]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/nouveau/dispnv04/crtc.c
Merge branch 'fix-uio' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / nouveau / dispnv04 / crtc.c
1 /*
2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25 #include <linux/pm_runtime.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 #include <drm/drm_plane_helper.h>
30
31 #include "nouveau_drv.h"
32 #include "nouveau_reg.h"
33 #include "nouveau_ttm.h"
34 #include "nouveau_bo.h"
35 #include "nouveau_gem.h"
36 #include "nouveau_encoder.h"
37 #include "nouveau_connector.h"
38 #include "nouveau_crtc.h"
39 #include "hw.h"
40 #include "nvreg.h"
41 #include "nouveau_fbcon.h"
42 #include "disp.h"
43
44 #include <subdev/bios/pll.h>
45 #include <subdev/clk.h>
46
47 static int
48 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
49 struct drm_framebuffer *old_fb);
50
51 static void
52 crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
53 {
54 NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
55 crtcstate->CRTC[index]);
56 }
57
58 static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
59 {
60 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
61 struct drm_device *dev = crtc->dev;
62 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
63
64 regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
65 if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
66 regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
67 regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
68 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
69 }
70 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
71 }
72
73 static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
74 {
75 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
76 struct drm_device *dev = crtc->dev;
77 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
78
79 nv_crtc->sharpness = level;
80 if (level < 0) /* blur is in hw range 0x3f -> 0x20 */
81 level += 0x40;
82 regp->ramdac_634 = level;
83 NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
84 }
85
86 #define PLLSEL_VPLL1_MASK \
87 (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
88 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
89 #define PLLSEL_VPLL2_MASK \
90 (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
91 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
92 #define PLLSEL_TV_MASK \
93 (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
94 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
95 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
96 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
97
98 /* NV4x 0x40.. pll notes:
99 * gpu pll: 0x4000 + 0x4004
100 * ?gpu? pll: 0x4008 + 0x400c
101 * vpll1: 0x4010 + 0x4014
102 * vpll2: 0x4018 + 0x401c
103 * mpll: 0x4020 + 0x4024
104 * mpll: 0x4038 + 0x403c
105 *
106 * the first register of each pair has some unknown details:
107 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
108 * bits 20-23: (mpll) something to do with post divider?
109 * bits 28-31: related to single stage mode? (bit 8/12)
110 */
111
112 static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
113 {
114 struct drm_device *dev = crtc->dev;
115 struct nouveau_drm *drm = nouveau_drm(dev);
116 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
117 struct nvkm_clk *clk = nvxx_clk(&drm->client.device);
118 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
119 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
120 struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
121 struct nvkm_pll_vals *pv = &regp->pllvals;
122 struct nvbios_pll pll_lim;
123
124 if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
125 &pll_lim))
126 return;
127
128 /* NM2 == 0 is used to determine single stage mode on two stage plls */
129 pv->NM2 = 0;
130
131 /* for newer nv4x the blob uses only the first stage of the vpll below a
132 * certain clock. for a certain nv4b this is 150MHz. since the max
133 * output frequency of the first stage for this card is 300MHz, it is
134 * assumed the threshold is given by vco1 maxfreq/2
135 */
136 /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
137 * not 8, others unknown), the blob always uses both plls. no problem
138 * has yet been observed in allowing the use a single stage pll on all
139 * nv43 however. the behaviour of single stage use is untested on nv40
140 */
141 if (drm->client.device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
142 memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));
143
144
145 if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
146 return;
147
148 state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;
149
150 /* The blob uses this always, so let's do the same */
151 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
152 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
153 /* again nv40 and some nv43 act more like nv3x as described above */
154 if (drm->client.device.info.chipset < 0x41)
155 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
156 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
157 state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;
158
159 if (pv->NM2)
160 NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
161 pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
162 else
163 NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
164 pv->N1, pv->M1, pv->log2P);
165
166 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
167 }
168
169 static void
