]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.h
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
8 #include "i915_selftest.h"
9
10 #define I915_CMD_HASH_ORDER 9
11
12 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
13 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
14 * to give some inclination as to some of the magic values used in the various
15 * workarounds!
16 */
17 #define CACHELINE_BYTES 64
18 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
19
20 /*
21 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
22 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
23 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
24 *
25 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
26 * cacheline, the Head Pointer must not be greater than the Tail
27 * Pointer."
28 */
29 #define I915_RING_FREE_SPACE 64
30
31 struct intel_hw_status_page {
32 struct i915_vma *vma;
33 u32 *page_addr;
34 u32 ggtt_offset;
35 };
36
37 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
38 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
39
40 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
41 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
42
43 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
44 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
45
46 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
47 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
48
49 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
50 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
51
52 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
53 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
54
55 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
56 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
57 */
58 #define gen8_semaphore_seqno_size sizeof(uint64_t)
59 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
60 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
61 #define GEN8_SIGNAL_OFFSET(__ring, to) \
62 (dev_priv->semaphore->node.start + \
63 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
64 #define GEN8_WAIT_OFFSET(__ring, from) \
65 (dev_priv->semaphore->node.start + \
66 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
67
68 enum intel_engine_hangcheck_action {
69 ENGINE_IDLE = 0,
70 ENGINE_WAIT,
71 ENGINE_ACTIVE_SEQNO,
72 ENGINE_ACTIVE_HEAD,
73 ENGINE_ACTIVE_SUBUNITS,
74 ENGINE_WAIT_KICK,
75 ENGINE_DEAD,
76 };
77
78 static inline const char *
79 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
80 {
81 switch (a) {
82 case ENGINE_IDLE:
83 return "idle";
84 case ENGINE_WAIT:
85 return "wait";
86 case ENGINE_ACTIVE_SEQNO:
87 return "active seqno";
88 case ENGINE_ACTIVE_HEAD:
89 return "active head";
90 case ENGINE_ACTIVE_SUBUNITS:
91 return "active subunits";
92 case ENGINE_WAIT_KICK:
93 return "wait kick";
94 case ENGINE_DEAD:
95 return "dead";
96 }
97
98 return "unknown";
99 }
100
101 #define I915_MAX_SLICES 3
102 #define I915_MAX_SUBSLICES 3
103
104 #define instdone_slice_mask(dev_priv__) \
105 (INTEL_GEN(dev_priv__) == 7 ? \
106 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
107
108 #define instdone_subslice_mask(dev_priv__) \
109 (INTEL_GEN(dev_priv__) == 7 ? \
110 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
111
112 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
113 for ((slice__) = 0, (subslice__) = 0; \
114 (slice__) < I915_MAX_SLICES; \
115 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
116 (slice__) += ((subslice__) == 0)) \
117 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
118 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
119
120 struct intel_instdone {
121 u32 instdone;
122 /* The following exist only in the RCS engine */
123 u32 slice_common;
124 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
125 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
126 };
127
128 struct intel_engine_hangcheck {
129 u64 acthd;
130 u32 seqno;
131 enum intel_engine_hangcheck_action action;
132 unsigned long action_timestamp;
133 int deadlock;
134 struct intel_instdone instdone;
135 bool stalled;
136 };
137
138 struct intel_ring {
139 struct i915_vma *vma;
140 void *vaddr;
141
142 struct intel_engine_cs *engine;
143
144 struct list_head request_list;
145
146 u32 head;
147 u32 tail;
148 u32 emit;
149
150 int space;
151 int size;
152 int effective_size;
153 };
154
155 struct i915_gem_context;
156 struct drm_i915_reg_table;
157
158 /*
159 * we use a single page to load ctx workarounds so all of these
160 * values are referred in terms of dwords
161 *
162 * struct i915_wa_ctx_bb:
163 * offset: specifies batch starting position, also helpful in case
164 * if we want to have multiple batches at different offsets based on
165 * some criteria. It is not a requirement at the moment but provides
166 * an option for future use.
