]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
mac80211: fix throughput LED trigger
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
321 {
322 int ret;
323
324 if (!ring->fbc_dirty)
325 return 0;
326
327 ret = intel_ring_begin(ring, 6);
328 if (ret)
329 return ret;
330 /* WaFbcNukeOn3DBlt:ivb/hsw */
331 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
332 intel_ring_emit(ring, MSG_FBC_REND_STATE);
333 intel_ring_emit(ring, value);
334 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
335 intel_ring_emit(ring, MSG_FBC_REND_STATE);
336 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
337 intel_ring_advance(ring);
338
339 ring->fbc_dirty = false;
340 return 0;
341 }
342
343 static int
344 gen7_render_ring_flush(struct intel_engine_cs *ring,
345 u32 invalidate_domains, u32 flush_domains)
346 {
347 u32 flags = 0;
348 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
349 int ret;
350
351 /*
352 * Ensure that any following seqno writes only happen when the render
353 * cache is indeed flushed.
354 *
355 * Workaround: 4th PIPE_CONTROL command (except the ones with only
356 * read-cache invalidate bits set) must have the CS_STALL bit set. We
357 * don't try to be clever and just set it unconditionally.
358 */
359 flags |= PIPE_CONTROL_CS_STALL;
360
361 /* Just flush everything. Experiments have shown that reducing the
362 * number of bits based on the write domains has little performance
363 * impact.
364 */
365 if (flush_domains) {
366 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368 }
369 if (invalidate_domains) {
370 flags |= PIPE_CONTROL_TLB_INVALIDATE;
371 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
372 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
373 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
374 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
375 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
376 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
377 /*
378 * TLB invalidate requires a post-sync write.
379 */
380 flags |= PIPE_CONTROL_QW_WRITE;
381 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
382
383 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
384
385 /* Workaround: we must issue a pipe_control with CS-stall bit
386 * set before a pipe_control command that has the state cache
387 * invalidate bit set. */
388 gen7_render_ring_cs_stall_wa(ring);
389 }
390
391 ret = intel_ring_begin(ring, 4);
392 if (ret)
393 return ret;
394
395 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
396 intel_ring_emit(ring, flags);
397 intel_ring_emit(ring, scratch_addr);
398 intel_ring_emit(ring, 0);
399 intel_ring_advance(ring);
400
401 if (!invalidate_domains && flush_domains)
402 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
403
404 return 0;
405 }
406
407 static int
408 gen8_emit_pipe_control(struct intel_engine_cs *ring,
409 u32 flags, u32 scratch_addr)
410 {
411 int ret;
412
413 ret = intel_ring_begin(ring, 6);
414 if (ret)
415 return ret;
416
417 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
418 intel_ring_emit(ring, flags);
419 intel_ring_emit(ring, scratch_addr);
420 intel_ring_emit(ring, 0);
421 intel_ring_emit(ring, 0);
422 intel_ring_emit(ring, 0);
423 intel_ring_advance(ring);
424
425 return 0;
426 }
427
428 static int
429 gen8_render_ring_flush(struct intel_engine_cs *ring,
430 u32 invalidate_domains, u32 flush_domains)
431 {
432 u32 flags = 0;
433 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
434 int ret;
435
436 flags |= PIPE_CONTROL_CS_STALL;
437
438 if (flush_domains) {
439 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
440 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
441 }
442 if (invalidate_domains) {
443 flags |= PIPE_CONTROL_TLB_INVALIDATE;
444 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
445 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
446 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
447 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
448 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
449 flags |= PIPE_CONTROL_QW_WRITE;
450 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
451
452 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
453 ret = gen8_emit_pipe_control(ring,
454 PIPE_CONTROL_CS_STALL |
455 PIPE_CONTROL_STALL_AT_SCOREBOARD,
456 0);
457 if (ret)
458 return ret;
459 }
460
461 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
462 if (ret)
463 return ret;
464
465 if (!invalidate_domains && flush_domains)
466 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
467
468 return 0;
469 }
470
471 static void ring_write_tail(struct intel_engine_cs *ring,
472 u32 value)
473 {
474 struct drm_i915_private *dev_priv = ring->dev->dev_private;
475 I915_WRITE_TAIL(ring, value);
476 }
477
478 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
479 {
480 struct drm_i915_private *dev_priv = ring->dev->dev_private;
481 u64 acthd;
482
483 if (INTEL_INFO(ring->dev)->gen >= 8)
484 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
485 RING_ACTHD_UDW(ring->mmio_base));
486 else if (INTEL_INFO(ring->dev)->gen >= 4)
487 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
488 else
489 acthd = I915_READ(ACTHD);
490
491 return acthd;
492 }
493
494 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 addr;
498
499 addr = dev_priv->status_page_dmah->busaddr;
500 if (INTEL_INFO(ring->dev)->gen >= 4)
501 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
502 I915_WRITE(HWS_PGA, addr);
503 }
504
505 static bool stop_ring(struct intel_engine_cs *ring)
506 {
507 struct drm_i915_private *dev_priv = to_i915(ring->dev);
508
509 if (!IS_GEN2(ring->dev)) {
510 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
511 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
512 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
513 /* Sometimes we observe that the idle flag is not
514 * set even though the ring is empty. So double
515 * check before giving up.
516 */
517 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
518 return false;
519 }
520 }
521
522 I915_WRITE_CTL(ring, 0);
523 I915_WRITE_HEAD(ring, 0);
524 ring->write_tail(ring, 0);
525
526 if (!IS_GEN2(ring->dev)) {
527 (void)I915_READ_CTL(ring);
528 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
529 }
530
531 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
532 }
533
534 static int init_ring_common(struct intel_engine_cs *ring)
535 {
536 struct drm_device *dev = ring->dev;
537 struct drm_i915_private *dev_priv = dev->dev_private;
538 struct intel_ringbuffer *ringbuf = ring->buffer;
539 struct drm_i915_gem_object *obj = ringbuf->obj;
540 int ret = 0;
541
542 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
543
544 if (!stop_ring(ring)) {
545 /* G45 ring initialization often fails to reset head to zero */
546 DRM_DEBUG_KMS("%s head not reset to zero "
547 "ctl %08x head %08x tail %08x start %08x\n",
548 ring->name,
549 I915_READ_CTL(ring),
550 I915_READ_HEAD(ring),
551 I915_READ_TAIL(ring),
552 I915_READ_START(ring));
553
554 if (!stop_ring(ring)) {
555 DRM_ERROR("failed to set %s head to zero "
556 "ctl %08x head %08x tail %08x start %08x\n",
557 ring->name,
558 I915_READ_CTL(ring),
559 I915_READ_HEAD(ring),
560 I915_READ_TAIL(ring),
561 I915_READ_START(ring));
562 ret = -EIO;
563 goto out;
564 }
565 }
566
567 if (I915_NEED_GFX_HWS(dev))
568 intel_ring_setup_status_page(ring);
569 else
570 ring_setup_phys_status_page(ring);
571
572 /* Enforce ordering by reading HEAD register back */
573 I915_READ_HEAD(ring);
574
575 /* Initialize the ring. This must happen _after_ we've cleared the ring
576 * registers with the above sequence (the readback of the HEAD registers
577 * also enforces ordering), otherwise the hw might lose the new ring
578 * register values. */
579 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
580
581 /* WaClearRingBufHeadRegAtInit:ctg,elk */
582 if (I915_READ_HEAD(ring))
583 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
584 ring->name, I915_READ_HEAD(ring));
585 I915_WRITE_HEAD(ring, 0);
586 (void)I915_READ_HEAD(ring);
587
588 I915_WRITE_CTL(ring,
589 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
590 | RING_VALID);
591
592 /* If the head is still not zero, the ring is dead */
593 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
594 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
595 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
596 DRM_ERROR("%s initialization failed "
597 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
598 ring->name,
599 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
600 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
601 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
602 ret = -EIO;
603 goto out;
604 }
605
606 ringbuf->last_retired_head = -1;
607 ringbuf->head = I915_READ_HEAD(ring);
608 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
609 intel_ring_update_space(ringbuf);
610
611 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
612
613 out:
614 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
615
616 return ret;
617 }
618
619 void
620 intel_fini_pipe_control(struct intel_engine_cs *ring)
621 {
622 struct drm_device *dev = ring->dev;
623
624 if (ring->scratch.obj == NULL)
625 return;
626
627 if (INTEL_INFO(dev)->gen >= 5) {
628 kunmap(sg_page(ring->scratch.obj->pages->sgl));