170 nv_crtc_dpms(struct drm_crtc *crtc, int mode)
171 {
172 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
173 struct drm_device *dev = crtc->dev;
174 struct nouveau_drm *drm = nouveau_drm(dev);
175 unsigned char seq1 = 0, crtc17 = 0;
176 unsigned char crtc1A;
177
178 NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
179 nv_crtc->index);
180
181 if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
182 return;
183
184 nv_crtc->last_dpms = mode;
185
186 if (nv_two_heads(dev))
187 NVSetOwner(dev, nv_crtc->index);
188
189 /* nv4ref indicates these two RPC1 bits inhibit h/v sync */
190 crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
191 NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
192 switch (mode) {
193 case DRM_MODE_DPMS_STANDBY:
194 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
195 seq1 = 0x20;
196 crtc17 = 0x80;
197 crtc1A |= 0x80;
198 break;
199 case DRM_MODE_DPMS_SUSPEND:
200 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
201 seq1 = 0x20;
202 crtc17 = 0x80;
203 crtc1A |= 0x40;
204 break;
205 case DRM_MODE_DPMS_OFF:
206 /* Screen: Off; HSync: Off, VSync: Off */
207 seq1 = 0x20;
208 crtc17 = 0x00;
209 crtc1A |= 0xC0;
210 break;
211 case DRM_MODE_DPMS_ON:
212 default:
213 /* Screen: On; HSync: On, VSync: On */
214 seq1 = 0x00;
215 crtc17 = 0x80;
216 break;
217 }
218
219 NVVgaSeqReset(dev, nv_crtc->index, true);
220 /* Each head has it's own sequencer, so we can turn it off when we want */
221 seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
222 NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
223 crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
224 mdelay(10);
225 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
226 NVVgaSeqReset(dev, nv_crtc->index, false);
227
228 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
229 }
230
231 static void
232 nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
233 {
234 struct drm_device *dev = crtc->dev;
235 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
236 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
237 struct drm_framebuffer *fb = crtc->primary->fb;
238
239 /* Calculate our timings */
240 int horizDisplay = (mode->crtc_hdisplay >> 3) - 1;
241 int horizStart = (mode->crtc_hsync_start >> 3) + 1;
242 int horizEnd = (mode->crtc_hsync_end >> 3) + 1;
243 int horizTotal = (mode->crtc_htotal >> 3) - 5;
244 int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1;
245 int horizBlankEnd = (mode->crtc_htotal >> 3) - 1;
246 int vertDisplay = mode->crtc_vdisplay - 1;
247 int vertStart = mode->crtc_vsync_start - 1;
248 int vertEnd = mode->crtc_vsync_end - 1;
249 int vertTotal = mode->crtc_vtotal - 2;
250 int vertBlankStart = mode->crtc_vdisplay - 1;
251 int vertBlankEnd = mode->crtc_vtotal - 1;
252
253 struct drm_encoder *encoder;
254 bool fp_output = false;
255
256 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
257 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
258
259 if (encoder->crtc == crtc &&
260 (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
261 nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
262 fp_output = true;
263 }
264
265 if (fp_output) {
266 vertStart = vertTotal - 3;
267 vertEnd = vertTotal - 2;
268 vertBlankStart = vertStart;
269 horizStart = horizTotal - 5;
270 horizEnd = horizTotal - 2;
271 horizBlankEnd = horizTotal + 4;
272 #if 0
273 if (dev->overlayAdaptor && drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
274 /* This reportedly works around some video overlay bandwidth problems */
275 horizTotal += 2;
276 #endif
277 }
278
279 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
280 vertTotal |= 1;
281
282 #if 0
283 ErrorF("horizDisplay: 0x%X \n", horizDisplay);
284 ErrorF("horizStart: 0x%X \n", horizStart);
285 ErrorF("horizEnd: 0x%X \n", horizEnd);
286 ErrorF("horizTotal: 0x%X \n", horizTotal);
287 ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
288 ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
289 ErrorF("vertDisplay: 0x%X \n", vertDisplay);
290 ErrorF("vertStart: 0x%X \n", vertStart);
291 ErrorF("vertEnd: 0x%X \n", vertEnd);
292 ErrorF("vertTotal: 0x%X \n", vertTotal);
293 ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
294 ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
295 #endif
296
297 /*
298 * compute correct Hsync & Vsync polarity
299 */
300 if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
301 && (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {
302
303 regp->MiscOutReg = 0x23;
304 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
305 regp->MiscOutReg |= 0x40;
306 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
307 regp->MiscOutReg |= 0x80;
308 } else {
309 int vdisplay = mode->vdisplay;
310 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
311 vdisplay *= 2;
312 if (mode->vscan > 1)
313 vdisplay *= mode->vscan;
314 if (vdisplay < 400)
315 regp->MiscOutReg = 0xA3; /* +hsync -vsync */
316 else if (vdisplay < 480)
317 regp->MiscOutReg = 0x63; /* -hsync +vsync */
318 else if (vdisplay < 768)
319 regp->MiscOutReg = 0xE3; /* -hsync -vsync */
320 else
321 regp->MiscOutReg = 0x23; /* +hsync +vsync */
322 }
323
324 /*
325 * Time Sequencer
326 */
327 regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
328 /* 0x20 disables the sequencer */
329 if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
330 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
331 else
332 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
333 regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