167 * size: size of the batch in DWORDS
168 */
169 struct i915_ctx_workarounds {
170 struct i915_wa_ctx_bb {
171 u32 offset;
172 u32 size;
173 } indirect_ctx, per_ctx;
174 struct i915_vma *vma;
175 };
176
177 struct drm_i915_gem_request;
178 struct intel_render_state;
179
180 /*
181 * Engine IDs definitions.
182 * Keep instances of the same type engine together.
183 */
184 enum intel_engine_id {
185 RCS = 0,
186 BCS,
187 VCS,
188 VCS2,
189 #define _VCS(n) (VCS + (n))
190 VECS
191 };
192
193 struct intel_engine_cs {
194 struct drm_i915_private *i915;
195 const char *name;
196 enum intel_engine_id id;
197 unsigned int exec_id;
198 unsigned int hw_id;
199 unsigned int guc_id;
200 u32 mmio_base;
201 unsigned int irq_shift;
202 struct intel_ring *buffer;
203 struct intel_timeline *timeline;
204
205 struct intel_render_state *render_state;
206
207 atomic_t irq_count;
208 unsigned long irq_posted;
209 #define ENGINE_IRQ_BREADCRUMB 0
210 #define ENGINE_IRQ_EXECLIST 1
211
212 /* Rather than have every client wait upon all user interrupts,
213 * with the herd waking after every interrupt and each doing the
214 * heavyweight seqno dance, we delegate the task (of being the
215 * bottom-half of the user interrupt) to the first client. After
216 * every interrupt, we wake up one client, who does the heavyweight
217 * coherent seqno read and either goes back to sleep (if incomplete),
218 * or wakes up all the completed clients in parallel, before then
219 * transferring the bottom-half status to the next client in the queue.
220 *
221 * Compared to walking the entire list of waiters in a single dedicated
222 * bottom-half, we reduce the latency of the first waiter by avoiding
223 * a context switch, but incur additional coherent seqno reads when
224 * following the chain of request breadcrumbs. Since it is most likely
225 * that we have a single client waiting on each seqno, then reducing
226 * the overhead of waking that client is much preferred.
227 */
228 struct intel_breadcrumbs {
229 spinlock_t irq_lock; /* protects irq_*; irqsafe */
230 struct intel_wait *irq_wait; /* oldest waiter by retirement */
231
232 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
233 struct rb_root waiters; /* sorted by retirement, priority */
234 struct rb_root signals; /* sorted by retirement */
235 struct task_struct *signaler; /* used for fence signalling */
236 struct drm_i915_gem_request __rcu *first_signal;
237 struct timer_list fake_irq; /* used after a missed interrupt */
238 struct timer_list hangcheck; /* detect missed interrupts */
239
240 unsigned int hangcheck_interrupts;
241
242 bool irq_armed : 1;
243 bool irq_enabled : 1;
244 I915_SELFTEST_DECLARE(bool mock : 1);
245 } breadcrumbs;
246
247 /*
248 * A pool of objects to use as shadow copies of client batch buffers
249 * when the command parser is enabled. Prevents the client from
250 * modifying the batch contents after software parsing.
251 */
252 struct i915_gem_batch_pool batch_pool;
253
254 struct intel_hw_status_page status_page;
255 struct i915_ctx_workarounds wa_ctx;
256 struct i915_vma *scratch;
257
258 u32 irq_keep_mask; /* always keep these interrupts */
259 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
260 void (*irq_enable)(struct intel_engine_cs *engine);
261 void (*irq_disable)(struct intel_engine_cs *engine);
262
263 int (*init_hw)(struct intel_engine_cs *engine);
264 void (*reset_hw)(struct intel_engine_cs *engine,
265 struct drm_i915_gem_request *req);
266
267 void (*set_default_submission)(struct intel_engine_cs *engine);
268
269 int (*context_pin)(struct intel_engine_cs *engine,
270 struct i915_gem_context *ctx);
271 void (*context_unpin)(struct intel_engine_cs *engine,
272 struct i915_gem_context *ctx);
273 int (*request_alloc)(struct drm_i915_gem_request *req);
274 int (*init_context)(struct drm_i915_gem_request *req);
275
276 int (*emit_flush)(struct drm_i915_gem_request *request,
277 u32 mode);
278 #define EMIT_INVALIDATE BIT(0)
279 #define EMIT_FLUSH BIT(1)
280 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
281 int (*emit_bb_start)(struct drm_i915_gem_request *req,
282 u64 offset, u32 length,
283 unsigned int dispatch_flags);
284 #define I915_DISPATCH_SECURE BIT(0)
285 #define I915_DISPATCH_PINNED BIT(1)
286 #define I915_DISPATCH_RS BIT(2)
287 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
288 u32 *cs);
289 int emit_breadcrumb_sz;
290
291 /* Pass the request to the hardware queue (e.g. directly into
292 * the legacy ringbuffer or to the end of an execlist).
