]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/msm/adreno/a6xx_gpu.c
drm/msm/a6xx: fix incorrectly set uavflagprd_inv field for A650
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / msm / adreno / a6xx_gpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/soc/qcom/llcc-qcom.h>
14
15 #define GPU_PAS_ID 13
16
17 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
18 {
19 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
20 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
21
22 /* Check that the GMU is idle */
23 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
24 return false;
25
26 /* Check tha the CX master is idle */
27 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
28 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
29 return false;
30
31 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
32 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
33 }
34
35 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
36 {
37 /* wait for CP to drain ringbuffer: */
38 if (!adreno_idle(gpu, ring))
39 return false;
40
41 if (spin_until(_a6xx_check_idle(gpu))) {
42 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
43 gpu->name, __builtin_return_address(0),
44 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
45 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
46 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
47 gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
48 return false;
49 }
50
51 return true;
52 }
53
54 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
55 {
56 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
57 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
58 uint32_t wptr;
59 unsigned long flags;
60
61 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
62 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
63 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
64
65 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
66 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
67 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
68 }
69
70 spin_lock_irqsave(&ring->preempt_lock, flags);
71
72 /* Copy the shadow to the actual register */
73 ring->cur = ring->next;
74
75 /* Make sure to wrap wptr if we need to */
76 wptr = get_wptr(ring);
77
78 spin_unlock_irqrestore(&ring->preempt_lock, flags);
79
80 /* Make sure everything is posted before making a decision */
81 mb();
82
83 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
84 }
85
86 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
87 u64 iova)
88 {
89 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
90 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
91 CP_REG_TO_MEM_0_CNT(2) |
92 CP_REG_TO_MEM_0_64B);
93 OUT_RING(ring, lower_32_bits(iova));
94 OUT_RING(ring, upper_32_bits(iova));
95 }
96
97 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
98 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
99 {
100 phys_addr_t ttbr;
101 u32 asid;
102 u64 memptr = rbmemptr(ring, ttbr0);
103
104 if (ctx == a6xx_gpu->cur_ctx)
105 return;
106
107 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
108 return;
109
110 /* Execute the table update */
111 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
112 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
113
114 OUT_RING(ring,
115 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
116 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
117 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
118 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
119
120 /*
121 * Write the new TTBR0 to the memstore. This is good for debugging.
122 */
123 OUT_PKT7(ring, CP_MEM_WRITE, 4);
124 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
125 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
126 OUT_RING(ring, lower_32_bits(ttbr));
127 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
128
129 /*
130 * And finally, trigger a uche flush to be sure there isn't anything
131 * lingering in that part of the GPU
132 */
133
134 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
135 OUT_RING(ring, 0x31);
136
137 a6xx_gpu->cur_ctx = ctx;
138 }
139
140 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
141 {
142 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
143 struct msm_drm_private *priv = gpu->dev->dev_private;
144 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
145 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
146 struct msm_ringbuffer *ring = submit->ring;
147 unsigned int i;
148
149 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
150
151 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
152 rbmemptr_stats(ring, index, cpcycles_start));
153
154 /*
155 * For PM4 the GMU register offsets are calculated from the base of the
156 * GPU registers so we need to add 0x1a800 to the register value on A630
157 * to get the right value from PM4.