334 regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
335 regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;
336
337 /*
338 * CRTC
339 */
340 regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
341 regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
342 regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
343 regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
344 XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
345 regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
346 regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
347 XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
348 regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
349 regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
350 XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
351 XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
352 (1 << 4) |
353 XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
354 XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
355 XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
356 XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
357 regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
358 regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
359 1 << 6 |
360 XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
361 regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
362 regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
363 regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
364 regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
365 regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
366 regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
367 regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
368 regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
369 regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
370 /* framebuffer can be larger than crtc scanout area. */
371 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
372 regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
373 regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
374 regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
375 regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
376 regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;
377
378 /*
379 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
380 */
381
382 /* framebuffer can be larger than crtc scanout area. */
383 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
384 XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
385 regp->CRTC[NV_CIO_CRE_42] =
386 XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
387 regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
388 MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
389 regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
390 XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
391 XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
392 XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
393 XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
394 regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
395 XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
396 XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
397 XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
398 regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
399 XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
400 XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
401 XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);
402
403 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
404 horizTotal = (horizTotal >> 1) & ~1;
405 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
406 regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
407 } else
408 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */
409
410 /*
411 * Graphics Display Controller
412 */
413 regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
414 regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
415 regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
416 regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
417 regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
418 regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
419 regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
420 regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
421 regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;
422
423 regp->Attribute[0] = 0x00; /* standard colormap translation */
424 regp->Attribute[1] = 0x01;
425 regp->Attribute[2] = 0x02;
426 regp->Attribute[3] = 0x03;
427 regp->Attribute[4] = 0x04;
428 regp->Attribute[5] = 0x05;
429 regp->Attribute[6] = 0x06;
430 regp->Attribute[7] = 0x07;
431 regp->Attribute[8] = 0x08;
432 regp->Attribute[9] = 0x09;
433 regp->Attribute[10] = 0x0A;
434 regp->Attribute[11] = 0x0B;
435 regp->Attribute[12] = 0x0C;
436 regp->Attribute[13] = 0x0D;
437 regp->Attribute[14] = 0x0E;
438 regp->Attribute[15] = 0x0F;
439 regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
440 /* Non-vga */
441 regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
442 regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
443 regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
444 regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
445 }
446
447 /**
448 * Sets up registers for the given mode/adjusted_mode pair.
449 *
450 * The clocks, CRTCs and outputs attached to this CRTC must be off.
