]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_runtime_pm.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_PORT_DDI_A_LANES:
93 return "PORT_DDI_A_LANES";
94 case POWER_DOMAIN_PORT_DDI_B_LANES:
95 return "PORT_DDI_B_LANES";
96 case POWER_DOMAIN_PORT_DDI_C_LANES:
97 return "PORT_DDI_C_LANES";
98 case POWER_DOMAIN_PORT_DDI_D_LANES:
99 return "PORT_DDI_D_LANES";
100 case POWER_DOMAIN_PORT_DDI_E_LANES:
101 return "PORT_DDI_E_LANES";
102 case POWER_DOMAIN_PORT_DSI:
103 return "PORT_DSI";
104 case POWER_DOMAIN_PORT_CRT:
105 return "PORT_CRT";
106 case POWER_DOMAIN_PORT_OTHER:
107 return "PORT_OTHER";
108 case POWER_DOMAIN_VGA:
109 return "VGA";
110 case POWER_DOMAIN_AUDIO:
111 return "AUDIO";
112 case POWER_DOMAIN_PLLS:
113 return "PLLS";
114 case POWER_DOMAIN_AUX_A:
115 return "AUX_A";
116 case POWER_DOMAIN_AUX_B:
117 return "AUX_B";
118 case POWER_DOMAIN_AUX_C:
119 return "AUX_C";
120 case POWER_DOMAIN_AUX_D:
121 return "AUX_D";
122 case POWER_DOMAIN_GMBUS:
123 return "GMBUS";
124 case POWER_DOMAIN_INIT:
125 return "INIT";
126 case POWER_DOMAIN_MODESET:
127 return "MODESET";
128 default:
129 MISSING_CASE(domain);
130 return "?";
131 }
132 }
133
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 struct i915_power_well *power_well)
136 {
137 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 power_well->ops->enable(dev_priv, power_well);
139 power_well->hw_enabled = true;
140 }
141
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 struct i915_power_well *power_well)
144 {
145 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 power_well->hw_enabled = false;
147 power_well->ops->disable(dev_priv, power_well);
148 }
149
150 /*
151 * We should only use the power well if we explicitly asked the hardware to
152 * enable it, so check if it's enabled and also check if we've requested it to
153 * be enabled.
154 */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 struct i915_power_well *power_well)
157 {
158 return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161
162 /**
163 * __intel_display_power_is_enabled - unlocked check for a power domain
164 * @dev_priv: i915 device instance
165 * @domain: power domain to check
166 *
167 * This is the unlocked version of intel_display_power_is_enabled() and should
168 * only be used from error capture and recovery code where deadlocks are
169 * possible.
170 *
171 * Returns:
172 * True when the power domain is enabled, false otherwise.
173 */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 enum intel_display_power_domain domain)
176 {
177 struct i915_power_domains *power_domains;
178 struct i915_power_well *power_well;
179 bool is_enabled;
180 int i;
181
182 if (dev_priv->pm.suspended)
183 return false;
184
185 power_domains = &dev_priv->power_domains;
186
187 is_enabled = true;
188
189 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 if (power_well->always_on)
191 continue;
192
193 if (!power_well->hw_enabled) {
194 is_enabled = false;
195 break;
196 }
197 }
198
199 return is_enabled;
200 }
201
202 /**
203 * intel_display_power_is_enabled - check for a power domain
204 * @dev_priv: i915 device instance
205 * @domain: power domain to check
206 *
207 * This function can be used to check the hw power domain state. It is mostly
208 * used in hardware state readout functions. Everywhere else code should rely
209 * upon explicit power domain reference counting to ensure that the hardware
210 * block is powered up before accessing it.
211 *
212 * Callers must hold the relevant modesetting locks to ensure that concurrent
213 * threads can't disable the power well while the caller tries to read a few
214 * registers.
215 *
216 * Returns:
217 * True when the power domain is enabled, false otherwise.
218 */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 enum intel_display_power_domain domain)
221 {
222 struct i915_power_domains *power_domains;
223 bool ret;
224
225 power_domains = &dev_priv->power_domains;
226
227 mutex_lock(&power_domains->lock);
228 ret = __intel_display_power_is_enabled(dev_priv, domain);
229 mutex_unlock(&power_domains->lock);
230
231 return ret;
232 }
233
234 /**
235 * intel_display_set_init_power - set the initial power domain state
236 * @dev_priv: i915 device instance
237 * @enable: whether to enable or disable the initial power domain state
238 *
239 * For simplicity our driver load/unload and system suspend/resume code assumes
240 * that all power domains are always enabled. This functions controls the state
241 * of this little hack. While the initial power domain state is enabled runtime
242 * pm is effectively disabled.
243 */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 bool enable)
246 {
247 if (dev_priv->power_domains.init_power_on == enable)
248 return;
249
250 if (enable)
251 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 else
253 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254
255 dev_priv->power_domains.init_power_on = enable;
256 }
257
258 /*
259 * Starting with Haswell, we have a "Power Down Well" that can be turned off
260 * when not needed anymore. We have 4 registers that can request the power well
261 * to be enabled, and it will only be disabled if none of the registers is
262 * requesting it to be enabled.
263 */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 struct drm_device *dev = dev_priv->dev;
267
268 /*
269 * After we re-enable the power well, if we touch VGA register 0x3d5
270 * we'll get unclaimed register interrupts. This stops after we write
271 * anything to the VGA MSR register. The vgacon module uses this
272 * register all the time, so if we unbind our driver and, as a
273 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 * console_unlock(). So make here we touch the VGA MSR register, making
275 * sure vgacon can keep working normally without triggering interrupts
276 * and error messages.
277 */
278 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281
282 if (IS_BROADWELL(dev))
283 gen8_irq_power_well_post_enable(dev_priv,
284 1 << PIPE_C | 1 << PIPE_B);
285 }
286
287 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
288 struct i915_power_well *power_well)
289 {
290 struct drm_device *dev = dev_priv->dev;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 if (power_well->data == SKL_DISP_PW_2) {
303 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
304 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
306
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309 }
310 }
311
312 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
313 struct i915_power_well *power_well, bool enable)
314 {
315 bool is_enabled, enable_requested;
316 uint32_t tmp;
317
318 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
319 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
320 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
321
322 if (enable) {
323 if (!enable_requested)
324 I915_WRITE(HSW_PWR_WELL_DRIVER,
325 HSW_PWR_WELL_ENABLE_REQUEST);
326
327 if (!is_enabled) {
328 DRM_DEBUG_KMS("Enabling power well\n");
329 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
330 HSW_PWR_WELL_STATE_ENABLED), 20))
331 DRM_ERROR("Timeout enabling power well\n");
332 hsw_power_well_post_enable(dev_priv);
333 }
334
335 } else {
336 if (enable_requested) {
337 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
338 POSTING_READ(HSW_PWR_WELL_DRIVER);
339 DRM_DEBUG_KMS("Requesting to disable the power well\n");
340 }
341 }
342 }
343
344 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
345 BIT(POWER_DOMAIN_TRANSCODER_A) | \
346 BIT(POWER_DOMAIN_PIPE_B) | \
347 BIT(POWER_DOMAIN_TRANSCODER_B) | \
348 BIT(POWER_DOMAIN_PIPE_C) | \
349 BIT(POWER_DOMAIN_TRANSCODER_C) | \
350 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
351 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
352 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
353 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
354 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
355 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
356 BIT(POWER_DOMAIN_AUX_B) | \
357 BIT(POWER_DOMAIN_AUX_C) | \
358 BIT(POWER_DOMAIN_AUX_D) | \
359 BIT(POWER_DOMAIN_AUDIO) | \
360 BIT(POWER_DOMAIN_VGA) | \
361 BIT(POWER_DOMAIN_INIT))
362 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
363 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
364 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
365 BIT(POWER_DOMAIN_INIT))
366 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
367 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
368 BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
370 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
371 BIT(POWER_DOMAIN_INIT))
372 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
373 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
374 BIT(POWER_DOMAIN_INIT))
375 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
376 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
377 BIT(POWER_DOMAIN_MODESET) | \
378 BIT(POWER_DOMAIN_AUX_A) | \
379 BIT(POWER_DOMAIN_INIT))
380 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
381 (POWER_DOMAIN_MASK & ~( \
382 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
383 SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
384 BIT(POWER_DOMAIN_INIT))
385
386 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_TRANSCODER_A) | \
388 BIT(POWER_DOMAIN_PIPE_B) | \
389 BIT(POWER_DOMAIN_TRANSCODER_B) | \
390 BIT(POWER_DOMAIN_PIPE_C) | \
391 BIT(POWER_DOMAIN_TRANSCODER_C) | \
392 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
393 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
395 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
396 BIT(POWER_DOMAIN_AUX_B) | \
397 BIT(POWER_DOMAIN_AUX_C) | \
398 BIT(POWER_DOMAIN_AUDIO) | \
399 BIT(POWER_DOMAIN_VGA) | \
400 BIT(POWER_DOMAIN_GMBUS) | \
401 BIT(POWER_DOMAIN_INIT))
402 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
403 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
404 BIT(POWER_DOMAIN_PIPE_A) | \
405 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
406 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
407 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
408 BIT(POWER_DOMAIN_AUX_A) | \
409 BIT(POWER_DOMAIN_PLLS) | \
410 BIT(POWER_DOMAIN_INIT))
411 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
412 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
413 BIT(POWER_DOMAIN_MODESET) | \
414 BIT(POWER_DOMAIN_AUX_A) | \
415 BIT(POWER_DOMAIN_INIT))
416 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
417 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
418 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
419 BIT(POWER_DOMAIN_INIT))
420
421 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
422 {
423 struct drm_device *dev = dev_priv->dev;
424
425 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
426 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
427 "DC9 already programmed to be enabled.\n");
428 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
429 "DC5 still not disabled to enable DC9.\n");
430 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
431 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
432
433 /*
434 * TODO: check for the following to verify the conditions to enter DC9
435 * state are satisfied:
436 * 1] Check relevant display engine registers to verify if mode set
437 * disable sequence was followed.
