]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/msm/adreno/a6xx_hfi.c
Merge tag 'asoc-v5.7' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / msm / adreno / a6xx_hfi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3
4 #include <linux/completion.h>
5 #include <linux/circ_buf.h>
6 #include <linux/list.h>
7
8 #include "a6xx_gmu.h"
9 #include "a6xx_gmu.xml.h"
10 #include "a6xx_gpu.h"
11
12 #define HFI_MSG_ID(val) [val] = #val
13
14 static const char * const a6xx_hfi_msg_id[] = {
15 HFI_MSG_ID(HFI_H2F_MSG_INIT),
16 HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
17 HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
18 HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
19 HFI_MSG_ID(HFI_H2F_MSG_TEST),
20 };
21
22 static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
23 u32 dwords)
24 {
25 struct a6xx_hfi_queue_header *header = queue->header;
26 u32 i, hdr, index = header->read_index;
27
28 if (header->read_index == header->write_index) {
29 header->rx_request = 1;
30 return 0;
31 }
32
33 hdr = queue->data[index];
34
35 /*
36 * If we are to assume that the GMU firmware is in fact a rational actor
37 * and is programmed to not send us a larger response than we expect
38 * then we can also assume that if the header size is unexpectedly large
39 * that it is due to memory corruption and/or hardware failure. In this
40 * case the only reasonable course of action is to BUG() to help harden
41 * the failure.
42 */
43
44 BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
45
46 for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
47 data[i] = queue->data[index];
48 index = (index + 1) % header->size;
49 }
50
51 header->read_index = index;
52 return HFI_HEADER_SIZE(hdr);
53 }
54
55 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
56 struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
57 {
58 struct a6xx_hfi_queue_header *header = queue->header;
59 u32 i, space, index = header->write_index;
60
61 spin_lock(&queue->lock);
62
63 space = CIRC_SPACE(header->write_index, header->read_index,
64 header->size);
65 if (space < dwords) {
66 header->dropped++;
67 spin_unlock(&queue->lock);
68 return -ENOSPC;
69 }
70
71 for (i = 0; i < dwords; i++) {
72 queue->data[index] = data[i];
73 index = (index + 1) % header->size;
74 }
75
76 header->write_index = index;
77 spin_unlock(&queue->lock);
78
79 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
80 return 0;
81 }
82
83 static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum,
84 u32 *payload, u32 payload_size)
85 {
86 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
87 u32 val;
88 int ret;
89
90 /* Wait for a response */
91 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
92 val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000);
93
94 if (ret) {
95 DRM_DEV_ERROR(gmu->dev,
96 "Message %s id %d timed out waiting for response\n",
97 a6xx_hfi_msg_id[id], seqnum);
98 return -ETIMEDOUT;
99 }
100
101 /* Clear the interrupt */
102 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR,
103 A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ);
104
105 for (;;) {
106 struct a6xx_hfi_msg_response resp;
107
108 /* Get the next packet */
109 ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
110 sizeof(resp) >> 2);
111
112 /* If the queue is empty our response never made it */
113 if (!ret) {
114 DRM_DEV_ERROR(gmu->dev,
115 "The HFI response queue is unexpectedly empty\n");
116
117 return -ENOENT;
118 }
119
120 if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) {
121 struct a6xx_hfi_msg_error *error =
122 (struct a6xx_hfi_msg_error *) &resp;
123
124 DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n",
125 error->code);
126 continue;
127 }
128
129 if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) {
130 DRM_DEV_ERROR(gmu->dev,
131 "Unexpected message id %d on the response queue\n",
132 HFI_HEADER_SEQNUM(resp.ret_header));
133 continue;