158 */
159 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
160 rbmemptr_stats(ring, index, alwayson_start));
161
162 /* Invalidate CCU depth and color */
163 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
164 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
165
166 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
167 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
168
169 /* Submit the commands */
170 for (i = 0; i < submit->nr_cmds; i++) {
171 switch (submit->cmd[i].type) {
172 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
173 break;
174 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
175 if (priv->lastctx == submit->queue->ctx)
176 break;
177 fallthrough;
178 case MSM_SUBMIT_CMD_BUF:
179 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
180 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
181 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
182 OUT_RING(ring, submit->cmd[i].size);
183 break;
184 }
185 }
186
187 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
188 rbmemptr_stats(ring, index, cpcycles_end));
189 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
190 rbmemptr_stats(ring, index, alwayson_end));
191
192 /* Write the fence to the scratch register */
193 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
194 OUT_RING(ring, submit->seqno);
195
196 /*
197 * Execute a CACHE_FLUSH_TS event. This will ensure that the
198 * timestamp is written to the memory and then triggers the interrupt
199 */
200 OUT_PKT7(ring, CP_EVENT_WRITE, 4);
201 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
202 CP_EVENT_WRITE_0_IRQ);
203 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
204 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
205 OUT_RING(ring, submit->seqno);
206
207 trace_msm_gpu_submit_flush(submit,
208 gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L,
209 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H));
210
211 a6xx_flush(gpu, ring);
212 }
213
214 const struct adreno_reglist a630_hwcg[] = {
215 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
216 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
217 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
218 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
219 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
220 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
221 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
222 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
223 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
224 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
225 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
226 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
227 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
228 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
229 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
230 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
231 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
232 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
233 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
234 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
235 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
236 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
237 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
238 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
239 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
240 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
241 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
242 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
243 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
244 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
245 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
246 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
247 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
248 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
249 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
250 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
251 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
252 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
253 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
254 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
255 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
256 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
257 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
258 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
259 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
260 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
261 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
262 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
263 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
264 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
265 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
266 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
267 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
268 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
269 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
270 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
271 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
272 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
273 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
274 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
275 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
276 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
277 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
278 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
279 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
280 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
281 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
282 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
283 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
284 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
285 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
286 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
287 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
288 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
289 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
290 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
291 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
293 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
297 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
301 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
302 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
303 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
304 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
305 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
306 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
307 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
308 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
309 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
310 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
311 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
312 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
313 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
314 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