629 i915_gem_object_ggtt_unpin(ring->scratch.obj);
630 }
631
632 drm_gem_object_unreference(&ring->scratch.obj->base);
633 ring->scratch.obj = NULL;
634 }
635
636 int
637 intel_init_pipe_control(struct intel_engine_cs *ring)
638 {
639 int ret;
640
641 WARN_ON(ring->scratch.obj);
642
643 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
644 if (ring->scratch.obj == NULL) {
645 DRM_ERROR("Failed to allocate seqno page\n");
646 ret = -ENOMEM;
647 goto err;
648 }
649
650 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
651 if (ret)
652 goto err_unref;
653
654 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
655 if (ret)
656 goto err_unref;
657
658 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
659 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
660 if (ring->scratch.cpu_page == NULL) {
661 ret = -ENOMEM;
662 goto err_unpin;
663 }
664
665 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
666 ring->name, ring->scratch.gtt_offset);
667 return 0;
668
669 err_unpin:
670 i915_gem_object_ggtt_unpin(ring->scratch.obj);
671 err_unref:
672 drm_gem_object_unreference(&ring->scratch.obj->base);
673 err:
674 return ret;
675 }
676
677 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
678 struct intel_context *ctx)
679 {
680 int ret, i;
681 struct drm_device *dev = ring->dev;
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 struct i915_workarounds *w = &dev_priv->workarounds;
684
685 if (WARN_ON_ONCE(w->count == 0))
686 return 0;
687
688 ring->gpu_caches_dirty = true;
689 ret = intel_ring_flush_all_caches(ring);
690 if (ret)
691 return ret;
692
693 ret = intel_ring_begin(ring, (w->count * 2 + 2));
694 if (ret)
695 return ret;
696
697 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
698 for (i = 0; i < w->count; i++) {
699 intel_ring_emit(ring, w->reg[i].addr);
700 intel_ring_emit(ring, w->reg[i].value);
701 }
702 intel_ring_emit(ring, MI_NOOP);
703
704 intel_ring_advance(ring);
705
706 ring->gpu_caches_dirty = true;
707 ret = intel_ring_flush_all_caches(ring);
708 if (ret)
709 return ret;
710
711 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
712
713 return 0;
714 }
715
716 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
717 struct intel_context *ctx)
718 {
719 int ret;
720
721 ret = intel_ring_workarounds_emit(ring, ctx);
722 if (ret != 0)
723 return ret;
724
725 ret = i915_gem_render_state_init(ring);
726 if (ret)
727 DRM_ERROR("init render state: %d\n", ret);
728
729 return ret;
730 }
731
732 static int wa_add(struct drm_i915_private *dev_priv,
733 const u32 addr, const u32 mask, const u32 val)
734 {
735 const u32 idx = dev_priv->workarounds.count;
736
737 if (WARN_ON(idx >= I915_MAX_WA_REGS))
738 return -ENOSPC;
739
740 dev_priv->workarounds.reg[idx].addr = addr;
741 dev_priv->workarounds.reg[idx].value = val;
742 dev_priv->workarounds.reg[idx].mask = mask;
743
744 dev_priv->workarounds.count++;
745
746 return 0;
747 }
748
749 #define WA_REG(addr, mask, val) { \
750 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
751 if (r) \
752 return r; \
753 }
754
755 #define WA_SET_BIT_MASKED(addr, mask) \
756 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
757
758 #define WA_CLR_BIT_MASKED(addr, mask) \
759 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
760
761 #define WA_SET_FIELD_MASKED(addr, mask, value) \
762 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
763
764 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
765 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
766
767 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
768
769 static int bdw_init_workarounds(struct intel_engine_cs *ring)
770 {
771 struct drm_device *dev = ring->dev;
772 struct drm_i915_private *dev_priv = dev->dev_private;
773
774 /* WaDisablePartialInstShootdown:bdw */
775 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
776 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
777 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
778 STALL_DOP_GATING_DISABLE);
779
780 /* WaDisableDopClockGating:bdw */
781 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
782 DOP_CLOCK_GATING_DISABLE);
783
784 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
785 GEN8_SAMPLER_POWER_BYPASS_DIS);
786
787 /* Use Force Non-Coherent whenever executing a 3D context. This is a
788 * workaround for for a possible hang in the unlikely event a TLB
789 * invalidation occurs during a PSD flush.
790 */
791 /* WaForceEnableNonCoherent:bdw */
792 /* WaHdcDisableFetchWhenMasked:bdw */
793 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
794 WA_SET_BIT_MASKED(HDC_CHICKEN0,
795 HDC_FORCE_NON_COHERENT |
796 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
797 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
798
799 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
800 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
801 * polygons in the same 8x4 pixel/sample area to be processed without
802 * stalling waiting for the earlier ones to write to Hierarchical Z
803 * buffer."
804 *
805 * This optimization is off by default for Broadwell; turn it on.
806 */
807 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
808
809 /* Wa4x4STCOptimizationDisable:bdw */
810 WA_SET_BIT_MASKED(CACHE_MODE_1,
811 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
812
813 /*
814 * BSpec recommends 8x4 when MSAA is used,
815 * however in practice 16x4 seems fastest.
816 *
817 * Note that PS/WM thread counts depend on the WIZ hashing
818 * disable bit, which we don't touch here, but it's good
819 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
820 */
821 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
822 GEN6_WIZ_HASHING_MASK,
823 GEN6_WIZ_HASHING_16x4);
824
825 return 0;
826 }
827
828 static int chv_init_workarounds(struct intel_engine_cs *ring)
829 {
830 struct drm_device *dev = ring->dev;
831 struct drm_i915_private *dev_priv = dev->dev_private;
832
833 /* WaDisablePartialInstShootdown:chv */
834 /* WaDisableThreadStallDopClockGating:chv */
835 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
836 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
837 STALL_DOP_GATING_DISABLE);
838
839 /* Use Force Non-Coherent whenever executing a 3D context. This is a
840 * workaround for a possible hang in the unlikely event a TLB
841 * invalidation occurs during a PSD flush.
842 */
843 /* WaForceEnableNonCoherent:chv */
844 /* WaHdcDisableFetchWhenMasked:chv */
845 WA_SET_BIT_MASKED(HDC_CHICKEN0,
846 HDC_FORCE_NON_COHERENT |
847 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
848
849 /* According to the CACHE_MODE_0 default value documentation, some
850 * CHV platforms disable this optimization by default. Turn it on.
851 */
852 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
853
854 /* Wa4x4STCOptimizationDisable:chv */
855 WA_SET_BIT_MASKED(CACHE_MODE_1,
856 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
857
858 /* Improve HiZ throughput on CHV. */
859 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
860
861 /*
862 * BSpec recommends 8x4 when MSAA is used,
863 * however in practice 16x4 seems fastest.
864 *
865 * Note that PS/WM thread counts depend on the WIZ hashing
866 * disable bit, which we don't touch here, but it's good
867 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
868 */
869 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
870 GEN6_WIZ_HASHING_MASK,
871 GEN6_WIZ_HASHING_16x4);
872
873 return 0;
874 }
875
876 int init_workarounds_ring(struct intel_engine_cs *ring)
877 {
878 struct drm_device *dev = ring->dev;
879 struct drm_i915_private *dev_priv = dev->dev_private;
880
881 WARN_ON(ring->id != RCS);
882
883 dev_priv->workarounds.count = 0;
884
885 if (IS_BROADWELL(dev))
886 return bdw_init_workarounds(ring);
887
888 if (IS_CHERRYVIEW(dev))
889 return chv_init_workarounds(ring);
890
891 return 0;
892 }
893
894 static int init_render_ring(struct intel_engine_cs *ring)
895 {
896 struct drm_device *dev = ring->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 int ret = init_ring_common(ring);
899 if (ret)
900 return ret;
901
902 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
903 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
904 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
905
906 /* We need to disable the AsyncFlip performance optimisations in order
907 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
908 * programmed to '1' on all products.
909 *
910 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
911 */
912 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
913 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
914
915 /* Required for the hardware to program scanline values for waiting */
916 /* WaEnableFlushTlbInvalidationMode:snb */
917 if (INTEL_INFO(dev)->gen == 6)
918 I915_WRITE(GFX_MODE,
919 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
920
921 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
922 if (IS_GEN7(dev))
923 I915_WRITE(GFX_MODE_GEN7,
924 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
925 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
926
927 if (IS_GEN6(dev)) {
928 /* From the Sandybridge PRM, volume 1 part 3, page 24:
929 * "If this bit is set, STCunit will have LRA as replacement
930 * policy. [...] This bit must be reset. LRA replacement
931 * policy is not supported."