134 }
135
136 if (resp.error) {
137 DRM_DEV_ERROR(gmu->dev,
138 "Message %s id %d returned error %d\n",
139 a6xx_hfi_msg_id[id], seqnum, resp.error);
140 return -EINVAL;
141 }
142
143 /* All is well, copy over the buffer */
144 if (payload && payload_size)
145 memcpy(payload, resp.payload,
146 min_t(u32, payload_size, sizeof(resp.payload)));
147
148 return 0;
149 }
150 }
151
152 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
153 void *data, u32 size, u32 *payload, u32 payload_size)
154 {
155 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
156 int ret, dwords = size >> 2;
157 u32 seqnum;
158
159 seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
160
161 /* First dword of the message is the message header - fill it in */
162 *((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
163 (dwords << 8) | id;
164
165 ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
166 if (ret) {
167 DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n",
168 a6xx_hfi_msg_id[id], seqnum);
169 return ret;
170 }
171
172 return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size);
173 }
174
175 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
176 {
177 struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
178
179 msg.dbg_buffer_addr = (u32) gmu->debug->iova;
180 msg.dbg_buffer_size = (u32) gmu->debug->size;
181 msg.boot_state = boot_state;
182
183 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
184 NULL, 0);
185 }
186
187 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
188 {
189 struct a6xx_hfi_msg_fw_version msg = { 0 };
190
191 /* Currently supporting version 1.1 */
192 msg.supported_version = (1 << 28) | (1 << 16);
193
194 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
195 version, sizeof(*version));
196 }
197
198 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
199 {
200 struct a6xx_hfi_msg_perf_table msg = { 0 };
201 int i;
202
203 msg.num_gpu_levels = gmu->nr_gpu_freqs;
204 msg.num_gmu_levels = gmu->nr_gmu_freqs;
205
206 for (i = 0; i < gmu->nr_gpu_freqs; i++) {
207 msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
208 msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
209 }
210
211 for (i = 0; i < gmu->nr_gmu_freqs; i++) {
212 msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
213 msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
214 }
215
216 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
217 NULL, 0);
218 }
219
220 static void a618_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
221 {
222 /* Send a single "off" entry since the 618 GMU doesn't do bus scaling */
223 msg->bw_level_num = 1;
224
225 msg->ddr_cmds_num = 3;
226 msg->ddr_wait_bitmask = 0x01;
227
228 msg->ddr_cmds_addrs[0] = 0x50000;
229 msg->ddr_cmds_addrs[1] = 0x5003c;
230 msg->ddr_cmds_addrs[2] = 0x5000c;
231
232 msg->ddr_cmds_data[0][0] = 0x40000000;
233 msg->ddr_cmds_data[0][1] = 0x40000000;
234 msg->ddr_cmds_data[0][2] = 0x40000000;
235
236 /*
237 * These are the CX (CNOC) votes - these are used by the GMU but the
238 * votes are known and fixed for the target
239 */
240 msg->cnoc_cmds_num = 1;
241 msg->cnoc_wait_bitmask = 0x01;
242
243 msg->cnoc_cmds_addrs[0] = 0x5007c;
244 msg->cnoc_cmds_data[0][0] = 0x40000000;
245 msg->cnoc_cmds_data[1][0] = 0x60000001;
246 }
247
248 static void a6xx_build_bw_table(struct a6xx_hfi_msg_bw_table *msg)
249 {
250 /* Send a single "off" entry since the 630 GMU doesn't do bus scaling */
251 msg->bw_level_num = 1;
252
253 msg->ddr_cmds_num = 3;
254 msg->ddr_wait_bitmask = 0x07;
255
256 msg->ddr_cmds_addrs[0] = 0x50000;
257 msg->ddr_cmds_addrs[1] = 0x5005c;
258 msg->ddr_cmds_addrs[2] = 0x5000c;
259
260 msg->ddr_cmds_data[0][0] = 0x40000000;
261 msg->ddr_cmds_data[0][1] = 0x40000000;
262 msg->ddr_cmds_data[0][2] = 0x40000000;
263
264 /*
265 * These are the CX (CNOC) votes. This is used but the values for the
266 * sdm845 GMU are known and fixed so we can hard code them.