315 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
316 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
317 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
318 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
319 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
320 {},
321 };
322
323 const struct adreno_reglist a640_hwcg[] = {
324 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
325 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
326 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
327 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
328 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
329 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
330 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
331 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
332 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
333 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
334 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
335 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
336 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
337 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
338 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
339 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
340 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
341 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
342 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
343 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
344 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
345 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
346 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
347 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
348 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
349 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
350 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
351 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
352 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
353 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
354 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
355 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
356 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
357 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
358 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
359 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
360 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
361 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
362 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
363 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
364 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
365 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
366 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
367 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
368 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
369 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
370 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
371 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
372 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
373 {},
374 };
375
376 const struct adreno_reglist a650_hwcg[] = {
377 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
378 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
379 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
380 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
381 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
382 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
383 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
384 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
385 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
386 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
387 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
388 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
389 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
390 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
391 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
392 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
393 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
394 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
395 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
396 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
397 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
398 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
399 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
400 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
401 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
402 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
403 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
404 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
405 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
406 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
407 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
408 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
409 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
410 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
411 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
412 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
413 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
414 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
415 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
416 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
417 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
418 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
419 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
420 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
421 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
422 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
423 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
424 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
425 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
426 {},
427 };
428
429 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
430 {
431 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
432 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
433 struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
434 const struct adreno_reglist *reg;
435 unsigned int i;
436 u32 val, clock_cntl_on;
437
438 if (!adreno_gpu->info->hwcg)
439 return;
440
441 if (adreno_is_a630(adreno_gpu))
442 clock_cntl_on = 0x8aa8aa02;
443 else
444 clock_cntl_on = 0x8aa8aa82;
445
446 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
447
448 /* Don't re-program the registers if they are already correct */
449 if ((!state && !val) || (state && (val == clock_cntl_on)))
450 return;
451
452 /* Disable SP clock before programming HWCG registers */
453 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
454
455 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
456 gpu_write(gpu, reg->offset, state ? reg->value : 0);
457
458 /* Enable SP clock */
459 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
460
461 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
462 }
463
464 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
465 {
466 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
467 u32 lower_bit = 2;
468 u32 amsbc = 0;
