]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_runtime_pm.c
Merge tag 'for-linus-4.9-2' of git://git.code.sf.net/p/openipmi/linux-ipmi
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 switch (domain) {
75 case POWER_DOMAIN_PIPE_A:
76 return "PIPE_A";
77 case POWER_DOMAIN_PIPE_B:
78 return "PIPE_B";
79 case POWER_DOMAIN_PIPE_C:
80 return "PIPE_C";
81 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 return "PIPE_A_PANEL_FITTER";
83 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 return "PIPE_B_PANEL_FITTER";
85 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 return "PIPE_C_PANEL_FITTER";
87 case POWER_DOMAIN_TRANSCODER_A:
88 return "TRANSCODER_A";
89 case POWER_DOMAIN_TRANSCODER_B:
90 return "TRANSCODER_B";
91 case POWER_DOMAIN_TRANSCODER_C:
92 return "TRANSCODER_C";
93 case POWER_DOMAIN_TRANSCODER_EDP:
94 return "TRANSCODER_EDP";
95 case POWER_DOMAIN_TRANSCODER_DSI_A:
96 return "TRANSCODER_DSI_A";
97 case POWER_DOMAIN_TRANSCODER_DSI_C:
98 return "TRANSCODER_DSI_C";
99 case POWER_DOMAIN_PORT_DDI_A_LANES:
100 return "PORT_DDI_A_LANES";
101 case POWER_DOMAIN_PORT_DDI_B_LANES:
102 return "PORT_DDI_B_LANES";
103 case POWER_DOMAIN_PORT_DDI_C_LANES:
104 return "PORT_DDI_C_LANES";
105 case POWER_DOMAIN_PORT_DDI_D_LANES:
106 return "PORT_DDI_D_LANES";
107 case POWER_DOMAIN_PORT_DDI_E_LANES:
108 return "PORT_DDI_E_LANES";
109 case POWER_DOMAIN_PORT_DSI:
110 return "PORT_DSI";
111 case POWER_DOMAIN_PORT_CRT:
112 return "PORT_CRT";
113 case POWER_DOMAIN_PORT_OTHER:
114 return "PORT_OTHER";
115 case POWER_DOMAIN_VGA:
116 return "VGA";
117 case POWER_DOMAIN_AUDIO:
118 return "AUDIO";
119 case POWER_DOMAIN_PLLS:
120 return "PLLS";
121 case POWER_DOMAIN_AUX_A:
122 return "AUX_A";
123 case POWER_DOMAIN_AUX_B:
124 return "AUX_B";
125 case POWER_DOMAIN_AUX_C:
126 return "AUX_C";
127 case POWER_DOMAIN_AUX_D:
128 return "AUX_D";
129 case POWER_DOMAIN_GMBUS:
130 return "GMBUS";
131 case POWER_DOMAIN_INIT:
132 return "INIT";
133 case POWER_DOMAIN_MODESET:
134 return "MODESET";
135 default:
136 MISSING_CASE(domain);
137 return "?";
138 }
139 }
140
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 struct i915_power_well *power_well)
143 {
144 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 power_well->ops->enable(dev_priv, power_well);
146 power_well->hw_enabled = true;
147 }
148
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 struct i915_power_well *power_well)
151 {
152 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 power_well->hw_enabled = false;
154 power_well->ops->disable(dev_priv, power_well);
155 }
156
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 struct i915_power_well *power_well)
159 {
160 if (!power_well->count++)
161 intel_power_well_enable(dev_priv, power_well);
162 }
163
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 struct i915_power_well *power_well)
166 {
167 WARN(!power_well->count, "Use count on power well %s is already zero",
168 power_well->name);
169
170 if (!--power_well->count)
171 intel_power_well_disable(dev_priv, power_well);
172 }
173
174 /*
175 * We should only use the power well if we explicitly asked the hardware to
176 * enable it, so check if it's enabled and also check if we've requested it to
177 * be enabled.
178 */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 struct i915_power_well *power_well)
181 {
182 return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185
186 /**
187 * __intel_display_power_is_enabled - unlocked check for a power domain
188 * @dev_priv: i915 device instance
189 * @domain: power domain to check
190 *
191 * This is the unlocked version of intel_display_power_is_enabled() and should
192 * only be used from error capture and recovery code where deadlocks are
193 * possible.
194 *
195 * Returns:
196 * True when the power domain is enabled, false otherwise.
197 */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 enum intel_display_power_domain domain)
200 {
201 struct i915_power_domains *power_domains;
202 struct i915_power_well *power_well;
203 bool is_enabled;
204 int i;
205
206 if (dev_priv->pm.suspended)
207 return false;
208
209 power_domains = &dev_priv->power_domains;
210
211 is_enabled = true;
212
213 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 if (power_well->always_on)
215 continue;
216
217 if (!power_well->hw_enabled) {
218 is_enabled = false;
219 break;
220 }
221 }
222
223 return is_enabled;
224 }
225
226 /**
227 * intel_display_power_is_enabled - check for a power domain
228 * @dev_priv: i915 device instance
229 * @domain: power domain to check
230 *
231 * This function can be used to check the hw power domain state. It is mostly
232 * used in hardware state readout functions. Everywhere else code should rely
233 * upon explicit power domain reference counting to ensure that the hardware
234 * block is powered up before accessing it.
235 *
236 * Callers must hold the relevant modesetting locks to ensure that concurrent
237 * threads can't disable the power well while the caller tries to read a few
238 * registers.
239 *
240 * Returns:
241 * True when the power domain is enabled, false otherwise.
242 */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 enum intel_display_power_domain domain)
245 {
246 struct i915_power_domains *power_domains;
247 bool ret;
248
249 power_domains = &dev_priv->power_domains;
250
251 mutex_lock(&power_domains->lock);
252 ret = __intel_display_power_is_enabled(dev_priv, domain);
253 mutex_unlock(&power_domains->lock);
254
255 return ret;
256 }
257
258 /**
259 * intel_display_set_init_power - set the initial power domain state
260 * @dev_priv: i915 device instance
261 * @enable: whether to enable or disable the initial power domain state
262 *
263 * For simplicity our driver load/unload and system suspend/resume code assumes
264 * that all power domains are always enabled. This functions controls the state
265 * of this little hack. While the initial power domain state is enabled runtime
266 * pm is effectively disabled.
267 */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 bool enable)
270 {
271 if (dev_priv->power_domains.init_power_on == enable)
272 return;
273
274 if (enable)
275 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 else
277 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278
279 dev_priv->power_domains.init_power_on = enable;
280 }
281
282 /*
283 * Starting with Haswell, we have a "Power Down Well" that can be turned off
284 * when not needed anymore. We have 4 registers that can request the power well
285 * to be enabled, and it will only be disabled if none of the registers is
286 * requesting it to be enabled.
287 */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 struct pci_dev *pdev = dev_priv->drm.pdev;
291 struct drm_device *dev = &dev_priv->drm;
292
293 /*
294 * After we re-enable the power well, if we touch VGA register 0x3d5
295 * we'll get unclaimed register interrupts. This stops after we write
296 * anything to the VGA MSR register. The vgacon module uses this
297 * register all the time, so if we unbind our driver and, as a
298 * consequence, bind vgacon, we'll get stuck in an infinite loop at
299 * console_unlock(). So make here we touch the VGA MSR register, making
300 * sure vgacon can keep working normally without triggering interrupts
301 * and error messages.
302 */
303 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
304 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 vga_put(pdev, VGA_RSRC_LEGACY_IO);
306
307 if (IS_BROADWELL(dev))
308 gen8_irq_power_well_post_enable(dev_priv,
309 1 << PIPE_C | 1 << PIPE_B);
310 }
311
312 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
313 {
314 if (IS_BROADWELL(dev_priv))
315 gen8_irq_power_well_pre_disable(dev_priv,
316 1 << PIPE_C | 1 << PIPE_B);
317 }
318
319 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
320 struct i915_power_well *power_well)
321 {
322 struct pci_dev *pdev = dev_priv->drm.pdev;
323
324 /*
325 * After we re-enable the power well, if we touch VGA register 0x3d5
326 * we'll get unclaimed register interrupts. This stops after we write
327 * anything to the VGA MSR register. The vgacon module uses this
328 * register all the time, so if we unbind our driver and, as a
329 * consequence, bind vgacon, we'll get stuck in an infinite loop at
330 * console_unlock(). So make here we touch the VGA MSR register, making
331 * sure vgacon can keep working normally without triggering interrupts
332 * and error messages.