293 *
294 * This is called from an atomic context with irqs disabled; must
295 * be irq safe.
296 */
297 void (*submit_request)(struct drm_i915_gem_request *req);
298
299 /* Call when the priority on a request has changed and it and its
300 * dependencies may need rescheduling. Note the request itself may
301 * not be ready to run!
302 *
303 * Called under the struct_mutex.
304 */
305 void (*schedule)(struct drm_i915_gem_request *request,
306 int priority);
307
308 /* Some chipsets are not quite as coherent as advertised and need
309 * an expensive kick to force a true read of the up-to-date seqno.
310 * However, the up-to-date seqno is not always required and the last
311 * seen value is good enough. Note that the seqno will always be
312 * monotonic, even if not coherent.
313 */
314 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
315 void (*cleanup)(struct intel_engine_cs *engine);
316
317 /* GEN8 signal/wait table - never trust comments!
318 * signal to signal to signal to signal to signal to
319 * RCS VCS BCS VECS VCS2
320 * --------------------------------------------------------------------
321 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
322 * |-------------------------------------------------------------------
323 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
324 * |-------------------------------------------------------------------
325 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
326 * |-------------------------------------------------------------------
327 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
328 * |-------------------------------------------------------------------
329 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
330 * |-------------------------------------------------------------------
331 *
332 * Generalization:
333 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
334 * ie. transpose of g(x, y)
335 *
336 * sync from sync from sync from sync from sync from
337 * RCS VCS BCS VECS VCS2
338 * --------------------------------------------------------------------
339 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
340 * |-------------------------------------------------------------------
341 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
342 * |-------------------------------------------------------------------
343 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
344 * |-------------------------------------------------------------------
345 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
346 * |-------------------------------------------------------------------
347 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
348 * |-------------------------------------------------------------------
349 *
350 * Generalization:
351 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
352 * ie. transpose of f(x, y)
353 */
354 struct {
355 union {
356 #define GEN6_SEMAPHORE_LAST VECS_HW
357 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
358 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
359 struct {
360 /* our mbox written by others */
361 u32 wait[GEN6_NUM_SEMAPHORES];
362 /* mboxes this ring signals to */
363 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
364 } mbox;
365 u64 signal_ggtt[I915_NUM_ENGINES];
366 };
367
368 /* AKA wait() */
369 int (*sync_to)(struct drm_i915_gem_request *req,
370 struct drm_i915_gem_request *signal);
371 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
372 } semaphore;
373
374 /* Execlists */
375 struct tasklet_struct irq_tasklet;
376 struct execlist_port {
377 struct drm_i915_gem_request *request;
378 unsigned int count;
379 GEM_DEBUG_DECL(u32 context_id);
380 } execlist_port[2];
381 struct rb_root execlist_queue;
382 struct rb_node *execlist_first;
383 unsigned int fw_domains;
384
385 /* Contexts are pinned whilst they are active on the GPU. The last
386 * context executed remains active whilst the GPU is idle - the
387 * switch away and write to the context object only occurs on the
388 * next execution. Contexts are only unpinned on retirement of the
389 * following request ensuring that we can always write to the object
390 * on the context switch even after idling. Across suspend, we switch
391 * to the kernel context and trash it as the save may not happen
392 * before the hardware is powered down.
393 */
394 struct i915_gem_context *last_retired_context;
395
396 /* We track the current MI_SET_CONTEXT in order to eliminate
397 * redudant context switches. This presumes that requests are not
398 * reordered! Or when they are the tracking is updated along with
399 * the emission of individual requests into the legacy command
400 * stream (ring).