438 * 2] Check if display uninitialize sequence is initialized.
439 */
440 }
441
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
445 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
446 "DC9 already programmed to be disabled.\n");
447 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
448 "DC5 still not disabled.\n");
449
450 /*
451 * TODO: check for the following to verify DC9 state was indeed
452 * entered before programming to disable it:
453 * 1] Check relevant display engine registers to verify if mode
454 * set disable sequence was followed.
455 * 2] Check if display uninitialize sequence is initialized.
456 */
457 }
458
459 static void gen9_set_dc_state_debugmask_memory_up(
460 struct drm_i915_private *dev_priv)
461 {
462 uint32_t val;
463
464 /* The below bit doesn't need to be cleared ever afterwards */
465 val = I915_READ(DC_STATE_DEBUG);
466 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
467 val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
468 I915_WRITE(DC_STATE_DEBUG, val);
469 POSTING_READ(DC_STATE_DEBUG);
470 }
471 }
472
473 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
474 u32 state)
475 {
476 int rewrites = 0;
477 int rereads = 0;
478 u32 v;
479
480 I915_WRITE(DC_STATE_EN, state);
481
482 /* It has been observed that disabling the dc6 state sometimes
483 * doesn't stick and dmc keeps returning old value. Make sure
484 * the write really sticks enough times and also force rewrite until
485 * we are confident that state is exactly what we want.
486 */
487 do {
488 v = I915_READ(DC_STATE_EN);
489
490 if (v != state) {
491 I915_WRITE(DC_STATE_EN, state);
492 rewrites++;
493 rereads = 0;
494 } else if (rereads++ > 5) {
495 break;
496 }
497
498 } while (rewrites < 100);
499
500 if (v != state)
501 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
502 state, v);
503
504 /* Most of the times we need one retry, avoid spam */
505 if (rewrites > 1)
506 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
507 state, rewrites);
508 }
509
510 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
511 {
512 uint32_t val;
513 uint32_t mask;
514
515 mask = DC_STATE_EN_UPTO_DC5;
516 if (IS_BROXTON(dev_priv))
517 mask |= DC_STATE_EN_DC9;
518 else
519 mask |= DC_STATE_EN_UPTO_DC6;
520
521 WARN_ON_ONCE(state & ~mask);
522
523 if (i915.enable_dc == 0)
524 state = DC_STATE_DISABLE;
525 else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
526 state = DC_STATE_EN_UPTO_DC5;
527
528 if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
529 gen9_set_dc_state_debugmask_memory_up(dev_priv);
530
531 val = I915_READ(DC_STATE_EN);
532 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
533 val & mask, state);
534
535 /* Check if DMC is ignoring our DC state requests */
536 if ((val & mask) != dev_priv->csr.dc_state)
537 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
538 dev_priv->csr.dc_state, val & mask);
539
540 val &= ~mask;
541 val |= state;
542
543 gen9_write_dc_state(dev_priv, val);
544
545 dev_priv->csr.dc_state = val & mask;
546 }
547
548 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
549 {
550 assert_can_enable_dc9(dev_priv);
551
552 DRM_DEBUG_KMS("Enabling DC9\n");
553
554 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
555 }
556
557 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
558 {
559 assert_can_disable_dc9(dev_priv);
560
561 DRM_DEBUG_KMS("Disabling DC9\n");
562
563 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
564 }
565
566 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
567 {
568 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
569 "CSR program storage start is NULL\n");
570 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
571 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
572 }
573
574 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
575 {
576 struct drm_device *dev = dev_priv->dev;
577 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
578 SKL_DISP_PW_2);
579
580 WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
581 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
582 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
583
584 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
585 "DC5 already programmed to be enabled.\n");
586 assert_rpm_wakelock_held(dev_priv);
587
588 assert_csr_loaded(dev_priv);
589 }
590
591 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
592 {
593 /*
594 * During initialization, the firmware may not be loaded yet.
595 * We still want to make sure that the DC enabling flag is cleared.
596 */
597 if (dev_priv->power_domains.initializing)
598 return;
599
600 assert_rpm_wakelock_held(dev_priv);
601 }
602
603 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
604 {
605 assert_can_enable_dc5(dev_priv);
606
607 DRM_DEBUG_KMS("Enabling DC5\n");
608
609 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
610 }
611
612 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
613 {
614 struct drm_device *dev = dev_priv->dev;
615
616 WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
617 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
618 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
619 "Backlight is not disabled.\n");
620 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
621 "DC6 already programmed to be enabled.\n");
622
623 assert_csr_loaded(dev_priv);
624 }
625
626 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
627 {
628 /*
629 * During initialization, the firmware may not be loaded yet.
630 * We still want to make sure that the DC enabling flag is cleared.