333 */
334 if (power_well->data == SKL_DISP_PW_2) {
335 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
336 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
337 vga_put(pdev, VGA_RSRC_LEGACY_IO);
338
339 gen8_irq_power_well_post_enable(dev_priv,
340 1 << PIPE_C | 1 << PIPE_B);
341 }
342 }
343
344 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
345 struct i915_power_well *power_well)
346 {
347 if (power_well->data == SKL_DISP_PW_2)
348 gen8_irq_power_well_pre_disable(dev_priv,
349 1 << PIPE_C | 1 << PIPE_B);
350 }
351
352 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
353 struct i915_power_well *power_well, bool enable)
354 {
355 bool is_enabled, enable_requested;
356 uint32_t tmp;
357
358 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
359 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
360 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
361
362 if (enable) {
363 if (!enable_requested)
364 I915_WRITE(HSW_PWR_WELL_DRIVER,
365 HSW_PWR_WELL_ENABLE_REQUEST);
366
367 if (!is_enabled) {
368 DRM_DEBUG_KMS("Enabling power well\n");
369 if (intel_wait_for_register(dev_priv,
370 HSW_PWR_WELL_DRIVER,
371 HSW_PWR_WELL_STATE_ENABLED,
372 HSW_PWR_WELL_STATE_ENABLED,
373 20))
374 DRM_ERROR("Timeout enabling power well\n");
375 hsw_power_well_post_enable(dev_priv);
376 }
377
378 } else {
379 if (enable_requested) {
380 hsw_power_well_pre_disable(dev_priv);
381 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
382 POSTING_READ(HSW_PWR_WELL_DRIVER);
383 DRM_DEBUG_KMS("Requesting to disable the power well\n");
384 }
385 }
386 }
387
388 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
389 BIT(POWER_DOMAIN_TRANSCODER_A) | \
390 BIT(POWER_DOMAIN_PIPE_B) | \
391 BIT(POWER_DOMAIN_TRANSCODER_B) | \
392 BIT(POWER_DOMAIN_PIPE_C) | \
393 BIT(POWER_DOMAIN_TRANSCODER_C) | \
394 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
395 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
396 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
397 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
398 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
399 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
400 BIT(POWER_DOMAIN_AUX_B) | \
401 BIT(POWER_DOMAIN_AUX_C) | \
402 BIT(POWER_DOMAIN_AUX_D) | \
403 BIT(POWER_DOMAIN_AUDIO) | \
404 BIT(POWER_DOMAIN_VGA) | \
405 BIT(POWER_DOMAIN_INIT))
406 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
407 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
408 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
409 BIT(POWER_DOMAIN_INIT))
410 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
411 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
412 BIT(POWER_DOMAIN_INIT))
413 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
414 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
415 BIT(POWER_DOMAIN_INIT))
416 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
417 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
418 BIT(POWER_DOMAIN_INIT))
419 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
420 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
421 BIT(POWER_DOMAIN_MODESET) | \
422 BIT(POWER_DOMAIN_AUX_A) | \
423 BIT(POWER_DOMAIN_INIT))
424
425 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
426 BIT(POWER_DOMAIN_TRANSCODER_A) | \
427 BIT(POWER_DOMAIN_PIPE_B) | \
428 BIT(POWER_DOMAIN_TRANSCODER_B) | \
429 BIT(POWER_DOMAIN_PIPE_C) | \
430 BIT(POWER_DOMAIN_TRANSCODER_C) | \
431 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
432 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
433 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
434 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
435 BIT(POWER_DOMAIN_AUX_B) | \
436 BIT(POWER_DOMAIN_AUX_C) | \
437 BIT(POWER_DOMAIN_AUDIO) | \
438 BIT(POWER_DOMAIN_VGA) | \
439 BIT(POWER_DOMAIN_GMBUS) | \
440 BIT(POWER_DOMAIN_INIT))
441 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
442 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
443 BIT(POWER_DOMAIN_MODESET) | \
444 BIT(POWER_DOMAIN_AUX_A) | \
445 BIT(POWER_DOMAIN_INIT))
446 #define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
447 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
448 BIT(POWER_DOMAIN_AUX_A) | \
449 BIT(POWER_DOMAIN_INIT))
450 #define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
451 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
452 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
453 BIT(POWER_DOMAIN_AUX_B) | \
454 BIT(POWER_DOMAIN_AUX_C) | \
455 BIT(POWER_DOMAIN_INIT))
456
457 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
458 {
459 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
460 "DC9 already programmed to be enabled.\n");
461 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
462 "DC5 still not disabled to enable DC9.\n");
463 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
464 WARN_ONCE(intel_irqs_enabled(dev_priv),
465 "Interrupts not disabled yet.\n");
466
467 /*
468 * TODO: check for the following to verify the conditions to enter DC9
469 * state are satisfied:
470 * 1] Check relevant display engine registers to verify if mode set
471 * disable sequence was followed.
472 * 2] Check if display uninitialize sequence is initialized.
473 */
474 }
475
476 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
477 {
478 WARN_ONCE(intel_irqs_enabled(dev_priv),
479 "Interrupts not disabled yet.\n");
480 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
481 "DC5 still not disabled.\n");
482
483 /*
484 * TODO: check for the following to verify DC9 state was indeed
485 * entered before programming to disable it:
486 * 1] Check relevant display engine registers to verify if mode
487 * set disable sequence was followed.
488 * 2] Check if display uninitialize sequence is initialized.
489 */
490 }
491
492 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
493 u32 state)
494 {
495 int rewrites = 0;
496 int rereads = 0;
497 u32 v;
498
499 I915_WRITE(DC_STATE_EN, state);
500
501 /* It has been observed that disabling the dc6 state sometimes
502 * doesn't stick and dmc keeps returning old value. Make sure
503 * the write really sticks enough times and also force rewrite until
504 * we are confident that state is exactly what we want.
505 */
506 do {
507 v = I915_READ(DC_STATE_EN);
508
509 if (v != state) {
510 I915_WRITE(DC_STATE_EN, state);
511 rewrites++;
512 rereads = 0;
513 } else if (rereads++ > 5) {
514 break;
515 }
516
517 } while (rewrites < 100);
518
519 if (v != state)
520 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
521 state, v);
522
523 /* Most of the times we need one retry, avoid spam */
524 if (rewrites > 1)
525 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
526 state, rewrites);
527 }
528
529 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
530 {
531 u32 mask;
532
533 mask = DC_STATE_EN_UPTO_DC5;
534 if (IS_BROXTON(dev_priv))
535 mask |= DC_STATE_EN_DC9;
536 else
537 mask |= DC_STATE_EN_UPTO_DC6;
538
539 return mask;
540 }
541
542 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
543 {
544 u32 val;
545
546 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
547
548 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
549 dev_priv->csr.dc_state, val);
550 dev_priv->csr.dc_state = val;
551 }
552
553 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
554 {
555 uint32_t val;
556 uint32_t mask;
557
558 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
559 state &= dev_priv->csr.allowed_dc_mask;
560
561 val = I915_READ(DC_STATE_EN);
562 mask = gen9_dc_mask(dev_priv);
563 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
564 val & mask, state);
565
566 /* Check if DMC is ignoring our DC state requests */
567 if ((val & mask) != dev_priv->csr.dc_state)
568 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
569 dev_priv->csr.dc_state, val & mask);
570
571 val &= ~mask;
572 val |= state;
573
574 gen9_write_dc_state(dev_priv, val);
575
576 dev_priv->csr.dc_state = val & mask;
577 }
578
579 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
580 {
581 assert_can_enable_dc9(dev_priv);
582
583 DRM_DEBUG_KMS("Enabling DC9\n");
584
585 intel_power_sequencer_reset(dev_priv);
586 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
587 }
588
589 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
590 {
591 assert_can_disable_dc9(dev_priv);
592
593 DRM_DEBUG_KMS("Disabling DC9\n");
594
595 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
596
597 intel_pps_unlock_regs_wa(dev_priv);
598 }
599
600 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
601 {
602 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
603 "CSR program storage start is NULL\n");
604 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
605 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
606 }
607
608 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
609 {
610 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
611 SKL_DISP_PW_2);
612
613 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
614
615 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
616 "DC5 already programmed to be enabled.\n");
617 assert_rpm_wakelock_held(dev_priv);
618
619 assert_csr_loaded(dev_priv);
620 }
621
622 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
623 {
624 assert_can_enable_dc5(dev_priv);
625
626 DRM_DEBUG_KMS("Enabling DC5\n");
627
628 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
629 }
630
631 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
632 {
633 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
634 "Backlight is not disabled.\n");
635 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
636 "DC6 already programmed to be enabled.\n");
637
638 assert_csr_loaded(dev_priv);
639 }
640
641 void skl_enable_dc6(struct drm_i915_private *dev_priv)
642 {
643 assert_can_enable_dc6(dev_priv);
644
645 DRM_DEBUG_KMS("Enabling DC6\n");
646
647 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
648
649 }
650
651 void skl_disable_dc6(struct drm_i915_private *dev_priv)
652 {
653 DRM_DEBUG_KMS("Disabling DC6\n");
654
655 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
656 }
657
658 static void
659 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
660 struct i915_power_well *power_well)
661 {
662 enum skl_disp_power_wells power_well_id = power_well->data;
663 u32 val;
664 u32 mask;
665
666 mask = SKL_POWER_WELL_REQ(power_well_id);
667
668 val = I915_READ(HSW_PWR_WELL_KVMR);
669 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
670 power_well->name))
671 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
672
673 val = I915_READ(HSW_PWR_WELL_BIOS);
674 val |= I915_READ(HSW_PWR_WELL_DEBUG);
675
676 if (!(val & mask))
677 return;
678
679 /*
680 * DMC is known to force on the request bits for power well 1 on SKL
681 * and BXT and the misc IO power well on SKL but we don't expect any
682 * other request bits to be set, so WARN for those.