932 */
933 I915_WRITE(CACHE_MODE_0,
934 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
935 }
936
937 if (INTEL_INFO(dev)->gen >= 6)
938 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
939
940 if (HAS_L3_DPF(dev))
941 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
942
943 return init_workarounds_ring(ring);
944 }
945
946 static void render_ring_cleanup(struct intel_engine_cs *ring)
947 {
948 struct drm_device *dev = ring->dev;
949 struct drm_i915_private *dev_priv = dev->dev_private;
950
951 if (dev_priv->semaphore_obj) {
952 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
953 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
954 dev_priv->semaphore_obj = NULL;
955 }
956
957 intel_fini_pipe_control(ring);
958 }
959
960 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
961 unsigned int num_dwords)
962 {
963 #define MBOX_UPDATE_DWORDS 8
964 struct drm_device *dev = signaller->dev;
965 struct drm_i915_private *dev_priv = dev->dev_private;
966 struct intel_engine_cs *waiter;
967 int i, ret, num_rings;
968
969 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
970 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
971 #undef MBOX_UPDATE_DWORDS
972
973 ret = intel_ring_begin(signaller, num_dwords);
974 if (ret)
975 return ret;
976
977 for_each_ring(waiter, dev_priv, i) {
978 u32 seqno;
979 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
980 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
981 continue;
982
983 seqno = i915_gem_request_get_seqno(
984 signaller->outstanding_lazy_request);
985 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
986 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
987 PIPE_CONTROL_QW_WRITE |
988 PIPE_CONTROL_FLUSH_ENABLE);
989 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
990 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
991 intel_ring_emit(signaller, seqno);
992 intel_ring_emit(signaller, 0);
993 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
994 MI_SEMAPHORE_TARGET(waiter->id));
995 intel_ring_emit(signaller, 0);
996 }
997
998 return 0;
999 }
1000
1001 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1002 unsigned int num_dwords)
1003 {
1004 #define MBOX_UPDATE_DWORDS 6
1005 struct drm_device *dev = signaller->dev;
1006 struct drm_i915_private *dev_priv = dev->dev_private;
1007 struct intel_engine_cs *waiter;
1008 int i, ret, num_rings;
1009
1010 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1011 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1012 #undef MBOX_UPDATE_DWORDS
1013
1014 ret = intel_ring_begin(signaller, num_dwords);
1015 if (ret)
1016 return ret;
1017
1018 for_each_ring(waiter, dev_priv, i) {
1019 u32 seqno;
1020 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1021 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1022 continue;
1023
1024 seqno = i915_gem_request_get_seqno(
1025 signaller->outstanding_lazy_request);
1026 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1027 MI_FLUSH_DW_OP_STOREDW);
1028 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1029 MI_FLUSH_DW_USE_GTT);
1030 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1031 intel_ring_emit(signaller, seqno);
1032 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1033 MI_SEMAPHORE_TARGET(waiter->id));
1034 intel_ring_emit(signaller, 0);
1035 }
1036
1037 return 0;
1038 }
1039
1040 static int gen6_signal(struct intel_engine_cs *signaller,
1041 unsigned int num_dwords)
1042 {
1043 struct drm_device *dev = signaller->dev;
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct intel_engine_cs *useless;
1046 int i, ret, num_rings;
1047
1048 #define MBOX_UPDATE_DWORDS 3
1049 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1050 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1051 #undef MBOX_UPDATE_DWORDS
1052
1053 ret = intel_ring_begin(signaller, num_dwords);
1054 if (ret)
1055 return ret;
1056
1057 for_each_ring(useless, dev_priv, i) {
1058 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1059 if (mbox_reg != GEN6_NOSYNC) {
1060 u32 seqno = i915_gem_request_get_seqno(
1061 signaller->outstanding_lazy_request);
1062 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1063 intel_ring_emit(signaller, mbox_reg);
1064 intel_ring_emit(signaller, seqno);
1065 }
1066 }
1067
1068 /* If num_dwords was rounded, make sure the tail pointer is correct */
1069 if (num_rings % 2 == 0)
1070 intel_ring_emit(signaller, MI_NOOP);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * gen6_add_request - Update the semaphore mailbox registers
1077 *
1078 * @ring - ring that is adding a request
1079 * @seqno - return seqno stuck into the ring
1080 *
1081 * Update the mailbox registers in the *other* rings with the current seqno.
1082 * This acts like a signal in the canonical semaphore.
1083 */
1084 static int
1085 gen6_add_request(struct intel_engine_cs *ring)
1086 {
1087 int ret;
1088
1089 if (ring->semaphore.signal)
1090 ret = ring->semaphore.signal(ring, 4);
1091 else
1092 ret = intel_ring_begin(ring, 4);
1093
1094 if (ret)
1095 return ret;
1096
1097 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1098 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1099 intel_ring_emit(ring,
1100 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1101 intel_ring_emit(ring, MI_USER_INTERRUPT);
1102 __intel_ring_advance(ring);
1103
1104 return 0;
1105 }
1106
1107 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1108 u32 seqno)
1109 {
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 return dev_priv->last_seqno < seqno;
1112 }
1113
1114 /**
1115 * intel_ring_sync - sync the waiter to the signaller on seqno
1116 *
1117 * @waiter - ring that is waiting
1118 * @signaller - ring which has, or will signal
1119 * @seqno - seqno which the waiter will block on
1120 */
1121
1122 static int
1123 gen8_ring_sync(struct intel_engine_cs *waiter,
1124 struct intel_engine_cs *signaller,
1125 u32 seqno)
1126 {
1127 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1128 int ret;
1129
1130 ret = intel_ring_begin(waiter, 4);
1131 if (ret)
1132 return ret;
1133
1134 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1135 MI_SEMAPHORE_GLOBAL_GTT |
1136 MI_SEMAPHORE_POLL |
1137 MI_SEMAPHORE_SAD_GTE_SDD);
1138 intel_ring_emit(waiter, seqno);
1139 intel_ring_emit(waiter,
1140 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1141 intel_ring_emit(waiter,
1142 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1143 intel_ring_advance(waiter);
1144 return 0;
1145 }
1146
1147 static int
1148 gen6_ring_sync(struct intel_engine_cs *waiter,
1149 struct intel_engine_cs *signaller,
1150 u32 seqno)
1151 {
1152 u32 dw1 = MI_SEMAPHORE_MBOX |
1153 MI_SEMAPHORE_COMPARE |
1154 MI_SEMAPHORE_REGISTER;
1155 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1156 int ret;
1157
1158 /* Throughout all of the GEM code, seqno passed implies our current
1159 * seqno is >= the last seqno executed. However for hardware the
1160 * comparison is strictly greater than.
1161 */
1162 seqno -= 1;
1163
1164 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1165
1166 ret = intel_ring_begin(waiter, 4);
1167 if (ret)
1168 return ret;
1169
1170 /* If seqno wrap happened, omit the wait with no-ops */
1171 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1172 intel_ring_emit(waiter, dw1 | wait_mbox);
1173 intel_ring_emit(waiter, seqno);
1174 intel_ring_emit(waiter, 0);
1175 intel_ring_emit(waiter, MI_NOOP);
1176 } else {
1177 intel_ring_emit(waiter, MI_NOOP);
1178 intel_ring_emit(waiter, MI_NOOP);
1179 intel_ring_emit(waiter, MI_NOOP);
1180 intel_ring_emit(waiter, MI_NOOP);
1181 }
1182 intel_ring_advance(waiter);
1183
1184 return 0;
1185 }
1186
1187 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1188 do { \
1189 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1190 PIPE_CONTROL_DEPTH_STALL); \
1191 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1192 intel_ring_emit(ring__, 0); \
1193 intel_ring_emit(ring__, 0); \
1194 } while (0)
1195
1196 static int
1197 pc_render_add_request(struct intel_engine_cs *ring)
1198 {
1199 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1200 int ret;
1201
1202 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1203 * incoherent with writes to memory, i.e. completely fubar,
1204 * so we need to use PIPE_NOTIFY instead.
1205 *
1206 * However, we also need to workaround the qword write
1207 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1208 * memory before requesting an interrupt.
