]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/nouveau/nv04_crtc.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / nouveau / nv04_crtc.c
1 /*
2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm/drmP.h>
27 #include <drm/drm_crtc_helper.h>
28
29 #include "nouveau_drm.h"
30 #include "nouveau_reg.h"
31 #include "nouveau_bo.h"
32 #include "nouveau_gem.h"
33 #include "nouveau_encoder.h"
34 #include "nouveau_connector.h"
35 #include "nouveau_crtc.h"
36 #include "nouveau_hw.h"
37 #include "nvreg.h"
38 #include "nouveau_fbcon.h"
39 #include "nv04_display.h"
40
41 #include <subdev/bios/pll.h>
42 #include <subdev/clock.h>
43
44 static int
45 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
46 struct drm_framebuffer *old_fb);
47
48 static void
49 crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index)
50 {
51 NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index,
52 crtcstate->CRTC[index]);
53 }
54
55 static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level)
56 {
57 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
58 struct drm_device *dev = crtc->dev;
59 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
60
61 regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level;
62 if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) {
63 regp->CRTC[NV_CIO_CRE_CSB] = 0x80;
64 regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2;
65 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B);
66 }
67 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB);
68 }
69
70 static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level)
71 {
72 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
73 struct drm_device *dev = crtc->dev;
74 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
75
76 nv_crtc->sharpness = level;
77 if (level < 0) /* blur is in hw range 0x3f -> 0x20 */
78 level += 0x40;
79 regp->ramdac_634 = level;
80 NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634);
81 }
82
83 #define PLLSEL_VPLL1_MASK \
84 (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
85 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
86 #define PLLSEL_VPLL2_MASK \
87 (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
88 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
89 #define PLLSEL_TV_MASK \
90 (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
91 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
92 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
93 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
94
95 /* NV4x 0x40.. pll notes:
96 * gpu pll: 0x4000 + 0x4004
97 * ?gpu? pll: 0x4008 + 0x400c
98 * vpll1: 0x4010 + 0x4014
99 * vpll2: 0x4018 + 0x401c
100 * mpll: 0x4020 + 0x4024
101 * mpll: 0x4038 + 0x403c
102 *
103 * the first register of each pair has some unknown details:
104 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
105 * bits 20-23: (mpll) something to do with post divider?
106 * bits 28-31: related to single stage mode? (bit 8/12)
107 */
108
109 static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock)
110 {
111 struct drm_device *dev = crtc->dev;
112 struct nouveau_drm *drm = nouveau_drm(dev);
113 struct nouveau_bios *bios = nouveau_bios(drm->device);
114 struct nouveau_clock *clk = nouveau_clock(drm->device);
115 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
116 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
117 struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index];
118 struct nouveau_pll_vals *pv = &regp->pllvals;
119 struct nvbios_pll pll_lim;
120
121 if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0,
122 &pll_lim))
123 return;
124
125 /* NM2 == 0 is used to determine single stage mode on two stage plls */
126 pv->NM2 = 0;
127
128 /* for newer nv4x the blob uses only the first stage of the vpll below a
129 * certain clock. for a certain nv4b this is 150MHz. since the max
130 * output frequency of the first stage for this card is 300MHz, it is
131 * assumed the threshold is given by vco1 maxfreq/2
132 */
133 /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
134 * not 8, others unknown), the blob always uses both plls. no problem
135 * has yet been observed in allowing the use a single stage pll on all
136 * nv43 however. the behaviour of single stage use is untested on nv40
137 */
138 if (nv_device(drm->device)->chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2))
139 memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2));
140
141
142 if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv))
143 return;
144
145 state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK;
146
147 /* The blob uses this always, so let's do the same */
148 if (nv_device(drm->device)->card_type == NV_40)
149 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE;
150 /* again nv40 and some nv43 act more like nv3x as described above */
151 if (nv_device(drm->device)->chipset < 0x41)
152 state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL |
153 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL;
154 state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK;
155
156 if (pv->NM2)
157 NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
158 pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P);
159 else
160 NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n",
161 pv->N1, pv->M1, pv->log2P);
162
163 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
164 }
165
166 static void
167 nv_crtc_dpms(struct drm_crtc *crtc, int mode)
168 {
169 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
170 struct drm_device *dev = crtc->dev;
171 struct nouveau_drm *drm = nouveau_drm(dev);