683 */
684 if (power_well_id == SKL_DISP_PW_1 ||
685 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
686 power_well_id == SKL_DISP_PW_MISC_IO))
687 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
688 "by DMC\n", power_well->name);
689 else
690 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
691 power_well->name);
692
693 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
694 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
695 }
696
697 static void skl_set_power_well(struct drm_i915_private *dev_priv,
698 struct i915_power_well *power_well, bool enable)
699 {
700 uint32_t tmp, fuse_status;
701 uint32_t req_mask, state_mask;
702 bool is_enabled, enable_requested, check_fuse_status = false;
703
704 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
705 fuse_status = I915_READ(SKL_FUSE_STATUS);
706
707 switch (power_well->data) {
708 case SKL_DISP_PW_1:
709 if (intel_wait_for_register(dev_priv,
710 SKL_FUSE_STATUS,
711 SKL_FUSE_PG0_DIST_STATUS,
712 SKL_FUSE_PG0_DIST_STATUS,
713 1)) {
714 DRM_ERROR("PG0 not enabled\n");
715 return;
716 }
717 break;
718 case SKL_DISP_PW_2:
719 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
720 DRM_ERROR("PG1 in disabled state\n");
721 return;
722 }
723 break;
724 case SKL_DISP_PW_DDI_A_E:
725 case SKL_DISP_PW_DDI_B:
726 case SKL_DISP_PW_DDI_C:
727 case SKL_DISP_PW_DDI_D:
728 case SKL_DISP_PW_MISC_IO:
729 break;
730 default:
731 WARN(1, "Unknown power well %lu\n", power_well->data);
732 return;
733 }
734
735 req_mask = SKL_POWER_WELL_REQ(power_well->data);
736 enable_requested = tmp & req_mask;
737 state_mask = SKL_POWER_WELL_STATE(power_well->data);
738 is_enabled = tmp & state_mask;
739
740 if (!enable && enable_requested)
741 skl_power_well_pre_disable(dev_priv, power_well);
742
743 if (enable) {
744 if (!enable_requested) {
745 WARN((tmp & state_mask) &&
746 !I915_READ(HSW_PWR_WELL_BIOS),
747 "Invalid for power well status to be enabled, unless done by the BIOS, \
748 when request is to disable!\n");
749 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
750 }
751
752 if (!is_enabled) {
753 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
754 check_fuse_status = true;
755 }
756 } else {
757 if (enable_requested) {
758 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
759 POSTING_READ(HSW_PWR_WELL_DRIVER);
760 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
761 }
762
763 if (IS_GEN9(dev_priv))
764 gen9_sanitize_power_well_requests(dev_priv, power_well);
765 }
766
767 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
768 1))
769 DRM_ERROR("%s %s timeout\n",
770 power_well->name, enable ? "enable" : "disable");
771
772 if (check_fuse_status) {
773 if (power_well->data == SKL_DISP_PW_1) {
774 if (intel_wait_for_register(dev_priv,
775 SKL_FUSE_STATUS,
776 SKL_FUSE_PG1_DIST_STATUS,
777 SKL_FUSE_PG1_DIST_STATUS,
778 1))
779 DRM_ERROR("PG1 distributing status timeout\n");
780 } else if (power_well->data == SKL_DISP_PW_2) {
781 if (intel_wait_for_register(dev_priv,
782 SKL_FUSE_STATUS,
783 SKL_FUSE_PG2_DIST_STATUS,
784 SKL_FUSE_PG2_DIST_STATUS,
785 1))
786 DRM_ERROR("PG2 distributing status timeout\n");
787 }
788 }
789
790 if (enable && !is_enabled)
791 skl_power_well_post_enable(dev_priv, power_well);
792 }
793
794 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
795 struct i915_power_well *power_well)
796 {
797 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
798
799 /*
800 * We're taking over the BIOS, so clear any requests made by it since
801 * the driver is in charge now.
802 */
803 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
804 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
805 }
806
807 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
808 struct i915_power_well *power_well)
809 {
810 hsw_set_power_well(dev_priv, power_well, true);
811 }
812
813 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
814 struct i915_power_well *power_well)
815 {
816 hsw_set_power_well(dev_priv, power_well, false);
817 }
818
819 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
820 struct i915_power_well *power_well)
821 {
822 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
823 SKL_POWER_WELL_STATE(power_well->data);
824
825 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
826 }
827
828 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
829 struct i915_power_well *power_well)
830 {
831 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
832
833 /* Clear any request made by BIOS as driver is taking over */
834 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
835 }
836
837 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
838 struct i915_power_well *power_well)
839 {
840 skl_set_power_well(dev_priv, power_well, true);
841 }
842
843 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
844 struct i915_power_well *power_well)
845 {
846 skl_set_power_well(dev_priv, power_well, false);
847 }
848
849 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
850 {
851 enum skl_disp_power_wells power_well_id = power_well->data;
852
853 return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
854 }
855
856 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
857 struct i915_power_well *power_well)
858 {
859 enum skl_disp_power_wells power_well_id = power_well->data;
860 struct i915_power_well *cmn_a_well = NULL;
861
862 if (power_well_id == BXT_DPIO_CMN_BC) {
863 /*
864 * We need to copy the GRC calibration value from the eDP PHY,
865 * so make sure it's powered up.
866 */
867 cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
868 intel_power_well_get(dev_priv, cmn_a_well);
869 }
870
871 bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
872
873 if (cmn_a_well)
874 intel_power_well_put(dev_priv, cmn_a_well);
875 }
876
877 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
878 struct i915_power_well *power_well)
879 {
880 bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
881 }
882
883 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
884 struct i915_power_well *power_well)
885 {
886 return bxt_ddi_phy_is_enabled(dev_priv,
887 bxt_power_well_to_phy(power_well));
888 }
889
890 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
891 struct i915_power_well *power_well)
892 {
893 if (power_well->count > 0)
894 bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
895 else
896 bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
897 }
898
899
900 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
901 {
902 struct i915_power_well *power_well;
903
904 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
905 if (power_well->count > 0)
906 bxt_ddi_phy_verify_state(dev_priv,
907 bxt_power_well_to_phy(power_well));
908
909 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
910 if (power_well->count > 0)
911 bxt_ddi_phy_verify_state(dev_priv,
912 bxt_power_well_to_phy(power_well));
913 }
914
915 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
916 struct i915_power_well *power_well)
917 {
918 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
919 }
920
921 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
922 {
923 u32 tmp = I915_READ(DBUF_CTL);
924
925 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
926 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
927 "Unexpected DBuf power power state (0x%08x)\n", tmp);
928 }
929
930 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
931 struct i915_power_well *power_well)
932 {
933 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
934
935 WARN_ON(dev_priv->cdclk_freq !=
936 dev_priv->display.get_display_clock_speed(&dev_priv->drm));
937
938 gen9_assert_dbuf_enabled(dev_priv);
939
940 if (IS_BROXTON(dev_priv))
941 bxt_verify_ddi_phy_power_wells(dev_priv);
942 }
943
944 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
945 struct i915_power_well *power_well)
946 {
947 if (!dev_priv->csr.dmc_payload)
948 return;
949
950 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
951 skl_enable_dc6(dev_priv);
952 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
953 gen9_enable_dc5(dev_priv);
954 }
955
956 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
957 struct i915_power_well *power_well)
958 {
959 if (power_well->count > 0)
960 gen9_dc_off_power_well_enable(dev_priv, power_well);
961 else
962 gen9_dc_off_power_well_disable(dev_priv, power_well);
963 }
964
965 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
966 struct i915_power_well *power_well)
967 {
968 }
969
970 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
971 struct i915_power_well *power_well)
972 {
973 return true;
974 }
975
976 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
977 struct i915_power_well *power_well, bool enable)
978 {
979 enum punit_power_well power_well_id = power_well->data;
980 u32 mask;
981 u32 state;
982 u32 ctrl;
983
984 mask = PUNIT_PWRGT_MASK(power_well_id);
985 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
986 PUNIT_PWRGT_PWR_GATE(power_well_id);
987
988 mutex_lock(&dev_priv->rps.hw_lock);
989
990 #define COND \
991 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
992
993 if (COND)
994 goto out;
995
996 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
997 ctrl &= ~mask;
998 ctrl |= state;
999 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
1000
1001 if (wait_for(COND, 100))
1002 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1003 state,
1004 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1005
1006 #undef COND
1007
1008 out:
1009 mutex_unlock(&dev_priv->rps.hw_lock);
1010 }
1011
1012 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1013 struct i915_power_well *power_well)
1014 {
1015 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1016 }
1017
1018 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1019 struct i915_power_well *power_well)
1020 {
1021 vlv_set_power_well(dev_priv, power_well, true);
1022 }
1023
1024 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1025 struct i915_power_well *power_well)
1026 {
1027 vlv_set_power_well(dev_priv, power_well, false);
1028 }
1029
1030 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1031 struct i915_power_well *power_well)
1032 {
1033 int power_well_id = power_well->data;
1034 bool enabled = false;
1035 u32 mask;
1036 u32 state;
1037 u32 ctrl;
1038
1039 mask = PUNIT_PWRGT_MASK(power_well_id);
1040 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1041
1042 mutex_lock(&dev_priv->rps.hw_lock);
1043
1044 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1045 /*
1046 * We only ever set the power-on and power-gate states, anything
1047 * else is unexpected.
1048 */
1049 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1050 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1051 if (state == ctrl)
1052 enabled = true;
1053
1054 /*
1055 * A transient state at this point would mean some unexpected party
1056 * is poking at the power controls too.
1057 */
1058 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1059 WARN_ON(ctrl != state);
1060
1061 mutex_unlock(&dev_priv->rps.hw_lock);
1062
1063 return enabled;
1064 }
1065
1066 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1067 {
1068 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1069
1070 /*
1071 * Disable trickle feed and enable pnd deadline calculation
1072 */
1073 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1074 I915_WRITE(CBR1_VLV, 0);
1075
1076 WARN_ON(dev_priv->rawclk_freq == 0);
1077
1078 I915_WRITE(RAWCLK_FREQ_VLV,
1079 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1080 }
1081
1082 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1083 {
1084 struct intel_encoder *encoder;
1085 enum pipe pipe;
1086
1087 /*
1088 * Enable the CRI clock source so we can get at the
1089 * display and the reference clock for VGA
1090 * hotplug / manual detection. Supposedly DSI also
1091 * needs the ref clock up and running.
1092 *
1093 * CHV DPLL B/C have some issues if VGA mode is enabled.
