
1799
1800 flags = PIN_GLOBAL;
1801 if (!HAS_LLC(engine->i915))
1802 /* On g33, we cannot place HWS above 256MiB, so
1803 * restrict its pinning to the low mappable arena.
1804 * Though this restriction is not documented for
1805 * gen4, gen5, or byt, they also behave similarly
1806 * and hang if the HWS is placed at the top of the
1807 * GTT. To generalise, it appears that all !llc
1808 * platforms have issues with us placing the HWS
1809 * above the mappable region (even though we never
1810 * actualy map it).
1811 */
1812 flags |= PIN_MAPPABLE;
1813 ret = i915_vma_pin(vma, 0, 4096, flags);
1814 if (ret)
1815 goto err;
1816
1817 engine->status_page.vma = vma;
1818 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1819 engine->status_page.page_addr =
1820 i915_gem_object_pin_map(obj, I915_MAP_WB);
1821
1822 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1823 engine->name, i915_ggtt_offset(vma));
1824 return 0;
1825
1826 err:
1827 i915_gem_object_put(obj);
1828 return ret;
1829 }
1830
1831 static int init_phys_status_page(struct intel_engine_cs *engine)
1832 {
1833 struct drm_i915_private *dev_priv = engine->i915;
1834
1835 dev_priv->status_page_dmah =
1836 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1837 if (!dev_priv->status_page_dmah)
1838 return -ENOMEM;
1839
1840 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1841 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1842
1843 return 0;
1844 }
1845
1846 int intel_ring_pin(struct intel_ring *ring)
1847 {
1848 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1849 unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1850 enum i915_map_type map;
1851 struct i915_vma *vma = ring->vma;
1852 void *addr;
1853 int ret;
1854
1855 GEM_BUG_ON(ring->vaddr);
1856
1857 map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1858
1859 if (vma->obj->stolen)
1860 flags |= PIN_MAPPABLE;
1861
1862 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1863 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1864 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1865 else
1866 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1867 if (unlikely(ret))
1868 return ret;
1869 }
1870
1871 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1872 if (unlikely(ret))
1873 return ret;
1874
1875 if (i915_vma_is_map_and_fenceable(vma))
1876 addr = (void __force *)i915_vma_pin_iomap(vma);
1877 else
1878 addr = i915_gem_object_pin_map(vma->obj, map);
1879 if (IS_ERR(addr))
1880 goto err;
1881
1882 ring->vaddr = addr;
1883 return 0;
1884
1885 err:
1886 i915_vma_unpin(vma);
1887 return PTR_ERR(addr);
1888 }
1889
1890 void intel_ring_unpin(struct intel_ring *ring)
1891 {
1892 GEM_BUG_ON(!ring->vma);
1893 GEM_BUG_ON(!ring->vaddr);
1894
1895 if (i915_vma_is_map_and_fenceable(ring->vma))
1896 i915_vma_unpin_iomap(ring->vma);
1897 else
1898 i915_gem_object_unpin_map(ring->vma->obj);
1899 ring->vaddr = NULL;
1900
1901 i915_vma_unpin(ring->vma);
1902 }
1903
1904 static struct i915_vma *
1905 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1906 {
1907 struct drm_i915_gem_object *obj;
1908 struct i915_vma *vma;
1909
1910 obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1911 if (!obj)
1912 obj = i915_gem_object_create(&dev_priv->drm, size);
1913 if (IS_ERR(obj))
1914 return ERR_CAST(obj);
1915
1916 /* mark ring buffers as read-only from GPU side by default */
1917 obj->gt_ro = 1;
1918
1919 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1920 if (IS_ERR(vma))
1921 goto err;
1922
1923 return vma;
1924
1925 err:
1926 i915_gem_object_put(obj);
1927 return vma;
1928 }
1929
1930 struct intel_ring *
1931 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1932 {
1933 struct intel_ring *ring;
1934 struct i915_vma *vma;
1935
1936 GEM_BUG_ON(!is_power_of_2(size));
1937 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1938
1939 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1940 if (!ring)
1941 return ERR_PTR(-ENOMEM);
1942
1943 ring->engine = engine;
1944
1945 INIT_LIST_HEAD(&ring->request_list);
1946
1947 ring->size = size;
1948 /* Workaround an erratum on the i830 which causes a hang if
1949 * the TAIL pointer points to within the last 2 cachelines
1950 * of the buffer.