451 *
452 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
453 * be easily turned on/off after this.
454 */
455 static void
456 nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
457 {
458 struct drm_device *dev = crtc->dev;
459 struct nouveau_drm *drm = nouveau_drm(dev);
460 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
461 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
462 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
463 const struct drm_framebuffer *fb = crtc->primary->fb;
464 struct drm_encoder *encoder;
465 bool lvds_output = false, tmds_output = false, tv_output = false,
466 off_chip_digital = false;
467
468 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
469 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
470 bool digital = false;
471
472 if (encoder->crtc != crtc)
473 continue;
474
475 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
476 digital = lvds_output = true;
477 if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
478 tv_output = true;
479 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
480 digital = tmds_output = true;
481 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
482 off_chip_digital = true;
483 }
484
485 /* Registers not directly related to the (s)vga mode */
486
487 /* What is the meaning of this register? */
488 /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
489 regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);
490
491 regp->crtc_eng_ctrl = 0;
492 /* Except for rare conditions I2C is enabled on the primary crtc */
493 if (nv_crtc->index == 0)
494 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
495 #if 0
496 /* Set overlay to desired crtc. */
497 if (dev->overlayAdaptor) {
498 NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
499 if (pPriv->overlayCRTC == nv_crtc->index)
500 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
501 }
502 #endif
503
504 /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
505 regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
506 NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
507 NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
508 if (drm->client.device.info.chipset >= 0x11)
509 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
510 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
511 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;
512
513 /* Unblock some timings */
514 regp->CRTC[NV_CIO_CRE_53] = 0;
515 regp->CRTC[NV_CIO_CRE_54] = 0;
516
517 /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
518 if (lvds_output)
519 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
520 else if (tmds_output)
521 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
522 else
523 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;
524
525 /* These values seem to vary */
526 /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
527 regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];
528
529 nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);
530
531 /* probably a scratch reg, but kept for cargo-cult purposes:
532 * bit0: crtc0?, head A
533 * bit6: lvds, head A
534 * bit7: (only in X), head A
535 */
536 if (nv_crtc->index == 0)
537 regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;
538
539 /* The blob seems to take the current value from crtc 0, add 4 to that
540 * and reuse the old value for crtc 1 */
541 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
542 if (!nv_crtc->index)
543 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;
544
545 /* the blob sometimes sets |= 0x10 (which is the same as setting |=
546 * 1 << 30 on 0x60.830), for no apparent reason */
547 regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;
548
549 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
550 regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;
551
552 regp->crtc_830 = mode->crtc_vdisplay - 3;
553 regp->crtc_834 = mode->crtc_vdisplay - 1;
554
555 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
556 /* This is what the blob does */
557 regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);
558
559 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
560 regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);
561
562 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
563 regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
564 else
565 regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
566
567 /* Some misc regs */
568 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
569 regp->CRTC[NV_CIO_CRE_85] = 0xFF;
570 regp->CRTC[NV_CIO_CRE_86] = 0x1;
571 }
572
573 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (fb->format->depth + 1) / 8;
574 /* Enable slaved mode (called MODE_TV in nv4ref.h) */
575 if (lvds_output || tmds_output || tv_output)
576 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);
577
578 /* Generic PRAMDAC regs */
579
580 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
581 /* Only bit that bios and blob set. */
582 regp->nv10_cursync = (1 << 25);
583
584 regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
585 NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
586 NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
587 if (fb->format->depth == 16)
588 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
589 if (drm->client.device.info.chipset >= 0x11)
590 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;
591
592 regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
593 regp->tv_setup = 0;
594
595 nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);
596
597 /* Some values the blob sets */
598 regp->ramdac_8c0 = 0x100;
599 regp->ramdac_a20 = 0x0;
600 regp->ramdac_a24 = 0xfffff;
601 regp->ramdac_a34 = 0x1;
602 }
603
604 static int
605 nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
606 {
607 struct nv04_display *disp = nv04_display(crtc->dev);
608 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
609 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
610 int ret;
611
612 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, false);
613 if (ret == 0) {
614 if (disp->image[nv_crtc->index])
615 nouveau_bo_unpin(disp->image[nv_crtc->index]);
616 nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]);
617 }
618
619 return ret;
620 }
621
622 /**
623 * Sets up registers for the given mode/adjusted_mode pair.