469 u32 rgb565_predicator = 0;
470 u32 uavflagprd_inv = 0;
471
472 /* a618 is using the hw default values */
473 if (adreno_is_a618(adreno_gpu))
474 return;
475
476 if (adreno_is_a640(adreno_gpu))
477 amsbc = 1;
478
479 if (adreno_is_a650(adreno_gpu)) {
480 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
481 lower_bit = 3;
482 amsbc = 1;
483 rgb565_predicator = 1;
484 uavflagprd_inv = 2;
485 }
486
487 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
488 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
489 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
490 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
491 uavflagprd_inv << 4 | lower_bit << 1);
492 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
493 }
494
495 static int a6xx_cp_init(struct msm_gpu *gpu)
496 {
497 struct msm_ringbuffer *ring = gpu->rb[0];
498
499 OUT_PKT7(ring, CP_ME_INIT, 8);
500
501 OUT_RING(ring, 0x0000002f);
502
503 /* Enable multiple hardware contexts */
504 OUT_RING(ring, 0x00000003);
505
506 /* Enable error detection */
507 OUT_RING(ring, 0x20000000);
508
509 /* Don't enable header dump */
510 OUT_RING(ring, 0x00000000);
511 OUT_RING(ring, 0x00000000);
512
513 /* No workarounds enabled */
514 OUT_RING(ring, 0x00000000);
515
516 /* Pad rest of the cmds with 0's */
517 OUT_RING(ring, 0x00000000);
518 OUT_RING(ring, 0x00000000);
519
520 a6xx_flush(gpu, ring);
521 return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
522 }
523
524 /*
525 * Check that the microcode version is new enough to include several key
526 * security fixes. Return true if the ucode is safe.
527 */
528 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
529 struct drm_gem_object *obj)
530 {
531 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
532 struct msm_gpu *gpu = &adreno_gpu->base;
533 u32 *buf = msm_gem_get_vaddr(obj);
534 bool ret = false;
535
536 if (IS_ERR(buf))
537 return false;
538
539 /*
540 * Targets up to a640 (a618, a630 and a640) need to check for a
541 * microcode version that is patched to support the whereami opcode or
542 * one that is new enough to include it by default.
543 */
544 if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) ||
545 adreno_is_a640(adreno_gpu)) {
546 /*
547 * If the lowest nibble is 0xa that is an indication that this
548 * microcode has been patched. The actual version is in dword
549 * [3] but we only care about the patchlevel which is the lowest
550 * nibble of dword [3]
551 *
552 * Otherwise check that the firmware is greater than or equal
553 * to 1.90 which was the first version that had this fix built
554 * in
555 */
556 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
557 (buf[0] & 0xfff) >= 0x190) {
558 a6xx_gpu->has_whereami = true;
559 ret = true;
560 goto out;
561 }
562
563 DRM_DEV_ERROR(&gpu->pdev->dev,
564 "a630 SQE ucode is too old. Have version %x need at least %x\n",
565 buf[0] & 0xfff, 0x190);
566 } else {
567 /*
568 * a650 tier targets don't need whereami but still need to be
569 * equal to or newer than 0.95 for other security fixes
570 */
571 if (adreno_is_a650(adreno_gpu)) {
572 if ((buf[0] & 0xfff) >= 0x095) {
573 ret = true;
574 goto out;
575 }
576
577 DRM_DEV_ERROR(&gpu->pdev->dev,
578 "a650 SQE ucode is too old. Have version %x need at least %x\n",
579 buf[0] & 0xfff, 0x095);
580 }
581
582 /*
583 * When a660 is added those targets should return true here
584 * since those have all the critical security fixes built in
585 * from the start
586 */
587 }
588 out:
589 msm_gem_put_vaddr(obj);
590 return ret;
591 }
592
593 static int a6xx_ucode_init(struct msm_gpu *gpu)
594 {
595 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
596 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
597
598 if (!a6xx_gpu->sqe_bo) {
599 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
600 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
601
602 if (IS_ERR(a6xx_gpu->sqe_bo)) {
603 int ret = PTR_ERR(a6xx_gpu->sqe_bo);
604
605 a6xx_gpu->sqe_bo = NULL;
606 DRM_DEV_ERROR(&gpu->pdev->dev,
607 "Could not allocate SQE ucode: %d\n", ret);
608
609 return ret;
610 }
611
612 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
613 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
614 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
615 drm_gem_object_put(a6xx_gpu->sqe_bo);
616
617 a6xx_gpu->sqe_bo = NULL;
618 return -EPERM;
619 }
620 }
621
622 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO,
623 REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova);
624
625 return 0;
626 }
627
628 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
629 {
630 static bool loaded;
631 int ret;
632
633 if (loaded)
634 return 0;
635
636 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
637
638 loaded = !ret;
639 return ret;
640 }
641
642 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
643 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
644 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
645 A6XX_RBBM_INT_0_MASK_CP_IB2 | \
646 A6XX_RBBM_INT_0_MASK_CP_IB1 | \
647 A6XX_RBBM_INT_0_MASK_CP_RB | \
648 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
649 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
650 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
651 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
652 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
653
654 static int a6xx_hw_init(struct msm_gpu *gpu)
655 {
656 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
657 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
658 int ret;
659
660 /* Make sure the GMU keeps the GPU on while we set it up */
661 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
662
663 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
664
665 /*
666 * Disable the trusted memory range - we don't actually supported secure
667 * memory rendering at this point in time and we don't want to block off
668 * part of the virtual memory space.
669 */
670 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
671 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
672 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
673
674 /* Turn on 64 bit addressing for all blocks */
675 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
676 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
677 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
678 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
679 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
680 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
681 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
682 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
683 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
684 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
685 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
686 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
687
688 /* enable hardware clockgating */
689 a6xx_set_hwcg(gpu, true);
690
691 /* VBIF/GBIF start*/
692 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) {
693 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
694 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
695 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
696 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
697 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
698 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
699 } else {