172 unsigned char seq1 = 0, crtc17 = 0;
173 unsigned char crtc1A;
174
175 NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode,
176 nv_crtc->index);
177
178 if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */
179 return;
180
181 nv_crtc->last_dpms = mode;
182
183 if (nv_two_heads(dev))
184 NVSetOwner(dev, nv_crtc->index);
185
186 /* nv4ref indicates these two RPC1 bits inhibit h/v sync */
187 crtc1A = NVReadVgaCrtc(dev, nv_crtc->index,
188 NV_CIO_CRE_RPC1_INDEX) & ~0xC0;
189 switch (mode) {
190 case DRM_MODE_DPMS_STANDBY:
191 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
192 seq1 = 0x20;
193 crtc17 = 0x80;
194 crtc1A |= 0x80;
195 break;
196 case DRM_MODE_DPMS_SUSPEND:
197 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
198 seq1 = 0x20;
199 crtc17 = 0x80;
200 crtc1A |= 0x40;
201 break;
202 case DRM_MODE_DPMS_OFF:
203 /* Screen: Off; HSync: Off, VSync: Off */
204 seq1 = 0x20;
205 crtc17 = 0x00;
206 crtc1A |= 0xC0;
207 break;
208 case DRM_MODE_DPMS_ON:
209 default:
210 /* Screen: On; HSync: On, VSync: On */
211 seq1 = 0x00;
212 crtc17 = 0x80;
213 break;
214 }
215
216 NVVgaSeqReset(dev, nv_crtc->index, true);
217 /* Each head has it's own sequencer, so we can turn it off when we want */
218 seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20);
219 NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1);
220 crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80);
221 mdelay(10);
222 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17);
223 NVVgaSeqReset(dev, nv_crtc->index, false);
224
225 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A);
226 }
227
228 static bool
229 nv_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
230 struct drm_display_mode *adjusted_mode)
231 {
232 return true;
233 }
234
235 static void
236 nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode)
237 {
238 struct drm_device *dev = crtc->dev;
239 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
240 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
241 struct drm_framebuffer *fb = crtc->fb;
242
243 /* Calculate our timings */
244 int horizDisplay = (mode->crtc_hdisplay >> 3) - 1;
245 int horizStart = (mode->crtc_hsync_start >> 3) + 1;
246 int horizEnd = (mode->crtc_hsync_end >> 3) + 1;
247 int horizTotal = (mode->crtc_htotal >> 3) - 5;
248 int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1;
249 int horizBlankEnd = (mode->crtc_htotal >> 3) - 1;
250 int vertDisplay = mode->crtc_vdisplay - 1;
251 int vertStart = mode->crtc_vsync_start - 1;
252 int vertEnd = mode->crtc_vsync_end - 1;
253 int vertTotal = mode->crtc_vtotal - 2;
254 int vertBlankStart = mode->crtc_vdisplay - 1;
255 int vertBlankEnd = mode->crtc_vtotal - 1;
256
257 struct drm_encoder *encoder;
258 bool fp_output = false;
259
260 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
261 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
262
263 if (encoder->crtc == crtc &&
264 (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
265 nv_encoder->dcb->type == DCB_OUTPUT_TMDS))
266 fp_output = true;
267 }
268
269 if (fp_output) {
270 vertStart = vertTotal - 3;
271 vertEnd = vertTotal - 2;
272 vertBlankStart = vertStart;
273 horizStart = horizTotal - 5;
274 horizEnd = horizTotal - 2;
275 horizBlankEnd = horizTotal + 4;
276 #if 0
277 if (dev->overlayAdaptor && nv_device(drm->device)->card_type >= NV_10)
278 /* This reportedly works around some video overlay bandwidth problems */
279 horizTotal += 2;
280 #endif
281 }
282
283 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
284 vertTotal |= 1;
285
286 #if 0
287 ErrorF("horizDisplay: 0x%X \n", horizDisplay);
288 ErrorF("horizStart: 0x%X \n", horizStart);
289 ErrorF("horizEnd: 0x%X \n", horizEnd);
290 ErrorF("horizTotal: 0x%X \n", horizTotal);
291 ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
292 ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
293 ErrorF("vertDisplay: 0x%X \n", vertDisplay);
294 ErrorF("vertStart: 0x%X \n", vertStart);
295 ErrorF("vertEnd: 0x%X \n", vertEnd);
296 ErrorF("vertTotal: 0x%X \n", vertTotal);
297 ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
298 ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
299 #endif
300
301 /*
302 * compute correct Hsync & Vsync polarity
303 */
304 if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))
305 && (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) {
306
307 regp->MiscOutReg = 0x23;
308 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
309 regp->MiscOutReg |= 0x40;
310 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
311 regp->MiscOutReg |= 0x80;
312 } else {
313 int vdisplay = mode->vdisplay;
314 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
315 vdisplay *= 2;
316 if (mode->vscan > 1)
317 vdisplay *= mode->vscan;
318 if (vdisplay < 400)
319 regp->MiscOutReg = 0xA3; /* +hsync -vsync */
320 else if (vdisplay < 480)
321 regp->MiscOutReg = 0x63; /* -hsync +vsync */
322 else if (vdisplay < 768)
323 regp->MiscOutReg = 0xE3; /* -hsync -vsync */
324 else
325 regp->MiscOutReg = 0x23; /* +hsync +vsync */
326 }
327
328 regp->MiscOutReg |= (mode->clock_index & 0x03) << 2;
329
330 /*
331 * Time Sequencer
332 */
333 regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00;
334 /* 0x20 disables the sequencer */
335 if (mode->flags & DRM_MODE_FLAG_CLKDIV2)
336 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29;
337 else
338 regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21;
339 regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F;
340 regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00;
341 regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E;
342