1951 */
1952 ring->effective_size = size;
1953 if (IS_I830(engine->i915) || IS_845G(engine->i915))
1954 ring->effective_size -= 2 * CACHELINE_BYTES;
1955
1956 ring->last_retired_head = -1;
1957 intel_ring_update_space(ring);
1958
1959 vma = intel_ring_create_vma(engine->i915, size);
1960 if (IS_ERR(vma)) {
1961 kfree(ring);
1962 return ERR_CAST(vma);
1963 }
1964 ring->vma = vma;
1965
1966 return ring;
1967 }
1968
1969 void
1970 intel_ring_free(struct intel_ring *ring)
1971 {
1972 i915_vma_put(ring->vma);
1973 kfree(ring);
1974 }
1975
1976 static int intel_ring_context_pin(struct i915_gem_context *ctx,
1977 struct intel_engine_cs *engine)
1978 {
1979 struct intel_context *ce = &ctx->engine[engine->id];
1980 int ret;
1981
1982 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1983
1984 if (ce->pin_count++)
1985 return 0;
1986
1987 if (ce->state) {
1988 ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
1989 if (ret)
1990 goto error;
1991
1992 ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
1993 PIN_GLOBAL | PIN_HIGH);
1994 if (ret)
1995 goto error;
1996 }
1997
1998 /* The kernel context is only used as a placeholder for flushing the
1999 * active context. It is never used for submitting user rendering and
2000 * as such never requires the golden render context, and so we can skip
2001 * emitting it when we switch to the kernel context. This is required
2002 * as during eviction we cannot allocate and pin the renderstate in
2003 * order to initialise the context.
2004 */
2005 if (ctx == ctx->i915->kernel_context)
2006 ce->initialised = true;
2007
2008 i915_gem_context_get(ctx);
2009 return 0;
2010
2011 error:
2012 ce->pin_count = 0;
2013 return ret;
2014 }
2015
2016 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2017 struct intel_engine_cs *engine)
2018 {
2019 struct intel_context *ce = &ctx->engine[engine->id];
2020
2021 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2022
2023 if (--ce->pin_count)
2024 return;
2025
2026 if (ce->state)
2027 i915_vma_unpin(ce->state);
2028
2029 i915_gem_context_put(ctx);
2030 }
2031
2032 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2033 {
2034 struct drm_i915_private *dev_priv = engine->i915;
2035 struct intel_ring *ring;
2036 int ret;
2037
2038 WARN_ON(engine->buffer);
2039
2040 intel_engine_setup_common(engine);
2041
2042 memset(engine->semaphore.sync_seqno, 0,
2043 sizeof(engine->semaphore.sync_seqno));
2044
2045 ret = intel_engine_init_common(engine);
2046 if (ret)
2047 goto error;
2048
2049 /* We may need to do things with the shrinker which
2050 * require us to immediately switch back to the default
2051 * context. This can cause a problem as pinning the
2052 * default context also requires GTT space which may not
2053 * be available. To avoid this we always pin the default
2054 * context.