401 */
402 struct i915_gem_context *legacy_active_context;
403
404 /* status_notifier: list of callbacks for context-switch changes */
405 struct atomic_notifier_head context_status_notifier;
406
407 struct intel_engine_hangcheck hangcheck;
408
409 bool needs_cmd_parser;
410
411 /*
412 * Table of commands the command parser needs to know about
413 * for this engine.
414 */
415 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
416
417 /*
418 * Table of registers allowed in commands that read/write registers.
419 */
420 const struct drm_i915_reg_table *reg_tables;
421 int reg_table_count;
422
423 /*
424 * Returns the bitmask for the length field of the specified command.
425 * Return 0 for an unrecognized/invalid command.
426 *
427 * If the command parser finds an entry for a command in the engine's
428 * cmd_tables, it gets the command's length based on the table entry.
429 * If not, it calls this function to determine the per-engine length
430 * field encoding for the command (i.e. different opcode ranges use
431 * certain bits to encode the command length in the header).
432 */
433 u32 (*get_cmd_length_mask)(u32 cmd_header);
434 };
435
436 static inline unsigned int
437 intel_engine_flag(const struct intel_engine_cs *engine)
438 {
439 return BIT(engine->id);
440 }
441
442 static inline u32
443 intel_read_status_page(struct intel_engine_cs *engine, int reg)
444 {
445 /* Ensure that the compiler doesn't optimize away the load. */
446 return READ_ONCE(engine->status_page.page_addr[reg]);
447 }
448
449 static inline void
450 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
451 {
452 /* Writing into the status page should be done sparingly. Since
453 * we do when we are uncertain of the device state, we take a bit
454 * of extra paranoia to try and ensure that the HWS takes the value
455 * we give and that it doesn't end up trapped inside the CPU!
456 */
457 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
458 mb();
459 clflush(&engine->status_page.page_addr[reg]);
460 engine->status_page.page_addr[reg] = value;
461 clflush(&engine->status_page.page_addr[reg]);
462 mb();
463 } else {
464 WRITE_ONCE(engine->status_page.page_addr[reg], value);
465 }
466 }
467
468 /*
469 * Reads a dword out of the status page, which is written to from the command
470 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
471 * MI_STORE_DATA_IMM.
472 *
473 * The following dwords have a reserved meaning:
474 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
475 * 0x04: ring 0 head pointer
476 * 0x05: ring 1 head pointer (915-class)
477 * 0x06: ring 2 head pointer (915-class)
478 * 0x10-0x1b: Context status DWords (GM45)
479 * 0x1f: Last written status offset. (GM45)
480 * 0x20-0x2f: Reserved (Gen6+)
481 *
482 * The area from dword 0x30 to 0x3ff is available for driver usage.
483 */
484 #define I915_GEM_HWS_INDEX 0x30
485 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
486 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
487 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
488
489 struct intel_ring *
490 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
491 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias);
492 void intel_ring_reset(struct intel_ring *ring, u32 tail);
493 void intel_ring_update_space(struct intel_ring *ring);
494 void intel_ring_unpin(struct intel_ring *ring);
495 void intel_ring_free(struct intel_ring *ring);
496
497 void intel_engine_stop(struct intel_engine_cs *engine);
498 void intel_engine_cleanup(struct intel_engine_cs *engine);
499
500 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
501
502 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
503
504 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req, int n);
505
506 static inline void
507 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
508 {
509 /* Dummy function.
510 *
511 * This serves as a placeholder in the code so that the reader
512 * can compare against the preceding intel_ring_begin() and
513 * check that the number of dwords emitted matches the space
514 * reserved for the command packet (i.e. the value passed to
515 * intel_ring_begin()).
516 */
517 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
518 }
519
520 static inline u32
521 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
522 {
523 return pos & (ring->size - 1);
524 }
525
526 static inline u32
527 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
528 {
529 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
530 u32 offset = addr - req->ring->vaddr;
531 GEM_BUG_ON(offset > req->ring->size);
532 return intel_ring_wrap(req->ring, offset);
533 }
534
535 static inline void
536 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
537 {
538 /* We could combine these into a single tail operation, but keeping
539 * them as seperate tests will help identify the cause should one
540 * ever fire.