343 /*
344 * CRTC
345 */
346 regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal;
347 regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay;
348 regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart;
349 regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) |
350 XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0);
351 regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart;
352 regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) |
353 XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0);
354 regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal;
355 regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) |
356 XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) |
357 XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) |
358 (1 << 4) |
359 XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) |
360 XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) |
361 XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) |
362 XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8);
363 regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00;
364 regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) |
365 1 << 6 |
366 XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9);
367 regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00;
368 regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00;
369 regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00;
370 regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00;
371 regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00;
372 regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00;
373 regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart;
374 regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0);
375 regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay;
376 /* framebuffer can be larger than crtc scanout area. */
377 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8;
378 regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00;
379 regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart;
380 regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd;
381 regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43;
382 regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff;
383
384 /*
385 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
386 */
387
388 /* framebuffer can be larger than crtc scanout area. */
389 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
390 XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
391 regp->CRTC[NV_CIO_CRE_42] =
392 XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
393 regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ?
394 MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00;
395 regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) |
396 XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) |
397 XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) |
398 XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) |
399 XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10);
400 regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) |
401 XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) |
402 XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) |
403 XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8);
404 regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) |
405 XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) |
406 XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) |
407 XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11);
408
409 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
410 horizTotal = (horizTotal >> 1) & ~1;
411 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal;
412 regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8);
413 } else
414 regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */
415
416 /*
417 * Graphics Display Controller
418 */
419 regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00;
420 regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00;
421 regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00;
422 regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00;
423 regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00;
424 regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */
425 regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */
426 regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F;
427 regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF;
428
429 regp->Attribute[0] = 0x00; /* standard colormap translation */
430 regp->Attribute[1] = 0x01;
431 regp->Attribute[2] = 0x02;
432 regp->Attribute[3] = 0x03;
433 regp->Attribute[4] = 0x04;
434 regp->Attribute[5] = 0x05;
435 regp->Attribute[6] = 0x06;
436 regp->Attribute[7] = 0x07;
437 regp->Attribute[8] = 0x08;
438 regp->Attribute[9] = 0x09;
439 regp->Attribute[10] = 0x0A;
440 regp->Attribute[11] = 0x0B;
441 regp->Attribute[12] = 0x0C;
442 regp->Attribute[13] = 0x0D;
443 regp->Attribute[14] = 0x0E;
444 regp->Attribute[15] = 0x0F;
445 regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */
446 /* Non-vga */
447 regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00;
448 regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */
449 regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00;
450 regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00;
451 }
452
453 /**
454 * Sets up registers for the given mode/adjusted_mode pair.
455 *
456 * The clocks, CRTCs and outputs attached to this CRTC must be off.
457 *
458 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
459 * be easily turned on/off after this.