1094 */
1095 for_each_pipe(&dev_priv->drm, pipe) {
1096 u32 val = I915_READ(DPLL(pipe));
1097
1098 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1099 if (pipe != PIPE_A)
1100 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1101
1102 I915_WRITE(DPLL(pipe), val);
1103 }
1104
1105 vlv_init_display_clock_gating(dev_priv);
1106
1107 spin_lock_irq(&dev_priv->irq_lock);
1108 valleyview_enable_display_irqs(dev_priv);
1109 spin_unlock_irq(&dev_priv->irq_lock);
1110
1111 /*
1112 * During driver initialization/resume we can avoid restoring the
1113 * part of the HW/SW state that will be inited anyway explicitly.
1114 */
1115 if (dev_priv->power_domains.initializing)
1116 return;
1117
1118 intel_hpd_init(dev_priv);
1119
1120 /* Re-enable the ADPA, if we have one */
1121 for_each_intel_encoder(&dev_priv->drm, encoder) {
1122 if (encoder->type == INTEL_OUTPUT_ANALOG)
1123 intel_crt_reset(&encoder->base);
1124 }
1125
1126 i915_redisable_vga_power_on(&dev_priv->drm);
1127
1128 intel_pps_unlock_regs_wa(dev_priv);
1129 }
1130
1131 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1132 {
1133 spin_lock_irq(&dev_priv->irq_lock);
1134 valleyview_disable_display_irqs(dev_priv);
1135 spin_unlock_irq(&dev_priv->irq_lock);
1136
1137 /* make sure we're done processing display irqs */
1138 synchronize_irq(dev_priv->drm.irq);
1139
1140 intel_power_sequencer_reset(dev_priv);
1141
1142 intel_hpd_poll_init(dev_priv);
1143 }
1144
1145 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1146 struct i915_power_well *power_well)
1147 {
1148 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1149
1150 vlv_set_power_well(dev_priv, power_well, true);
1151
1152 vlv_display_power_well_init(dev_priv);
1153 }
1154
1155 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1156 struct i915_power_well *power_well)
1157 {
1158 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1159
1160 vlv_display_power_well_deinit(dev_priv);
1161
1162 vlv_set_power_well(dev_priv, power_well, false);
1163 }
1164
1165 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1166 struct i915_power_well *power_well)
1167 {
1168 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1169
1170 /* since ref/cri clock was enabled */
1171 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1172
1173 vlv_set_power_well(dev_priv, power_well, true);
1174
1175 /*
1176 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1177 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1178 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1179 * b. The other bits such as sfr settings / modesel may all
1180 * be set to 0.
1181 *
1182 * This should only be done on init and resume from S3 with
1183 * both PLLs disabled, or we risk losing DPIO and PLL
1184 * synchronization.
1185 */
1186 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1187 }
1188
1189 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1190 struct i915_power_well *power_well)
1191 {
1192 enum pipe pipe;
1193
1194 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1195
1196 for_each_pipe(dev_priv, pipe)
1197 assert_pll_disabled(dev_priv, pipe);
1198
1199 /* Assert common reset */
1200 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1201
1202 vlv_set_power_well(dev_priv, power_well, false);
1203 }
1204
1205 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1206
1207 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1208 int power_well_id)
1209 {
1210 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1211 int i;
1212
1213 for (i = 0; i < power_domains->power_well_count; i++) {
1214 struct i915_power_well *power_well;
1215
1216 power_well = &power_domains->power_wells[i];
1217 if (power_well->data == power_well_id)
1218 return power_well;
1219 }
1220
1221 return NULL;
1222 }
1223
1224 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1225
1226 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1227 {
1228 struct i915_power_well *cmn_bc =
1229 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1230 struct i915_power_well *cmn_d =
1231 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1232 u32 phy_control = dev_priv->chv_phy_control;
1233 u32 phy_status = 0;
1234 u32 phy_status_mask = 0xffffffff;
1235
1236 /*
1237 * The BIOS can leave the PHY is some weird state
1238 * where it doesn't fully power down some parts.
1239 * Disable the asserts until the PHY has been fully
1240 * reset (ie. the power well has been disabled at
1241 * least once).
1242 */
1243 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1244 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1245 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1246 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1247 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1248 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1249 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1250
1251 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1252 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1253 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1254 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1255
1256 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1257 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1258
1259 /* this assumes override is only used to enable lanes */
1260 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1261 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1262
1263 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1264 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1265
1266 /* CL1 is on whenever anything is on in either channel */
1267 if (BITS_SET(phy_control,
1268 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1269 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1270 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1271
1272 /*
1273 * The DPLLB check accounts for the pipe B + port A usage
1274 * with CL2 powered up but all the lanes in the second channel
1275 * powered down.
1276 */
1277 if (BITS_SET(phy_control,
1278 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1279 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1280 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1281
1282 if (BITS_SET(phy_control,
1283 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1284 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1285 if (BITS_SET(phy_control,
1286 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1287 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1288
1289 if (BITS_SET(phy_control,
1290 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1291 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1292 if (BITS_SET(phy_control,
1293 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1294 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1295 }
1296
1297 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1298 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1299
1300 /* this assumes override is only used to enable lanes */
1301 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1302 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1303
1304 if (BITS_SET(phy_control,
1305 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1306 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1307
1308 if (BITS_SET(phy_control,
1309 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1310 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1311 if (BITS_SET(phy_control,
1312 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1313 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1314 }
1315
1316 phy_status &= phy_status_mask;
1317
1318 /*
1319 * The PHY may be busy with some initial calibration and whatnot,
1320 * so the power state can take a while to actually change.
1321 */
1322 if (intel_wait_for_register(dev_priv,
1323 DISPLAY_PHY_STATUS,
1324 phy_status_mask,
1325 phy_status,
1326 10))
1327 DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1328 I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1329 phy_status, dev_priv->chv_phy_control);
1330 }
1331
1332 #undef BITS_SET
1333
1334 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1335 struct i915_power_well *power_well)
1336 {
1337 enum dpio_phy phy;
1338 enum pipe pipe;
1339 uint32_t tmp;
1340
1341 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1342 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1343
1344 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1345 pipe = PIPE_A;
1346 phy = DPIO_PHY0;
1347 } else {
1348 pipe = PIPE_C;
1349 phy = DPIO_PHY1;
1350 }
1351
1352 /* since ref/cri clock was enabled */
1353 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1354 vlv_set_power_well(dev_priv, power_well, true);
1355
1356 /* Poll for phypwrgood signal */
1357 if (intel_wait_for_register(dev_priv,
1358 DISPLAY_PHY_STATUS,
1359 PHY_POWERGOOD(phy),
1360 PHY_POWERGOOD(phy),
1361 1))
1362 DRM_ERROR("Display PHY %d is not power up\n", phy);
1363
1364 mutex_lock(&dev_priv->sb_lock);
1365
1366 /* Enable dynamic power down */
1367 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1368 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1369 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1370 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1371
1372 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1373 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1374 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1375 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1376 } else {
1377 /*
1378 * Force the non-existing CL2 off. BXT does this
1379 * too, so maybe it saves some power even though
1380 * CL2 doesn't exist?
1381 */
1382 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1383 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1384 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1385 }
1386
1387 mutex_unlock(&dev_priv->sb_lock);
1388
1389 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1390 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1391
1392 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1393 phy, dev_priv->chv_phy_control);
1394
1395 assert_chv_phy_status(dev_priv);
1396 }
1397
1398 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1399 struct i915_power_well *power_well)
1400 {
1401 enum dpio_phy phy;
1402
1403 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1404 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1405
1406 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1407 phy = DPIO_PHY0;
1408 assert_pll_disabled(dev_priv, PIPE_A);
1409 assert_pll_disabled(dev_priv, PIPE_B);
1410 } else {
1411 phy = DPIO_PHY1;
1412 assert_pll_disabled(dev_priv, PIPE_C);
1413 }
1414
1415 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1416 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1417
1418 vlv_set_power_well(dev_priv, power_well, false);
1419
1420 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1421 phy, dev_priv->chv_phy_control);
1422
1423 /* PHY is fully reset now, so we can enable the PHY state asserts */
1424 dev_priv->chv_phy_assert[phy] = true;
1425
1426 assert_chv_phy_status(dev_priv);
1427 }
1428
1429 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1430 enum dpio_channel ch, bool override, unsigned int mask)
1431 {
1432 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1433 u32 reg, val, expected, actual;
1434
1435 /*
1436 * The BIOS can leave the PHY is some weird state
1437 * where it doesn't fully power down some parts.
1438 * Disable the asserts until the PHY has been fully
1439 * reset (ie. the power well has been disabled at
1440 * least once).
1441 */
1442 if (!dev_priv->chv_phy_assert[phy])
1443 return;
1444
1445 if (ch == DPIO_CH0)
1446 reg = _CHV_CMN_DW0_CH0;
1447 else
1448 reg = _CHV_CMN_DW6_CH1;
1449
1450 mutex_lock(&dev_priv->sb_lock);
1451 val = vlv_dpio_read(dev_priv, pipe, reg);
1452 mutex_unlock(&dev_priv->sb_lock);
1453
1454 /*
1455 * This assumes !override is only used when the port is disabled.
1456 * All lanes should power down even without the override when
1457 * the port is disabled.
1458 */
1459 if (!override || mask == 0xf) {
1460 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1461 /*
1462 * If CH1 common lane is not active anymore
1463 * (eg. for pipe B DPLL) the entire channel will
1464 * shut down, which causes the common lane registers
1465 * to read as 0. That means we can't actually check
1466 * the lane power down status bits, but as the entire
1467 * register reads as 0 it's a good indication that the
1468 * channel is indeed entirely powered down.