631 */
632 if (dev_priv->power_domains.initializing)
633 return;
634
635 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
636 "DC6 already programmed to be disabled.\n");
637 }
638
639 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
640 {
641 assert_can_disable_dc5(dev_priv);
642
643 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
644 assert_can_disable_dc6(dev_priv);
645
646 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
647 }
648
649 void skl_enable_dc6(struct drm_i915_private *dev_priv)
650 {
651 assert_can_enable_dc6(dev_priv);
652
653 DRM_DEBUG_KMS("Enabling DC6\n");
654
655 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
656
657 }
658
659 void skl_disable_dc6(struct drm_i915_private *dev_priv)
660 {
661 assert_can_disable_dc6(dev_priv);
662
663 DRM_DEBUG_KMS("Disabling DC6\n");
664
665 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
666 }
667
668 static void skl_set_power_well(struct drm_i915_private *dev_priv,
669 struct i915_power_well *power_well, bool enable)
670 {
671 struct drm_device *dev = dev_priv->dev;
672 uint32_t tmp, fuse_status;
673 uint32_t req_mask, state_mask;
674 bool is_enabled, enable_requested, check_fuse_status = false;
675
676 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
677 fuse_status = I915_READ(SKL_FUSE_STATUS);
678
679 switch (power_well->data) {
680 case SKL_DISP_PW_1:
681 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
682 SKL_FUSE_PG0_DIST_STATUS), 1)) {
683 DRM_ERROR("PG0 not enabled\n");
684 return;
685 }
686 break;
687 case SKL_DISP_PW_2:
688 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
689 DRM_ERROR("PG1 in disabled state\n");
690 return;
691 }
692 break;
693 case SKL_DISP_PW_DDI_A_E:
694 case SKL_DISP_PW_DDI_B:
695 case SKL_DISP_PW_DDI_C:
696 case SKL_DISP_PW_DDI_D:
697 case SKL_DISP_PW_MISC_IO:
698 break;
699 default:
700 WARN(1, "Unknown power well %lu\n", power_well->data);
701 return;
702 }
703
704 req_mask = SKL_POWER_WELL_REQ(power_well->data);
705 enable_requested = tmp & req_mask;
706 state_mask = SKL_POWER_WELL_STATE(power_well->data);
707 is_enabled = tmp & state_mask;
708
709 if (enable) {
710 if (!enable_requested) {
711 WARN((tmp & state_mask) &&
712 !I915_READ(HSW_PWR_WELL_BIOS),
713 "Invalid for power well status to be enabled, unless done by the BIOS, \
714 when request is to disable!\n");
715 if (power_well->data == SKL_DISP_PW_2) {
716 /*
717 * DDI buffer programming unnecessary during
718 * driver-load/resume as it's already done
719 * during modeset initialization then. It's
720 * also invalid here as encoder list is still
721 * uninitialized.
722 */
723 if (!dev_priv->power_domains.initializing)
724 intel_prepare_ddi(dev);
725 }
726 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
727 }
728
729 if (!is_enabled) {
730 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
731 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
732 state_mask), 1))
733 DRM_ERROR("%s enable timeout\n",
734 power_well->name);
735 check_fuse_status = true;
736 }
737 } else {
738 if (enable_requested) {
739 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
740 POSTING_READ(HSW_PWR_WELL_DRIVER);
741 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
742 }
743 }
744
745 if (check_fuse_status) {
746 if (power_well->data == SKL_DISP_PW_1) {
747 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
748 SKL_FUSE_PG1_DIST_STATUS), 1))
749 DRM_ERROR("PG1 distributing status timeout\n");
750 } else if (power_well->data == SKL_DISP_PW_2) {
751 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
752 SKL_FUSE_PG2_DIST_STATUS), 1))
753 DRM_ERROR("PG2 distributing status timeout\n");
754 }
755 }
756
757 if (enable && !is_enabled)
758 skl_power_well_post_enable(dev_priv, power_well);
759 }
760
761 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
762 struct i915_power_well *power_well)
763 {
764 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
765
766 /*
767 * We're taking over the BIOS, so clear any requests made by it since
768 * the driver is in charge now.
769 */
770 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
771 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
772 }
773
774 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
775 struct i915_power_well *power_well)
776 {
777 hsw_set_power_well(dev_priv, power_well, true);
778 }
779
780 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
781 struct i915_power_well *power_well)
782 {
783 hsw_set_power_well(dev_priv, power_well, false);
784 }
785
786 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
787 struct i915_power_well *power_well)
788 {
789 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
790 SKL_POWER_WELL_STATE(power_well->data);
791
792 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
793 }
794
795 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
796 struct i915_power_well *power_well)
797 {
798 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
799
800 /* Clear any request made by BIOS as driver is taking over */
801 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
802 }
803
804 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
805 struct i915_power_well *power_well)
806 {
807 skl_set_power_well(dev_priv, power_well, true);
808 }
809
810 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
811 struct i915_power_well *power_well)
812 {
813 skl_set_power_well(dev_priv, power_well, false);
814 }
815
816 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
817 struct i915_power_well *power_well)
818 {
819 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
820 }
821
822 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
823 struct i915_power_well *power_well)
824 {
825 gen9_disable_dc5_dc6(dev_priv);
826 }
827
828 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
829 struct i915_power_well *power_well)
830 {
831 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
832 skl_enable_dc6(dev_priv);
833 else
834 gen9_enable_dc5(dev_priv);
835 }
836
837 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
838 struct i915_power_well *power_well)
839 {
840 if (power_well->count > 0) {
841 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
842 } else {
843 if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 &&
844 i915.enable_dc != 1)
845 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
846 else
847 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
848 }
849 }
850
851 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
852 struct i915_power_well *power_well)
853 {
854 }
855
856 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
857 struct i915_power_well *power_well)
858 {
859 return true;
860 }
861
862 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
863 struct i915_power_well *power_well, bool enable)
864 {
865 enum punit_power_well power_well_id = power_well->data;
866 u32 mask;
867 u32 state;
868 u32 ctrl;
869
870 mask = PUNIT_PWRGT_MASK(power_well_id);
871 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
872 PUNIT_PWRGT_PWR_GATE(power_well_id);
873
874 mutex_lock(&dev_priv->rps.hw_lock);
875
876 #define COND \
877 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
878
879 if (COND)
880 goto out;
881
882 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
883 ctrl &= ~mask;
884 ctrl |= state;
885 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
886
887 if (wait_for(COND, 100))
888 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
889 state,
890 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
891
892 #undef COND
893
894 out:
895 mutex_unlock(&dev_priv->rps.hw_lock);
896 }
897
898 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
899 struct i915_power_well *power_well)
900 {
901 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
902 }
903
904 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
905 struct i915_power_well *power_well)
906 {
907 vlv_set_power_well(dev_priv, power_well, true);
908 }
909
910 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
911 struct i915_power_well *power_well)
912 {
913 vlv_set_power_well(dev_priv, power_well, false);
914 }
915
916 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
917 struct i915_power_well *power_well)
918 {
919 int power_well_id = power_well->data;
920 bool enabled = false;
921 u32 mask;
922 u32 state;
923 u32 ctrl;
924
925 mask = PUNIT_PWRGT_MASK(power_well_id);
926 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
927
928 mutex_lock(&dev_priv->rps.hw_lock);
929
930 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
931 /*
932 * We only ever set the power-on and power-gate states, anything
933 * else is unexpected.
934 */
935 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
936 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
937 if (state == ctrl)
938 enabled = true;
939
940 /*
941 * A transient state at this point would mean some unexpected party
942 * is poking at the power controls too.
943 */
944 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
945 WARN_ON(ctrl != state);
946
947 mutex_unlock(&dev_priv->rps.hw_lock);
948
949 return enabled;
950 }
951
952 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
953 {
954 enum pipe pipe;
955
956 /*
957 * Enable the CRI clock source so we can get at the
958 * display and the reference clock for VGA
959 * hotplug / manual detection. Supposedly DSI also
960 * needs the ref clock up and running.
961 *
962 * CHV DPLL B/C have some issues if VGA mode is enabled.
963 */
964 for_each_pipe(dev_priv->dev, pipe) {
965 u32 val = I915_READ(DPLL(pipe));
966
967 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
968 if (pipe != PIPE_A)
969 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
970
971 I915_WRITE(DPLL(pipe), val);
972 }
973
974 spin_lock_irq(&dev_priv->irq_lock);
975 valleyview_enable_display_irqs(dev_priv);
976 spin_unlock_irq(&dev_priv->irq_lock);
977
978 /*
979 * During driver initialization/resume we can avoid restoring the
980 * part of the HW/SW state that will be inited anyway explicitly.
981 */
982 if (dev_priv->power_domains.initializing)
983 return;
984
985 intel_hpd_init(dev_priv);
986
987 i915_redisable_vga_power_on(dev_priv->dev);
988 }
989
990 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
991 {
992 spin_lock_irq(&dev_priv->irq_lock);
993 valleyview_disable_display_irqs(dev_priv);
994 spin_unlock_irq(&dev_priv->irq_lock);
995
996 vlv_power_sequencer_reset(dev_priv);
997 }
998
999 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1000 struct i915_power_well *power_well)
1001 {
1002 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1003
1004 vlv_set_power_well(dev_priv, power_well, true);
1005
1006 vlv_display_power_well_init(dev_priv);
1007 }
1008
1009 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1010 struct i915_power_well *power_well)
1011 {
1012 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1013
1014 vlv_display_power_well_deinit(dev_priv);
1015
1016 vlv_set_power_well(dev_priv, power_well, false);
1017 }
1018
1019 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1020 struct i915_power_well *power_well)
1021 {
1022 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1023
1024 /* since ref/cri clock was enabled */
1025 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1026
1027 vlv_set_power_well(dev_priv, power_well, true);
1028
1029 /*
1030 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1031 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1032 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1033 * b. The other bits such as sfr settings / modesel may all
1034 * be set to 0.