2055 */
2056 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2057 if (ret)
2058 goto error;
2059
2060 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2061 if (IS_ERR(ring)) {
2062 ret = PTR_ERR(ring);
2063 goto error;
2064 }
2065
2066 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2067 WARN_ON(engine->id != RCS);
2068 ret = init_phys_status_page(engine);
2069 if (ret)
2070 goto error;
2071 } else {
2072 ret = init_status_page(engine);
2073 if (ret)
2074 goto error;
2075 }
2076
2077 ret = intel_ring_pin(ring);
2078 if (ret) {
2079 intel_ring_free(ring);
2080 goto error;
2081 }
2082 engine->buffer = ring;
2083
2084 return 0;
2085
2086 error:
2087 intel_engine_cleanup(engine);
2088 return ret;
2089 }
2090
2091 void intel_engine_cleanup(struct intel_engine_cs *engine)
2092 {
2093 struct drm_i915_private *dev_priv;
2094
2095 dev_priv = engine->i915;
2096
2097 if (engine->buffer) {
2098 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2099 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2100
2101 intel_ring_unpin(engine->buffer);
2102 intel_ring_free(engine->buffer);
2103 engine->buffer = NULL;
2104 }
2105
2106 if (engine->cleanup)
2107 engine->cleanup(engine);
2108
2109 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2110 WARN_ON(engine->id != RCS);
2111 cleanup_phys_status_page(engine);
2112 } else {
2113 cleanup_status_page(engine);
2114 }
2115
2116 intel_engine_cleanup_common(engine);
2117
2118 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2119
2120 engine->i915 = NULL;
2121 dev_priv->engine[engine->id] = NULL;
2122 kfree(engine);
2123 }
2124
2125 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2126 {
2127 struct intel_engine_cs *engine;
2128 enum intel_engine_id id;
2129
2130 for_each_engine(engine, dev_priv, id) {
2131 engine->buffer->head = engine->buffer->tail;
2132 engine->buffer->last_retired_head = -1;
2133 }
2134 }
2135
2136 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2137 {
2138 int ret;
2139
2140 /* Flush enough space to reduce the likelihood of waiting after
2141 * we start building the request - in which case we will just
2142 * have to repeat work.
2143 */
2144 request->reserved_space += LEGACY_REQUEST_SIZE;
2145
2146 request->ring = request->engine->buffer;
2147
2148 ret = intel_ring_begin(request, 0);
2149 if (ret)
2150 return ret;
2151
2152 request->reserved_space -= LEGACY_REQUEST_SIZE;
2153 return 0;
2154 }
2155
2156 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2157 {
2158 struct intel_ring *ring = req->ring;
2159 struct drm_i915_gem_request *target;
2160 int ret;
2161
2162 intel_ring_update_space(ring);
2163 if (ring->space >= bytes)
2164 return 0;
2165
2166 /*
2167 * Space is reserved in the ringbuffer for finalising the request,
2168 * as that cannot be allowed to fail. During request finalisation,
2169 * reserved_space is set to 0 to stop the overallocation and the
2170 * assumption is that then we never need to wait (which has the
2171 * risk of failing with EINTR).
2172 *
2173 * See also i915_gem_request_alloc() and i915_add_request().
2174 */
2175 GEM_BUG_ON(!req->reserved_space);
2176
2177 list_for_each_entry(target, &ring->request_list, ring_link) {
2178 unsigned space;
2179
2180 /* Would completion of this request free enough space? */
2181 space = __intel_ring_space(target->postfix, ring->tail,
2182 ring->size);
2183 if (space >= bytes)
2184 break;
2185 }
2186
2187 if (WARN_ON(&target->ring_link == &ring->request_list))
2188 return -ENOSPC;
2189
2190 ret = i915_wait_request(target,
2191 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2192 NULL, NO_WAITBOOST);
2193 if (ret)
2194 return ret;
2195
2196 i915_gem_request_retire_upto(target);
2197
2198 intel_ring_update_space(ring);
2199 GEM_BUG_ON(ring->space < bytes);
2200 return 0;
2201 }
2202
2203 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2204 {
2205 struct intel_ring *ring = req->ring;
2206 int remain_actual = ring->size - ring->tail;
2207 int remain_usable = ring->effective_size - ring->tail;
2208 int bytes = num_dwords * sizeof(u32);
2209 int total_bytes, wait_bytes;
2210 bool need_wrap = false;
2211
2212 total_bytes = bytes + req->reserved_space;
2213
2214 if (unlikely(bytes > remain_usable)) {
2215 /*
2216 * Not enough space for the basic request. So need to flush
2217 * out the remainder and then wait for base + reserved.
2218 */
2219 wait_bytes = remain_actual + total_bytes;
2220 need_wrap = true;
2221 } else if (unlikely(total_bytes > remain_usable)) {
2222 /*
2223 * The base request will fit but the reserved space
2224 * falls off the end. So we don't need an immediate wrap
2225 * and only need to effectively wait for the reserved
2226 * size space from the start of ringbuffer.