1209 */
1210 ret = intel_ring_begin(ring, 32);
1211 if (ret)
1212 return ret;
1213
1214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1215 PIPE_CONTROL_WRITE_FLUSH |
1216 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1217 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1218 intel_ring_emit(ring,
1219 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1220 intel_ring_emit(ring, 0);
1221 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1222 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1223 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1224 scratch_addr += 2 * CACHELINE_BYTES;
1225 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1226 scratch_addr += 2 * CACHELINE_BYTES;
1227 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1228 scratch_addr += 2 * CACHELINE_BYTES;
1229 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1230 scratch_addr += 2 * CACHELINE_BYTES;
1231 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1232
1233 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1234 PIPE_CONTROL_WRITE_FLUSH |
1235 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1236 PIPE_CONTROL_NOTIFY);
1237 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1238 intel_ring_emit(ring,
1239 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1240 intel_ring_emit(ring, 0);
1241 __intel_ring_advance(ring);
1242
1243 return 0;
1244 }
1245
1246 static u32
1247 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1248 {
1249 /* Workaround to force correct ordering between irq and seqno writes on
1250 * ivb (and maybe also on snb) by reading from a CS register (like
1251 * ACTHD) before reading the status page. */
1252 if (!lazy_coherency) {
1253 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1254 POSTING_READ(RING_ACTHD(ring->mmio_base));
1255 }
1256
1257 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1258 }
1259
1260 static u32
1261 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1262 {
1263 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1264 }
1265
1266 static void
1267 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1268 {
1269 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1270 }
1271
1272 static u32
1273 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1274 {
1275 return ring->scratch.cpu_page[0];
1276 }
1277
1278 static void
1279 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1280 {
1281 ring->scratch.cpu_page[0] = seqno;
1282 }
1283
1284 static bool
1285 gen5_ring_get_irq(struct intel_engine_cs *ring)
1286 {
1287 struct drm_device *dev = ring->dev;
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289 unsigned long flags;
1290
1291 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1292 return false;
1293
1294 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1295 if (ring->irq_refcount++ == 0)
1296 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1297 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1298
1299 return true;
1300 }
1301
1302 static void
1303 gen5_ring_put_irq(struct intel_engine_cs *ring)
1304 {
1305 struct drm_device *dev = ring->dev;
1306 struct drm_i915_private *dev_priv = dev->dev_private;
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1310 if (--ring->irq_refcount == 0)
1311 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1312 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1313 }
1314
1315 static bool
1316 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1317 {
1318 struct drm_device *dev = ring->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 unsigned long flags;
1321
1322 if (!intel_irqs_enabled(dev_priv))
1323 return false;
1324
1325 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1326 if (ring->irq_refcount++ == 0) {
1327 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1328 I915_WRITE(IMR, dev_priv->irq_mask);
1329 POSTING_READ(IMR);
1330 }
1331 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1332
1333 return true;
1334 }
1335
1336 static void
1337 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1338 {
1339 struct drm_device *dev = ring->dev;
1340 struct drm_i915_private *dev_priv = dev->dev_private;
1341 unsigned long flags;
1342
1343 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1344 if (--ring->irq_refcount == 0) {
1345 dev_priv->irq_mask |= ring->irq_enable_mask;
1346 I915_WRITE(IMR, dev_priv->irq_mask);
1347 POSTING_READ(IMR);
1348 }
1349 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1350 }
1351
1352 static bool
1353 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1354 {
1355 struct drm_device *dev = ring->dev;
1356 struct drm_i915_private *dev_priv = dev->dev_private;
1357 unsigned long flags;
1358
1359 if (!intel_irqs_enabled(dev_priv))
1360 return false;
1361
1362 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1363 if (ring->irq_refcount++ == 0) {
1364 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1365 I915_WRITE16(IMR, dev_priv->irq_mask);
1366 POSTING_READ16(IMR);
1367 }
1368 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1369
1370 return true;
1371 }
1372
1373 static void
1374 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1375 {
1376 struct drm_device *dev = ring->dev;
1377 struct drm_i915_private *dev_priv = dev->dev_private;
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1381 if (--ring->irq_refcount == 0) {
1382 dev_priv->irq_mask |= ring->irq_enable_mask;
1383 I915_WRITE16(IMR, dev_priv->irq_mask);
1384 POSTING_READ16(IMR);
1385 }
1386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1387 }
1388
1389 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1390 {
1391 struct drm_device *dev = ring->dev;
1392 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1393 u32 mmio = 0;
1394
1395 /* The ring status page addresses are no longer next to the rest of
1396 * the ring registers as of gen7.
1397 */
1398 if (IS_GEN7(dev)) {
1399 switch (ring->id) {
1400 case RCS:
1401 mmio = RENDER_HWS_PGA_GEN7;
1402 break;
1403 case BCS:
1404 mmio = BLT_HWS_PGA_GEN7;
1405 break;
1406 /*
1407 * VCS2 actually doesn't exist on Gen7. Only shut up
1408 * gcc switch check warning
1409 */
1410 case VCS2:
1411 case VCS:
1412 mmio = BSD_HWS_PGA_GEN7;
1413 break;
1414 case VECS:
1415 mmio = VEBOX_HWS_PGA_GEN7;
1416 break;
1417 }
1418 } else if (IS_GEN6(ring->dev)) {
1419 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1420 } else {
1421 /* XXX: gen8 returns to sanity */
1422 mmio = RING_HWS_PGA(ring->mmio_base);
1423 }
1424
1425 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1426 POSTING_READ(mmio);
1427
1428 /*
1429 * Flush the TLB for this page
1430 *
1431 * FIXME: These two bits have disappeared on gen8, so a question
1432 * arises: do we still need this and if so how should we go about
1433 * invalidating the TLB?
1434 */
1435 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1436 u32 reg = RING_INSTPM(ring->mmio_base);
1437
1438 /* ring should be idle before issuing a sync flush*/
1439 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1440
1441 I915_WRITE(reg,
1442 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1443 INSTPM_SYNC_FLUSH));
1444 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1445 1000))
1446 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1447 ring->name);
1448 }
1449 }
1450
1451 static int
1452 bsd_ring_flush(struct intel_engine_cs *ring,
1453 u32 invalidate_domains,
1454 u32 flush_domains)
1455 {
1456 int ret;
1457
1458 ret = intel_ring_begin(ring, 2);
1459 if (ret)
1460 return ret;
1461
1462 intel_ring_emit(ring, MI_FLUSH);
1463 intel_ring_emit(ring, MI_NOOP);
1464 intel_ring_advance(ring);
1465 return 0;
1466 }
1467
1468 static int
1469 i9xx_add_request(struct intel_engine_cs *ring)
1470 {
1471 int ret;
1472
1473 ret = intel_ring_begin(ring, 4);
1474 if (ret)
1475 return ret;
1476
1477 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1478 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1479 intel_ring_emit(ring,
1480 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1481 intel_ring_emit(ring, MI_USER_INTERRUPT);
1482 __intel_ring_advance(ring);
1483
1484 return 0;
1485 }
1486
1487 static bool
1488 gen6_ring_get_irq(struct intel_engine_cs *ring)
1489 {
1490 struct drm_device *dev = ring->dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 unsigned long flags;
1493
1494 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1495 return false;
1496
1497 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1498 if (ring->irq_refcount++ == 0) {
1499 if (HAS_L3_DPF(dev) && ring->id == RCS)
1500 I915_WRITE_IMR(ring,
1501 ~(ring->irq_enable_mask |
1502 GT_PARITY_ERROR(dev)));
1503 else
1504 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1505 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1506 }
1507 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1508
1509 return true;
1510 }
1511
1512 static void
1513 gen6_ring_put_irq(struct intel_engine_cs *ring)
1514 {
1515 struct drm_device *dev = ring->dev;
1516 struct drm_i915_private *dev_priv = dev->dev_private;
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1520 if (--ring->irq_refcount == 0) {
1521 if (HAS_L3_DPF(dev) && ring->id == RCS)
1522 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1523 else
1524 I915_WRITE_IMR(ring, ~0);
1525 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1526 }
1527 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1528 }
1529
1530 static bool
1531 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1532 {
1533 struct drm_device *dev = ring->dev;
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 unsigned long flags;
1536
1537 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1538 return false;
1539
1540 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1541 if (ring->irq_refcount++ == 0) {
1542 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1543 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1544 }
1545 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1546
1547 return true;
1548 }
1549
1550 static void
1551 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1552 {
1553 struct drm_device *dev = ring->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1558 if (--ring->irq_refcount == 0) {
1559 I915_WRITE_IMR(ring, ~0);
1560 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1561 }
1562 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563 }
1564
1565 static bool
1566 gen8_ring_get_irq(struct intel_engine_cs *ring)
1567 {
1568 struct drm_device *dev = ring->dev;
1569 struct drm_i915_private *dev_priv = dev->dev_private;
1570 unsigned long flags;
1571
1572 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1573 return false;
1574
1575 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1576 if (ring->irq_refcount++ == 0) {
1577 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1578 I915_WRITE_IMR(ring,
1579 ~(ring->irq_enable_mask |
1580 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1581 } else {
1582 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1583 }
1584 POSTING_READ(RING_IMR(ring->mmio_base));
1585 }
1586 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1587
1588 return true;
1589 }
1590
1591 static void
1592 gen8_ring_put_irq(struct intel_engine_cs *ring)
1593 {
1594 struct drm_device *dev = ring->dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 unsigned long flags;
1597
1598 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1599 if (--ring->irq_refcount == 0) {
1600 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1601 I915_WRITE_IMR(ring,
1602 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1603 } else {
1604 I915_WRITE_IMR(ring, ~0);
1605 }
1606 POSTING_READ(RING_IMR(ring->mmio_base));
1607 }
1608 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609 }
1610
1611 static int
1612 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1613 u64 offset, u32 length,
1614 unsigned flags)
1615 {
1616 int ret;
1617
1618 ret = intel_ring_begin(ring, 2);
1619 if (ret)
1620 return ret;
1621
1622 intel_ring_emit(ring,
1623 MI_BATCH_BUFFER_START |
1624 MI_BATCH_GTT |
1625 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1626 intel_ring_emit(ring, offset);
1627 intel_ring_advance(ring);
1628
1629 return 0;
1630 }
1631
1632 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1633 #define I830_BATCH_LIMIT (256*1024)
1634 #define I830_TLB_ENTRIES (2)
1635 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1636 static int
1637 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1638 u64 offset, u32 len,
1639 unsigned flags)
1640 {
1641 u32 cs_offset = ring->scratch.gtt_offset;
1642 int ret;
1643
1644 ret = intel_ring_begin(ring, 6);
1645 if (ret)
1646 return ret;
1647
1648 /* Evict the invalid PTE TLBs */
1649 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1650 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1651 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1652 intel_ring_emit(ring, cs_offset);
1653 intel_ring_emit(ring, 0xdeadbeef);
1654 intel_ring_emit(ring, MI_NOOP);
1655 intel_ring_advance(ring);
1656
1657 if ((flags & I915_DISPATCH_PINNED) == 0) {
1658 if (len > I830_BATCH_LIMIT)
1659 return -ENOSPC;
1660
1661 ret = intel_ring_begin(ring, 6 + 2);
1662 if (ret)
1663 return ret;
1664
1665 /* Blit the batch (which has now all relocs applied) to the
1666 * stable batch scratch bo area (so that the CS never
1667 * stumbles over its tlb invalidation bug) ...