1035 *
1036 * This should only be done on init and resume from S3 with
1037 * both PLLs disabled, or we risk losing DPIO and PLL
1038 * synchronization.
1039 */
1040 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1041 }
1042
1043 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1044 struct i915_power_well *power_well)
1045 {
1046 enum pipe pipe;
1047
1048 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1049
1050 for_each_pipe(dev_priv, pipe)
1051 assert_pll_disabled(dev_priv, pipe);
1052
1053 /* Assert common reset */
1054 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1055
1056 vlv_set_power_well(dev_priv, power_well, false);
1057 }
1058
1059 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1060
1061 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1062 int power_well_id)
1063 {
1064 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1065 int i;
1066
1067 for (i = 0; i < power_domains->power_well_count; i++) {
1068 struct i915_power_well *power_well;
1069
1070 power_well = &power_domains->power_wells[i];
1071 if (power_well->data == power_well_id)
1072 return power_well;
1073 }
1074
1075 return NULL;
1076 }
1077
1078 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1079
1080 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1081 {
1082 struct i915_power_well *cmn_bc =
1083 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1084 struct i915_power_well *cmn_d =
1085 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1086 u32 phy_control = dev_priv->chv_phy_control;
1087 u32 phy_status = 0;
1088 u32 phy_status_mask = 0xffffffff;
1089 u32 tmp;
1090
1091 /*
1092 * The BIOS can leave the PHY is some weird state
1093 * where it doesn't fully power down some parts.
1094 * Disable the asserts until the PHY has been fully
1095 * reset (ie. the power well has been disabled at
1096 * least once).
1097 */
1098 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1099 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1100 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1101 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1102 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1103 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1104 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1105
1106 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1107 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1108 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1109 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1110
1111 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1112 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1113
1114 /* this assumes override is only used to enable lanes */
1115 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1116 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1117
1118 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1119 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1120
1121 /* CL1 is on whenever anything is on in either channel */
1122 if (BITS_SET(phy_control,
1123 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1124 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1125 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1126
1127 /*
1128 * The DPLLB check accounts for the pipe B + port A usage
1129 * with CL2 powered up but all the lanes in the second channel
1130 * powered down.
1131 */
1132 if (BITS_SET(phy_control,
1133 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1134 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1135 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1136
1137 if (BITS_SET(phy_control,
1138 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1139 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1140 if (BITS_SET(phy_control,
1141 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1142 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1143
1144 if (BITS_SET(phy_control,
1145 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1146 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1147 if (BITS_SET(phy_control,
1148 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1149 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1150 }
1151
1152 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1153 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1154
1155 /* this assumes override is only used to enable lanes */
1156 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1157 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1158
1159 if (BITS_SET(phy_control,
1160 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1161 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1162
1163 if (BITS_SET(phy_control,
1164 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1165 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1166 if (BITS_SET(phy_control,
1167 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1168 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1169 }
1170
1171 phy_status &= phy_status_mask;
1172
1173 /*
1174 * The PHY may be busy with some initial calibration and whatnot,
1175 * so the power state can take a while to actually change.
1176 */
1177 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1178 WARN(phy_status != tmp,
1179 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1180 tmp, phy_status, dev_priv->chv_phy_control);
1181 }
1182
1183 #undef BITS_SET
1184
1185 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1186 struct i915_power_well *power_well)
1187 {
1188 enum dpio_phy phy;
1189 enum pipe pipe;
1190 uint32_t tmp;
1191
1192 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1193 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1194
1195 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1196 pipe = PIPE_A;
1197 phy = DPIO_PHY0;
1198 } else {
1199 pipe = PIPE_C;
1200 phy = DPIO_PHY1;
1201 }
1202
1203 /* since ref/cri clock was enabled */
1204 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1205 vlv_set_power_well(dev_priv, power_well, true);
1206
1207 /* Poll for phypwrgood signal */
1208 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1209 DRM_ERROR("Display PHY %d is not power up\n", phy);
1210
1211 mutex_lock(&dev_priv->sb_lock);
1212
1213 /* Enable dynamic power down */
1214 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1215 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1216 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1217 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1218
1219 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1220 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1221 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1222 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1223 } else {
1224 /*
1225 * Force the non-existing CL2 off. BXT does this
1226 * too, so maybe it saves some power even though
1227 * CL2 doesn't exist?
1228 */
1229 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1230 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1231 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1232 }
1233
1234 mutex_unlock(&dev_priv->sb_lock);
1235
1236 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1237 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1238
1239 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1240 phy, dev_priv->chv_phy_control);
1241
1242 assert_chv_phy_status(dev_priv);
1243 }
1244
1245 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1246 struct i915_power_well *power_well)
1247 {
1248 enum dpio_phy phy;
1249
1250 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1251 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1252
1253 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1254 phy = DPIO_PHY0;
1255 assert_pll_disabled(dev_priv, PIPE_A);
1256 assert_pll_disabled(dev_priv, PIPE_B);
1257 } else {
1258 phy = DPIO_PHY1;
1259 assert_pll_disabled(dev_priv, PIPE_C);
1260 }
1261
1262 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1263 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1264
1265 vlv_set_power_well(dev_priv, power_well, false);
1266
1267 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1268 phy, dev_priv->chv_phy_control);
1269
1270 /* PHY is fully reset now, so we can enable the PHY state asserts */
1271 dev_priv->chv_phy_assert[phy] = true;
1272
1273 assert_chv_phy_status(dev_priv);
1274 }
1275
1276 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1277 enum dpio_channel ch, bool override, unsigned int mask)
1278 {
1279 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1280 u32 reg, val, expected, actual;
1281
1282 /*
1283 * The BIOS can leave the PHY is some weird state
1284 * where it doesn't fully power down some parts.
1285 * Disable the asserts until the PHY has been fully
1286 * reset (ie. the power well has been disabled at
1287 * least once).
1288 */
1289 if (!dev_priv->chv_phy_assert[phy])
1290 return;
1291
1292 if (ch == DPIO_CH0)
1293 reg = _CHV_CMN_DW0_CH0;
1294 else
1295 reg = _CHV_CMN_DW6_CH1;
1296
1297 mutex_lock(&dev_priv->sb_lock);
1298 val = vlv_dpio_read(dev_priv, pipe, reg);
1299 mutex_unlock(&dev_priv->sb_lock);
1300
1301 /*
1302 * This assumes !override is only used when the port is disabled.
1303 * All lanes should power down even without the override when
1304 * the port is disabled.
1305 */
1306 if (!override || mask == 0xf) {
1307 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1308 /*
1309 * If CH1 common lane is not active anymore
1310 * (eg. for pipe B DPLL) the entire channel will
1311 * shut down, which causes the common lane registers
1312 * to read as 0. That means we can't actually check
1313 * the lane power down status bits, but as the entire
1314 * register reads as 0 it's a good indication that the
1315 * channel is indeed entirely powered down.