2227 */
2228 wait_bytes = remain_actual + req->reserved_space;
2229 } else {
2230 /* No wrapping required, just waiting. */
2231 wait_bytes = total_bytes;
2232 }
2233
2234 if (wait_bytes > ring->space) {
2235 int ret = wait_for_space(req, wait_bytes);
2236 if (unlikely(ret))
2237 return ret;
2238 }
2239
2240 if (unlikely(need_wrap)) {
2241 GEM_BUG_ON(remain_actual > ring->space);
2242 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2243
2244 /* Fill the tail with MI_NOOP */
2245 memset(ring->vaddr + ring->tail, 0, remain_actual);
2246 ring->tail = 0;
2247 ring->space -= remain_actual;
2248 }
2249
2250 ring->space -= bytes;
2251 GEM_BUG_ON(ring->space < 0);
2252 return 0;
2253 }
2254
2255 /* Align the ring tail to a cacheline boundary */
2256 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2257 {
2258 struct intel_ring *ring = req->ring;
2259 int num_dwords =
2260 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2261 int ret;
2262
2263 if (num_dwords == 0)
2264 return 0;
2265
2266 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2267 ret = intel_ring_begin(req, num_dwords);
2268 if (ret)
2269 return ret;
2270
2271 while (num_dwords--)
2272 intel_ring_emit(ring, MI_NOOP);
2273
2274 intel_ring_advance(ring);
2275
2276 return 0;
2277 }
2278
2279 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2280 {
2281 struct drm_i915_private *dev_priv = request->i915;
2282
2283 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2284
2285 /* Every tail move must follow the sequence below */
2286
2287 /* Disable notification that the ring is IDLE. The GT
2288 * will then assume that it is busy and bring it out of rc6.
2289 */
2290 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2291 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2292
2293 /* Clear the context id. Here be magic! */
2294 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2295
2296 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2297 if (intel_wait_for_register_fw(dev_priv,
2298 GEN6_BSD_SLEEP_PSMI_CONTROL,
2299 GEN6_BSD_SLEEP_INDICATOR,
2300 0,
2301 50))
2302 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2303
2304 /* Now that the ring is fully powered up, update the tail */
2305 i9xx_submit_request(request);
2306
2307 /* Let the ring send IDLE messages to the GT again,
2308 * and so let it sleep to conserve power when idle.
2309 */
2310 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2311 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2312
2313 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2314 }
2315
2316 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2317 {
2318 struct intel_ring *ring = req->ring;
2319 uint32_t cmd;
2320 int ret;
2321
2322 ret = intel_ring_begin(req, 4);
2323 if (ret)
2324 return ret;
2325
2326 cmd = MI_FLUSH_DW;
2327 if (INTEL_GEN(req->i915) >= 8)
2328 cmd += 1;
2329
2330 /* We always require a command barrier so that subsequent
2331 * commands, such as breadcrumb interrupts, are strictly ordered
2332 * wrt the contents of the write cache being flushed to memory
2333 * (and thus being coherent from the CPU).
2334 */
2335 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2336
2337 /*
2338 * Bspec vol 1c.5 - video engine command streamer:
2339 * "If ENABLED, all TLBs will be invalidated once the flush
2340 * operation is complete. This bit is only valid when the
2341 * Post-Sync Operation field is a value of 1h or 3h."
2342 */
2343 if (mode & EMIT_INVALIDATE)
2344 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2345
2346 intel_ring_emit(ring, cmd);
2347 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2348 if (INTEL_GEN(req->i915) >= 8) {
2349 intel_ring_emit(ring, 0); /* upper addr */
2350 intel_ring_emit(ring, 0); /* value */
2351 } else {
2352 intel_ring_emit(ring, 0);
2353 intel_ring_emit(ring, MI_NOOP);
2354 }
2355 intel_ring_advance(ring);
2356 return 0;
2357 }
2358
2359 static int
2360 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2361 u64 offset, u32 len,
2362 unsigned int dispatch_flags)
2363 {
2364 struct intel_ring *ring = req->ring;
2365 bool ppgtt = USES_PPGTT(req->i915) &&
2366 !(dispatch_flags & I915_DISPATCH_SECURE);
2367 int ret;
2368
2369 ret = intel_ring_begin(req, 4);
2370 if (ret)
2371 return ret;
2372
2373 /* FIXME(BDW): Address space and security selectors. */
2374 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2375 (dispatch_flags & I915_DISPATCH_RS ?