1469 */
1470 if (ch == DPIO_CH1 && val == 0)
1471 expected = 0;
1472 } else if (mask != 0x0) {
1473 expected = DPIO_ANYDL_POWERDOWN;
1474 } else {
1475 expected = 0;
1476 }
1477
1478 if (ch == DPIO_CH0)
1479 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1480 else
1481 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1482 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1483
1484 WARN(actual != expected,
1485 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1486 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1487 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1488 reg, val);
1489 }
1490
1491 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1492 enum dpio_channel ch, bool override)
1493 {
1494 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 bool was_override;
1496
1497 mutex_lock(&power_domains->lock);
1498
1499 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1500
1501 if (override == was_override)
1502 goto out;
1503
1504 if (override)
1505 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1506 else
1507 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1508
1509 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1510
1511 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1512 phy, ch, dev_priv->chv_phy_control);
1513
1514 assert_chv_phy_status(dev_priv);
1515
1516 out:
1517 mutex_unlock(&power_domains->lock);
1518
1519 return was_override;
1520 }
1521
1522 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1523 bool override, unsigned int mask)
1524 {
1525 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1526 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1527 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1528 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1529
1530 mutex_lock(&power_domains->lock);
1531
1532 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1533 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1534
1535 if (override)
1536 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1537 else
1538 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1539
1540 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1541
1542 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1543 phy, ch, mask, dev_priv->chv_phy_control);
1544
1545 assert_chv_phy_status(dev_priv);
1546
1547 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1548
1549 mutex_unlock(&power_domains->lock);
1550 }
1551
1552 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1553 struct i915_power_well *power_well)
1554 {
1555 enum pipe pipe = power_well->data;
1556 bool enabled;
1557 u32 state, ctrl;
1558
1559 mutex_lock(&dev_priv->rps.hw_lock);
1560
1561 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1562 /*
1563 * We only ever set the power-on and power-gate states, anything
1564 * else is unexpected.
1565 */
1566 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1567 enabled = state == DP_SSS_PWR_ON(pipe);
1568
1569 /*
1570 * A transient state at this point would mean some unexpected party
1571 * is poking at the power controls too.
1572 */
1573 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1574 WARN_ON(ctrl << 16 != state);
1575
1576 mutex_unlock(&dev_priv->rps.hw_lock);
1577
1578 return enabled;
1579 }
1580
1581 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1582 struct i915_power_well *power_well,
1583 bool enable)
1584 {
1585 enum pipe pipe = power_well->data;
1586 u32 state;
1587 u32 ctrl;
1588
1589 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1590
1591 mutex_lock(&dev_priv->rps.hw_lock);
1592
1593 #define COND \
1594 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1595
1596 if (COND)
1597 goto out;
1598
1599 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1600 ctrl &= ~DP_SSC_MASK(pipe);
1601 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1602 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1603
1604 if (wait_for(COND, 100))
1605 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1606 state,
1607 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1608
1609 #undef COND
1610
1611 out:
1612 mutex_unlock(&dev_priv->rps.hw_lock);
1613 }
1614
1615 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1616 struct i915_power_well *power_well)
1617 {
1618 WARN_ON_ONCE(power_well->data != PIPE_A);
1619
1620 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1621 }
1622
1623 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1624 struct i915_power_well *power_well)
1625 {
1626 WARN_ON_ONCE(power_well->data != PIPE_A);
1627
1628 chv_set_pipe_power_well(dev_priv, power_well, true);
1629
1630 vlv_display_power_well_init(dev_priv);
1631 }
1632
1633 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1634 struct i915_power_well *power_well)
1635 {
1636 WARN_ON_ONCE(power_well->data != PIPE_A);
1637
1638 vlv_display_power_well_deinit(dev_priv);
1639
1640 chv_set_pipe_power_well(dev_priv, power_well, false);
1641 }
1642
1643 static void
1644 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1645 enum intel_display_power_domain domain)
1646 {
1647 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1648 struct i915_power_well *power_well;
1649 int i;
1650
1651 for_each_power_well(i, power_well, BIT(domain), power_domains)
1652 intel_power_well_get(dev_priv, power_well);
1653
1654 power_domains->domain_use_count[domain]++;
1655 }
1656
1657 /**
1658 * intel_display_power_get - grab a power domain reference
1659 * @dev_priv: i915 device instance
1660 * @domain: power domain to reference
1661 *
1662 * This function grabs a power domain reference for @domain and ensures that the
1663 * power domain and all its parents are powered up. Therefore users should only
1664 * grab a reference to the innermost power domain they need.
1665 *
1666 * Any power domain reference obtained by this function must have a symmetric
1667 * call to intel_display_power_put() to release the reference again.
1668 */
1669 void intel_display_power_get(struct drm_i915_private *dev_priv,
1670 enum intel_display_power_domain domain)
1671 {
1672 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1673
1674 intel_runtime_pm_get(dev_priv);
1675
1676 mutex_lock(&power_domains->lock);
1677
1678 __intel_display_power_get_domain(dev_priv, domain);
1679
1680 mutex_unlock(&power_domains->lock);
1681 }
1682
1683 /**
1684 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1685 * @dev_priv: i915 device instance
1686 * @domain: power domain to reference
1687 *
1688 * This function grabs a power domain reference for @domain and ensures that the
1689 * power domain and all its parents are powered up. Therefore users should only
1690 * grab a reference to the innermost power domain they need.
1691 *
1692 * Any power domain reference obtained by this function must have a symmetric
1693 * call to intel_display_power_put() to release the reference again.
1694 */
1695 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1696 enum intel_display_power_domain domain)
1697 {
1698 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1699 bool is_enabled;
1700
1701 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1702 return false;
1703
1704 mutex_lock(&power_domains->lock);
1705
1706 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1707 __intel_display_power_get_domain(dev_priv, domain);
1708 is_enabled = true;
1709 } else {
1710 is_enabled = false;
1711 }
1712
1713 mutex_unlock(&power_domains->lock);
1714
1715 if (!is_enabled)
1716 intel_runtime_pm_put(dev_priv);
1717
1718 return is_enabled;
1719 }
1720
1721 /**
1722 * intel_display_power_put - release a power domain reference
1723 * @dev_priv: i915 device instance
1724 * @domain: power domain to reference
1725 *
1726 * This function drops the power domain reference obtained by
1727 * intel_display_power_get() and might power down the corresponding hardware
1728 * block right away if this is the last reference.
1729 */
1730 void intel_display_power_put(struct drm_i915_private *dev_priv,
1731 enum intel_display_power_domain domain)
1732 {
1733 struct i915_power_domains *power_domains;
1734 struct i915_power_well *power_well;
1735 int i;
1736
1737 power_domains = &dev_priv->power_domains;
1738
1739 mutex_lock(&power_domains->lock);
1740
1741 WARN(!power_domains->domain_use_count[domain],
1742 "Use count on domain %s is already zero\n",
1743 intel_display_power_domain_str(domain));
1744 power_domains->domain_use_count[domain]--;
1745
1746 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1747 intel_power_well_put(dev_priv, power_well);
1748
1749 mutex_unlock(&power_domains->lock);
1750
1751 intel_runtime_pm_put(dev_priv);
1752 }
1753
1754 #define HSW_DISPLAY_POWER_DOMAINS ( \
1755 BIT(POWER_DOMAIN_PIPE_B) | \
1756 BIT(POWER_DOMAIN_PIPE_C) | \
1757 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1758 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1759 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1760 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1761 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1762 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1763 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1764 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1765 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1766 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1767 BIT(POWER_DOMAIN_VGA) | \
1768 BIT(POWER_DOMAIN_AUDIO) | \
1769 BIT(POWER_DOMAIN_INIT))
1770
1771 #define BDW_DISPLAY_POWER_DOMAINS ( \
1772 BIT(POWER_DOMAIN_PIPE_B) | \
1773 BIT(POWER_DOMAIN_PIPE_C) | \
1774 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1775 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1776 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1777 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1778 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1779 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1780 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1781 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1782 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1783 BIT(POWER_DOMAIN_VGA) | \
1784 BIT(POWER_DOMAIN_AUDIO) | \
1785 BIT(POWER_DOMAIN_INIT))
1786
1787 #define VLV_DISPLAY_POWER_DOMAINS ( \
1788 BIT(POWER_DOMAIN_PIPE_A) | \
1789 BIT(POWER_DOMAIN_PIPE_B) | \
1790 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1791 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1792 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1793 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1794 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1795 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1796 BIT(POWER_DOMAIN_PORT_DSI) | \
1797 BIT(POWER_DOMAIN_PORT_CRT) | \
1798 BIT(POWER_DOMAIN_VGA) | \
1799 BIT(POWER_DOMAIN_AUDIO) | \
1800 BIT(POWER_DOMAIN_AUX_B) | \
1801 BIT(POWER_DOMAIN_AUX_C) | \
1802 BIT(POWER_DOMAIN_GMBUS) | \
1803 BIT(POWER_DOMAIN_INIT))
1804
1805 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1806 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1807 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1808 BIT(POWER_DOMAIN_PORT_CRT) | \
1809 BIT(POWER_DOMAIN_AUX_B) | \
1810 BIT(POWER_DOMAIN_AUX_C) | \
1811 BIT(POWER_DOMAIN_INIT))
1812
1813 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1814 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1815 BIT(POWER_DOMAIN_AUX_B) | \
1816 BIT(POWER_DOMAIN_INIT))
1817
1818 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1819 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1820 BIT(POWER_DOMAIN_AUX_B) | \
1821 BIT(POWER_DOMAIN_INIT))
1822
1823 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1824 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1825 BIT(POWER_DOMAIN_AUX_C) | \
