]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nv40_grctx.c
Merge branch 'for-3.5/core' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nv40_grctx.c
1 /*
2 * Copyright 2009 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 /* NVIDIA context programs handle a number of other conditions which are
26 * not implemented in our versions. It's not clear why NVIDIA context
27 * programs have this code, nor whether it's strictly necessary for
28 * correct operation. We'll implement additional handling if/when we
29 * discover it's necessary.
30 *
31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
32 * flag is set, this gets saved into the context.
33 * - On context save, the context program for all cards load nsource
34 * into a flag register and check for ILLEGAL_MTHD. If it's set,
35 * opcode 0x60000d is called before resuming normal operation.
36 * - Some context programs check more conditions than the above. NV44
37 * checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
38 * and calls 0x60000d before resuming normal operation.
39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
40 * and if true 0x800001 is called with count=0, pos=0, the flag is cleared
41 * and then the ctxprog is aborted. It looks like a complicated NOP,
42 * its purpose is unknown.
43 * - In the section of code that loads the per-vs state, NVIDIA check
44 * flag 10. If it's set, they only transfer the small 0x300 byte block
45 * of state + the state for a single vs as opposed to the state for
46 * all vs units. It doesn't seem likely that it'll occur in normal
47 * operation, especially seeing as it appears NVIDIA may have screwed
48 * up the ctxprogs for some cards and have an invalid instruction
49 * rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
50 * - There's a number of places where context offset 0 (where we place
51 * the PRAMIN offset of the context) is loaded into either 0x408000,
52 * 0x408004 or 0x408008. Not sure what's up there either.
53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
54 * path for auto-loadctx.
55 */
56
57 #define CP_FLAG_CLEAR 0
58 #define CP_FLAG_SET 1
59 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0)
60 #define CP_FLAG_SWAP_DIRECTION_LOAD 0
61 #define CP_FLAG_SWAP_DIRECTION_SAVE 1
62 #define CP_FLAG_USER_SAVE ((0 * 32) + 5)
63 #define CP_FLAG_USER_SAVE_NOT_PENDING 0
64 #define CP_FLAG_USER_SAVE_PENDING 1
65 #define CP_FLAG_USER_LOAD ((0 * 32) + 6)
66 #define CP_FLAG_USER_LOAD_NOT_PENDING 0
67 #define CP_FLAG_USER_LOAD_PENDING 1
68 #define CP_FLAG_STATUS ((3 * 32) + 0)
69 #define CP_FLAG_STATUS_IDLE 0
70 #define CP_FLAG_STATUS_BUSY 1
71 #define CP_FLAG_AUTO_SAVE ((3 * 32) + 4)
72 #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
73 #define CP_FLAG_AUTO_SAVE_PENDING 1
74 #define CP_FLAG_AUTO_LOAD ((3 * 32) + 5)
75 #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
76 #define CP_FLAG_AUTO_LOAD_PENDING 1
77 #define CP_FLAG_UNK54 ((3 * 32) + 6)
78 #define CP_FLAG_UNK54_CLEAR 0
79 #define CP_FLAG_UNK54_SET 1
80 #define CP_FLAG_ALWAYS ((3 * 32) + 8)
81 #define CP_FLAG_ALWAYS_FALSE 0