1316 */
1317 if (ch == DPIO_CH1 && val == 0)
1318 expected = 0;
1319 } else if (mask != 0x0) {
1320 expected = DPIO_ANYDL_POWERDOWN;
1321 } else {
1322 expected = 0;
1323 }
1324
1325 if (ch == DPIO_CH0)
1326 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1327 else
1328 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1329 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1330
1331 WARN(actual != expected,
1332 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1333 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1334 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1335 reg, val);
1336 }
1337
1338 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1339 enum dpio_channel ch, bool override)
1340 {
1341 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1342 bool was_override;
1343
1344 mutex_lock(&power_domains->lock);
1345
1346 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1347
1348 if (override == was_override)
1349 goto out;
1350
1351 if (override)
1352 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1353 else
1354 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1355
1356 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1357
1358 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1359 phy, ch, dev_priv->chv_phy_control);
1360
1361 assert_chv_phy_status(dev_priv);
1362
1363 out:
1364 mutex_unlock(&power_domains->lock);
1365
1366 return was_override;
1367 }
1368
1369 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1370 bool override, unsigned int mask)
1371 {
1372 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1373 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1374 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1375 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1376
1377 mutex_lock(&power_domains->lock);
1378
1379 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1380 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1381
1382 if (override)
1383 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1384 else
1385 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1386
1387 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1388
1389 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1390 phy, ch, mask, dev_priv->chv_phy_control);
1391
1392 assert_chv_phy_status(dev_priv);
1393
1394 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1395
1396 mutex_unlock(&power_domains->lock);
1397 }
1398
1399 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1400 struct i915_power_well *power_well)
1401 {
1402 enum pipe pipe = power_well->data;
1403 bool enabled;
1404 u32 state, ctrl;
1405
1406 mutex_lock(&dev_priv->rps.hw_lock);
1407
1408 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1409 /*
1410 * We only ever set the power-on and power-gate states, anything
1411 * else is unexpected.
1412 */
1413 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1414 enabled = state == DP_SSS_PWR_ON(pipe);
1415
1416 /*
1417 * A transient state at this point would mean some unexpected party
1418 * is poking at the power controls too.
1419 */
1420 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1421 WARN_ON(ctrl << 16 != state);
1422
1423 mutex_unlock(&dev_priv->rps.hw_lock);
1424
1425 return enabled;
1426 }
1427
1428 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1429 struct i915_power_well *power_well,
1430 bool enable)
1431 {
1432 enum pipe pipe = power_well->data;
1433 u32 state;
1434 u32 ctrl;
1435
1436 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1437
1438 mutex_lock(&dev_priv->rps.hw_lock);
1439
1440 #define COND \
1441 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1442
1443 if (COND)
1444 goto out;
1445
1446 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1447 ctrl &= ~DP_SSC_MASK(pipe);
1448 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1449 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1450
1451 if (wait_for(COND, 100))
1452 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1453 state,
1454 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1455
1456 #undef COND
1457
1458 out:
1459 mutex_unlock(&dev_priv->rps.hw_lock);
1460 }
1461
1462 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1463 struct i915_power_well *power_well)
1464 {
1465 WARN_ON_ONCE(power_well->data != PIPE_A);
1466
1467 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1468 }
1469
1470 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1471 struct i915_power_well *power_well)
1472 {
1473 WARN_ON_ONCE(power_well->data != PIPE_A);
1474
1475 chv_set_pipe_power_well(dev_priv, power_well, true);
1476
1477 vlv_display_power_well_init(dev_priv);
1478 }
1479
1480 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1481 struct i915_power_well *power_well)
1482 {
1483 WARN_ON_ONCE(power_well->data != PIPE_A);
1484
1485 vlv_display_power_well_deinit(dev_priv);
1486
1487 chv_set_pipe_power_well(dev_priv, power_well, false);
1488 }
1489
1490 static void
1491 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1492 enum intel_display_power_domain domain)
1493 {
1494 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 struct i915_power_well *power_well;
1496 int i;
1497
1498 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1499 if (!power_well->count++)
1500 intel_power_well_enable(dev_priv, power_well);
1501 }
1502
1503 power_domains->domain_use_count[domain]++;
1504 }
1505
1506 /**
1507 * intel_display_power_get - grab a power domain reference
1508 * @dev_priv: i915 device instance
1509 * @domain: power domain to reference
1510 *
1511 * This function grabs a power domain reference for @domain and ensures that the
1512 * power domain and all its parents are powered up. Therefore users should only
1513 * grab a reference to the innermost power domain they need.
1514 *
1515 * Any power domain reference obtained by this function must have a symmetric
1516 * call to intel_display_power_put() to release the reference again.
1517 */
1518 void intel_display_power_get(struct drm_i915_private *dev_priv,
1519 enum intel_display_power_domain domain)
1520 {
1521 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1522
1523 intel_runtime_pm_get(dev_priv);
1524
1525 mutex_lock(&power_domains->lock);
1526
1527 __intel_display_power_get_domain(dev_priv, domain);
1528
1529 mutex_unlock(&power_domains->lock);
1530 }
1531
1532 /**
1533 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1534 * @dev_priv: i915 device instance
1535 * @domain: power domain to reference
1536 *
1537 * This function grabs a power domain reference for @domain and ensures that the
1538 * power domain and all its parents are powered up. Therefore users should only
1539 * grab a reference to the innermost power domain they need.
1540 *
1541 * Any power domain reference obtained by this function must have a symmetric
1542 * call to intel_display_power_put() to release the reference again.
1543 */
1544 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1545 enum intel_display_power_domain domain)
1546 {
1547 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1548 bool is_enabled;
1549
1550 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1551 return false;
1552
1553 mutex_lock(&power_domains->lock);
1554
1555 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1556 __intel_display_power_get_domain(dev_priv, domain);
1557 is_enabled = true;
1558 } else {
1559 is_enabled = false;
1560 }
1561
1562 mutex_unlock(&power_domains->lock);
1563
1564 if (!is_enabled)
1565 intel_runtime_pm_put(dev_priv);
1566
1567 return is_enabled;
1568 }
1569
1570 /**
1571 * intel_display_power_put - release a power domain reference
1572 * @dev_priv: i915 device instance
1573 * @domain: power domain to reference
1574 *
1575 * This function drops the power domain reference obtained by
1576 * intel_display_power_get() and might power down the corresponding hardware
1577 * block right away if this is the last reference.
1578 */
1579 void intel_display_power_put(struct drm_i915_private *dev_priv,
1580 enum intel_display_power_domain domain)
1581 {
1582 struct i915_power_domains *power_domains;
1583 struct i915_power_well *power_well;
1584 int i;
1585
1586 power_domains = &dev_priv->power_domains;
1587
1588 mutex_lock(&power_domains->lock);
1589
1590 WARN(!power_domains->domain_use_count[domain],
1591 "Use count on domain %s is already zero\n",
1592 intel_display_power_domain_str(domain));
1593 power_domains->domain_use_count[domain]--;
1594
1595 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1596 WARN(!power_well->count,
1597 "Use count on power well %s is already zero",
1598 power_well->name);
1599