2376 MI_BATCH_RESOURCE_STREAMER : 0));
2377 intel_ring_emit(ring, lower_32_bits(offset));
2378 intel_ring_emit(ring, upper_32_bits(offset));
2379 intel_ring_emit(ring, MI_NOOP);
2380 intel_ring_advance(ring);
2381
2382 return 0;
2383 }
2384
2385 static int
2386 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2387 u64 offset, u32 len,
2388 unsigned int dispatch_flags)
2389 {
2390 struct intel_ring *ring = req->ring;
2391 int ret;
2392
2393 ret = intel_ring_begin(req, 2);
2394 if (ret)
2395 return ret;
2396
2397 intel_ring_emit(ring,
2398 MI_BATCH_BUFFER_START |
2399 (dispatch_flags & I915_DISPATCH_SECURE ?
2400 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2401 (dispatch_flags & I915_DISPATCH_RS ?
2402 MI_BATCH_RESOURCE_STREAMER : 0));
2403 /* bit0-7 is the length on GEN6+ */
2404 intel_ring_emit(ring, offset);
2405 intel_ring_advance(ring);
2406
2407 return 0;
2408 }
2409
2410 static int
2411 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2412 u64 offset, u32 len,
2413 unsigned int dispatch_flags)
2414 {
2415 struct intel_ring *ring = req->ring;
2416 int ret;
2417
2418 ret = intel_ring_begin(req, 2);
2419 if (ret)
2420 return ret;
2421
2422 intel_ring_emit(ring,
2423 MI_BATCH_BUFFER_START |
2424 (dispatch_flags & I915_DISPATCH_SECURE ?
2425 0 : MI_BATCH_NON_SECURE_I965));
2426 /* bit0-7 is the length on GEN6+ */
2427 intel_ring_emit(ring, offset);
2428 intel_ring_advance(ring);
2429
2430 return 0;
2431 }
2432
2433 /* Blitter support (SandyBridge+) */
2434
2435 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2436 {
2437 struct intel_ring *ring = req->ring;
2438 uint32_t cmd;
2439 int ret;
2440
2441 ret = intel_ring_begin(req, 4);
2442 if (ret)
2443 return ret;
2444
2445 cmd = MI_FLUSH_DW;
2446 if (INTEL_GEN(req->i915) >= 8)
2447 cmd += 1;
2448
2449 /* We always require a command barrier so that subsequent
2450 * commands, such as breadcrumb interrupts, are strictly ordered
2451 * wrt the contents of the write cache being flushed to memory
2452 * (and thus being coherent from the CPU).
2453 */
2454 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2455
2456 /*
2457 * Bspec vol 1c.3 - blitter engine command streamer:
2458 * "If ENABLED, all TLBs will be invalidated once the flush
2459 * operation is complete. This bit is only valid when the
2460 * Post-Sync Operation field is a value of 1h or 3h."
2461 */
2462 if (mode & EMIT_INVALIDATE)
2463 cmd |= MI_INVALIDATE_TLB;
2464 intel_ring_emit(ring, cmd);
2465 intel_ring_emit(ring,
2466 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2467 if (INTEL_GEN(req->i915) >= 8) {
2468 intel_ring_emit(ring, 0); /* upper addr */
2469 intel_ring_emit(ring, 0); /* value */
2470 } else {
2471 intel_ring_emit(ring, 0);
2472 intel_ring_emit(ring, MI_NOOP);
2473 }
2474 intel_ring_advance(ring);
2475
2476 return 0;
2477 }
2478
2479 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2480 struct intel_engine_cs *engine)
2481 {
2482 struct drm_i915_gem_object *obj;
2483 int ret, i;
2484
2485 if (!i915.semaphores)
2486 return;
2487
2488 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2489 struct i915_vma *vma;
2490
2491 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2492 if (IS_ERR(obj))
2493 goto err;
2494
2495 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2496 if (IS_ERR(vma))
2497 goto err_obj;
2498
2499 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2500 if (ret)
2501 goto err_obj;
2502
2503 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2504 if (ret)
2505 goto err_obj;
2506
2507 dev_priv->semaphore = vma;
2508 }
2509
2510 if (INTEL_GEN(dev_priv) >= 8) {
2511 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2512
2513 engine->semaphore.sync_to = gen8_ring_sync_to;
2514 engine->semaphore.signal = gen8_xcs_signal;
2515
2516 for (i = 0; i < I915_NUM_ENGINES; i++) {
2517 u32 ring_offset;
2518
2519 if (i != engine->id)
2520 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2521 else
2522 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2523
2524 engine->semaphore.signal_ggtt[i] = ring_offset;
2525 }
2526 } else if (INTEL_GEN(dev_priv) >= 6) {
2527 engine->semaphore.sync_to = gen6_ring_sync_to;
2528 engine->semaphore.signal = gen6_signal;
2529
2530 /*
2531 * The current semaphore is only applied on pre-gen8
2532 * platform. And there is no VCS2 ring on the pre-gen8
2533 * platform. So the semaphore between RCS and VCS2 is
2534 * initialized as INVALID. Gen8 will initialize the
2535 * sema between VCS2 and RCS later.