541 */
542 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
543 GEM_BUG_ON(tail >= ring->size);
544 }
545
546 static inline unsigned int
547 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
548 {
549 /* Whilst writes to the tail are strictly order, there is no
550 * serialisation between readers and the writers. The tail may be
551 * read by i915_gem_request_retire() just as it is being updated
552 * by execlists, as although the breadcrumb is complete, the context
553 * switch hasn't been seen.
554 */
555 assert_ring_tail_valid(ring, tail);
556 ring->tail = tail;
557 return tail;
558 }
559
560 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
561
562 void intel_engine_setup_common(struct intel_engine_cs *engine);
563 int intel_engine_init_common(struct intel_engine_cs *engine);
564 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
565 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
566
567 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
568 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
569 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
570 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
571 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
572
573 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
574 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
575
576 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
577 {
578 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
579 }
580
581 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
582 {
583 /* We are only peeking at the tail of the submit queue (and not the
584 * queue itself) in order to gain a hint as to the current active
585 * state of the engine. Callers are not expected to be taking
586 * engine->timeline->lock, nor are they expected to be concerned
587 * wtih serialising this hint with anything, so document it as
588 * a hint and nothing more.
589 */
590 return READ_ONCE(engine->timeline->seqno);
591 }
592
593 int init_workarounds_ring(struct intel_engine_cs *engine);
594 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
595
596 void intel_engine_get_instdone(struct intel_engine_cs *engine,
597 struct intel_instdone *instdone);
598
599 /*
600 * Arbitrary size for largest possible 'add request' sequence. The code paths
601 * are complex and variable. Empirical measurement shows that the worst case
602 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
603 * we need to allocate double the largest single packet within that emission
604 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
605 */
606 #define MIN_SPACE_FOR_ADD_REQUEST 336
607
608 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
609 {
610 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
611 }
612
613 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
614 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
615
616 static inline void intel_wait_init(struct intel_wait *wait,
617 struct drm_i915_gem_request *rq)
618 {
619 wait->tsk = current;
620 wait->request = rq;
621 }
622
623 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
624 {
625 wait->tsk = current;
626 wait->seqno = seqno;
627 }
628
629 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
630 {
631 return wait->seqno;
632 }
633
634 static inline bool
635 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
636 {
637 wait->seqno = seqno;
638 return intel_wait_has_seqno(wait);
639 }
640
641 static inline bool
642 intel_wait_update_request(struct intel_wait *wait,
643 const struct drm_i915_gem_request *rq)
644 {
645 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
646 }
647
648 static inline bool
649 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
650 {
651 return wait->seqno == seqno;
652 }
653
654 static inline bool
655 intel_wait_check_request(const struct intel_wait *wait,
656 const struct drm_i915_gem_request *rq)
657 {
658 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
659 }
660
661 static inline bool intel_wait_complete(const struct intel_wait *wait)
662 {
663 return RB_EMPTY_NODE(&wait->node);
664 }
665
666 bool intel_engine_add_wait(struct intel_engine_cs *engine,
667 struct intel_wait *wait);
668 void intel_engine_remove_wait(struct intel_engine_cs *engine,
669 struct intel_wait *wait);
670 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
671 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
672
673 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
674 {
675 return READ_ONCE(engine->breadcrumbs.irq_wait);
676 }
677
678 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
679 #define ENGINE_WAKEUP_WAITER BIT(0)
680 #define ENGINE_WAKEUP_ASLEEP BIT(1)
681
682 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
683 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
684
685 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
686 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
687 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
688
689 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
690 {
691 memset(batch, 0, 6 * sizeof(u32));
692
693 batch[0] = GFX_OP_PIPE_CONTROL(6);
694 batch[1] = flags;
695 batch[2] = offset;
696
697 return batch + 6;
698 }
699
700 bool intel_engine_is_idle(struct intel_engine_cs *engine);
701 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
702
703 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
704
705 #endif /* _INTEL_RINGBUFFER_H_ */