460 */
461 static void
462 nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode)
463 {
464 struct drm_device *dev = crtc->dev;
465 struct nouveau_drm *drm = nouveau_drm(dev);
466 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
467 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
468 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
469 struct drm_encoder *encoder;
470 bool lvds_output = false, tmds_output = false, tv_output = false,
471 off_chip_digital = false;
472
473 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
475 bool digital = false;
476
477 if (encoder->crtc != crtc)
478 continue;
479
480 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
481 digital = lvds_output = true;
482 if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
483 tv_output = true;
484 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
485 digital = tmds_output = true;
486 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital)
487 off_chip_digital = true;
488 }
489
490 /* Registers not directly related to the (s)vga mode */
491
492 /* What is the meaning of this register? */
493 /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
494 regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5);
495
496 regp->crtc_eng_ctrl = 0;
497 /* Except for rare conditions I2C is enabled on the primary crtc */
498 if (nv_crtc->index == 0)
499 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C;
500 #if 0
501 /* Set overlay to desired crtc. */
502 if (dev->overlayAdaptor) {
503 NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev);
504 if (pPriv->overlayCRTC == nv_crtc->index)
505 regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY;
506 }
507 #endif
508
509 /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
510 regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 |
511 NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 |
512 NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM;
513 if (nv_device(drm->device)->chipset >= 0x11)
514 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32;
515 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
516 regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE;
517
518 /* Unblock some timings */
519 regp->CRTC[NV_CIO_CRE_53] = 0;
520 regp->CRTC[NV_CIO_CRE_54] = 0;
521
522 /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
523 if (lvds_output)
524 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11;
525 else if (tmds_output)
526 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88;
527 else
528 regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22;
529
530 /* These values seem to vary */
531 /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
532 regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX];
533
534 nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation);
535
536 /* probably a scratch reg, but kept for cargo-cult purposes:
537 * bit0: crtc0?, head A
538 * bit6: lvds, head A
539 * bit7: (only in X), head A
540 */
541 if (nv_crtc->index == 0)
542 regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80;
543
544 /* The blob seems to take the current value from crtc 0, add 4 to that
545 * and reuse the old value for crtc 1 */
546 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY];
547 if (!nv_crtc->index)
548 regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4;
549
550 /* the blob sometimes sets |= 0x10 (which is the same as setting |=
551 * 1 << 30 on 0x60.830), for no apparent reason */
552 regp->CRTC[NV_CIO_CRE_59] = off_chip_digital;
553
554 if (nv_device(drm->device)->card_type >= NV_30)
555 regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1;
556
557 regp->crtc_830 = mode->crtc_vdisplay - 3;
558 regp->crtc_834 = mode->crtc_vdisplay - 1;
559
560 if (nv_device(drm->device)->card_type == NV_40)
561 /* This is what the blob does */
562 regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850);
563
564 if (nv_device(drm->device)->card_type >= NV_30)
565 regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT);
566
567 if (nv_device(drm->device)->card_type >= NV_10)
568 regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC;
569 else
570 regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC;
571
572 /* Some misc regs */
573 if (nv_device(drm->device)->card_type == NV_40) {
574 regp->CRTC[NV_CIO_CRE_85] = 0xFF;
575 regp->CRTC[NV_CIO_CRE_86] = 0x1;
576 }
577
578 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (crtc->fb->depth + 1) / 8;
579 /* Enable slaved mode (called MODE_TV in nv4ref.h) */
580 if (lvds_output || tmds_output || tv_output)
581 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7);
582
583 /* Generic PRAMDAC regs */
584
585 if (nv_device(drm->device)->card_type >= NV_10)
586 /* Only bit that bios and blob set. */
587 regp->nv10_cursync = (1 << 25);
588
589 regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
590 NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL |
591 NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON;
592 if (crtc->fb->depth == 16)
593 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
594 if (nv_device(drm->device)->chipset >= 0x11)
595 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG;
596
597 regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */
598 regp->tv_setup = 0;
599
600 nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness);
601
602 /* Some values the blob sets */
603 regp->ramdac_8c0 = 0x100;
604 regp->ramdac_a20 = 0x0;
605 regp->ramdac_a24 = 0xfffff;
606 regp->ramdac_a34 = 0x1;
607 }
608
609 /**
610 * Sets up registers for the given mode/adjusted_mode pair.
611 *
612 * The clocks, CRTCs and outputs attached to this CRTC must be off.
613 *
614 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
615 * be easily turned on/off after this.
