]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.h
drm/i915: Only start retire worker when idle
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6
7 #define I915_CMD_HASH_ORDER 9
8
9 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
10 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
11 * to give some inclination as to some of the magic values used in the various
12 * workarounds!
13 */
14 #define CACHELINE_BYTES 64
15 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
16
17 /*
18 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
19 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
20 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
21 *
22 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
23 * cacheline, the Head Pointer must not be greater than the Tail
24 * Pointer."
25 */
26 #define I915_RING_FREE_SPACE 64
27
28 struct intel_hw_status_page {
29 u32 *page_addr;
30 unsigned int gfx_addr;
31 struct drm_i915_gem_object *obj;
32 };
33
34 #define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
35 #define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
36
37 #define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
38 #define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
39
40 #define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base))
41 #define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
42
43 #define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
44 #define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
45
46 #define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
47 #define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
48
49 #define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
50 #define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
51
52 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
53 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
54 */
55 #define gen8_semaphore_seqno_size sizeof(uint64_t)
56 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
57 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
58 #define GEN8_SIGNAL_OFFSET(__ring, to) \
59 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 #define GEN8_WAIT_OFFSET(__ring, from) \
62 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
64
65 enum intel_ring_hangcheck_action {
66 HANGCHECK_IDLE = 0,
67 HANGCHECK_WAIT,
68 HANGCHECK_ACTIVE,
69 HANGCHECK_KICK,
70 HANGCHECK_HUNG,
71 };
72
73 #define HANGCHECK_SCORE_RING_HUNG 31
74
75 struct intel_ring_hangcheck {
76 u64 acthd;
77 u32 seqno;
78 unsigned user_interrupts;
79 int score;
80 enum intel_ring_hangcheck_action action;
81 int deadlock;
82 u32 instdone[I915_NUM_INSTDONE_REG];
83 };
84
85 struct intel_ringbuffer {
86 struct drm_i915_gem_object *obj;
87 void __iomem *virtual_start;
88 struct i915_vma *vma;
89
90 struct intel_engine_cs *engine;
91 struct list_head link;
92
93 u32 head;
94 u32 tail;
95 int space;
96 int size;
97 int effective_size;
98
99 /** We track the position of the requests in the ring buffer, and
100 * when each is retired we increment last_retired_head as the GPU
101 * must have finished processing the request and so we know we
102 * can advance the ringbuffer up to that position.
103 *
104 * last_retired_head is set to -1 after the value is consumed so
105 * we can detect new retirements.
106 */
107 u32 last_retired_head;
108 };
109
110 struct i915_gem_context;
111 struct drm_i915_reg_table;
112
113 /*
114 * we use a single page to load ctx workarounds so all of these
115 * values are referred in terms of dwords
116 *
117 * struct i915_wa_ctx_bb:
118 * offset: specifies batch starting position, also helpful in case
119 * if we want to have multiple batches at different offsets based on
120 * some criteria. It is not a requirement at the moment but provides
121 * an option for future use.
122 * size: size of the batch in DWORDS
123 */
124 struct i915_ctx_workarounds {
125 struct i915_wa_ctx_bb {
126 u32 offset;
127 u32 size;
128 } indirect_ctx, per_ctx;
129 struct drm_i915_gem_object *obj;
130 };
131
132 struct drm_i915_gem_request;
133
134 struct intel_engine_cs {
135 struct drm_i915_private *i915;
136 const char *name;
137 enum intel_engine_id {
138 RCS = 0,
139 BCS,
140 VCS,
141 VCS2, /* Keep instances of the same type engine together. */
142 VECS
143 } id;
144 #define I915_NUM_ENGINES 5
145 #define _VCS(n) (VCS + (n))
146 unsigned int exec_id;
147 unsigned int hw_id;
148 unsigned int guc_id; /* XXX same as hw_id? */
149 u32 mmio_base;
150 struct intel_ringbuffer *buffer;
151 struct list_head buffers;
152
153 /* Rather than have every client wait upon all user interrupts,
154 * with the herd waking after every interrupt and each doing the
155 * heavyweight seqno dance, we delegate the task (of being the
156 * bottom-half of the user interrupt) to the first client. After
157 * every interrupt, we wake up one client, who does the heavyweight
158 * coherent seqno read and either goes back to sleep (if incomplete),
159 * or wakes up all the completed clients in parallel, before then
160 * transferring the bottom-half status to the next client in the queue.