1668 */
1669 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1670 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1671 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1672 intel_ring_emit(ring, cs_offset);
1673 intel_ring_emit(ring, 4096);
1674 intel_ring_emit(ring, offset);
1675
1676 intel_ring_emit(ring, MI_FLUSH);
1677 intel_ring_emit(ring, MI_NOOP);
1678 intel_ring_advance(ring);
1679
1680 /* ... and execute it. */
1681 offset = cs_offset;
1682 }
1683
1684 ret = intel_ring_begin(ring, 4);
1685 if (ret)
1686 return ret;
1687
1688 intel_ring_emit(ring, MI_BATCH_BUFFER);
1689 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1690 intel_ring_emit(ring, offset + len - 8);
1691 intel_ring_emit(ring, MI_NOOP);
1692 intel_ring_advance(ring);
1693
1694 return 0;
1695 }
1696
1697 static int
1698 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1699 u64 offset, u32 len,
1700 unsigned flags)
1701 {
1702 int ret;
1703
1704 ret = intel_ring_begin(ring, 2);
1705 if (ret)
1706 return ret;
1707
1708 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1709 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1710 intel_ring_advance(ring);
1711
1712 return 0;
1713 }
1714
1715 static void cleanup_status_page(struct intel_engine_cs *ring)
1716 {
1717 struct drm_i915_gem_object *obj;
1718
1719 obj = ring->status_page.obj;
1720 if (obj == NULL)
1721 return;
1722
1723 kunmap(sg_page(obj->pages->sgl));
1724 i915_gem_object_ggtt_unpin(obj);
1725 drm_gem_object_unreference(&obj->base);
1726 ring->status_page.obj = NULL;
1727 }
1728
1729 static int init_status_page(struct intel_engine_cs *ring)
1730 {
1731 struct drm_i915_gem_object *obj;
1732
1733 if ((obj = ring->status_page.obj) == NULL) {
1734 unsigned flags;
1735 int ret;
1736
1737 obj = i915_gem_alloc_object(ring->dev, 4096);
1738 if (obj == NULL) {
1739 DRM_ERROR("Failed to allocate status page\n");
1740 return -ENOMEM;
1741 }
1742
1743 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1744 if (ret)
1745 goto err_unref;
1746
1747 flags = 0;
1748 if (!HAS_LLC(ring->dev))
1749 /* On g33, we cannot place HWS above 256MiB, so
1750 * restrict its pinning to the low mappable arena.
1751 * Though this restriction is not documented for
1752 * gen4, gen5, or byt, they also behave similarly
1753 * and hang if the HWS is placed at the top of the
1754 * GTT. To generalise, it appears that all !llc
1755 * platforms have issues with us placing the HWS
1756 * above the mappable region (even though we never
1757 * actualy map it).
1758 */
1759 flags |= PIN_MAPPABLE;
1760 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1761 if (ret) {
1762 err_unref:
1763 drm_gem_object_unreference(&obj->base);
1764 return ret;
1765 }
1766
1767 ring->status_page.obj = obj;
1768 }
1769
1770 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1771 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1772 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1773
1774 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1775 ring->name, ring->status_page.gfx_addr);
1776
1777 return 0;
1778 }
1779
1780 static int init_phys_status_page(struct intel_engine_cs *ring)
1781 {
1782 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1783
1784 if (!dev_priv->status_page_dmah) {
1785 dev_priv->status_page_dmah =
1786 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1787 if (!dev_priv->status_page_dmah)
1788 return -ENOMEM;
1789 }
1790
1791 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1792 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1793
1794 return 0;
1795 }
1796
1797 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1798 {
1799 iounmap(ringbuf->virtual_start);
1800 ringbuf->virtual_start = NULL;
1801 i915_gem_object_ggtt_unpin(ringbuf->obj);
1802 }
1803
1804 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1805 struct intel_ringbuffer *ringbuf)
1806 {
1807 struct drm_i915_private *dev_priv = to_i915(dev);
1808 struct drm_i915_gem_object *obj = ringbuf->obj;
1809 int ret;
1810
1811 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1812 if (ret)
1813 return ret;
1814
1815 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1816 if (ret) {
1817 i915_gem_object_ggtt_unpin(obj);
1818 return ret;
1819 }
1820
1821 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1822 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1823 if (ringbuf->virtual_start == NULL) {
1824 i915_gem_object_ggtt_unpin(obj);
1825 return -EINVAL;
1826 }
1827
1828 return 0;
1829 }
1830
1831 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1832 {
1833 drm_gem_object_unreference(&ringbuf->obj->base);
1834 ringbuf->obj = NULL;
1835 }
1836
1837 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1838 struct intel_ringbuffer *ringbuf)
1839 {
1840 struct drm_i915_gem_object *obj;
1841
1842 obj = NULL;
1843 if (!HAS_LLC(dev))
1844 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1845 if (obj == NULL)
1846 obj = i915_gem_alloc_object(dev, ringbuf->size);
1847 if (obj == NULL)
1848 return -ENOMEM;
1849
1850 /* mark ring buffers as read-only from GPU side by default */
1851 obj->gt_ro = 1;
1852
1853 ringbuf->obj = obj;
1854
1855 return 0;
1856 }
1857
1858 static int intel_init_ring_buffer(struct drm_device *dev,
1859 struct intel_engine_cs *ring)
1860 {
1861 struct intel_ringbuffer *ringbuf;
1862 int ret;
1863
1864 WARN_ON(ring->buffer);
1865
1866 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1867 if (!ringbuf)
1868 return -ENOMEM;
1869 ring->buffer = ringbuf;
1870
1871 ring->dev = dev;
1872 INIT_LIST_HEAD(&ring->active_list);
1873 INIT_LIST_HEAD(&ring->request_list);
1874 INIT_LIST_HEAD(&ring->execlist_queue);
1875 ringbuf->size = 32 * PAGE_SIZE;
1876 ringbuf->ring = ring;
1877 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1878
1879 init_waitqueue_head(&ring->irq_queue);
1880
1881 if (I915_NEED_GFX_HWS(dev)) {
1882 ret = init_status_page(ring);
1883 if (ret)
1884 goto error;
1885 } else {
1886 BUG_ON(ring->id != RCS);
1887 ret = init_phys_status_page(ring);
1888 if (ret)
1889 goto error;
1890 }
1891
1892 WARN_ON(ringbuf->obj);
1893
1894 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1895 if (ret) {
1896 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1897 ring->name, ret);
1898 goto error;
1899 }
1900
1901 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1902 if (ret) {
1903 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1904 ring->name, ret);
1905 intel_destroy_ringbuffer_obj(ringbuf);
1906 goto error;
1907 }
1908
1909 /* Workaround an erratum on the i830 which causes a hang if
1910 * the TAIL pointer points to within the last 2 cachelines
1911 * of the buffer.