616 */
617 static int
618 nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
619 struct drm_display_mode *adjusted_mode,
620 int x, int y, struct drm_framebuffer *old_fb)
621 {
622 struct drm_device *dev = crtc->dev;
623 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
624 struct nouveau_drm *drm = nouveau_drm(dev);
625
626 NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index);
627 drm_mode_debug_printmodeline(adjusted_mode);
628
629 /* unlock must come after turning off FP_TG_CONTROL in output_prepare */
630 nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1);
631
632 nv_crtc_mode_set_vga(crtc, adjusted_mode);
633 /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
634 if (nv_device(drm->device)->card_type == NV_40)
635 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
636 nv_crtc_mode_set_regs(crtc, adjusted_mode);
637 nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock);
638 return 0;
639 }
640
641 static void nv_crtc_save(struct drm_crtc *crtc)
642 {
643 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
644 struct drm_device *dev = crtc->dev;
645 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
646 struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index];
647 struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg;
648 struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index];
649
650 if (nv_two_heads(crtc->dev))
651 NVSetOwner(crtc->dev, nv_crtc->index);
652
653 nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved);
654
655 /* init some state to saved value */
656 state->sel_clk = saved->sel_clk & ~(0x5 << 16);
657 crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX];
658 state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK);
659 crtc_state->gpio_ext = crtc_saved->gpio_ext;
660 }
661
662 static void nv_crtc_restore(struct drm_crtc *crtc)
663 {
664 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
665 struct drm_device *dev = crtc->dev;
666 int head = nv_crtc->index;
667 uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21];
668
669 if (nv_two_heads(crtc->dev))
670 NVSetOwner(crtc->dev, head);
671
672 nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg);
673 nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21);
674
675 nv_crtc->last_dpms = NV_DPMS_CLEARED;
676 }
677
678 static void nv_crtc_prepare(struct drm_crtc *crtc)
679 {
680 struct drm_device *dev = crtc->dev;
681 struct nouveau_drm *drm = nouveau_drm(dev);
682 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
683 struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
684
685 if (nv_two_heads(dev))
686 NVSetOwner(dev, nv_crtc->index);
687
688 drm_vblank_pre_modeset(dev, nv_crtc->index);
689 funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
690
691 NVBlankScreen(dev, nv_crtc->index, true);
692
693 /* Some more preparation. */
694 NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA);
695 if (nv_device(drm->device)->card_type == NV_40) {
696 uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900);
697 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000);
698 }
699 }
700
701 static void nv_crtc_commit(struct drm_crtc *crtc)
702 {
703 struct drm_device *dev = crtc->dev;
704 struct drm_crtc_helper_funcs *funcs = crtc->helper_private;
705 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
706
707 nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
708 nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL);
709
710 #ifdef __BIG_ENDIAN
711 /* turn on LFB swapping */
712 {
713 uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR);
714 tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG);
715 NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp);
716 }
717 #endif
718
719 funcs->dpms(crtc, DRM_MODE_DPMS_ON);
720 drm_vblank_post_modeset(dev, nv_crtc->index);
721 }
722
723 static void nv_crtc_destroy(struct drm_crtc *crtc)
724 {
725 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
726
727 if (!nv_crtc)
728 return;
729
730 drm_crtc_cleanup(crtc);
731
732 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
733 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
734 kfree(nv_crtc);
735 }
736
737 static void
738 nv_crtc_gamma_load(struct drm_crtc *crtc)
739 {
740 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
741 struct drm_device *dev = nv_crtc->base.dev;
742 struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs;
743 int i;
744
745 rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC;
746 for (i = 0; i < 256; i++) {
747 rgbs[i].r = nv_crtc->lut.r[i] >> 8;
748 rgbs[i].g = nv_crtc->lut.g[i] >> 8;
749 rgbs[i].b = nv_crtc->lut.b[i] >> 8;
750 }
751
752 nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg);
753 }
754
755 static void
756 nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start,
757 uint32_t size)
758 {
759 int end = (start + size > 256) ? 256 : start + size, i;
760 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
761
762 for (i = start; i < end; i++) {
763 nv_crtc->lut.r[i] = r[i];
764 nv_crtc->lut.g[i] = g[i];
765 nv_crtc->lut.b[i] = b[i];
766 }
767
768 /* We need to know the depth before we upload, but it's possible to
769 * get called before a framebuffer is bound. If this is the case,
770 * mark the lut values as dirty by setting depth==0, and it'll be
771 * uploaded on the first mode_set_base()
772 */
773 if (!nv_crtc->base.fb) {
774 nv_crtc->lut.depth = 0;
775 return;
776 }
777
778 nv_crtc_gamma_load(crtc);
779 }
780
781 static int
782 nv04_crtc_do_mode_set_base(struct drm_crtc *crtc,
783 struct drm_framebuffer *passed_fb,
784 int x, int y, bool atomic)
785 {
786 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
787 struct drm_device *dev = crtc->dev;
788 struct nouveau_drm *drm = nouveau_drm(dev);
789 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
790 struct drm_framebuffer *drm_fb;
791 struct nouveau_framebuffer *fb;
792 int arb_burst, arb_lwm;
793 int ret;
794
795 NV_DEBUG(drm, "index %d\n", nv_crtc->index);
796
797 /* no fb bound */
798 if (!atomic && !crtc->fb) {
799 NV_DEBUG(drm, "No FB bound\n");
800 return 0;
801 }
802
803
804 /* If atomic, we want to switch to the fb we were passed, so
805 * now we update pointers to do that. (We don't pin; just
806 * assume we're already pinned and update the base address.)