267 */
268
269 msg->cnoc_cmds_num = 3;
270 msg->cnoc_wait_bitmask = 0x05;
271
272 msg->cnoc_cmds_addrs[0] = 0x50034;
273 msg->cnoc_cmds_addrs[1] = 0x5007c;
274 msg->cnoc_cmds_addrs[2] = 0x5004c;
275
276 msg->cnoc_cmds_data[0][0] = 0x40000000;
277 msg->cnoc_cmds_data[0][1] = 0x00000000;
278 msg->cnoc_cmds_data[0][2] = 0x40000000;
279
280 msg->cnoc_cmds_data[1][0] = 0x60000001;
281 msg->cnoc_cmds_data[1][1] = 0x20000001;
282 msg->cnoc_cmds_data[1][2] = 0x60000001;
283 }
284
285
286 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
287 {
288 struct a6xx_hfi_msg_bw_table msg = { 0 };
289 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
290 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
291
292 if (adreno_is_a618(adreno_gpu))
293 a618_build_bw_table(&msg);
294 else
295 a6xx_build_bw_table(&msg);
296
297 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
298 NULL, 0);
299 }
300
301 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
302 {
303 struct a6xx_hfi_msg_test msg = { 0 };
304
305 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
306 NULL, 0);
307 }
308
309 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
310 {
311 int ret;
312
313 ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
314 if (ret)
315 return ret;
316
317 ret = a6xx_hfi_get_fw_version(gmu, NULL);
318 if (ret)
319 return ret;
320
321 /*
322 * We have to get exchange version numbers per the sequence but at this
323 * point th kernel driver doesn't need to know the exact version of
324 * the GMU firmware
325 */
326
327 ret = a6xx_hfi_send_perf_table(gmu);
328 if (ret)
329 return ret;
330
331 ret = a6xx_hfi_send_bw_table(gmu);
332 if (ret)
333 return ret;
334
335 /*
336 * Let the GMU know that there won't be any more HFI messages until next
337 * boot
338 */
339 a6xx_hfi_send_test(gmu);
340
341 return 0;
342 }
343
344 void a6xx_hfi_stop(struct a6xx_gmu *gmu)
345 {
346 int i;
347
348 for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
349 struct a6xx_hfi_queue *queue = &gmu->queues[i];
350
351 if (!queue->header)
352 continue;
353
354 if (queue->header->read_index != queue->header->write_index)
355 DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i);
356
357 queue->header->read_index = 0;
358 queue->header->write_index = 0;
359 }
360 }
361
362 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
363 struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
364 u32 id)
365 {
366 spin_lock_init(&queue->lock);
367 queue->header = header;
368 queue->data = virt;
369 atomic_set(&queue->seqnum, 0);
370
371 /* Set up the shared memory header */
372 header->iova = iova;
373 header->type = 10 << 8 | id;
374 header->status = 1;
375 header->size = SZ_4K >> 2;
376 header->msg_size = 0;
377 header->dropped = 0;
378 header->rx_watermark = 1;
379 header->tx_watermark = 1;
380 header->rx_request = 1;
381 header->tx_request = 0;
382 header->read_index = 0;
383 header->write_index = 0;
384 }
385
386 void a6xx_hfi_init(struct a6xx_gmu *gmu)
387 {
388 struct a6xx_gmu_bo *hfi = gmu->hfi;
389 struct a6xx_hfi_queue_table_header *table = hfi->virt;
390 struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
391 u64 offset;
392 int table_size;
393
394 /*
395 * The table size is the size of the table header plus all of the queue
396 * headers
397 */
398 table_size = sizeof(*table);
399 table_size += (ARRAY_SIZE(gmu->queues) *
400 sizeof(struct a6xx_hfi_queue_header));
401
402 table->version = 0;
403 table->size = table_size;
404 /* First queue header is located immediately after the table header */
405 table->qhdr0_offset = sizeof(*table) >> 2;
406 table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
407 table->num_queues = ARRAY_SIZE(gmu->queues);
408 table->active_queues = ARRAY_SIZE(gmu->queues);
409
410 /* Command queue */
411 offset = SZ_4K;
412 a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
413 hfi->iova + offset, 0);
414
415 /* GMU response queue */
416 offset += SZ_4K;
417 a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
418 hfi->iova + offset, 4);
419 }