2536 */
2537 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2538 static const struct {
2539 u32 wait_mbox;
2540 i915_reg_t mbox_reg;
2541 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2542 [RCS_HW] = {
2543 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2544 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2545 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2546 },
2547 [VCS_HW] = {
2548 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2549 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2550 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2551 },
2552 [BCS_HW] = {
2553 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2554 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2555 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2556 },
2557 [VECS_HW] = {
2558 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2559 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2560 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2561 },
2562 };
2563 u32 wait_mbox;
2564 i915_reg_t mbox_reg;
2565
2566 if (i == engine->hw_id) {
2567 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2568 mbox_reg = GEN6_NOSYNC;
2569 } else {
2570 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2571 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2572 }
2573
2574 engine->semaphore.mbox.wait[i] = wait_mbox;
2575 engine->semaphore.mbox.signal[i] = mbox_reg;
2576 }
2577 }
2578
2579 return;
2580
2581 err_obj:
2582 i915_gem_object_put(obj);
2583 err:
2584 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2585 i915.semaphores = 0;
2586 }
2587
2588 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2589 struct intel_engine_cs *engine)
2590 {
2591 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2592
2593 if (INTEL_GEN(dev_priv) >= 8) {
2594 engine->irq_enable = gen8_irq_enable;
2595 engine->irq_disable = gen8_irq_disable;
2596 engine->irq_seqno_barrier = gen6_seqno_barrier;
2597 } else if (INTEL_GEN(dev_priv) >= 6) {
2598 engine->irq_enable = gen6_irq_enable;
2599 engine->irq_disable = gen6_irq_disable;
2600 engine->irq_seqno_barrier = gen6_seqno_barrier;
2601 } else if (INTEL_GEN(dev_priv) >= 5) {
2602 engine->irq_enable = gen5_irq_enable;
2603 engine->irq_disable = gen5_irq_disable;
2604 engine->irq_seqno_barrier = gen5_seqno_barrier;
2605 } else if (INTEL_GEN(dev_priv) >= 3) {
2606 engine->irq_enable = i9xx_irq_enable;
2607 engine->irq_disable = i9xx_irq_disable;
2608 } else {
2609 engine->irq_enable = i8xx_irq_enable;
2610 engine->irq_disable = i8xx_irq_disable;
2611 }
2612 }
2613
2614 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2615 struct intel_engine_cs *engine)
2616 {
2617 intel_ring_init_irq(dev_priv, engine);
2618 intel_ring_init_semaphores(dev_priv, engine);
2619
2620 engine->init_hw = init_ring_common;
2621 engine->reset_hw = reset_ring_common;
2622
2623 engine->emit_request = i9xx_emit_request;
2624 if (i915.semaphores)
2625 engine->emit_request = gen6_sema_emit_request;
2626 engine->submit_request = i9xx_submit_request;
2627
2628 if (INTEL_GEN(dev_priv) >= 8)
2629 engine->emit_bb_start = gen8_emit_bb_start;
2630 else if (INTEL_GEN(dev_priv) >= 6)
2631 engine->emit_bb_start = gen6_emit_bb_start;
2632 else if (INTEL_GEN(dev_priv) >= 4)
2633 engine->emit_bb_start = i965_emit_bb_start;
2634 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2635 engine->emit_bb_start = i830_emit_bb_start;
2636 else
2637 engine->emit_bb_start = i915_emit_bb_start;
2638 }
2639
2640 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2641 {
2642 struct drm_i915_private *dev_priv = engine->i915;