161 *
162 * Compared to walking the entire list of waiters in a single dedicated
163 * bottom-half, we reduce the latency of the first waiter by avoiding
164 * a context switch, but incur additional coherent seqno reads when
165 * following the chain of request breadcrumbs. Since it is most likely
166 * that we have a single client waiting on each seqno, then reducing
167 * the overhead of waking that client is much preferred.
168 */
169 struct intel_breadcrumbs {
170 spinlock_t lock; /* protects the lists of requests */
171 struct rb_root waiters; /* sorted by retirement, priority */
172 struct rb_root signals; /* sorted by retirement */
173 struct intel_wait *first_wait; /* oldest waiter by retirement */
174 struct task_struct *tasklet; /* bh for user interrupts */
175 struct task_struct *signaler; /* used for fence signalling */
176 struct drm_i915_gem_request *first_signal;
177 struct timer_list fake_irq; /* used after a missed interrupt */
178 bool irq_enabled;
179 bool rpm_wakelock;
180 } breadcrumbs;
181
182 /*
183 * A pool of objects to use as shadow copies of client batch buffers
184 * when the command parser is enabled. Prevents the client from
185 * modifying the batch contents after software parsing.
186 */
187 struct i915_gem_batch_pool batch_pool;
188
189 struct intel_hw_status_page status_page;
190 struct i915_ctx_workarounds wa_ctx;
191
192 bool irq_posted;
193 u32 irq_keep_mask; /* always keep these interrupts */
194 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
195 void (*irq_enable)(struct intel_engine_cs *ring);
196 void (*irq_disable)(struct intel_engine_cs *ring);
197
198 int (*init_hw)(struct intel_engine_cs *ring);
199
200 int (*init_context)(struct drm_i915_gem_request *req);
201
202 void (*write_tail)(struct intel_engine_cs *ring,
203 u32 value);
204 int __must_check (*flush)(struct drm_i915_gem_request *req,
205 u32 invalidate_domains,
206 u32 flush_domains);
207 int (*add_request)(struct drm_i915_gem_request *req);
208 /* Some chipsets are not quite as coherent as advertised and need
209 * an expensive kick to force a true read of the up-to-date seqno.
210 * However, the up-to-date seqno is not always required and the last
211 * seen value is good enough. Note that the seqno will always be
212 * monotonic, even if not coherent.
213 */
214 void (*irq_seqno_barrier)(struct intel_engine_cs *ring);
215 int (*dispatch_execbuffer)(struct drm_i915_gem_request *req,
216 u64 offset, u32 length,
217 unsigned dispatch_flags);
218 #define I915_DISPATCH_SECURE 0x1
219 #define I915_DISPATCH_PINNED 0x2
220 #define I915_DISPATCH_RS 0x4
221 void (*cleanup)(struct intel_engine_cs *ring);
222
223 /* GEN8 signal/wait table - never trust comments!
224 * signal to signal to signal to signal to signal to
225 * RCS VCS BCS VECS VCS2
226 * --------------------------------------------------------------------
227 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
228 * |-------------------------------------------------------------------
229 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
230 * |-------------------------------------------------------------------
231 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
232 * |-------------------------------------------------------------------
233 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
234 * |-------------------------------------------------------------------
235 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
236 * |-------------------------------------------------------------------
237 *
238 * Generalization:
239 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
240 * ie. transpose of g(x, y)
241 *
242 * sync from sync from sync from sync from sync from
243 * RCS VCS BCS VECS VCS2
244 * --------------------------------------------------------------------
245 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
246 * |-------------------------------------------------------------------
247 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
248 * |-------------------------------------------------------------------
249 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
250 * |-------------------------------------------------------------------
251 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
252 * |-------------------------------------------------------------------
253 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
254 * |-------------------------------------------------------------------
255 *
256 * Generalization:
257 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
258 * ie. transpose of f(x, y)
259 */
260 struct {
261 u32 sync_seqno[I915_NUM_ENGINES-1];
262
263 union {
264 struct {
265 /* our mbox written by others */
266 u32 wait[I915_NUM_ENGINES];
267 /* mboxes this ring signals to */
268 i915_reg_t signal[I915_NUM_ENGINES];
269 } mbox;
270 u64 signal_ggtt[I915_NUM_ENGINES];
271 };
272
273 /* AKA wait() */
274 int (*sync_to)(struct drm_i915_gem_request *to_req,
275 struct intel_engine_cs *from,
276 u32 seqno);
277 int (*signal)(struct drm_i915_gem_request *signaller_req,
278 /* num_dwords needed by caller */
279 unsigned int num_dwords);
280 } semaphore;
281
282 /* Execlists */
283 struct tasklet_struct irq_tasklet;
284 spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
285 struct list_head execlist_queue;
286 unsigned int fw_domains;
287 unsigned int next_context_status_buffer;
288 unsigned int idle_lite_restore_wa;
289 bool disable_lite_restore_wa;
290 u32 ctx_desc_template;
291 int (*emit_request)(struct drm_i915_gem_request *request);
292 int (*emit_flush)(struct drm_i915_gem_request *request,
293 u32 invalidate_domains,
294 u32 flush_domains);
295 int (*emit_bb_start)(struct drm_i915_gem_request *req,
296 u64 offset, unsigned dispatch_flags);
297
298 /**
299 * List of objects currently involved in rendering from the
300 * ringbuffer.