1826 BIT(POWER_DOMAIN_INIT))
1827
1828 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1829 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1830 BIT(POWER_DOMAIN_AUX_C) | \
1831 BIT(POWER_DOMAIN_INIT))
1832
1833 #define CHV_DISPLAY_POWER_DOMAINS ( \
1834 BIT(POWER_DOMAIN_PIPE_A) | \
1835 BIT(POWER_DOMAIN_PIPE_B) | \
1836 BIT(POWER_DOMAIN_PIPE_C) | \
1837 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1838 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1839 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1840 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1841 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1842 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1843 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1844 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1845 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1846 BIT(POWER_DOMAIN_PORT_DSI) | \
1847 BIT(POWER_DOMAIN_VGA) | \
1848 BIT(POWER_DOMAIN_AUDIO) | \
1849 BIT(POWER_DOMAIN_AUX_B) | \
1850 BIT(POWER_DOMAIN_AUX_C) | \
1851 BIT(POWER_DOMAIN_AUX_D) | \
1852 BIT(POWER_DOMAIN_GMBUS) | \
1853 BIT(POWER_DOMAIN_INIT))
1854
1855 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1856 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1857 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1858 BIT(POWER_DOMAIN_AUX_B) | \
1859 BIT(POWER_DOMAIN_AUX_C) | \
1860 BIT(POWER_DOMAIN_INIT))
1861
1862 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1863 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1864 BIT(POWER_DOMAIN_AUX_D) | \
1865 BIT(POWER_DOMAIN_INIT))
1866
1867 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1868 .sync_hw = i9xx_always_on_power_well_noop,
1869 .enable = i9xx_always_on_power_well_noop,
1870 .disable = i9xx_always_on_power_well_noop,
1871 .is_enabled = i9xx_always_on_power_well_enabled,
1872 };
1873
1874 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1875 .sync_hw = chv_pipe_power_well_sync_hw,
1876 .enable = chv_pipe_power_well_enable,
1877 .disable = chv_pipe_power_well_disable,
1878 .is_enabled = chv_pipe_power_well_enabled,
1879 };
1880
1881 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1882 .sync_hw = vlv_power_well_sync_hw,
1883 .enable = chv_dpio_cmn_power_well_enable,
1884 .disable = chv_dpio_cmn_power_well_disable,
1885 .is_enabled = vlv_power_well_enabled,
1886 };
1887
1888 static struct i915_power_well i9xx_always_on_power_well[] = {
1889 {
1890 .name = "always-on",
1891 .always_on = 1,
1892 .domains = POWER_DOMAIN_MASK,
1893 .ops = &i9xx_always_on_power_well_ops,
1894 },
1895 };
1896
1897 static const struct i915_power_well_ops hsw_power_well_ops = {
1898 .sync_hw = hsw_power_well_sync_hw,
1899 .enable = hsw_power_well_enable,
1900 .disable = hsw_power_well_disable,
1901 .is_enabled = hsw_power_well_enabled,
1902 };
1903
1904 static const struct i915_power_well_ops skl_power_well_ops = {
1905 .sync_hw = skl_power_well_sync_hw,
1906 .enable = skl_power_well_enable,
1907 .disable = skl_power_well_disable,
1908 .is_enabled = skl_power_well_enabled,
1909 };
1910
1911 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1912 .sync_hw = gen9_dc_off_power_well_sync_hw,
1913 .enable = gen9_dc_off_power_well_enable,
1914 .disable = gen9_dc_off_power_well_disable,
1915 .is_enabled = gen9_dc_off_power_well_enabled,
1916 };
1917
1918 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1919 .sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1920 .enable = bxt_dpio_cmn_power_well_enable,
1921 .disable = bxt_dpio_cmn_power_well_disable,
1922 .is_enabled = bxt_dpio_cmn_power_well_enabled,
1923 };
1924
1925 static struct i915_power_well hsw_power_wells[] = {
1926 {
1927 .name = "always-on",
1928 .always_on = 1,
1929 .domains = POWER_DOMAIN_MASK,
1930 .ops = &i9xx_always_on_power_well_ops,
1931 },
1932 {
1933 .name = "display",
1934 .domains = HSW_DISPLAY_POWER_DOMAINS,
1935 .ops = &hsw_power_well_ops,
1936 },
1937 };
1938
1939 static struct i915_power_well bdw_power_wells[] = {
1940 {
1941 .name = "always-on",
1942 .always_on = 1,
1943 .domains = POWER_DOMAIN_MASK,
1944 .ops = &i9xx_always_on_power_well_ops,
1945 },
1946 {
1947 .name = "display",
1948 .domains = BDW_DISPLAY_POWER_DOMAINS,
1949 .ops = &hsw_power_well_ops,
1950 },
1951 };
1952
1953 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1954 .sync_hw = vlv_power_well_sync_hw,
1955 .enable = vlv_display_power_well_enable,
1956 .disable = vlv_display_power_well_disable,
1957 .is_enabled = vlv_power_well_enabled,
1958 };
1959
1960 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1961 .sync_hw = vlv_power_well_sync_hw,
1962 .enable = vlv_dpio_cmn_power_well_enable,
1963 .disable = vlv_dpio_cmn_power_well_disable,
1964 .is_enabled = vlv_power_well_enabled,
1965 };
1966
1967 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1968 .sync_hw = vlv_power_well_sync_hw,
1969 .enable = vlv_power_well_enable,
1970 .disable = vlv_power_well_disable,
1971 .is_enabled = vlv_power_well_enabled,
1972 };
1973
1974 static struct i915_power_well vlv_power_wells[] = {
1975 {
1976 .name = "always-on",
1977 .always_on = 1,
1978 .domains = POWER_DOMAIN_MASK,
1979 .ops = &i9xx_always_on_power_well_ops,
1980 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1981 },
1982 {
1983 .name = "display",
1984 .domains = VLV_DISPLAY_POWER_DOMAINS,
1985 .data = PUNIT_POWER_WELL_DISP2D,
1986 .ops = &vlv_display_power_well_ops,
1987 },
1988 {
1989 .name = "dpio-tx-b-01",
1990 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1991 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1992 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1993 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1994 .ops = &vlv_dpio_power_well_ops,
1995 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1996 },
1997 {
1998 .name = "dpio-tx-b-23",
1999 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2000 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2001 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2002 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2003 .ops = &vlv_dpio_power_well_ops,
2004 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2005 },
2006 {
2007 .name = "dpio-tx-c-01",
2008 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2009 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2010 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2011 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2012 .ops = &vlv_dpio_power_well_ops,
2013 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2014 },
2015 {
2016 .name = "dpio-tx-c-23",
2017 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2018 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2019 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2020 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2021 .ops = &vlv_dpio_power_well_ops,
2022 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2023 },
2024 {
2025 .name = "dpio-common",
2026 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2027 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2028 .ops = &vlv_dpio_cmn_power_well_ops,
2029 },
2030 };
2031
2032 static struct i915_power_well chv_power_wells[] = {
2033 {
2034 .name = "always-on",
2035 .always_on = 1,
2036 .domains = POWER_DOMAIN_MASK,
2037 .ops = &i9xx_always_on_power_well_ops,
2038 },
2039 {
2040 .name = "display",
2041 /*
2042 * Pipe A power well is the new disp2d well. Pipe B and C
2043 * power wells don't actually exist. Pipe A power well is
2044 * required for any pipe to work.
2045 */
2046 .domains = CHV_DISPLAY_POWER_DOMAINS,
2047 .data = PIPE_A,
2048 .ops = &chv_pipe_power_well_ops,
2049 },
2050 {
2051 .name = "dpio-common-bc",
2052 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2053 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2054 .ops = &chv_dpio_cmn_power_well_ops,
2055 },
2056 {
2057 .name = "dpio-common-d",
2058 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2059 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
2060 .ops = &chv_dpio_cmn_power_well_ops,
2061 },
2062 };
2063
2064 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2065 int power_well_id)
2066 {
2067 struct i915_power_well *power_well;
2068 bool ret;
2069
2070 power_well = lookup_power_well(dev_priv, power_well_id);
2071 ret = power_well->ops->is_enabled(dev_priv, power_well);
2072
2073 return ret;
2074 }
2075
2076 static struct i915_power_well skl_power_wells[] = {
2077 {
2078 .name = "always-on",
2079 .always_on = 1,
2080 .domains = POWER_DOMAIN_MASK,
2081 .ops = &i9xx_always_on_power_well_ops,
2082 .data = SKL_DISP_PW_ALWAYS_ON,
2083 },
2084 {
2085 .name = "power well 1",
2086 /* Handled by the DMC firmware */
2087 .domains = 0,
2088 .ops = &skl_power_well_ops,
2089 .data = SKL_DISP_PW_1,
2090 },
2091 {
2092 .name = "MISC IO power well",
2093 /* Handled by the DMC firmware */
2094 .domains = 0,
2095 .ops = &skl_power_well_ops,
2096 .data = SKL_DISP_PW_MISC_IO,
2097 },
2098 {
2099 .name = "DC off",
2100 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2101 .ops = &gen9_dc_off_power_well_ops,
2102 .data = SKL_DISP_PW_DC_OFF,
2103 },
2104 {
2105 .name = "power well 2",
2106 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2107 .ops = &skl_power_well_ops,
2108 .data = SKL_DISP_PW_2,
2109 },
2110 {
2111 .name = "DDI A/E power well",
2112 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2113 .ops = &skl_power_well_ops,
2114 .data = SKL_DISP_PW_DDI_A_E,
2115 },
2116 {
2117 .name = "DDI B power well",
2118 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2119 .ops = &skl_power_well_ops,
2120 .data = SKL_DISP_PW_DDI_B,
2121 },
2122 {
2123 .name = "DDI C power well",
2124 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2125 .ops = &skl_power_well_ops,
2126 .data = SKL_DISP_PW_DDI_C,
2127 },
2128 {
2129 .name = "DDI D power well",
2130 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2131 .ops = &skl_power_well_ops,
2132 .data = SKL_DISP_PW_DDI_D,
2133 },
2134 };
2135
2136 static struct i915_power_well bxt_power_wells[] = {
2137 {
2138 .name = "always-on",
2139 .always_on = 1,
2140 .domains = POWER_DOMAIN_MASK,
2141 .ops = &i9xx_always_on_power_well_ops,
2142 },
2143 {
2144 .name = "power well 1",
2145 .domains = 0,
2146 .ops = &skl_power_well_ops,
2147 .data = SKL_DISP_PW_1,
2148 },
2149 {
2150 .name = "DC off",
2151 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2152 .ops = &gen9_dc_off_power_well_ops,
2153 .data = SKL_DISP_PW_DC_OFF,
2154 },
2155 {
2156 .name = "power well 2",
2157 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2158 .ops = &skl_power_well_ops,
2159 .data = SKL_DISP_PW_2,
2160 },
2161 {
2162 .name = "dpio-common-a",
2163 .domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2164 .ops = &bxt_dpio_cmn_power_well_ops,
2165 .data = BXT_DPIO_CMN_A,
2166 },
2167 {
2168 .name = "dpio-common-bc",
2169 .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2170 .ops = &bxt_dpio_cmn_power_well_ops,
2171 .data = BXT_DPIO_CMN_BC,
2172 },
2173 };
2174
2175 static int
2176 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2177 int disable_power_well)
2178 {
2179 if (disable_power_well >= 0)
2180 return !!disable_power_well;
2181
2182 return 1;
2183 }
2184
2185 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2186 int enable_dc)
2187 {
2188 uint32_t mask;
2189 int requested_dc;
2190 int max_dc;
2191
2192 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2193 max_dc = 2;
2194 mask = 0;
2195 } else if (IS_BROXTON(dev_priv)) {
2196 max_dc = 1;
2197 /*
2198 * DC9 has a separate HW flow from the rest of the DC states,
2199 * not depending on the DMC firmware. It's needed by system
2200 * suspend/resume, so allow it unconditionally.