624 *
625 * The clocks, CRTCs and outputs attached to this CRTC must be off.
626 *
627 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
628 * be easily turned on/off after this.
629 */
630 static int
631 nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
632 struct drm_display_mode *adjusted_mode,
633 int x, int y, struct drm_framebuffer *old_fb)
634 {
635 struct drm_device *dev = crtc->dev;
636 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
637 struct nouveau_drm *drm = nouveau_drm(dev);
638 int ret;
639
640 NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
641 drm_mode_debug_printmodeline(adjusted_mode);
642
643 ret = nv_crtc_swap_fbs(crtc, old_fb);
644 if (ret)
645 return ret;
646
647 /* unlock must come after turning off FP_TG_CONTROL in output_prepare */
648 nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);
649
650 nv_crtc_mode_set_vga(crtc, adjusted_mode);
651 /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
652 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
653 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
654 nv_crtc_mode_set_regs(crtc, adjusted_mode);
655 nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
656 return 0;
657 }
658
659 static void nv_crtc_save(struct drm_crtc *crtc)
660 {
661 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
662 struct drm_device *dev = crtc->dev;
663 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
664 struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
665 struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
666 struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];
667
668 if (nv_two_heads(crtc->dev))
669 NVSetOwner(crtc->dev, nv_crtc->index);
670
671 nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);
672
673 /* init some state to saved value */
674 state->sel_clk = saved->sel_clk & ~(0x5 << 16);
675 crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
676 state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
677 crtc_state->gpio_ext = crtc_saved->gpio_ext;
678 }
679
680 static void nv_crtc_restore(struct drm_crtc *crtc)
681 {
682 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
683 struct drm_device *dev = crtc->dev;
684 int head = nv_crtc->index;
685 uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
686
687 if (nv_two_heads(crtc->dev))
688 NVSetOwner(crtc->dev, head);
689
690 nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
691 nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);
692
693 nv_crtc->last_dpms = NV_DPMS_CLEARED;
694 }
695
696 static void nv_crtc_prepare(struct drm_crtc *crtc)
697 {
698 struct drm_device *dev = crtc->dev;
699 struct nouveau_drm *drm = nouveau_drm(dev);
700 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
701 const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
702
703 if (nv_two_heads(dev))
704 NVSetOwner(dev, nv_crtc->index);
705
706 drm_crtc_vblank_off(crtc);
707 funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
708
709 NVBlankScreen(dev, nv_crtc->index, true);
710
711 /* Some more preparation. */
712 NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
713 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
714 uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
715 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
716 }
717 }
718
719 static void nv_crtc_commit(struct drm_crtc *crtc)
720 {
721 struct drm_device *dev = crtc->dev;
722 const struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
723 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
724
725 nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
726 nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);
727
728 #ifdef __BIG_ENDIAN
729 /* turn on LFB swapping */
730 {
731 uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
732 tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
733 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
734 }
735 #endif
736
737 funcs->dpms(crtc, DRM_MODE_DPMS_ON);
738 drm_crtc_vblank_on(crtc);
739 }
740
741 static void nv_crtc_destroy(struct drm_crtc *crtc)
742 {
743 struct nv04_display *disp = nv04_display(crtc->dev);