807 */
808 if (atomic) {
809 drm_fb = passed_fb;
810 fb = nouveau_framebuffer(passed_fb);
811 } else {
812 drm_fb = crtc->fb;
813 fb = nouveau_framebuffer(crtc->fb);
814 /* If not atomic, we can go ahead and pin, and unpin the
815 * old fb we were passed.
816 */
817 ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
818 if (ret)
819 return ret;
820
821 if (passed_fb) {
822 struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
823 nouveau_bo_unpin(ofb->nvbo);
824 }
825 }
826
827 nv_crtc->fb.offset = fb->nvbo->bo.offset;
828
829 if (nv_crtc->lut.depth != drm_fb->depth) {
830 nv_crtc->lut.depth = drm_fb->depth;
831 nv_crtc_gamma_load(crtc);
832 }
833
834 /* Update the framebuffer format. */
835 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3;
836 regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (crtc->fb->depth + 1) / 8;
837 regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
838 if (crtc->fb->depth == 16)
839 regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL;
840 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX);
841 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL,
842 regp->ramdac_gen_ctrl);
843
844 regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3;
845 regp->CRTC[NV_CIO_CRE_RPC0_INDEX] =
846 XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8);
847 regp->CRTC[NV_CIO_CRE_42] =
848 XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11);
849 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX);
850 crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX);
851 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42);
852
853 /* Update the framebuffer location. */
854 regp->fb_start = nv_crtc->fb.offset & ~3;
855 regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->bits_per_pixel / 8);
856 nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start);
857
858 /* Update the arbitration parameters. */
859 nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->bits_per_pixel,
860 &arb_burst, &arb_lwm);
861
862 regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst;
863 regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff;
864 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX);
865 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX);
866
867 if (nv_device(drm->device)->card_type >= NV_20) {
868 regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8;
869 crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47);
870 }
871
872 return 0;
873 }
874
875 static int
876 nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
877 struct drm_framebuffer *old_fb)
878 {
879 return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
880 }
881
882 static int
883 nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
884 struct drm_framebuffer *fb,
885 int x, int y, enum mode_set_atomic state)
886 {
887 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
888 struct drm_device *dev = drm->dev;
889
890 if (state == ENTER_ATOMIC_MODE_SET)
891 nouveau_fbcon_save_disable_accel(dev);
892 else
893 nouveau_fbcon_restore_accel(dev);
894
895 return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true);
896 }
897
898 static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
899 struct nouveau_bo *dst)
900 {
901 int width = nv_cursor_width(dev);
902 uint32_t pixel;
903 int i, j;
904
905 for (i = 0; i < width; i++) {
906 for (j = 0; j < width; j++) {
907 pixel = nouveau_bo_rd32(src, i*64 + j);
908
909 nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16
910 | (pixel & 0xf80000) >> 9
911 | (pixel & 0xf800) >> 6
912 | (pixel & 0xf8) >> 3);
913 }
914 }
915 }
916
917 static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src,
918 struct nouveau_bo *dst)
919 {
920 uint32_t pixel;
921 int alpha, i;
922
923 /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
924 * cursors (though NPM in combination with fp dithering may not work on
925 * nv11, from "nv" driver history)
926 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
927 * blob uses, however we get given PM cursors so we use PM mode
928 */
929 for (i = 0; i < 64 * 64; i++) {