2201 */
2202 mask = DC_STATE_EN_DC9;
2203 } else {
2204 max_dc = 0;
2205 mask = 0;
2206 }
2207
2208 if (!i915.disable_power_well)
2209 max_dc = 0;
2210
2211 if (enable_dc >= 0 && enable_dc <= max_dc) {
2212 requested_dc = enable_dc;
2213 } else if (enable_dc == -1) {
2214 requested_dc = max_dc;
2215 } else if (enable_dc > max_dc && enable_dc <= 2) {
2216 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2217 enable_dc, max_dc);
2218 requested_dc = max_dc;
2219 } else {
2220 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2221 requested_dc = max_dc;
2222 }
2223
2224 if (requested_dc > 1)
2225 mask |= DC_STATE_EN_UPTO_DC6;
2226 if (requested_dc > 0)
2227 mask |= DC_STATE_EN_UPTO_DC5;
2228
2229 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2230
2231 return mask;
2232 }
2233
2234 #define set_power_wells(power_domains, __power_wells) ({ \
2235 (power_domains)->power_wells = (__power_wells); \
2236 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2237 })
2238
2239 /**
2240 * intel_power_domains_init - initializes the power domain structures
2241 * @dev_priv: i915 device instance
2242 *
2243 * Initializes the power domain structures for @dev_priv depending upon the
2244 * supported platform.
2245 */
2246 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2247 {
2248 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2249
2250 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2251 i915.disable_power_well);
2252 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2253 i915.enable_dc);
2254
2255 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2256
2257 mutex_init(&power_domains->lock);
2258
2259 /*
2260 * The enabling order will be from lower to higher indexed wells,
2261 * the disabling order is reversed.
2262 */
2263 if (IS_HASWELL(dev_priv)) {
2264 set_power_wells(power_domains, hsw_power_wells);
2265 } else if (IS_BROADWELL(dev_priv)) {
2266 set_power_wells(power_domains, bdw_power_wells);
2267 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2268 set_power_wells(power_domains, skl_power_wells);
2269 } else if (IS_BROXTON(dev_priv)) {
2270 set_power_wells(power_domains, bxt_power_wells);
2271 } else if (IS_CHERRYVIEW(dev_priv)) {
2272 set_power_wells(power_domains, chv_power_wells);
2273 } else if (IS_VALLEYVIEW(dev_priv)) {
2274 set_power_wells(power_domains, vlv_power_wells);
2275 } else {
2276 set_power_wells(power_domains, i9xx_always_on_power_well);
2277 }
2278
2279 return 0;
2280 }
2281
2282 /**
2283 * intel_power_domains_fini - finalizes the power domain structures
2284 * @dev_priv: i915 device instance
2285 *
2286 * Finalizes the power domain structures for @dev_priv depending upon the
2287 * supported platform. This function also disables runtime pm and ensures that
2288 * the device stays powered up so that the driver can be reloaded.
2289 */
2290 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2291 {
2292 struct device *kdev = &dev_priv->drm.pdev->dev;
2293
2294 /*
2295 * The i915.ko module is still not prepared to be loaded when
2296 * the power well is not enabled, so just enable it in case
2297 * we're going to unload/reload.
2298 * The following also reacquires the RPM reference the core passed
2299 * to the driver during loading, which is dropped in
2300 * intel_runtime_pm_enable(). We have to hand back the control of the
2301 * device to the core with this reference held.
2302 */
2303 intel_display_set_init_power(dev_priv, true);
2304
2305 /* Remove the refcount we took to keep power well support disabled. */
2306 if (!i915.disable_power_well)
2307 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2308
2309 /*
2310 * Remove the refcount we took in intel_runtime_pm_enable() in case
2311 * the platform doesn't support runtime PM.
2312 */
2313 if (!HAS_RUNTIME_PM(dev_priv))
2314 pm_runtime_put(kdev);
2315 }
2316
2317 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2318 {
2319 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2320 struct i915_power_well *power_well;
2321 int i;
2322
2323 mutex_lock(&power_domains->lock);
2324 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2325 power_well->ops->sync_hw(dev_priv, power_well);
2326 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2327 power_well);
2328 }
2329 mutex_unlock(&power_domains->lock);
2330 }
2331
2332 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2333 {
2334 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2335 POSTING_READ(DBUF_CTL);
2336
2337 udelay(10);
2338
2339 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2340 DRM_ERROR("DBuf power enable timeout\n");
2341 }
2342
2343 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2344 {
2345 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2346 POSTING_READ(DBUF_CTL);
2347
2348 udelay(10);
2349
2350 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2351 DRM_ERROR("DBuf power disable timeout!\n");
2352 }
2353
2354 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2355 bool resume)
2356 {
2357 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2358 struct i915_power_well *well;
2359 uint32_t val;
2360
2361 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2362
2363 /* enable PCH reset handshake */
2364 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2365 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2366
2367 /* enable PG1 and Misc I/O */
2368 mutex_lock(&power_domains->lock);
2369
2370 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2371 intel_power_well_enable(dev_priv, well);
2372
2373 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2374 intel_power_well_enable(dev_priv, well);
2375
2376 mutex_unlock(&power_domains->lock);
2377
2378 skl_init_cdclk(dev_priv);
2379
2380 gen9_dbuf_enable(dev_priv);
2381
2382 if (resume && dev_priv->csr.dmc_payload)
2383 intel_csr_load_program(dev_priv);
2384 }
2385
2386 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2387 {
2388 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2389 struct i915_power_well *well;
2390
2391 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2392
2393 gen9_dbuf_disable(dev_priv);
2394
2395 skl_uninit_cdclk(dev_priv);
2396
2397 /* The spec doesn't call for removing the reset handshake flag */
2398 /* disable PG1 and Misc I/O */
2399
2400 mutex_lock(&power_domains->lock);
2401
2402 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2403 intel_power_well_disable(dev_priv, well);
2404
2405 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2406 intel_power_well_disable(dev_priv, well);
2407
2408 mutex_unlock(&power_domains->lock);
2409 }
2410
2411 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2412 bool resume)
2413 {
2414 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2415 struct i915_power_well *well;
2416 uint32_t val;
2417
2418 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2419
2420 /*
2421 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2422 * or else the reset will hang because there is no PCH to respond.
2423 * Move the handshake programming to initialization sequence.
2424 * Previously was left up to BIOS.
2425 */
2426 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2427 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2428 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2429
2430 /* Enable PG1 */
2431 mutex_lock(&power_domains->lock);
2432
2433 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2434 intel_power_well_enable(dev_priv, well);
2435
2436 mutex_unlock(&power_domains->lock);
2437
2438 bxt_init_cdclk(dev_priv);
2439
2440 gen9_dbuf_enable(dev_priv);
2441
2442 if (resume && dev_priv->csr.dmc_payload)
2443 intel_csr_load_program(dev_priv);
2444 }
2445
2446 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2447 {
2448 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2449 struct i915_power_well *well;
2450
2451 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2452
2453 gen9_dbuf_disable(dev_priv);
2454
2455 bxt_uninit_cdclk(dev_priv);
2456
2457 /* The spec doesn't call for removing the reset handshake flag */
2458
2459 /* Disable PG1 */
2460 mutex_lock(&power_domains->lock);
2461
2462 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2463 intel_power_well_disable(dev_priv, well);
2464
2465 mutex_unlock(&power_domains->lock);
2466 }
2467
2468 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2469 {
2470 struct i915_power_well *cmn_bc =
2471 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2472 struct i915_power_well *cmn_d =
2473 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2474
2475 /*
2476 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2477 * workaround never ever read DISPLAY_PHY_CONTROL, and
2478 * instead maintain a shadow copy ourselves. Use the actual
2479 * power well state and lane status to reconstruct the
2480 * expected initial value.