744 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
745
746 if (!nv_crtc)
747 return;
748
749 drm_crtc_cleanup(crtc);
750
751 if (disp->image[nv_crtc->index])
752 nouveau_bo_unpin(disp->image[nv_crtc->index]);
753 nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
754
755 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
756 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
757 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
758 kfree(nv_crtc);
759 }
760
761 static void
762 nv_crtc_gamma_load(struct drm_crtc *crtc)
763 {
764 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
765 struct drm_device *dev = nv_crtc->base.dev;
766 struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
767 int i;
768
769 rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
770 for (i = 0; i < 256; i++) {
771 rgbs[i].r = nv_crtc->lut.r[i] >> 8;
772 rgbs[i].g = nv_crtc->lut.g[i] >> 8;
773 rgbs[i].b = nv_crtc->lut.b[i] >> 8;
774 }
775
776 nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
777 }
778
779 static void
780 nv_crtc_disable(struct drm_crtc *crtc)
781 {
782 struct nv04_display *disp = nv04_display(crtc->dev);
783 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
784 if (disp->image[nv_crtc->index])
785 nouveau_bo_unpin(disp->image[nv_crtc->index]);
786 nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]);
787 }
788
789 static int
790 nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
791 uint32_t size,
792 struct drm_modeset_acquire_ctx *ctx)
793 {
794 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
795 int i;
796
797 for (i = 0; i < size; i++) {
798 nv_crtc->lut.r[i] = r[i];
799 nv_crtc->lut.g[i] = g[i];
800 nv_crtc->lut.b[i] = b[i];
801 }
802
803 /* We need to know the depth before we upload, but it's possible to
804 * get called before a framebuffer is bound. If this is the case,
805 * mark the lut values as dirty by setting depth==0, and it'll be
806 * uploaded on the first mode_set_base()
807 */
808 if (!nv_crtc->base.primary->fb) {
809 nv_crtc->lut.depth = 0;
810 return 0;
811 }
812
813 nv_crtc_gamma_load(crtc);
814
815 return 0;
816 }
817
818 static int
819 nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
820 struct drm_framebuffer *passed_fb,
821 int x, int y, bool atomic)
822 {
823 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
824 struct drm_device *dev = crtc->dev;
825 struct nouveau_drm *drm = nouveau_drm(dev);
826 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
827 struct drm_framebuffer *drm_fb;
828 struct nouveau_framebuffer *fb;
829 int arb_burst, arb_lwm;
830
831 NV_DEBUG(drm, "index %d\n", nv_crtc->index);
832
833 /* no fb bound */
834 if (!atomic && !crtc->primary->fb) {
835 NV_DEBUG(drm, "No FB bound\n");
836 return 0;
837 }
838
839 /* If atomic, we want to switch to the fb we were passed, so
840 * now we update pointers to do that.
841 */
842 if (atomic) {
843 drm_fb = passed_fb;
844 fb = nouveau_framebuffer(passed_fb);
845 } else {
846 drm_fb = crtc->primary->fb;
847 fb = nouveau_framebuffer(crtc->primary->fb);
848 }
849
850 nv_crtc->fb.offset = fb->nvbo->bo.offset;
851
852 if (nv_crtc->lut.depth != drm_fb->format->depth) {
853 nv_crtc->lut.depth = drm_fb->format->depth;
854 nv_crtc_gamma_load(crtc);
855 }
856
857 /* Update the framebuffer format. */
858 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
859 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (drm_fb->format->depth + 1) / 8;
860 regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
861 if (drm_fb->format->depth == 16)
862 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
863 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
864 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
865 regp->ramdac_gen_ctrl);
866
867 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
868 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
869 XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
870 regp->CRTC[NV_CIO_CRE_42] =
871 XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
872 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