82 #define CP_FLAG_ALWAYS_TRUE 1
83 #define CP_FLAG_UNK57 ((3 * 32) + 9)
84 #define CP_FLAG_UNK57_CLEAR 0
85 #define CP_FLAG_UNK57_SET 1
86
87 #define CP_CTX 0x00100000
88 #define CP_CTX_COUNT 0x000fc000
89 #define CP_CTX_COUNT_SHIFT 14
90 #define CP_CTX_REG 0x00003fff
91 #define CP_LOAD_SR 0x00200000
92 #define CP_LOAD_SR_VALUE 0x000fffff
93 #define CP_BRA 0x00400000
94 #define CP_BRA_IP 0x0000ff00
95 #define CP_BRA_IP_SHIFT 8
96 #define CP_BRA_IF_CLEAR 0x00000080
97 #define CP_BRA_FLAG 0x0000007f
98 #define CP_WAIT 0x00500000
99 #define CP_WAIT_SET 0x00000080
100 #define CP_WAIT_FLAG 0x0000007f
101 #define CP_SET 0x00700000
102 #define CP_SET_1 0x00000080
103 #define CP_SET_FLAG 0x0000007f
104 #define CP_NEXT_TO_SWAP 0x00600007
105 #define CP_NEXT_TO_CURRENT 0x00600009
106 #define CP_SET_CONTEXT_POINTER 0x0060000a
107 #define CP_END 0x0060000e
108 #define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */
109 #define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */
110 #define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */
111
112 #include "drmP.h"
113 #include "nouveau_drv.h"
114 #include "nouveau_grctx.h"
115
116 /* TODO:
117 * - get vs count from 0x1540
118 */
119
120 static int
121 nv40_graph_vs_count(struct drm_device *dev)
122 {
123 struct drm_nouveau_private *dev_priv = dev->dev_private;
124
125 switch (dev_priv->chipset) {
126 case 0x47:
127 case 0x49:
128 case 0x4b:
129 return 8;
130 case 0x40:
131 return 6;
132 case 0x41:
133 case 0x42:
134 return 5;
135 case 0x43:
136 case 0x44:
137 case 0x46:
138 case 0x4a:
139 return 3;
140 case 0x4c:
141 case 0x4e:
142 case 0x67:
143 default:
144 return 1;
145 }
146 }
147
148
149 enum cp_label {
150 cp_check_load = 1,
151 cp_setup_auto_load,
152 cp_setup_load,
153 cp_setup_save,
154 cp_swap_state,
155 cp_swap_state3d_3_is_save,
156 cp_prepare_exit,
157 cp_exit,
158 };
159
160 static void
161 nv40_graph_construct_general(struct nouveau_grctx *ctx)
162 {
163 struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
164 int i;
165
166 cp_ctx(ctx, 0x4000a4, 1);
167 gr_def(ctx, 0x4000a4, 0x00000008);
168 cp_ctx(ctx, 0x400144, 58);
169 gr_def(ctx, 0x400144, 0x00000001);
170 cp_ctx(ctx, 0x400314, 1);
171 gr_def(ctx, 0x400314, 0x00000000);
172 cp_ctx(ctx, 0x400400, 10);
173 cp_ctx(ctx, 0x400480, 10);
174 cp_ctx(ctx, 0x400500, 19);
175 gr_def(ctx, 0x400514, 0x00040000);
176 gr_def(ctx, 0x400524, 0x55555555);
177 gr_def(ctx, 0x400528, 0x55555555);
178 gr_def(ctx, 0x40052c, 0x55555555);
179 gr_def(ctx, 0x400530, 0x55555555);
180 cp_ctx(ctx, 0x400560, 6);
181 gr_def(ctx, 0x400568, 0x0000ffff);
182 gr_def(ctx, 0x40056c, 0x0000ffff);
183 cp_ctx(ctx, 0x40057c, 5);
184 cp_ctx(ctx, 0x400710, 3);
185 gr_def(ctx, 0x400710, 0x20010001);
186 gr_def(ctx, 0x400714, 0x0f73ef00);
187 cp_ctx(ctx, 0x400724, 1);
188 gr_def(ctx, 0x400724, 0x02008821);
189 cp_ctx(ctx, 0x400770, 3);
190 if (dev_priv->chipset == 0x40) {
191 cp_ctx(ctx, 0x400814, 4);
192 cp_ctx(ctx, 0x400828, 5);
193 cp_ctx(ctx, 0x400840, 5);
194 gr_def(ctx, 0x400850, 0x00000040);
195 cp_ctx(ctx, 0x400858, 4);
196 gr_def(ctx, 0x400858, 0x00000040);