700 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
701 }
702
703 if (adreno_is_a630(adreno_gpu))
704 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
705
706 /* Make all blocks contribute to the GPU BUSY perf counter */
707 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
708
709 /* Disable L2 bypass in the UCHE */
710 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
711 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
712 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
713 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
714 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
715 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
716
717 if (!adreno_is_a650(adreno_gpu)) {
718 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
719 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
720 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
721
722 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
723 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
724 0x00100000 + adreno_gpu->gmem - 1);
725 }
726
727 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
728 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
729
730 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu))
731 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
732 else
733 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
734 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
735
736 /* Setting the mem pool size */
737 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
738
739 /* Setting the primFifo thresholds default values */
740 if (adreno_is_a650(adreno_gpu))
741 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300000);
742 else if (adreno_is_a640(adreno_gpu))
743 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200000);
744 else
745 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11));
746
747 /* Set the AHB default slave response to "ERROR" */
748 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
749
750 /* Turn on performance counters */
751 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
752
753 /* Select CP0 to always count cycles */
754 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
755
756 a6xx_set_ubwc_config(gpu);
757
758 /* Enable fault detection */
759 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
760 (1 << 30) | 0x1fffff);
761
762 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
763
764 /* Set weights for bicubic filtering */
765 if (adreno_is_a650(adreno_gpu)) {
766 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
767 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
768 0x3fe05ff4);
769 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
770 0x3fa0ebee);
771 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
772 0x3f5193ed);
773 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
774 0x3f0243f0);
775 }
776
777 /* Protect registers from the CP */
778 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003);
779
780 gpu_write(gpu, REG_A6XX_CP_PROTECT(0),
781 A6XX_PROTECT_RDONLY(0x600, 0x51));
782 gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
783 gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
784 gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
785 gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
786 gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
787 gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
788 gpu_write(gpu, REG_A6XX_CP_PROTECT(7),
789 A6XX_PROTECT_RDONLY(0xfc00, 0x3));
790 gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
791 gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
792 gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
793 gpu_write(gpu, REG_A6XX_CP_PROTECT(11),
794 A6XX_PROTECT_RDONLY(0x0, 0x4f9));
795 gpu_write(gpu, REG_A6XX_CP_PROTECT(12),
796 A6XX_PROTECT_RDONLY(0x501, 0xa));
797 gpu_write(gpu, REG_A6XX_CP_PROTECT(13),
798 A6XX_PROTECT_RDONLY(0x511, 0x44));
799 gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
800 gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
801 gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
802 gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
803 gpu_write(gpu, REG_A6XX_CP_PROTECT(18),
804 A6XX_PROTECT_RW(0xbe20, 0x11f3));
805 gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
806 gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
807 gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
808 gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
809 gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
810 gpu_write(gpu, REG_A6XX_CP_PROTECT(24),
811 A6XX_PROTECT_RDONLY(0x980, 0x4));
812 gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
813
814 /* Enable expanded apriv for targets that support it */
815 if (gpu->hw_apriv) {
816 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
817 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
818 }
819
820 /* Enable interrupts */
821 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
822
823 ret = adreno_hw_init(gpu);
824 if (ret)
825 goto out;
826
827 ret = a6xx_ucode_init(gpu);
828 if (ret)
829 goto out;
830
831 /* Set the ringbuffer address */
832 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
833 gpu->rb[0]->iova);
834
835 /* Targets that support extended APRIV can use the RPTR shadow from
836 * hardware but all the other ones need to disable the feature. Targets
837 * that support the WHERE_AM_I opcode can use that instead
838 */
839 if (adreno_gpu->base.hw_apriv)
840 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
841 else
842 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
843 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
844
845 /*
846 * Expanded APRIV and targets that support WHERE_AM_I both need a
847 * privileged buffer to store the RPTR shadow
848 */
849
850 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
851 if (!a6xx_gpu->shadow_bo) {
852 a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev,
853 sizeof(u32) * gpu->nr_rings,
854 MSM_BO_UNCACHED | MSM_BO_MAP_PRIV,
855 gpu->aspace, &a6xx_gpu->shadow_bo,
856 &a6xx_gpu->shadow_iova);
857
858 if (IS_ERR(a6xx_gpu->shadow))
859 return PTR_ERR(a6xx_gpu->shadow);
860 }
861
862 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
863 REG_A6XX_CP_RB_RPTR_ADDR_HI,
864 shadowptr(a6xx_gpu, gpu->rb[0]));
865 }
866
867 /* Always come up on rb 0 */
868 a6xx_gpu->cur_ring = gpu->rb[0];
869
870 a6xx_gpu->cur_ctx = NULL;
871
872 /* Enable the SQE_to start the CP engine */
873 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
874
875 ret = a6xx_cp_init(gpu);
876 if (ret)
877 goto out;
878
879 /*
880 * Try to load a zap shader into the secure world. If successful
881 * we can use the CP to switch out of secure mode. If not then we
882 * have no resource but to try to switch ourselves out manually. If we
883 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
884 * be blocked and a permissions violation will soon follow.
885 */
886 ret = a6xx_zap_shader_init(gpu);
887 if (!ret) {
888 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
889 OUT_RING(gpu->rb[0], 0x00000000);
890
891 a6xx_flush(gpu, gpu->rb[0]);
892 if (!a6xx_idle(gpu, gpu->rb[0]))
893 return -EINVAL;
894 } else if (ret == -ENODEV) {
895 /*
896 * This device does not use zap shader (but print a warning
897 * just in case someone got their dt wrong.. hopefully they
898 * have a debug UART to realize the error of their ways...