930 pixel = nouveau_bo_rd32(src, i);
931
932 /* hw gets unhappy if alpha <= rgb values. for a PM image "less
933 * than" shouldn't happen; fix "equal to" case by adding one to
934 * alpha channel (slightly inaccurate, but so is attempting to
935 * get back to NPM images, due to limits of integer precision)
936 */
937 alpha = pixel >> 24;
938 if (alpha > 0 && alpha < 255)
939 pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24);
940
941 #ifdef __BIG_ENDIAN
942 {
943 struct nouveau_drm *drm = nouveau_drm(dev);
944
945 if (nv_device(drm->device)->chipset == 0x11) {
946 pixel = ((pixel & 0x000000ff) << 24) |
947 ((pixel & 0x0000ff00) << 8) |
948 ((pixel & 0x00ff0000) >> 8) |
949 ((pixel & 0xff000000) >> 24);
950 }
951 }
952 #endif
953
954 nouveau_bo_wr32(dst, i, pixel);
955 }
956 }
957
958 static int
959 nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
960 uint32_t buffer_handle, uint32_t width, uint32_t height)
961 {
962 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
963 struct drm_device *dev = drm->dev;
964 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
965 struct nouveau_bo *cursor = NULL;
966 struct drm_gem_object *gem;
967 int ret = 0;
968
969 if (!buffer_handle) {
970 nv_crtc->cursor.hide(nv_crtc, true);
971 return 0;
972 }
973
974 if (width != 64 || height != 64)
975 return -EINVAL;
976
977 gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
978 if (!gem)
979 return -ENOENT;
980 cursor = nouveau_gem_object(gem);
981
982 ret = nouveau_bo_map(cursor);
983 if (ret)
984 goto out;
985
986 if (nv_device(drm->device)->chipset >= 0x11)
987 nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
988 else
989 nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo);
990
991 nouveau_bo_unmap(cursor);
992 nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset;
993 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset);
994 nv_crtc->cursor.show(nv_crtc, true);
995 out:
996 drm_gem_object_unreference_unlocked(gem);
997 return ret;
998 }
999
1000 static int
1001 nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1002 {
1003 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1004
1005 nv_crtc->cursor.set_pos(nv_crtc, x, y);
1006 return 0;
1007 }
1008
1009 static const struct drm_crtc_funcs nv04_crtc_funcs = {
1010 .save = nv_crtc_save,
1011 .restore = nv_crtc_restore,
1012 .cursor_set = nv04_crtc_cursor_set,
1013 .cursor_move = nv04_crtc_cursor_move,
1014 .gamma_set = nv_crtc_gamma_set,
1015 .set_config = drm_crtc_helper_set_config,
1016 .page_flip = nouveau_crtc_page_flip,
1017 .destroy = nv_crtc_destroy,
1018 };
1019
1020 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = {
1021 .dpms = nv_crtc_dpms,
1022 .prepare = nv_crtc_prepare,
1023 .commit = nv_crtc_commit,
1024 .mode_fixup = nv_crtc_mode_fixup,
1025 .mode_set = nv_crtc_mode_set,
1026 .mode_set_base = nv04_crtc_mode_set_base,
1027 .mode_set_base_atomic = nv04_crtc_mode_set_base_atomic,
1028 .load_lut = nv_crtc_gamma_load,
1029 };
1030
1031 int
1032 nv04_crtc_create(struct drm_device *dev, int crtc_num)
1033 {
1034 struct nouveau_crtc *nv_crtc;
1035 int ret, i;
1036
1037 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
1038 if (!nv_crtc)
1039 return -ENOMEM;
1040
1041 for (i = 0; i < 256; i++) {
1042 nv_crtc->lut.r[i] = i << 8;
1043 nv_crtc->lut.g[i] = i << 8;
1044 nv_crtc->lut.b[i] = i << 8;
1045 }
1046 nv_crtc->lut.depth = 0;
1047
1048 nv_crtc->index = crtc_num;
1049 nv_crtc->last_dpms = NV_DPMS_CLEARED;
1050
1051 drm_crtc_init(dev, &nv_crtc->base, &nv04_crtc_funcs);
1052 drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs);
1053 drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
1054
1055 ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
1056 0, 0x0000, NULL, &nv_crtc->cursor.nvbo);
1057 if (!ret) {
1058 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
1059 if (!ret)
1060 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
1061 if (ret)
1062 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1063 }
1064
1065 nv04_cursor_init(nv_crtc);
1066
1067 return 0;
1068 }
1069