1912 */
1913 ringbuf->effective_size = ringbuf->size;
1914 if (IS_I830(dev) || IS_845G(dev))
1915 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1916
1917 ret = i915_cmd_parser_init_ring(ring);
1918 if (ret)
1919 goto error;
1920
1921 return 0;
1922
1923 error:
1924 kfree(ringbuf);
1925 ring->buffer = NULL;
1926 return ret;
1927 }
1928
1929 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1930 {
1931 struct drm_i915_private *dev_priv;
1932 struct intel_ringbuffer *ringbuf;
1933
1934 if (!intel_ring_initialized(ring))
1935 return;
1936
1937 dev_priv = to_i915(ring->dev);
1938 ringbuf = ring->buffer;
1939
1940 intel_stop_ring_buffer(ring);
1941 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1942
1943 intel_unpin_ringbuffer_obj(ringbuf);
1944 intel_destroy_ringbuffer_obj(ringbuf);
1945 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1946
1947 if (ring->cleanup)
1948 ring->cleanup(ring);
1949
1950 cleanup_status_page(ring);
1951
1952 i915_cmd_parser_fini_ring(ring);
1953
1954 kfree(ringbuf);
1955 ring->buffer = NULL;
1956 }
1957
1958 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1959 {
1960 struct intel_ringbuffer *ringbuf = ring->buffer;
1961 struct drm_i915_gem_request *request;
1962 int ret;
1963
1964 if (intel_ring_space(ringbuf) >= n)
1965 return 0;
1966
1967 list_for_each_entry(request, &ring->request_list, list) {
1968 if (__intel_ring_space(request->postfix, ringbuf->tail,
1969 ringbuf->size) >= n) {
1970 break;
1971 }
1972 }
1973
1974 if (&request->list == &ring->request_list)
1975 return -ENOSPC;
1976
1977 ret = i915_wait_request(request);
1978 if (ret)
1979 return ret;
1980
1981 i915_gem_retire_requests_ring(ring);
1982
1983 return 0;
1984 }
1985
1986 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1987 {
1988 struct drm_device *dev = ring->dev;
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct intel_ringbuffer *ringbuf = ring->buffer;
1991 unsigned long end;
1992 int ret;
1993
1994 ret = intel_ring_wait_request(ring, n);
1995 if (ret != -ENOSPC)
1996 return ret;
1997
1998 /* force the tail write in case we have been skipping them */
1999 __intel_ring_advance(ring);
2000
2001 /* With GEM the hangcheck timer should kick us out of the loop,
2002 * leaving it early runs the risk of corrupting GEM state (due
2003 * to running on almost untested codepaths). But on resume
2004 * timers don't work yet, so prevent a complete hang in that
2005 * case by choosing an insanely large timeout. */
2006 end = jiffies + 60 * HZ;
2007
2008 ret = 0;
2009 trace_i915_ring_wait_begin(ring);
2010 do {
2011 if (intel_ring_space(ringbuf) >= n)
2012 break;
2013 ringbuf->head = I915_READ_HEAD(ring);
2014 if (intel_ring_space(ringbuf) >= n)
2015 break;
2016
2017 msleep(1);
2018
2019 if (dev_priv->mm.interruptible && signal_pending(current)) {
2020 ret = -ERESTARTSYS;
2021 break;
2022 }
2023
2024 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2025 dev_priv->mm.interruptible);
2026 if (ret)
2027 break;
2028
2029 if (time_after(jiffies, end)) {
2030 ret = -EBUSY;
2031 break;
2032 }
2033 } while (1);
2034 trace_i915_ring_wait_end(ring);
2035 return ret;
2036 }
2037
2038 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2039 {
2040 uint32_t __iomem *virt;
2041 struct intel_ringbuffer *ringbuf = ring->buffer;
2042 int rem = ringbuf->size - ringbuf->tail;
2043
2044 if (ringbuf->space < rem) {
2045 int ret = ring_wait_for_space(ring, rem);
2046 if (ret)
2047 return ret;
2048 }
2049
2050 virt = ringbuf->virtual_start + ringbuf->tail;
2051 rem /= 4;
2052 while (rem--)
2053 iowrite32(MI_NOOP, virt++);
2054
2055 ringbuf->tail = 0;
2056 intel_ring_update_space(ringbuf);
2057
2058 return 0;
2059 }
2060
2061 int intel_ring_idle(struct intel_engine_cs *ring)
2062 {
2063 struct drm_i915_gem_request *req;
2064 int ret;
2065
2066 /* We need to add any requests required to flush the objects and ring */
2067 if (ring->outstanding_lazy_request) {
2068 ret = i915_add_request(ring);
2069 if (ret)
2070 return ret;
2071 }
2072
2073 /* Wait upon the last request to be completed */
2074 if (list_empty(&ring->request_list))
2075 return 0;
2076
2077 req = list_entry(ring->request_list.prev,
2078 struct drm_i915_gem_request,
2079 list);
2080
2081 return i915_wait_request(req);
2082 }
2083
2084 static int
2085 intel_ring_alloc_request(struct intel_engine_cs *ring)
2086 {
2087 int ret;
2088 struct drm_i915_gem_request *request;
2089 struct drm_i915_private *dev_private = ring->dev->dev_private;
2090
2091 if (ring->outstanding_lazy_request)
2092 return 0;
2093
2094 request = kzalloc(sizeof(*request), GFP_KERNEL);
2095 if (request == NULL)
2096 return -ENOMEM;
2097
2098 kref_init(&request->ref);
2099 request->ring = ring;
2100 request->uniq = dev_private->request_uniq++;
2101
2102 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2103 if (ret) {
2104 kfree(request);
2105 return ret;
2106 }
2107
2108 ring->outstanding_lazy_request = request;
2109 return 0;
2110 }
2111
2112 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2113 int bytes)
2114 {
2115 struct intel_ringbuffer *ringbuf = ring->buffer;
2116 int ret;
2117
2118 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2119 ret = intel_wrap_ring_buffer(ring);
2120 if (unlikely(ret))
2121 return ret;
2122 }
2123
2124 if (unlikely(ringbuf->space < bytes)) {
2125 ret = ring_wait_for_space(ring, bytes);
2126 if (unlikely(ret))
2127 return ret;
2128 }
2129
2130 return 0;
2131 }
2132
2133 int intel_ring_begin(struct intel_engine_cs *ring,
2134 int num_dwords)
2135 {
2136 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2137 int ret;
2138
2139 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2140 dev_priv->mm.interruptible);
2141 if (ret)
2142 return ret;
2143
2144 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2145 if (ret)
2146 return ret;
2147
2148 /* Preallocate the olr before touching the ring */
2149 ret = intel_ring_alloc_request(ring);
2150 if (ret)
2151 return ret;
2152
2153 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2154 return 0;
2155 }
2156
2157 /* Align the ring tail to a cacheline boundary */
2158 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2159 {
2160 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2161 int ret;
2162
2163 if (num_dwords == 0)
2164 return 0;
2165
2166 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2167 ret = intel_ring_begin(ring, num_dwords);
2168 if (ret)
2169 return ret;
2170
2171 while (num_dwords--)
2172 intel_ring_emit(ring, MI_NOOP);
2173
2174 intel_ring_advance(ring);
2175
2176 return 0;
2177 }
2178
2179 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2180 {
2181 struct drm_device *dev = ring->dev;
2182 struct drm_i915_private *dev_priv = dev->dev_private;
2183
2184 BUG_ON(ring->outstanding_lazy_request);
2185
2186 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2187 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2188 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2189 if (HAS_VEBOX(dev))
2190 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2191 }
2192
2193 ring->set_seqno(ring, seqno);
2194 ring->hangcheck.seqno = seqno;
2195 }
2196
2197 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2198 u32 value)
2199 {
2200 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2201
2202 /* Every tail move must follow the sequence below */
2203
2204 /* Disable notification that the ring is IDLE. The GT
2205 * will then assume that it is busy and bring it out of rc6.
2206 */
2207 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2208 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2209
2210 /* Clear the context id. Here be magic! */
2211 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2212
2213 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2214 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2215 GEN6_BSD_SLEEP_INDICATOR) == 0,
2216 50))
2217 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2218
2219 /* Now that the ring is fully powered up, update the tail */
2220 I915_WRITE_TAIL(ring, value);
2221 POSTING_READ(RING_TAIL(ring->mmio_base));
2222
2223 /* Let the ring send IDLE messages to the GT again,
2224 * and so let it sleep to conserve power when idle.
2225 */
2226 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2227 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2228 }
2229
2230 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2231 u32 invalidate, u32 flush)
2232 {
2233 uint32_t cmd;
2234 int ret;
2235
2236 ret = intel_ring_begin(ring, 4);
2237 if (ret)
2238 return ret;
2239
2240 cmd = MI_FLUSH_DW;
2241 if (INTEL_INFO(ring->dev)->gen >= 8)
2242 cmd += 1;
2243
2244 /* We always require a command barrier so that subsequent
2245 * commands, such as breadcrumb interrupts, are strictly ordered
2246 * wrt the contents of the write cache being flushed to memory
2247 * (and thus being coherent from the CPU).
2248 */
2249 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2250
2251 /*
2252 * Bspec vol 1c.5 - video engine command streamer:
2253 * "If ENABLED, all TLBs will be invalidated once the flush
2254 * operation is complete. This bit is only valid when the
2255 * Post-Sync Operation field is a value of 1h or 3h."