899 * if you mess this up you are about to crash horribly)
900 */
901 dev_warn_once(gpu->dev->dev,
902 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
903 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
904 ret = 0;
905 } else {
906 return ret;
907 }
908
909 out:
910 /*
911 * Tell the GMU that we are done touching the GPU and it can start power
912 * management
913 */
914 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
915
916 if (a6xx_gpu->gmu.legacy) {
917 /* Take the GMU out of its special boot mode */
918 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
919 }
920
921 return ret;
922 }
923
924 static void a6xx_dump(struct msm_gpu *gpu)
925 {
926 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
927 gpu_read(gpu, REG_A6XX_RBBM_STATUS));
928 adreno_dump(gpu);
929 }
930
931 #define VBIF_RESET_ACK_TIMEOUT 100
932 #define VBIF_RESET_ACK_MASK 0x00f0
933
934 static void a6xx_recover(struct msm_gpu *gpu)
935 {
936 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
937 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
938 int i;
939
940 adreno_dump_info(gpu);
941
942 for (i = 0; i < 8; i++)
943 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
944 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
945
946 if (hang_debug)
947 a6xx_dump(gpu);
948
949 /*
950 * Turn off keep alive that might have been enabled by the hang
951 * interrupt
952 */
953 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
954
955 gpu->funcs->pm_suspend(gpu);
956 gpu->funcs->pm_resume(gpu);
957
958 msm_gpu_hw_init(gpu);
959 }
960
961 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
962 {
963 struct msm_gpu *gpu = arg;
964
965 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
966 iova, flags,
967 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
968 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
969 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
970 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
971
972 return -EFAULT;
973 }
974
975 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
976 {
977 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
978
979 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
980 u32 val;
981
982 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
983 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
984 dev_err_ratelimited(&gpu->pdev->dev,
985 "CP | opcode error | possible opcode=0x%8.8X\n",
986 val);
987 }
988
989 if (status & A6XX_CP_INT_CP_UCODE_ERROR)
990 dev_err_ratelimited(&gpu->pdev->dev,
991 "CP ucode error interrupt\n");
992
993 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
994 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
995 gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
996
997 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
998 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
999
1000 dev_err_ratelimited(&gpu->pdev->dev,
1001 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1002 val & (1 << 20) ? "READ" : "WRITE",
1003 (val & 0x3ffff), val);
1004 }
1005
1006 if (status & A6XX_CP_INT_CP_AHB_ERROR)
1007 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1008
1009 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1010 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1011
1012 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1013 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1014
1015 }
1016
1017 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1018 {
1019 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1020 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1021 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1022
1023 /*
1024 * Force the GPU to stay on until after we finish
1025 * collecting information
1026 */
1027 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1028
1029 DRM_DEV_ERROR(&gpu->pdev->dev,
1030 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1031 ring ? ring->id : -1, ring ? ring->seqno : 0,
1032 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1033 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1034 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1035 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1036 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1037 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1038 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1039
1040 /* Turn off the hangcheck timer to keep it from bothering us */
1041 del_timer(&gpu->hangcheck_timer);
1042
1043 kthread_queue_work(gpu->worker, &gpu->recover_work);
1044 }
1045
1046 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1047 {
1048 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1049
1050 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1051
1052 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1053 a6xx_fault_detect_irq(gpu);
1054
1055 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1056 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1057
1058 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1059 a6xx_cp_hw_err_irq(gpu);
1060
1061 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1062 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1063
1064 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1065 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1066
1067 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1068 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1069
1070 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1071 msm_gpu_retire(gpu);
1072
1073 return IRQ_HANDLED;
1074 }
1075
1076 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1077 {
1078 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1079 }
1080
1081 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1082 {
1083 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1084 }
1085
1086 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1087 {
1088 llcc_slice_deactivate(a6xx_gpu->llc_slice);
1089 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1090 }
1091
1092 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1093 {
1094 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1095 struct msm_gpu *gpu = &adreno_gpu->base;
1096 u32 cntl1_regval = 0;
1097
1098 if (IS_ERR(a6xx_gpu->llc_mmio))
1099 return;
1100
1101 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1102 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1103
1104 gpu_scid &= 0x1f;
1105 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1106 (gpu_scid << 15) | (gpu_scid << 20);
1107 }
1108
1109 /*
1110 * For targets with a MMU500, activate the slice but don't program the
1111 * register. The XBL will take care of that.