2643 int ret;
2644
2645 intel_ring_default_vfuncs(dev_priv, engine);
2646
2647 if (HAS_L3_DPF(dev_priv))
2648 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2649
2650 if (INTEL_GEN(dev_priv) >= 8) {
2651 engine->init_context = intel_rcs_ctx_init;
2652 engine->emit_request = gen8_render_emit_request;
2653 engine->emit_flush = gen8_render_ring_flush;
2654 if (i915.semaphores)
2655 engine->semaphore.signal = gen8_rcs_signal;
2656 } else if (INTEL_GEN(dev_priv) >= 6) {
2657 engine->init_context = intel_rcs_ctx_init;
2658 engine->emit_flush = gen7_render_ring_flush;
2659 if (IS_GEN6(dev_priv))
2660 engine->emit_flush = gen6_render_ring_flush;
2661 } else if (IS_GEN5(dev_priv)) {
2662 engine->emit_flush = gen4_render_ring_flush;
2663 } else {
2664 if (INTEL_GEN(dev_priv) < 4)
2665 engine->emit_flush = gen2_render_ring_flush;
2666 else
2667 engine->emit_flush = gen4_render_ring_flush;
2668 engine->irq_enable_mask = I915_USER_INTERRUPT;
2669 }
2670
2671 if (IS_HASWELL(dev_priv))
2672 engine->emit_bb_start = hsw_emit_bb_start;
2673
2674 engine->init_hw = init_render_ring;
2675 engine->cleanup = render_ring_cleanup;
2676
2677 ret = intel_init_ring_buffer(engine);
2678 if (ret)
2679 return ret;
2680
2681 if (INTEL_GEN(dev_priv) >= 6) {
2682 ret = intel_engine_create_scratch(engine, 4096);
2683 if (ret)
2684 return ret;
2685 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2686 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2687 if (ret)
2688 return ret;
2689 }
2690
2691 return 0;
2692 }
2693
2694 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2695 {
2696 struct drm_i915_private *dev_priv = engine->i915;
2697
2698 intel_ring_default_vfuncs(dev_priv, engine);
2699
2700 if (INTEL_GEN(dev_priv) >= 6) {
2701 /* gen6 bsd needs a special wa for tail updates */
2702 if (IS_GEN6(dev_priv))
2703 engine->submit_request = gen6_bsd_submit_request;
2704 engine->emit_flush = gen6_bsd_ring_flush;
2705 if (INTEL_GEN(dev_priv) < 8)
2706 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2707 } else {
2708 engine->mmio_base = BSD_RING_BASE;
2709 engine->emit_flush = bsd_ring_flush;
2710 if (IS_GEN5(dev_priv))
2711 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2712 else
2713 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2714 }
2715
2716 return intel_init_ring_buffer(engine);
2717 }
2718
2719 /**
2720 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2721 */
2722 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2723 {
2724 struct drm_i915_private *dev_priv = engine->i915;
2725
2726 intel_ring_default_vfuncs(dev_priv, engine);
2727
2728 engine->emit_flush = gen6_bsd_ring_flush;
2729
2730 return intel_init_ring_buffer(engine);
2731 }
2732
2733 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2734 {
2735 struct drm_i915_private *dev_priv = engine->i915;
2736
2737 intel_ring_default_vfuncs(dev_priv, engine);
2738
2739 engine->emit_flush = gen6_ring_flush;
2740 if (INTEL_GEN(dev_priv) < 8)
2741 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2742
2743 return intel_init_ring_buffer(engine);
2744 }
2745
2746 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2747 {
2748 struct drm_i915_private *dev_priv = engine->i915;
2749
2750 intel_ring_default_vfuncs(dev_priv, engine);
2751
2752 engine->emit_flush = gen6_ring_flush;
2753
2754 if (INTEL_GEN(dev_priv) < 8) {
2755 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2756 engine->irq_enable = hsw_vebox_irq_enable;
2757 engine->irq_disable = hsw_vebox_irq_disable;
2758 }
2759
2760 return intel_init_ring_buffer(engine);
2761 }