2256 */
2257 if (invalidate & I915_GEM_GPU_DOMAINS)
2258 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2259
2260 intel_ring_emit(ring, cmd);
2261 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2262 if (INTEL_INFO(ring->dev)->gen >= 8) {
2263 intel_ring_emit(ring, 0); /* upper addr */
2264 intel_ring_emit(ring, 0); /* value */
2265 } else {
2266 intel_ring_emit(ring, 0);
2267 intel_ring_emit(ring, MI_NOOP);
2268 }
2269 intel_ring_advance(ring);
2270 return 0;
2271 }
2272
2273 static int
2274 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2275 u64 offset, u32 len,
2276 unsigned flags)
2277 {
2278 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2279 int ret;
2280
2281 ret = intel_ring_begin(ring, 4);
2282 if (ret)
2283 return ret;
2284
2285 /* FIXME(BDW): Address space and security selectors. */
2286 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2287 intel_ring_emit(ring, lower_32_bits(offset));
2288 intel_ring_emit(ring, upper_32_bits(offset));
2289 intel_ring_emit(ring, MI_NOOP);
2290 intel_ring_advance(ring);
2291
2292 return 0;
2293 }
2294
2295 static int
2296 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2297 u64 offset, u32 len,
2298 unsigned flags)
2299 {
2300 int ret;
2301
2302 ret = intel_ring_begin(ring, 2);
2303 if (ret)
2304 return ret;
2305
2306 intel_ring_emit(ring,
2307 MI_BATCH_BUFFER_START |
2308 (flags & I915_DISPATCH_SECURE ?
2309 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2310 /* bit0-7 is the length on GEN6+ */
2311 intel_ring_emit(ring, offset);
2312 intel_ring_advance(ring);
2313
2314 return 0;
2315 }
2316
2317 static int
2318 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2319 u64 offset, u32 len,
2320 unsigned flags)
2321 {
2322 int ret;
2323
2324 ret = intel_ring_begin(ring, 2);
2325 if (ret)
2326 return ret;
2327
2328 intel_ring_emit(ring,
2329 MI_BATCH_BUFFER_START |
2330 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2331 /* bit0-7 is the length on GEN6+ */
2332 intel_ring_emit(ring, offset);
2333 intel_ring_advance(ring);
2334
2335 return 0;
2336 }
2337
2338 /* Blitter support (SandyBridge+) */
2339
2340 static int gen6_ring_flush(struct intel_engine_cs *ring,
2341 u32 invalidate, u32 flush)
2342 {
2343 struct drm_device *dev = ring->dev;
2344 struct drm_i915_private *dev_priv = dev->dev_private;
2345 uint32_t cmd;
2346 int ret;
2347
2348 ret = intel_ring_begin(ring, 4);
2349 if (ret)
2350 return ret;
2351
2352 cmd = MI_FLUSH_DW;
2353 if (INTEL_INFO(ring->dev)->gen >= 8)
2354 cmd += 1;
2355
2356 /* We always require a command barrier so that subsequent
2357 * commands, such as breadcrumb interrupts, are strictly ordered
2358 * wrt the contents of the write cache being flushed to memory
2359 * (and thus being coherent from the CPU).
2360 */
2361 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2362
2363 /*
2364 * Bspec vol 1c.3 - blitter engine command streamer:
2365 * "If ENABLED, all TLBs will be invalidated once the flush
2366 * operation is complete. This bit is only valid when the
2367 * Post-Sync Operation field is a value of 1h or 3h."
2368 */
2369 if (invalidate & I915_GEM_DOMAIN_RENDER)
2370 cmd |= MI_INVALIDATE_TLB;
2371 intel_ring_emit(ring, cmd);
2372 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2373 if (INTEL_INFO(ring->dev)->gen >= 8) {
2374 intel_ring_emit(ring, 0); /* upper addr */
2375 intel_ring_emit(ring, 0); /* value */
2376 } else {
2377 intel_ring_emit(ring, 0);
2378 intel_ring_emit(ring, MI_NOOP);
2379 }
2380 intel_ring_advance(ring);
2381
2382 if (!invalidate && flush) {
2383 if (IS_GEN7(dev))
2384 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2385 else if (IS_BROADWELL(dev))
2386 dev_priv->fbc.need_sw_cache_clean = true;
2387 }
2388
2389 return 0;
2390 }
2391
2392 int intel_init_render_ring_buffer(struct drm_device *dev)
2393 {
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2396 struct drm_i915_gem_object *obj;
2397 int ret;
2398
2399 ring->name = "render ring";
2400 ring->id = RCS;
2401 ring->mmio_base = RENDER_RING_BASE;
2402
2403 if (INTEL_INFO(dev)->gen >= 8) {
2404 if (i915_semaphore_is_enabled(dev)) {
2405 obj = i915_gem_alloc_object(dev, 4096);
2406 if (obj == NULL) {
2407 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2408 i915.semaphores = 0;
2409 } else {
2410 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2411 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2412 if (ret != 0) {
2413 drm_gem_object_unreference(&obj->base);
2414 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2415 i915.semaphores = 0;
2416 } else
2417 dev_priv->semaphore_obj = obj;
2418 }
2419 }
2420
2421 ring->init_context = intel_rcs_ctx_init;
2422 ring->add_request = gen6_add_request;
2423 ring->flush = gen8_render_ring_flush;
2424 ring->irq_get = gen8_ring_get_irq;
2425 ring->irq_put = gen8_ring_put_irq;
2426 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2427 ring->get_seqno = gen6_ring_get_seqno;
2428 ring->set_seqno = ring_set_seqno;
2429 if (i915_semaphore_is_enabled(dev)) {
2430 WARN_ON(!dev_priv->semaphore_obj);
2431 ring->semaphore.sync_to = gen8_ring_sync;
2432 ring->semaphore.signal = gen8_rcs_signal;
2433 GEN8_RING_SEMAPHORE_INIT;
2434 }
2435 } else if (INTEL_INFO(dev)->gen >= 6) {
2436 ring->add_request = gen6_add_request;
2437 ring->flush = gen7_render_ring_flush;
2438 if (INTEL_INFO(dev)->gen == 6)
2439 ring->flush = gen6_render_ring_flush;
2440 ring->irq_get = gen6_ring_get_irq;
2441 ring->irq_put = gen6_ring_put_irq;
2442 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2443 ring->get_seqno = gen6_ring_get_seqno;
2444 ring->set_seqno = ring_set_seqno;
2445 if (i915_semaphore_is_enabled(dev)) {
2446 ring->semaphore.sync_to = gen6_ring_sync;
2447 ring->semaphore.signal = gen6_signal;
2448 /*
2449 * The current semaphore is only applied on pre-gen8
2450 * platform. And there is no VCS2 ring on the pre-gen8
2451 * platform. So the semaphore between RCS and VCS2 is
2452 * initialized as INVALID. Gen8 will initialize the
2453 * sema between VCS2 and RCS later.