1112 */
1113 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1114 if (!a6xx_gpu->have_mmu500) {
1115 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1116
1117 gpuhtw_scid &= 0x1f;
1118 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1119 }
1120 }
1121
1122 if (cntl1_regval) {
1123 /*
1124 * Program the slice IDs for the various GPU blocks and GPU MMU
1125 * pagetables
1126 */
1127 if (a6xx_gpu->have_mmu500)
1128 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0),
1129 cntl1_regval);
1130 else {
1131 a6xx_llc_write(a6xx_gpu,
1132 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1133
1134 /*
1135 * Program cacheability overrides to not allocate cache
1136 * lines on a write miss
1137 */
1138 a6xx_llc_rmw(a6xx_gpu,
1139 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1140 }
1141 }
1142 }
1143
1144 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1145 {
1146 llcc_slice_putd(a6xx_gpu->llc_slice);
1147 llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1148 }
1149
1150 static void a6xx_llc_slices_init(struct platform_device *pdev,
1151 struct a6xx_gpu *a6xx_gpu)
1152 {
1153 struct device_node *phandle;
1154
1155 /*
1156 * There is a different programming path for targets with an mmu500
1157 * attached, so detect if that is the case
1158 */
1159 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1160 a6xx_gpu->have_mmu500 = (phandle &&
1161 of_device_is_compatible(phandle, "arm,mmu-500"));
1162 of_node_put(phandle);
1163
1164 if (a6xx_gpu->have_mmu500)
1165 a6xx_gpu->llc_mmio = NULL;
1166 else
1167 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1168
1169 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1170 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1171
1172 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1173 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1174 }
1175
1176 static int a6xx_pm_resume(struct msm_gpu *gpu)
1177 {
1178 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1179 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1180 int ret;
1181
1182 gpu->needs_hw_init = true;
1183
1184 trace_msm_gpu_resume(0);
1185
1186 ret = a6xx_gmu_resume(a6xx_gpu);
1187 if (ret)
1188 return ret;
1189
1190 msm_gpu_resume_devfreq(gpu);
1191
1192 a6xx_llc_activate(a6xx_gpu);
1193
1194 return 0;
1195 }
1196
1197 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1198 {
1199 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1200 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1201 int i, ret;
1202
1203 trace_msm_gpu_suspend(0);
1204
1205 a6xx_llc_deactivate(a6xx_gpu);
1206
1207 devfreq_suspend_device(gpu->devfreq.devfreq);
1208
1209 ret = a6xx_gmu_stop(a6xx_gpu);
1210 if (ret)
1211 return ret;
1212
1213 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1214 for (i = 0; i < gpu->nr_rings; i++)
1215 a6xx_gpu->shadow[i] = 0;
1216
1217 return 0;
1218 }
1219
1220 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1221 {
1222 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1223 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1224 static DEFINE_MUTEX(perfcounter_oob);
1225
1226 mutex_lock(&perfcounter_oob);
1227
1228 /* Force the GPU power on so we can read this register */
1229 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1230
1231 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1232 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1233
1234 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1235 mutex_unlock(&perfcounter_oob);
1236 return 0;
1237 }
1238
1239 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1240 {
1241 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1242 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1243
1244 return a6xx_gpu->cur_ring;
1245 }
1246
1247 static void a6xx_destroy(struct msm_gpu *gpu)
1248 {
1249 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1250 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1251
1252 if (a6xx_gpu->sqe_bo) {
1253 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1254 drm_gem_object_put(a6xx_gpu->sqe_bo);
1255 }
1256
1257 if (a6xx_gpu->shadow_bo) {
1258 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1259 drm_gem_object_put(a6xx_gpu->shadow_bo);
1260 }
1261
1262 a6xx_llc_slices_destroy(a6xx_gpu);
1263