1600 if (!--power_well->count)
1601 intel_power_well_disable(dev_priv, power_well);
1602 }
1603
1604 mutex_unlock(&power_domains->lock);
1605
1606 intel_runtime_pm_put(dev_priv);
1607 }
1608
1609 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1610 BIT(POWER_DOMAIN_PIPE_A) | \
1611 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1612 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1613 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1614 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1615 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1616 BIT(POWER_DOMAIN_PORT_CRT) | \
1617 BIT(POWER_DOMAIN_PLLS) | \
1618 BIT(POWER_DOMAIN_AUX_A) | \
1619 BIT(POWER_DOMAIN_AUX_B) | \
1620 BIT(POWER_DOMAIN_AUX_C) | \
1621 BIT(POWER_DOMAIN_AUX_D) | \
1622 BIT(POWER_DOMAIN_GMBUS) | \
1623 BIT(POWER_DOMAIN_INIT))
1624 #define HSW_DISPLAY_POWER_DOMAINS ( \
1625 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1626 BIT(POWER_DOMAIN_INIT))
1627
1628 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1629 HSW_ALWAYS_ON_POWER_DOMAINS | \
1630 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1631 #define BDW_DISPLAY_POWER_DOMAINS ( \
1632 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1633 BIT(POWER_DOMAIN_INIT))
1634
1635 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1636 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1637
1638 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1639 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1640 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1641 BIT(POWER_DOMAIN_PORT_CRT) | \
1642 BIT(POWER_DOMAIN_AUX_B) | \
1643 BIT(POWER_DOMAIN_AUX_C) | \
1644 BIT(POWER_DOMAIN_INIT))
1645
1646 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1647 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1648 BIT(POWER_DOMAIN_AUX_B) | \
1649 BIT(POWER_DOMAIN_INIT))
1650
1651 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1652 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1653 BIT(POWER_DOMAIN_AUX_B) | \
1654 BIT(POWER_DOMAIN_INIT))
1655
1656 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1657 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1658 BIT(POWER_DOMAIN_AUX_C) | \
1659 BIT(POWER_DOMAIN_INIT))
1660
1661 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1662 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1663 BIT(POWER_DOMAIN_AUX_C) | \
1664 BIT(POWER_DOMAIN_INIT))
1665
1666 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1667 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1668 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1669 BIT(POWER_DOMAIN_AUX_B) | \
1670 BIT(POWER_DOMAIN_AUX_C) | \
1671 BIT(POWER_DOMAIN_INIT))
1672
1673 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1674 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1675 BIT(POWER_DOMAIN_AUX_D) | \
1676 BIT(POWER_DOMAIN_INIT))
1677
1678 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1679 .sync_hw = i9xx_always_on_power_well_noop,
1680 .enable = i9xx_always_on_power_well_noop,
1681 .disable = i9xx_always_on_power_well_noop,
1682 .is_enabled = i9xx_always_on_power_well_enabled,
1683 };
1684
1685 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1686 .sync_hw = chv_pipe_power_well_sync_hw,
1687 .enable = chv_pipe_power_well_enable,
1688 .disable = chv_pipe_power_well_disable,
1689 .is_enabled = chv_pipe_power_well_enabled,
1690 };
1691
1692 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1693 .sync_hw = vlv_power_well_sync_hw,
1694 .enable = chv_dpio_cmn_power_well_enable,
1695 .disable = chv_dpio_cmn_power_well_disable,
1696 .is_enabled = vlv_power_well_enabled,
1697 };
1698
1699 static struct i915_power_well i9xx_always_on_power_well[] = {
1700 {
1701 .name = "always-on",
1702 .always_on = 1,
1703 .domains = POWER_DOMAIN_MASK,
1704 .ops = &i9xx_always_on_power_well_ops,
1705 },
1706 };
1707
1708 static const struct i915_power_well_ops hsw_power_well_ops = {
1709 .sync_hw = hsw_power_well_sync_hw,
1710 .enable = hsw_power_well_enable,
1711 .disable = hsw_power_well_disable,
1712 .is_enabled = hsw_power_well_enabled,
1713 };
1714
1715 static const struct i915_power_well_ops skl_power_well_ops = {
1716 .sync_hw = skl_power_well_sync_hw,
1717 .enable = skl_power_well_enable,
1718 .disable = skl_power_well_disable,
1719 .is_enabled = skl_power_well_enabled,
1720 };
1721
1722 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1723 .sync_hw = gen9_dc_off_power_well_sync_hw,
1724 .enable = gen9_dc_off_power_well_enable,
1725 .disable = gen9_dc_off_power_well_disable,
1726 .is_enabled = gen9_dc_off_power_well_enabled,
1727 };
1728
1729 static struct i915_power_well hsw_power_wells[] = {
1730 {
1731 .name = "always-on",
1732 .always_on = 1,
1733 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1734 .ops = &i9xx_always_on_power_well_ops,
1735 },
1736 {
1737 .name = "display",
1738 .domains = HSW_DISPLAY_POWER_DOMAINS,
1739 .ops = &hsw_power_well_ops,
1740 },
1741 };
1742
1743 static struct i915_power_well bdw_power_wells[] = {
1744 {
1745 .name = "always-on",
1746 .always_on = 1,
1747 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1748 .ops = &i9xx_always_on_power_well_ops,
1749 },
1750 {
1751 .name = "display",
1752 .domains = BDW_DISPLAY_POWER_DOMAINS,
1753 .ops = &hsw_power_well_ops,
1754 },
1755 };
1756
1757 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1758 .sync_hw = vlv_power_well_sync_hw,
1759 .enable = vlv_display_power_well_enable,
1760 .disable = vlv_display_power_well_disable,
1761 .is_enabled = vlv_power_well_enabled,
1762 };
1763
1764 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1765 .sync_hw = vlv_power_well_sync_hw,
1766 .enable = vlv_dpio_cmn_power_well_enable,
1767 .disable = vlv_dpio_cmn_power_well_disable,
1768 .is_enabled = vlv_power_well_enabled,
1769 };
1770
1771 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1772 .sync_hw = vlv_power_well_sync_hw,
1773 .enable = vlv_power_well_enable,
1774 .disable = vlv_power_well_disable,
1775 .is_enabled = vlv_power_well_enabled,
1776 };
1777
1778 static struct i915_power_well vlv_power_wells[] = {
1779 {
1780 .name = "always-on",
1781 .always_on = 1,
1782 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1783 .ops = &i9xx_always_on_power_well_ops,
1784 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1785 },
1786 {
1787 .name = "display",
1788 .domains = VLV_DISPLAY_POWER_DOMAINS,
1789 .data = PUNIT_POWER_WELL_DISP2D,
1790 .ops = &vlv_display_power_well_ops,
1791 },
1792 {
1793 .name = "dpio-tx-b-01",
1794 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1795 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1796 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1797 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1798 .ops = &vlv_dpio_power_well_ops,
1799 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1800 },
1801 {
1802 .name = "dpio-tx-b-23",
1803 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1804 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1805 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1806 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1807 .ops = &vlv_dpio_power_well_ops,
1808 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1809 },
1810 {
1811 .name = "dpio-tx-c-01",
1812 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1813 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1814 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1815 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1816 .ops = &vlv_dpio_power_well_ops,
1817 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1818 },
1819 {
1820 .name = "dpio-tx-c-23",
1821 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1822 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1823 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1824 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1825 .ops = &vlv_dpio_power_well_ops,
1826 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1827 },
1828 {
1829 .name = "dpio-common",
1830 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1831 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1832 .ops = &vlv_dpio_cmn_power_well_ops,
1833 },
1834 };
1835
1836 static struct i915_power_well chv_power_wells[] = {
1837 {
1838 .name = "always-on",
1839 .always_on = 1,
1840 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1841 .ops = &i9xx_always_on_power_well_ops,
1842 },
1843 {
1844 .name = "display",
1845 /*
1846 * Pipe A power well is the new disp2d well. Pipe B and C
1847 * power wells don't actually exist. Pipe A power well is
1848 * required for any pipe to work.