2454 */
2455 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2456 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2457 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2458 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2459 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2460 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2461 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2462 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2463 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2464 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2465 }
2466 } else if (IS_GEN5(dev)) {
2467 ring->add_request = pc_render_add_request;
2468 ring->flush = gen4_render_ring_flush;
2469 ring->get_seqno = pc_render_get_seqno;
2470 ring->set_seqno = pc_render_set_seqno;
2471 ring->irq_get = gen5_ring_get_irq;
2472 ring->irq_put = gen5_ring_put_irq;
2473 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2474 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2475 } else {
2476 ring->add_request = i9xx_add_request;
2477 if (INTEL_INFO(dev)->gen < 4)
2478 ring->flush = gen2_render_ring_flush;
2479 else
2480 ring->flush = gen4_render_ring_flush;
2481 ring->get_seqno = ring_get_seqno;
2482 ring->set_seqno = ring_set_seqno;
2483 if (IS_GEN2(dev)) {
2484 ring->irq_get = i8xx_ring_get_irq;
2485 ring->irq_put = i8xx_ring_put_irq;
2486 } else {
2487 ring->irq_get = i9xx_ring_get_irq;
2488 ring->irq_put = i9xx_ring_put_irq;
2489 }
2490 ring->irq_enable_mask = I915_USER_INTERRUPT;
2491 }
2492 ring->write_tail = ring_write_tail;
2493
2494 if (IS_HASWELL(dev))
2495 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2496 else if (IS_GEN8(dev))
2497 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2498 else if (INTEL_INFO(dev)->gen >= 6)
2499 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2500 else if (INTEL_INFO(dev)->gen >= 4)
2501 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2502 else if (IS_I830(dev) || IS_845G(dev))
2503 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2504 else
2505 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2506 ring->init_hw = init_render_ring;
2507 ring->cleanup = render_ring_cleanup;
2508
2509 /* Workaround batchbuffer to combat CS tlb bug. */
2510 if (HAS_BROKEN_CS_TLB(dev)) {
2511 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2512 if (obj == NULL) {
2513 DRM_ERROR("Failed to allocate batch bo\n");
2514 return -ENOMEM;
2515 }
2516
2517 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2518 if (ret != 0) {
2519 drm_gem_object_unreference(&obj->base);
2520 DRM_ERROR("Failed to ping batch bo\n");
2521 return ret;
2522 }
2523
2524 ring->scratch.obj = obj;
2525 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2526 }
2527
2528 ret = intel_init_ring_buffer(dev, ring);
2529 if (ret)
2530 return ret;
2531
2532 if (INTEL_INFO(dev)->gen >= 5) {
2533 ret = intel_init_pipe_control(ring);
2534 if (ret)
2535 return ret;
2536 }
2537
2538 return 0;
2539 }
2540
2541 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2542 {
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2545
2546 ring->name = "bsd ring";
2547 ring->id = VCS;
2548
2549 ring->write_tail = ring_write_tail;
2550 if (INTEL_INFO(dev)->gen >= 6) {
2551 ring->mmio_base = GEN6_BSD_RING_BASE;
2552 /* gen6 bsd needs a special wa for tail updates */
2553 if (IS_GEN6(dev))
2554 ring->write_tail = gen6_bsd_ring_write_tail;
2555 ring->flush = gen6_bsd_ring_flush;
2556 ring->add_request = gen6_add_request;
2557 ring->get_seqno = gen6_ring_get_seqno;
2558 ring->set_seqno = ring_set_seqno;
2559 if (INTEL_INFO(dev)->gen >= 8) {
2560 ring->irq_enable_mask =
2561 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2562 ring->irq_get = gen8_ring_get_irq;
2563 ring->irq_put = gen8_ring_put_irq;
2564 ring->dispatch_execbuffer =
2565 gen8_ring_dispatch_execbuffer;
2566 if (i915_semaphore_is_enabled(dev)) {
2567 ring->semaphore.sync_to = gen8_ring_sync;
2568 ring->semaphore.signal = gen8_xcs_signal;
2569 GEN8_RING_SEMAPHORE_INIT;
2570 }
2571 } else {
2572 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2573 ring->irq_get = gen6_ring_get_irq;
2574 ring->irq_put = gen6_ring_put_irq;
2575 ring->dispatch_execbuffer =
2576 gen6_ring_dispatch_execbuffer;
2577 if (i915_semaphore_is_enabled(dev)) {
2578 ring->semaphore.sync_to = gen6_ring_sync;
2579 ring->semaphore.signal = gen6_signal;
2580 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2581 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2582 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2583 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2584 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2585 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2586 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2587 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2588 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2589 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2590 }
2591 }
2592 } else {
2593 ring->mmio_base = BSD_RING_BASE;
2594 ring->flush = bsd_ring_flush;
2595 ring->add_request = i9xx_add_request;
2596 ring->get_seqno = ring_get_seqno;
2597 ring->set_seqno = ring_set_seqno;
2598 if (IS_GEN5(dev)) {
2599 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2600 ring->irq_get = gen5_ring_get_irq;
2601 ring->irq_put = gen5_ring_put_irq;
2602 } else {
2603 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2604 ring->irq_get = i9xx_ring_get_irq;
2605 ring->irq_put = i9xx_ring_put_irq;
2606 }
2607 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2608 }
2609 ring->init_hw = init_ring_common;
2610
2611 return intel_init_ring_buffer(dev, ring);
2612 }
2613
2614 /**
2615 * Initialize the second BSD ring for Broadwell GT3.
2616 * It is noted that this only exists on Broadwell GT3.
2617 */
2618 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2619 {
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2622
2623 if ((INTEL_INFO(dev)->gen != 8)) {
2624 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2625 return -EINVAL;
2626 }
2627
2628 ring->name = "bsd2 ring";
2629 ring->id = VCS2;
2630
2631 ring->write_tail = ring_write_tail;
2632 ring->mmio_base = GEN8_BSD2_RING_BASE;
2633 ring->flush = gen6_bsd_ring_flush;
2634 ring->add_request = gen6_add_request;
2635 ring->get_seqno = gen6_ring_get_seqno;
2636 ring->set_seqno = ring_set_seqno;
2637 ring->irq_enable_mask =
2638 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2639 ring->irq_get = gen8_ring_get_irq;
2640 ring->irq_put = gen8_ring_put_irq;
2641 ring->dispatch_execbuffer =
2642 gen8_ring_dispatch_execbuffer;
2643 if (i915_semaphore_is_enabled(dev)) {
2644 ring->semaphore.sync_to = gen8_ring_sync;
2645 ring->semaphore.signal = gen8_xcs_signal;
2646 GEN8_RING_SEMAPHORE_INIT;
2647 }
2648 ring->init_hw = init_ring_common;
2649
2650 return intel_init_ring_buffer(dev, ring);
2651 }
2652
2653 int intel_init_blt_ring_buffer(struct drm_device *dev)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2657
2658 ring->name = "blitter ring";
2659 ring->id = BCS;
2660
2661 ring->mmio_base = BLT_RING_BASE;
2662 ring->write_tail = ring_write_tail;
2663 ring->flush = gen6_ring_flush;
2664 ring->add_request = gen6_add_request;
2665 ring->get_seqno = gen6_ring_get_seqno;
2666 ring->set_seqno = ring_set_seqno;
2667 if (INTEL_INFO(dev)->gen >= 8) {
2668 ring->irq_enable_mask =
2669 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2670 ring->irq_get = gen8_ring_get_irq;
2671 ring->irq_put = gen8_ring_put_irq;
2672 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2673 if (i915_semaphore_is_enabled(dev)) {
2674 ring->semaphore.sync_to = gen8_ring_sync;
2675 ring->semaphore.signal = gen8_xcs_signal;
2676 GEN8_RING_SEMAPHORE_INIT;
2677 }
2678 } else {
2679 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2680 ring->irq_get = gen6_ring_get_irq;
2681 ring->irq_put = gen6_ring_put_irq;
2682 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2683 if (i915_semaphore_is_enabled(dev)) {
2684 ring->semaphore.signal = gen6_signal;
2685 ring->semaphore.sync_to = gen6_ring_sync;
2686 /*
2687 * The current semaphore is only applied on pre-gen8
2688 * platform. And there is no VCS2 ring on the pre-gen8
2689 * platform. So the semaphore between BCS and VCS2 is
2690 * initialized as INVALID. Gen8 will initialize the
2691 * sema between BCS and VCS2 later.
2692 */
2693 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2694 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2695 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2696 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2697 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2698 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2699 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2700 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2701 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2702 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2703 }
2704 }
2705 ring->init_hw = init_ring_common;
2706
2707 return intel_init_ring_buffer(dev, ring);
2708 }
2709
2710 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2714
2715 ring->name = "video enhancement ring";
2716 ring->id = VECS;
2717
2718 ring->mmio_base = VEBOX_RING_BASE;
2719 ring->write_tail = ring_write_tail;
2720 ring->flush = gen6_ring_flush;
2721 ring->add_request = gen6_add_request;
2722 ring->get_seqno = gen6_ring_get_seqno;
2723 ring->set_seqno = ring_set_seqno;
2724
2725 if (INTEL_INFO(dev)->gen >= 8) {
2726 ring->irq_enable_mask =
2727 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2728 ring->irq_get = gen8_ring_get_irq;
2729 ring->irq_put = gen8_ring_put_irq;
2730 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2731 if (i915_semaphore_is_enabled(dev)) {
2732 ring->semaphore.sync_to = gen8_ring_sync;
2733 ring->semaphore.signal = gen8_xcs_signal;
2734 GEN8_RING_SEMAPHORE_INIT;
2735 }
2736 } else {
2737 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2738 ring->irq_get = hsw_vebox_get_irq;
2739 ring->irq_put = hsw_vebox_put_irq;
2740 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2741 if (i915_semaphore_is_enabled(dev)) {
2742 ring->semaphore.sync_to = gen6_ring_sync;
2743 ring->semaphore.signal = gen6_signal;
2744 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2745 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2746 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2747 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2748 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2749 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2750 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2751 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2752 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2753 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2754 }
2755 }
2756 ring->init_hw = init_ring_common;
2757
2758 return intel_init_ring_buffer(dev, ring);
2759 }
2760
2761 int
2762 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2763 {
2764 int ret;
2765
2766 if (!ring->gpu_caches_dirty)
2767 return 0;
2768
2769 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2770 if (ret)
2771 return ret;
2772
2773 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2774
2775 ring->gpu_caches_dirty = false;
2776 return 0;
2777 }
2778
2779 int
2780 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2781 {
2782 uint32_t flush_domains;
2783 int ret;
2784
2785 flush_domains = 0;
2786 if (ring->gpu_caches_dirty)
2787 flush_domains = I915_GEM_GPU_DOMAINS;
2788
2789 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2790 if (ret)
2791 return ret;
2792
2793 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2794
2795 ring->gpu_caches_dirty = false;
2796 return 0;
2797 }
2798
2799 void
2800 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2801 {
2802 int ret;
2803
2804 if (!intel_ring_initialized(ring))
2805 return;
2806
2807 ret = intel_ring_idle(ring);
2808 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2809 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2810 ring->name, ret);
2811
2812 stop_ring(ring);
2813 }