873 crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
874 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
875
876 /* Update the framebuffer location. */
877 regp->fb_start = nv_crtc->fb.offset & ~3;
878 regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->format->cpp[0]);
879 nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
880
881 /* Update the arbitration parameters. */
882 nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->format->cpp[0] * 8,
883 &arb_burst, &arb_lwm);
884
885 regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
886 regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
887 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
888 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);
889
890 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) {
891 regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
892 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
893 }
894
895 return 0;
896 }
897
898 static int
899 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
900 struct drm_framebuffer *old_fb)
901 {
902 int ret = nv_crtc_swap_fbs(crtc, old_fb);
903 if (ret)
904 return ret;
905 return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
906 }
907
908 static int
909 nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
910 struct drm_framebuffer *fb,
911 int x, int y, enum mode_set_atomic state)
912 {
913 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
914 struct drm_device *dev = drm->dev;
915
916 if (state == ENTER_ATOMIC_MODE_SET)
917 nouveau_fbcon_accel_save_disable(dev);
918 else
919 nouveau_fbcon_accel_restore(dev);
920
921 return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
922 }
923
924 static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
925 struct nouveau_bo *dst)
926 {
927 int width = nv_cursor_width(dev);
928 uint32_t pixel;
929 int i, j;
930
931 for (i = 0; i < width; i++) {
932 for (j = 0; j < width; j++) {
933 pixel = nouveau_bo_rd32(src, i*64 + j);
934
935 nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
936 | (pixel & 0xf80000) >> 9
937 | (pixel & 0xf800) >> 6
938 | (pixel & 0xf8) >> 3);
939 }
940 }
941 }
942
943 static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
944 struct nouveau_bo *dst)
945 {
946 uint32_t pixel;
947 int alpha, i;
948
949 /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
950 * cursors (though NPM in combination with fp dithering may not work on
951 * nv11, from "nv" driver history)
952 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
953 * blob uses, however we get given PM cursors so we use PM mode
954 */
955 for (i = 0; i < 64 * 64; i++) {
956 pixel = nouveau_bo_rd32(src, i);
957
958 /* hw gets unhappy if alpha <= rgb values. for a PM image "less
959 * than" shouldn't happen; fix "equal to" case by adding one to
960 * alpha channel (slightly inaccurate, but so is attempting to
961 * get back to NPM images, due to limits of integer precision)
962 */
963 alpha = pixel >> 24;
964 if (alpha > 0 && alpha < 255)
965 pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);
966
967 #ifdef __BIG_ENDIAN
968 {
969 struct nouveau_drm *drm = nouveau_drm(dev);
970
971 if (drm->client.device.info.chipset == 0x11) {
972 pixel = ((pixel & 0x000000ff) << 24) |
973 ((pixel & 0x0000ff00) << 8) |
974 ((pixel & 0x00ff0000) >> 8) |
975 ((pixel & 0xff000000) >> 24);
976 }
977 }
978 #endif
979
980 nouveau_bo_wr32(dst, i, pixel);
981 }
982 }
983
984 static int
985 nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
986 uint32_t buffer_handle, uint32_t width, uint32_t height)
987 {
988 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
989 struct drm_device *dev = drm->dev;
990 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
991 struct nouveau_bo *cursor = NULL;
992 struct drm_gem_object *gem;
993 int ret = 0;
994
995 if (!buffer_handle) {
996 nv_crtc->cursor.hide(nv_crtc, true);
997 return 0;
998 }
999
1000 if (width != 64 || height != 64)
1001 return -EINVAL;
1002
1003 gem = drm_gem_object_lookup(file_priv, buffer_handle);
1004 if (!gem)
1005 return -ENOENT;
1006 cursor = nouveau_gem_object(gem);