1264 a6xx_gmu_remove(a6xx_gpu);
1265
1266 adreno_gpu_cleanup(adreno_gpu);
1267 kfree(a6xx_gpu);
1268 }
1269
1270 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1271 {
1272 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1273 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1274 u64 busy_cycles, busy_time;
1275
1276
1277 /* Only read the gpu busy if the hardware is already active */
1278 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1279 return 0;
1280
1281 busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1282 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1283 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1284
1285 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1286 do_div(busy_time, 192);
1287
1288 gpu->devfreq.busy_cycles = busy_cycles;
1289
1290 pm_runtime_put(a6xx_gpu->gmu.dev);
1291
1292 if (WARN_ON(busy_time > ~0LU))
1293 return ~0LU;
1294
1295 return (unsigned long)busy_time;
1296 }
1297
1298 static struct msm_gem_address_space *
1299 a6xx_create_private_address_space(struct msm_gpu *gpu)
1300 {
1301 struct msm_mmu *mmu;
1302
1303 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1304
1305 if (IS_ERR(mmu))
1306 return ERR_CAST(mmu);
1307
1308 return msm_gem_address_space_create(mmu,
1309 "gpu", 0x100000000ULL, 0x1ffffffffULL);
1310 }
1311
1312 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1313 {
1314 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1315 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1316
1317 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1318 return a6xx_gpu->shadow[ring->id];
1319
1320 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1321 }
1322
1323 static const struct adreno_gpu_funcs funcs = {
1324 .base = {
1325 .get_param = adreno_get_param,
1326 .hw_init = a6xx_hw_init,
1327 .pm_suspend = a6xx_pm_suspend,
1328 .pm_resume = a6xx_pm_resume,
1329 .recover = a6xx_recover,
1330 .submit = a6xx_submit,
1331 .active_ring = a6xx_active_ring,
1332 .irq = a6xx_irq,
1333 .destroy = a6xx_destroy,
1334 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1335 .show = a6xx_show,
1336 #endif
1337 .gpu_busy = a6xx_gpu_busy,
1338 .gpu_get_freq = a6xx_gmu_get_freq,
1339 .gpu_set_freq = a6xx_gmu_set_freq,
1340 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1341 .gpu_state_get = a6xx_gpu_state_get,
1342 .gpu_state_put = a6xx_gpu_state_put,
1343 #endif
1344 .create_address_space = adreno_iommu_create_address_space,
1345 .create_private_address_space = a6xx_create_private_address_space,
1346 .get_rptr = a6xx_get_rptr,
1347 },
1348 .get_timestamp = a6xx_get_timestamp,
1349 };
1350
1351 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1352 {
1353 struct msm_drm_private *priv = dev->dev_private;
1354 struct platform_device *pdev = priv->gpu_pdev;
1355 struct adreno_platform_config *config = pdev->dev.platform_data;
1356 const struct adreno_info *info;
1357 struct device_node *node;
1358 struct a6xx_gpu *a6xx_gpu;
1359 struct adreno_gpu *adreno_gpu;
1360 struct msm_gpu *gpu;
1361 int ret;
1362
1363 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1364 if (!a6xx_gpu)
1365 return ERR_PTR(-ENOMEM);
1366
1367 adreno_gpu = &a6xx_gpu->base;
1368 gpu = &adreno_gpu->base;
1369
1370 adreno_gpu->registers = NULL;
1371
1372 /*
1373 * We need to know the platform type before calling into adreno_gpu_init
1374 * so that the hw_apriv flag can be correctly set. Snoop into the info
1375 * and grab the revision number
1376 */
1377 info = adreno_info(config->rev);
1378
1379 if (info && info->revn == 650)
1380 adreno_gpu->base.hw_apriv = true;
1381
1382 a6xx_llc_slices_init(pdev, a6xx_gpu);
1383
1384 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1385 if (ret) {
1386 a6xx_destroy(&(a6xx_gpu->base.base));
1387 return ERR_PTR(ret);
1388 }
1389
1390 /* Check if there is a GMU phandle and set it up */
1391 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1392
1393 /* FIXME: How do we gracefully handle this? */
1394 BUG_ON(!node);
1395
1396 ret = a6xx_gmu_init(a6xx_gpu, node);
1397 if (ret) {
1398 a6xx_destroy(&(a6xx_gpu->base.base));
1399 return ERR_PTR(ret);
1400 }
1401
1402 if (gpu->aspace)
1403 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1404 a6xx_fault_handler);
1405
1406 return gpu;
1407 }