1849 */
1850 .domains = VLV_DISPLAY_POWER_DOMAINS,
1851 .data = PIPE_A,
1852 .ops = &chv_pipe_power_well_ops,
1853 },
1854 {
1855 .name = "dpio-common-bc",
1856 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1857 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1858 .ops = &chv_dpio_cmn_power_well_ops,
1859 },
1860 {
1861 .name = "dpio-common-d",
1862 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1863 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1864 .ops = &chv_dpio_cmn_power_well_ops,
1865 },
1866 };
1867
1868 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1869 int power_well_id)
1870 {
1871 struct i915_power_well *power_well;
1872 bool ret;
1873
1874 power_well = lookup_power_well(dev_priv, power_well_id);
1875 ret = power_well->ops->is_enabled(dev_priv, power_well);
1876
1877 return ret;
1878 }
1879
1880 static struct i915_power_well skl_power_wells[] = {
1881 {
1882 .name = "always-on",
1883 .always_on = 1,
1884 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1885 .ops = &i9xx_always_on_power_well_ops,
1886 .data = SKL_DISP_PW_ALWAYS_ON,
1887 },
1888 {
1889 .name = "power well 1",
1890 /* Handled by the DMC firmware */
1891 .domains = 0,
1892 .ops = &skl_power_well_ops,
1893 .data = SKL_DISP_PW_1,
1894 },
1895 {
1896 .name = "MISC IO power well",
1897 /* Handled by the DMC firmware */
1898 .domains = 0,
1899 .ops = &skl_power_well_ops,
1900 .data = SKL_DISP_PW_MISC_IO,
1901 },
1902 {
1903 .name = "DC off",
1904 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1905 .ops = &gen9_dc_off_power_well_ops,
1906 .data = SKL_DISP_PW_DC_OFF,
1907 },
1908 {
1909 .name = "power well 2",
1910 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1911 .ops = &skl_power_well_ops,
1912 .data = SKL_DISP_PW_2,
1913 },
1914 {
1915 .name = "DDI A/E power well",
1916 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1917 .ops = &skl_power_well_ops,
1918 .data = SKL_DISP_PW_DDI_A_E,
1919 },
1920 {
1921 .name = "DDI B power well",
1922 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1923 .ops = &skl_power_well_ops,
1924 .data = SKL_DISP_PW_DDI_B,
1925 },
1926 {
1927 .name = "DDI C power well",
1928 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1929 .ops = &skl_power_well_ops,
1930 .data = SKL_DISP_PW_DDI_C,
1931 },
1932 {
1933 .name = "DDI D power well",
1934 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1935 .ops = &skl_power_well_ops,
1936 .data = SKL_DISP_PW_DDI_D,
1937 },
1938 };
1939
1940 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1941 {
1942 struct i915_power_well *well;
1943
1944 if (!IS_SKYLAKE(dev_priv))
1945 return;
1946
1947 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1948 intel_power_well_enable(dev_priv, well);
1949
1950 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1951 intel_power_well_enable(dev_priv, well);
1952 }
1953
1954 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1955 {
1956 struct i915_power_well *well;
1957
1958 if (!IS_SKYLAKE(dev_priv))
1959 return;
1960
1961 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1962 intel_power_well_disable(dev_priv, well);
1963
1964 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1965 intel_power_well_disable(dev_priv, well);
1966 }
1967
1968 static struct i915_power_well bxt_power_wells[] = {
1969 {
1970 .name = "always-on",
1971 .always_on = 1,
1972 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1973 .ops = &i9xx_always_on_power_well_ops,
1974 },
1975 {
1976 .name = "power well 1",
1977 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1978 .ops = &skl_power_well_ops,
1979 .data = SKL_DISP_PW_1,
1980 },
1981 {
1982 .name = "DC off",
1983 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1984 .ops = &gen9_dc_off_power_well_ops,
1985 .data = SKL_DISP_PW_DC_OFF,
1986 },
1987 {
1988 .name = "power well 2",
1989 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1990 .ops = &skl_power_well_ops,
1991 .data = SKL_DISP_PW_2,
1992 },
1993 };
1994
1995 static int
1996 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1997 int disable_power_well)
1998 {
1999 if (disable_power_well >= 0)
2000 return !!disable_power_well;
2001
2002 if (IS_BROXTON(dev_priv)) {
2003 DRM_DEBUG_KMS("Disabling display power well support\n");
2004 return 0;
2005 }
2006
2007 return 1;
2008 }
2009
2010 #define set_power_wells(power_domains, __power_wells) ({ \
2011 (power_domains)->power_wells = (__power_wells); \
2012 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2013 })
2014
2015 /**
2016 * intel_power_domains_init - initializes the power domain structures
2017 * @dev_priv: i915 device instance
2018 *
2019 * Initializes the power domain structures for @dev_priv depending upon the
2020 * supported platform.
2021 */
2022 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2023 {
2024 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2025
2026 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2027 i915.disable_power_well);
2028
2029 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2030
2031 mutex_init(&power_domains->lock);
2032
2033 /*
2034 * The enabling order will be from lower to higher indexed wells,
2035 * the disabling order is reversed.
2036 */
2037 if (IS_HASWELL(dev_priv->dev)) {
2038 set_power_wells(power_domains, hsw_power_wells);
2039 } else if (IS_BROADWELL(dev_priv->dev)) {
2040 set_power_wells(power_domains, bdw_power_wells);
2041 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
2042 set_power_wells(power_domains, skl_power_wells);
2043 } else if (IS_BROXTON(dev_priv->dev)) {
2044 set_power_wells(power_domains, bxt_power_wells);
2045 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
2046 set_power_wells(power_domains, chv_power_wells);
2047 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
2048 set_power_wells(power_domains, vlv_power_wells);
2049 } else {
2050 set_power_wells(power_domains, i9xx_always_on_power_well);
2051 }
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * intel_power_domains_fini - finalizes the power domain structures
2058 * @dev_priv: i915 device instance
2059 *
2060 * Finalizes the power domain structures for @dev_priv depending upon the
2061 * supported platform. This function also disables runtime pm and ensures that
2062 * the device stays powered up so that the driver can be reloaded.
2063 */
2064 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2065 {
2066 struct device *device = &dev_priv->dev->pdev->dev;
2067
2068 /*
2069 * The i915.ko module is still not prepared to be loaded when
2070 * the power well is not enabled, so just enable it in case
2071 * we're going to unload/reload.
2072 * The following also reacquires the RPM reference the core passed
2073 * to the driver during loading, which is dropped in
2074 * intel_runtime_pm_enable(). We have to hand back the control of the
2075 * device to the core with this reference held.
2076 */
2077 intel_display_set_init_power(dev_priv, true);
2078
2079 /* Remove the refcount we took to keep power well support disabled. */
2080 if (!i915.disable_power_well)
2081 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2082
2083 /*
2084 * Remove the refcount we took in intel_runtime_pm_enable() in case
2085 * the platform doesn't support runtime PM.
2086 */
2087 if (!HAS_RUNTIME_PM(dev_priv))
2088 pm_runtime_put(device);
2089 }
2090
2091 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2092 {
2093 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2094 struct i915_power_well *power_well;
2095 int i;
2096
2097 mutex_lock(&power_domains->lock);
2098 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2099 power_well->ops->sync_hw(dev_priv, power_well);
2100 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2101 power_well);
2102 }
2103 mutex_unlock(&power_domains->lock);
2104 }
2105
2106 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2107 bool resume)
2108 {
2109 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2110 uint32_t val;
2111
2112 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2113
2114 /* enable PCH reset handshake */
2115 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2116 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2117
2118 /* enable PG1 and Misc I/O */
2119 mutex_lock(&power_domains->lock);
2120 skl_pw1_misc_io_init(dev_priv);
2121 mutex_unlock(&power_domains->lock);
2122
2123 if (!resume)
2124 return;
2125
2126 skl_init_cdclk(dev_priv);
2127
2128 if (dev_priv->csr.dmc_payload)
2129 intel_csr_load_program(dev_priv);
2130 }
2131
2132 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2133 {
2134 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2135
2136 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2137
2138 skl_uninit_cdclk(dev_priv);
2139
2140 /* The spec doesn't call for removing the reset handshake flag */
2141 /* disable PG1 and Misc I/O */
2142 mutex_lock(&power_domains->lock);
2143 skl_pw1_misc_io_fini(dev_priv);
2144 mutex_unlock(&power_domains->lock);
2145 }
2146
2147 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2148 {
2149 struct i915_power_well *cmn_bc =
2150 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2151 struct i915_power_well *cmn_d =
2152 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2153
2154 /*
2155 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2156 * workaround never ever read DISPLAY_PHY_CONTROL, and
2157 * instead maintain a shadow copy ourselves. Use the actual
2158 * power well state and lane status to reconstruct the
2159 * expected initial value.
2160 */
2161 dev_priv->chv_phy_control =
2162 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2163 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2164 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2165 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2166 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2167
2168 /*
2169 * If all lanes are disabled we leave the override disabled
2170 * with all power down bits cleared to match the state we
2171 * would use after disabling the port. Otherwise enable the
2172 * override and set the lane powerdown bits accding to the
2173 * current lane status.