1007
1008 ret = nouveau_bo_map(cursor);
1009 if (ret)
1010 goto out;
1011
1012 if (drm->client.device.info.chipset >= 0x11)
1013 nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1014 else
1015 nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
1016
1017 nouveau_bo_unmap(cursor);
1018 nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
1019 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
1020 nv_crtc->cursor.show(nv_crtc, true);
1021 out:
1022 drm_gem_object_unreference_unlocked(gem);
1023 return ret;
1024 }
1025
1026 static int
1027 nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1028 {
1029 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1030
1031 nv_crtc->cursor.set_pos(nv_crtc, x, y);
1032 return 0;
1033 }
1034
1035 static int
1036 nouveau_crtc_set_config(struct drm_mode_set *set,
1037 struct drm_modeset_acquire_ctx *ctx)
1038 {
1039 struct drm_device *dev;
1040 struct nouveau_drm *drm;
1041 int ret;
1042 struct drm_crtc *crtc;
1043 bool active = false;
1044 if (!set || !set->crtc)
1045 return -EINVAL;
1046
1047 dev = set->crtc->dev;
1048
1049 /* get a pm reference here */
1050 ret = pm_runtime_get_sync(dev->dev);
1051 if (ret < 0 && ret != -EACCES)
1052 return ret;
1053
1054 ret = drm_crtc_helper_set_config(set, ctx);
1055
1056 drm = nouveau_drm(dev);
1057
1058 /* if we get here with no crtcs active then we can drop a reference */
1059 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1060 if (crtc->enabled)
1061 active = true;
1062 }
1063
1064 pm_runtime_mark_last_busy(dev->dev);
1065 /* if we have active crtcs and we don't have a power ref,
1066 take the current one */
1067 if (active && !drm->have_disp_power_ref) {
1068 drm->have_disp_power_ref = true;
1069 return ret;
1070 }
1071 /* if we have no active crtcs, then drop the power ref
1072 we got before */
1073 if (!active && drm->have_disp_power_ref) {
1074 pm_runtime_put_autosuspend(dev->dev);
1075 drm->have_disp_power_ref = false;
1076 }
1077 /* drop the power reference we got coming in here */
1078 pm_runtime_put_autosuspend(dev->dev);
1079 return ret;
1080 }
1081
1082 static const struct drm_crtc_funcs nv04_crtc_funcs = {
1083 .cursor_set = nv04_crtc_cursor_set,
1084 .cursor_move = nv04_crtc_cursor_move,
1085 .gamma_set = nv_crtc_gamma_set,
1086 .set_config = nouveau_crtc_set_config,
1087 .page_flip = nouveau_crtc_page_flip,
1088 .destroy = nv_crtc_destroy,
1089 };
1090
1091 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
1092 .dpms = nv_crtc_dpms,
1093 .prepare = nv_crtc_prepare,
1094 .commit = nv_crtc_commit,
1095 .mode_set = nv_crtc_mode_set,
1096 .mode_set_base = nv04_crtc_mode_set_base,
1097 .mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
1098 .load_lut = nv_crtc_gamma_load,
1099 .disable = nv_crtc_disable,
1100 };
1101
1102 int
1103 nv04_crtc_create(struct drm_device *dev, int crtc_num)
1104 {
1105 struct nouveau_crtc *nv_crtc;
1106 int ret, i;
1107
1108 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
1109 if (!nv_crtc)
1110 return -ENOMEM;
1111
1112 for (i = 0; i < 256; i++) {
1113 nv_crtc->lut.r[i] = i << 8;
1114 nv_crtc->lut.g[i] = i << 8;
1115 nv_crtc->lut.b[i] = i << 8;
1116 }
1117 nv_crtc->lut.depth = 0;
1118
1119 nv_crtc->index = crtc_num;
1120 nv_crtc->last_dpms = NV_DPMS_CLEARED;
1121
1122 nv_crtc->save = nv_crtc_save;
1123 nv_crtc->restore = nv_crtc_restore;
1124
1125 drm_crtc_init(dev, &nv_crtc->base, &nv04_crtc_funcs);
1126 drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
1127 drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
1128
1129 ret = nouveau_bo_new(&nouveau_drm(dev)->client, 64*64*4, 0x100,
1130 TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL,
1131 &nv_crtc->cursor.nvbo);
1132 if (!ret) {
1133 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM, false);
1134 if (!ret) {
1135 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
1136 if (ret)
1137 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1138 }
1139 if (ret)
1140 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1141 }
1142
1143 nv04_cursor_init(nv_crtc);
1144
1145 return 0;
1146 }