301 *
302 * Includes buffers having the contents of their GPU caches
303 * flushed, not necessarily primitives. last_read_req
304 * represents when the rendering involved will be completed.
305 *
306 * A reference is held on the buffer while on this list.
307 */
308 struct list_head active_list;
309
310 /**
311 * List of breadcrumbs associated with GPU requests currently
312 * outstanding.
313 */
314 struct list_head request_list;
315
316 /**
317 * Seqno of request most recently submitted to request_list.
318 * Used exclusively by hang checker to avoid grabbing lock while
319 * inspecting request list.
320 */
321 u32 last_submitted_seqno;
322 unsigned user_interrupts;
323
324 bool gpu_caches_dirty;
325
326 struct i915_gem_context *last_context;
327
328 struct intel_ring_hangcheck hangcheck;
329
330 struct {
331 struct drm_i915_gem_object *obj;
332 u32 gtt_offset;
333 } scratch;
334
335 bool needs_cmd_parser;
336
337 /*
338 * Table of commands the command parser needs to know about
339 * for this ring.
340 */
341 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
342
343 /*
344 * Table of registers allowed in commands that read/write registers.
345 */
346 const struct drm_i915_reg_table *reg_tables;
347 int reg_table_count;
348
349 /*
350 * Returns the bitmask for the length field of the specified command.
351 * Return 0 for an unrecognized/invalid command.
352 *
353 * If the command parser finds an entry for a command in the ring's
354 * cmd_tables, it gets the command's length based on the table entry.
355 * If not, it calls this function to determine the per-ring length field
356 * encoding for the command (i.e. certain opcode ranges use certain bits
357 * to encode the command length in the header).
358 */
359 u32 (*get_cmd_length_mask)(u32 cmd_header);
360 };
361
362 static inline bool
363 intel_engine_initialized(const struct intel_engine_cs *engine)
364 {
365 return engine->i915 != NULL;
366 }
367
368 static inline unsigned
369 intel_engine_flag(const struct intel_engine_cs *engine)
370 {
371 return 1 << engine->id;
372 }
373
374 static inline u32
375 intel_ring_sync_index(struct intel_engine_cs *engine,
376 struct intel_engine_cs *other)
377 {
378 int idx;
379
380 /*
381 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
382 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
383 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
384 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
385 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
386 */
387
388 idx = (other - engine) - 1;
389 if (idx < 0)
390 idx += I915_NUM_ENGINES;
391
392 return idx;
393 }
394
395 static inline void
396 intel_flush_status_page(struct intel_engine_cs *engine, int reg)
397 {
398 mb();
399 clflush(&engine->status_page.page_addr[reg]);
400 mb();
401 }
402
403 static inline u32
404 intel_read_status_page(struct intel_engine_cs *engine, int reg)
405 {
406 /* Ensure that the compiler doesn't optimize away the load. */
407 return READ_ONCE(engine->status_page.page_addr[reg]);
408 }
409
410 static inline void
411 intel_write_status_page(struct intel_engine_cs *engine,
412 int reg, u32 value)
413 {
414 engine->status_page.page_addr[reg] = value;
415 }
416
417 /*
418 * Reads a dword out of the status page, which is written to from the command
419 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
420 * MI_STORE_DATA_IMM.