2481 */
2482 dev_priv->chv_phy_control =
2483 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2484 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2485 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2486 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2487 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2488
2489 /*
2490 * If all lanes are disabled we leave the override disabled
2491 * with all power down bits cleared to match the state we
2492 * would use after disabling the port. Otherwise enable the
2493 * override and set the lane powerdown bits accding to the
2494 * current lane status.
2495 */
2496 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2497 uint32_t status = I915_READ(DPLL(PIPE_A));
2498 unsigned int mask;
2499
2500 mask = status & DPLL_PORTB_READY_MASK;
2501 if (mask == 0xf)
2502 mask = 0x0;
2503 else
2504 dev_priv->chv_phy_control |=
2505 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2506
2507 dev_priv->chv_phy_control |=
2508 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2509
2510 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2511 if (mask == 0xf)
2512 mask = 0x0;
2513 else
2514 dev_priv->chv_phy_control |=
2515 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2516
2517 dev_priv->chv_phy_control |=
2518 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2519
2520 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2521
2522 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2523 } else {
2524 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2525 }
2526
2527 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2528 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2529 unsigned int mask;
2530
2531 mask = status & DPLL_PORTD_READY_MASK;
2532
2533 if (mask == 0xf)
2534 mask = 0x0;
2535 else
2536 dev_priv->chv_phy_control |=
2537 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2538
2539 dev_priv->chv_phy_control |=
2540 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2541
2542 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2543
2544 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2545 } else {
2546 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2547 }
2548
2549 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2550
2551 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2552 dev_priv->chv_phy_control);
2553 }
2554
2555 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2556 {
2557 struct i915_power_well *cmn =
2558 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2559 struct i915_power_well *disp2d =
2560 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2561
2562 /* If the display might be already active skip this */
2563 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2564 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2565 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2566 return;
2567
2568 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2569
2570 /* cmnlane needs DPLL registers */
2571 disp2d->ops->enable(dev_priv, disp2d);
2572
2573 /*
2574 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2575 * Need to assert and de-assert PHY SB reset by gating the
2576 * common lane power, then un-gating it.
2577 * Simply ungating isn't enough to reset the PHY enough to get
2578 * ports and lanes running.
2579 */
2580 cmn->ops->disable(dev_priv, cmn);
2581 }
2582
2583 /**
2584 * intel_power_domains_init_hw - initialize hardware power domain state
2585 * @dev_priv: i915 device instance
2586 * @resume: Called from resume code paths or not
2587 *
2588 * This function initializes the hardware power domain state and enables all
2589 * power domains using intel_display_set_init_power().
2590 */
2591 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2592 {
2593 struct drm_device *dev = &dev_priv->drm;
2594 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2595
2596 power_domains->initializing = true;
2597
2598 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2599 skl_display_core_init(dev_priv, resume);
2600 } else if (IS_BROXTON(dev)) {
2601 bxt_display_core_init(dev_priv, resume);
2602 } else if (IS_CHERRYVIEW(dev)) {
2603 mutex_lock(&power_domains->lock);
2604 chv_phy_control_init(dev_priv);
2605 mutex_unlock(&power_domains->lock);
2606 } else if (IS_VALLEYVIEW(dev)) {
2607 mutex_lock(&power_domains->lock);
2608 vlv_cmnlane_wa(dev_priv);
2609 mutex_unlock(&power_domains->lock);
2610 }
2611
2612 /* For now, we need the power well to be always enabled. */
2613 intel_display_set_init_power(dev_priv, true);
2614 /* Disable power support if the user asked so. */
2615 if (!i915.disable_power_well)
2616 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2617 intel_power_domains_sync_hw(dev_priv);
2618 power_domains->initializing = false;
2619 }
2620
2621 /**
2622 * intel_power_domains_suspend - suspend power domain state
2623 * @dev_priv: i915 device instance
2624 *
2625 * This function prepares the hardware power domain state before entering
2626 * system suspend. It must be paired with intel_power_domains_init_hw().
2627 */
2628 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2629 {
2630 /*
2631 * Even if power well support was disabled we still want to disable
2632 * power wells while we are system suspended.
2633 */
2634 if (!i915.disable_power_well)
2635 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2636
2637 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2638 skl_display_core_uninit(dev_priv);
2639 else if (IS_BROXTON(dev_priv))
2640 bxt_display_core_uninit(dev_priv);
2641 }
2642
2643 /**
2644 * intel_runtime_pm_get - grab a runtime pm reference
2645 * @dev_priv: i915 device instance
2646 *
2647 * This function grabs a device-level runtime pm reference (mostly used for GEM
2648 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2649 *
2650 * Any runtime pm reference obtained by this function must have a symmetric
2651 * call to intel_runtime_pm_put() to release the reference again.
2652 */
2653 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2654 {
2655 struct pci_dev *pdev = dev_priv->drm.pdev;
2656 struct device *kdev = &pdev->dev;
2657
2658 pm_runtime_get_sync(kdev);
2659
2660 atomic_inc(&dev_priv->pm.wakeref_count);
2661 assert_rpm_wakelock_held(dev_priv);
2662 }
2663
2664 /**
2665 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2666 * @dev_priv: i915 device instance
2667 *
2668 * This function grabs a device-level runtime pm reference if the device is
2669 * already in use and ensures that it is powered up.
2670 *
2671 * Any runtime pm reference obtained by this function must have a symmetric
2672 * call to intel_runtime_pm_put() to release the reference again.
2673 */
2674 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2675 {
2676 struct pci_dev *pdev = dev_priv->drm.pdev;
2677 struct device *kdev = &pdev->dev;
2678
2679 if (IS_ENABLED(CONFIG_PM)) {
2680 int ret = pm_runtime_get_if_in_use(kdev);
2681
2682 /*
2683 * In cases runtime PM is disabled by the RPM core and we get
2684 * an -EINVAL return value we are not supposed to call this
2685 * function, since the power state is undefined. This applies
2686 * atm to the late/early system suspend/resume handlers.
2687 */
2688 WARN_ON_ONCE(ret < 0);
2689 if (ret <= 0)
2690 return false;
2691 }
2692
2693 atomic_inc(&dev_priv->pm.wakeref_count);
2694 assert_rpm_wakelock_held(dev_priv);
2695
2696 return true;
2697 }
2698
2699 /**
2700 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2701 * @dev_priv: i915 device instance
2702 *
2703 * This function grabs a device-level runtime pm reference (mostly used for GEM
2704 * code to ensure the GTT or GT is on).
2705 *
2706 * It will _not_ power up the device but instead only check that it's powered
2707 * on. Therefore it is only valid to call this functions from contexts where
2708 * the device is known to be powered up and where trying to power it up would
2709 * result in hilarity and deadlocks. That pretty much means only the system
2710 * suspend/resume code where this is used to grab runtime pm references for
2711 * delayed setup down in work items.
2712 *
2713 * Any runtime pm reference obtained by this function must have a symmetric
2714 * call to intel_runtime_pm_put() to release the reference again.
2715 */
2716 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2717 {
2718 struct pci_dev *pdev = dev_priv->drm.pdev;
2719 struct device *kdev = &pdev->dev;
2720
2721 assert_rpm_wakelock_held(dev_priv);
2722 pm_runtime_get_noresume(kdev);
2723
2724 atomic_inc(&dev_priv->pm.wakeref_count);
2725 }
2726
2727 /**
2728 * intel_runtime_pm_put - release a runtime pm reference
2729 * @dev_priv: i915 device instance
2730 *
2731 * This function drops the device-level runtime pm reference obtained by
2732 * intel_runtime_pm_get() and might power down the corresponding
2733 * hardware block right away if this is the last reference.
2734 */
2735 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2736 {
2737 struct pci_dev *pdev = dev_priv->drm.pdev;
2738 struct device *kdev = &pdev->dev;
2739
2740 assert_rpm_wakelock_held(dev_priv);
2741 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2742 atomic_inc(&dev_priv->pm.atomic_seq);
2743
2744 pm_runtime_mark_last_busy(kdev);
2745 pm_runtime_put_autosuspend(kdev);
2746 }
2747
2748 /**
2749 * intel_runtime_pm_enable - enable runtime pm
2750 * @dev_priv: i915 device instance
2751 *
2752 * This function enables runtime pm at the end of the driver load sequence.
2753 *
2754 * Note that this function does currently not enable runtime pm for the
2755 * subordinate display power domains. That is only done on the first modeset
2756 * using intel_display_set_init_power().
2757 */
2758 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2759 {
2760 struct pci_dev *pdev = dev_priv->drm.pdev;
2761 struct drm_device *dev = &dev_priv->drm;
2762 struct device *kdev = &pdev->dev;
2763
2764 pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2765 pm_runtime_mark_last_busy(kdev);
2766
2767 /*
2768 * Take a permanent reference to disable the RPM functionality and drop
2769 * it only when unloading the driver. Use the low level get/put helpers,
2770 * so the driver's own RPM reference tracking asserts also work on
2771 * platforms without RPM support.
2772 */
2773 if (!HAS_RUNTIME_PM(dev)) {
2774 pm_runtime_dont_use_autosuspend(kdev);
2775 pm_runtime_get_sync(kdev);
2776 } else {
2777 pm_runtime_use_autosuspend(kdev);
2778 }
2779
2780 /*
2781 * The core calls the driver load handler with an RPM reference held.
2782 * We drop that here and will reacquire it during unloading in
2783 * intel_power_domains_fini().
2784 */
2785 pm_runtime_put_autosuspend(kdev);
2786 }