2174 */
2175 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2176 uint32_t status = I915_READ(DPLL(PIPE_A));
2177 unsigned int mask;
2178
2179 mask = status & DPLL_PORTB_READY_MASK;
2180 if (mask == 0xf)
2181 mask = 0x0;
2182 else
2183 dev_priv->chv_phy_control |=
2184 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2185
2186 dev_priv->chv_phy_control |=
2187 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2188
2189 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2190 if (mask == 0xf)
2191 mask = 0x0;
2192 else
2193 dev_priv->chv_phy_control |=
2194 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2195
2196 dev_priv->chv_phy_control |=
2197 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2198
2199 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2200
2201 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2202 } else {
2203 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2204 }
2205
2206 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2207 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2208 unsigned int mask;
2209
2210 mask = status & DPLL_PORTD_READY_MASK;
2211
2212 if (mask == 0xf)
2213 mask = 0x0;
2214 else
2215 dev_priv->chv_phy_control |=
2216 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2217
2218 dev_priv->chv_phy_control |=
2219 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2220
2221 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2222
2223 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2224 } else {
2225 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2226 }
2227
2228 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2229
2230 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2231 dev_priv->chv_phy_control);
2232 }
2233
2234 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2235 {
2236 struct i915_power_well *cmn =
2237 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2238 struct i915_power_well *disp2d =
2239 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2240
2241 /* If the display might be already active skip this */
2242 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2243 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2244 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2245 return;
2246
2247 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2248
2249 /* cmnlane needs DPLL registers */
2250 disp2d->ops->enable(dev_priv, disp2d);
2251
2252 /*
2253 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2254 * Need to assert and de-assert PHY SB reset by gating the
2255 * common lane power, then un-gating it.
2256 * Simply ungating isn't enough to reset the PHY enough to get
2257 * ports and lanes running.
2258 */
2259 cmn->ops->disable(dev_priv, cmn);
2260 }
2261
2262 /**
2263 * intel_power_domains_init_hw - initialize hardware power domain state
2264 * @dev_priv: i915 device instance
2265 *
2266 * This function initializes the hardware power domain state and enables all
2267 * power domains using intel_display_set_init_power().
2268 */
2269 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2270 {
2271 struct drm_device *dev = dev_priv->dev;
2272 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2273
2274 power_domains->initializing = true;
2275
2276 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2277 skl_display_core_init(dev_priv, resume);
2278 } else if (IS_CHERRYVIEW(dev)) {
2279 mutex_lock(&power_domains->lock);
2280 chv_phy_control_init(dev_priv);
2281 mutex_unlock(&power_domains->lock);
2282 } else if (IS_VALLEYVIEW(dev)) {
2283 mutex_lock(&power_domains->lock);
2284 vlv_cmnlane_wa(dev_priv);
2285 mutex_unlock(&power_domains->lock);
2286 }
2287
2288 /* For now, we need the power well to be always enabled. */
2289 intel_display_set_init_power(dev_priv, true);
2290 /* Disable power support if the user asked so. */
2291 if (!i915.disable_power_well)
2292 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2293 intel_power_domains_sync_hw(dev_priv);
2294 power_domains->initializing = false;
2295 }
2296
2297 /**
2298 * intel_power_domains_suspend - suspend power domain state
2299 * @dev_priv: i915 device instance
2300 *
2301 * This function prepares the hardware power domain state before entering
2302 * system suspend. It must be paired with intel_power_domains_init_hw().
2303 */
2304 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2305 {
2306 /*
2307 * Even if power well support was disabled we still want to disable
2308 * power wells while we are system suspended.
2309 */
2310 if (!i915.disable_power_well)
2311 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2312
2313 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2314 skl_display_core_uninit(dev_priv);
2315 }
2316
2317 /**
2318 * intel_runtime_pm_get - grab a runtime pm reference
2319 * @dev_priv: i915 device instance
2320 *
2321 * This function grabs a device-level runtime pm reference (mostly used for GEM
2322 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2323 *
2324 * Any runtime pm reference obtained by this function must have a symmetric
2325 * call to intel_runtime_pm_put() to release the reference again.
2326 */
2327 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2328 {
2329 struct drm_device *dev = dev_priv->dev;
2330 struct device *device = &dev->pdev->dev;
2331
2332 pm_runtime_get_sync(device);
2333
2334 atomic_inc(&dev_priv->pm.wakeref_count);
2335 assert_rpm_wakelock_held(dev_priv);
2336 }
2337
2338 /**
2339 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2340 * @dev_priv: i915 device instance
2341 *
2342 * This function grabs a device-level runtime pm reference if the device is
2343 * already in use and ensures that it is powered up.
2344 *
2345 * Any runtime pm reference obtained by this function must have a symmetric
2346 * call to intel_runtime_pm_put() to release the reference again.
2347 */
2348 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2349 {
2350 struct drm_device *dev = dev_priv->dev;
2351 struct device *device = &dev->pdev->dev;
2352
2353 if (IS_ENABLED(CONFIG_PM)) {
2354 int ret = pm_runtime_get_if_in_use(device);
2355
2356 /*
2357 * In cases runtime PM is disabled by the RPM core and we get
2358 * an -EINVAL return value we are not supposed to call this
2359 * function, since the power state is undefined. This applies
2360 * atm to the late/early system suspend/resume handlers.
2361 */
2362 WARN_ON_ONCE(ret < 0);
2363 if (ret <= 0)
2364 return false;
2365 }
2366
2367 atomic_inc(&dev_priv->pm.wakeref_count);
2368 assert_rpm_wakelock_held(dev_priv);
2369
2370 return true;
2371 }
2372
2373 /**
2374 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2375 * @dev_priv: i915 device instance
2376 *
2377 * This function grabs a device-level runtime pm reference (mostly used for GEM
2378 * code to ensure the GTT or GT is on).
2379 *
2380 * It will _not_ power up the device but instead only check that it's powered
2381 * on. Therefore it is only valid to call this functions from contexts where
2382 * the device is known to be powered up and where trying to power it up would
2383 * result in hilarity and deadlocks. That pretty much means only the system
2384 * suspend/resume code where this is used to grab runtime pm references for
2385 * delayed setup down in work items.
2386 *
2387 * Any runtime pm reference obtained by this function must have a symmetric
2388 * call to intel_runtime_pm_put() to release the reference again.
2389 */
2390 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2391 {
2392 struct drm_device *dev = dev_priv->dev;
2393 struct device *device = &dev->pdev->dev;
2394
2395 assert_rpm_wakelock_held(dev_priv);
2396 pm_runtime_get_noresume(device);
2397
2398 atomic_inc(&dev_priv->pm.wakeref_count);
2399 }
2400
2401 /**
2402 * intel_runtime_pm_put - release a runtime pm reference
2403 * @dev_priv: i915 device instance
2404 *
2405 * This function drops the device-level runtime pm reference obtained by
2406 * intel_runtime_pm_get() and might power down the corresponding
2407 * hardware block right away if this is the last reference.
2408 */
2409 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2410 {
2411 struct drm_device *dev = dev_priv->dev;
2412 struct device *device = &dev->pdev->dev;
2413
2414 assert_rpm_wakelock_held(dev_priv);
2415 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2416 atomic_inc(&dev_priv->pm.atomic_seq);
2417
2418 pm_runtime_mark_last_busy(device);
2419 pm_runtime_put_autosuspend(device);
2420 }
2421
2422 /**
2423 * intel_runtime_pm_enable - enable runtime pm
2424 * @dev_priv: i915 device instance
2425 *
2426 * This function enables runtime pm at the end of the driver load sequence.
2427 *
2428 * Note that this function does currently not enable runtime pm for the
2429 * subordinate display power domains. That is only done on the first modeset
2430 * using intel_display_set_init_power().
2431 */
2432 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2433 {
2434 struct drm_device *dev = dev_priv->dev;
2435 struct device *device = &dev->pdev->dev;
2436
2437 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2438 pm_runtime_mark_last_busy(device);
2439
2440 /*
2441 * Take a permanent reference to disable the RPM functionality and drop
2442 * it only when unloading the driver. Use the low level get/put helpers,
2443 * so the driver's own RPM reference tracking asserts also work on
2444 * platforms without RPM support.
2445 */
2446 if (!HAS_RUNTIME_PM(dev)) {
2447 pm_runtime_dont_use_autosuspend(device);
2448 pm_runtime_get_sync(device);
2449 } else {
2450 pm_runtime_use_autosuspend(device);
2451 }
2452
2453 /*
2454 * The core calls the driver load handler with an RPM reference held.
2455 * We drop that here and will reacquire it during unloading in
2456 * intel_power_domains_fini().
2457 */
2458 pm_runtime_put_autosuspend(device);
2459 }
2460