421 *
422 * The following dwords have a reserved meaning:
423 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
424 * 0x04: ring 0 head pointer
425 * 0x05: ring 1 head pointer (915-class)
426 * 0x06: ring 2 head pointer (915-class)
427 * 0x10-0x1b: Context status DWords (GM45)
428 * 0x1f: Last written status offset. (GM45)
429 * 0x20-0x2f: Reserved (Gen6+)
430 *
431 * The area from dword 0x30 to 0x3ff is available for driver usage.
432 */
433 #define I915_GEM_HWS_INDEX 0x30
434 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
435 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
436 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
437
438 struct intel_ringbuffer *
439 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
440 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
441 struct intel_ringbuffer *ringbuf);
442 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
443 void intel_ringbuffer_free(struct intel_ringbuffer *ring);
444
445 void intel_stop_engine(struct intel_engine_cs *engine);
446 void intel_cleanup_engine(struct intel_engine_cs *engine);
447
448 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
449
450 int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
451 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
452 static inline void intel_ring_emit(struct intel_engine_cs *engine,
453 u32 data)
454 {
455 struct intel_ringbuffer *ringbuf = engine->buffer;
456 iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
457 ringbuf->tail += 4;
458 }
459 static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
460 i915_reg_t reg)
461 {
462 intel_ring_emit(engine, i915_mmio_reg_offset(reg));
463 }
464 static inline void intel_ring_advance(struct intel_engine_cs *engine)
465 {
466 struct intel_ringbuffer *ringbuf = engine->buffer;
467 ringbuf->tail &= ringbuf->size - 1;
468 }
469 int __intel_ring_space(int head, int tail, int size);
470 void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
471 bool intel_engine_stopped(struct intel_engine_cs *engine);
472
473 int __must_check intel_engine_idle(struct intel_engine_cs *engine);
474 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
475 int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
476 int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
477
478 int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
479 void intel_fini_pipe_control(struct intel_engine_cs *engine);
480
481 int intel_init_render_ring_buffer(struct drm_device *dev);
482 int intel_init_bsd_ring_buffer(struct drm_device *dev);
483 int intel_init_bsd2_ring_buffer(struct drm_device *dev);
484 int intel_init_blt_ring_buffer(struct drm_device *dev);
485 int intel_init_vebox_ring_buffer(struct drm_device *dev);
486
487 u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
488 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
489 {
490 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
491 }
492
493 int init_workarounds_ring(struct intel_engine_cs *engine);
494
495 static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
496 {
497 return ringbuf->tail;
498 }
499
500 /*
501 * Arbitrary size for largest possible 'add request' sequence. The code paths
502 * are complex and variable. Empirical measurement shows that the worst case
503 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
504 * we need to allocate double the largest single packet within that emission
505 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
506 */
507 #define MIN_SPACE_FOR_ADD_REQUEST 336
508
509 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
510 {
511 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
512 }
513
514 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
515 struct intel_wait {
516 struct rb_node node;
517 struct task_struct *tsk;
518 u32 seqno;
519 };
520
521 struct intel_signal_node {
522 struct rb_node node;
523 struct intel_wait wait;
524 };
525
526 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
527
528 static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
529 {
530 wait->tsk = current;
531 wait->seqno = seqno;
532 }
533
534 static inline bool intel_wait_complete(const struct intel_wait *wait)
535 {
536 return RB_EMPTY_NODE(&wait->node);
537 }
538
539 bool intel_engine_add_wait(struct intel_engine_cs *engine,
540 struct intel_wait *wait);
541 void intel_engine_remove_wait(struct intel_engine_cs *engine,
542 struct intel_wait *wait);
543 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
544
545 static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
546 {
547 return READ_ONCE(engine->breadcrumbs.tasklet);
548 }
549
550 static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
551 {
552 bool wakeup = false;
553 struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.tasklet);
554 /* Note that for this not to dangerously chase a dangling pointer,
555 * the caller is responsible for ensure that the task remain valid for
556 * wake_up_process() i.e. that the RCU grace period cannot expire.
557 *
558 * Also note that tsk is likely to be in !TASK_RUNNING state so an
559 * early test for tsk->state != TASK_RUNNING before wake_up_process()
560 * is unlikely to be beneficial.
561 */
562 if (tsk)
563 wakeup = wake_up_process(tsk);
564 return wakeup;
565 }
566
567 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
568 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
569 unsigned int intel_kick_waiters(struct drm_i915_private *i915);
570 unsigned int intel_kick_signalers(struct drm_i915_private *i915);
571
572 #endif /* _INTEL_RINGBUFFER_H_ */