197 gr_def(ctx, 0x40085c, 0x00000040);
198 gr_def(ctx, 0x400864, 0x80000000);
199 cp_ctx(ctx, 0x40086c, 9);
200 gr_def(ctx, 0x40086c, 0x80000000);
201 gr_def(ctx, 0x400870, 0x80000000);
202 gr_def(ctx, 0x400874, 0x80000000);
203 gr_def(ctx, 0x400878, 0x80000000);
204 gr_def(ctx, 0x400888, 0x00000040);
205 gr_def(ctx, 0x40088c, 0x80000000);
206 cp_ctx(ctx, 0x4009c0, 8);
207 gr_def(ctx, 0x4009cc, 0x80000000);
208 gr_def(ctx, 0x4009dc, 0x80000000);
209 } else {
210 cp_ctx(ctx, 0x400840, 20);
211 if (nv44_graph_class(ctx->dev)) {
212 for (i = 0; i < 8; i++)
213 gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
214 }
215 gr_def(ctx, 0x400880, 0x00000040);
216 gr_def(ctx, 0x400884, 0x00000040);
217 gr_def(ctx, 0x400888, 0x00000040);
218 cp_ctx(ctx, 0x400894, 11);
219 gr_def(ctx, 0x400894, 0x00000040);
220 if (!nv44_graph_class(ctx->dev)) {
221 for (i = 0; i < 8; i++)
222 gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
223 }
224 cp_ctx(ctx, 0x4008e0, 2);
225 cp_ctx(ctx, 0x4008f8, 2);
226 if (dev_priv->chipset == 0x4c ||
227 (dev_priv->chipset & 0xf0) == 0x60)
228 cp_ctx(ctx, 0x4009f8, 1);
229 }
230 cp_ctx(ctx, 0x400a00, 73);
231 gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
232 cp_ctx(ctx, 0x401000, 4);
233 cp_ctx(ctx, 0x405004, 1);
234 switch (dev_priv->chipset) {
235 case 0x47:
236 case 0x49:
237 case 0x4b:
238 cp_ctx(ctx, 0x403448, 1);
239 gr_def(ctx, 0x403448, 0x00001010);
240 break;
241 default:
242 cp_ctx(ctx, 0x403440, 1);
243 switch (dev_priv->chipset) {
244 case 0x40:
245 gr_def(ctx, 0x403440, 0x00000010);
246 break;
247 case 0x44:
248 case 0x46:
249 case 0x4a:
250 gr_def(ctx, 0x403440, 0x00003010);
251 break;
252 case 0x41:
253 case 0x42:
254 case 0x43:
255 case 0x4c:
256 case 0x4e:
257 case 0x67:
258 default:
259 gr_def(ctx, 0x403440, 0x00001010);
260 break;
261 }
262 break;
263 }
264 }
265
266 static void
267 nv40_graph_construct_state3d(struct nouveau_grctx *ctx)
268 {
269 struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
270 int i;
271
272 if (dev_priv->chipset == 0x40) {
273 cp_ctx(ctx, 0x401880, 51);
274 gr_def(ctx, 0x401940, 0x00000100);
275 } else
276 if (dev_priv->chipset == 0x46 || dev_priv->chipset == 0x47 ||
277 dev_priv->chipset == 0x49 || dev_priv->chipset == 0x4b) {
278 cp_ctx(ctx, 0x401880, 32);
279 for (i = 0; i < 16; i++)
280 gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
281 if (dev_priv->chipset == 0x46)
282 cp_ctx(ctx, 0x401900, 16);
283 cp_ctx(ctx, 0x401940, 3);
284 }
285 cp_ctx(ctx, 0x40194c, 18);
286 gr_def(ctx, 0x401954, 0x00000111);
287 gr_def(ctx, 0x401958, 0x00080060);
288 gr_def(ctx, 0x401974, 0x00000080);
289 gr_def(ctx, 0x401978, 0xffff0000);
290 gr_def(ctx, 0x40197c, 0x00000001);
291 gr_def(ctx, 0x401990, 0x46400000);
292 if (dev_priv->chipset == 0x40) {
293 cp_ctx(ctx, 0x4019a0, 2);
294 cp_ctx(ctx, 0x4019ac, 5);
295 } else {
296 cp_ctx(ctx, 0x4019a0, 1);
297 cp_ctx(ctx, 0x4019b4, 3);
298 }
299 gr_def(ctx, 0x4019bc, 0xffff0000);
300 switch (dev_priv->chipset) {
301 case 0x46:
302 case 0x47:
303 case 0x49:
304 case 0x4b:
305 cp_ctx(ctx, 0x4019c0, 18);
306 for (i = 0; i < 16; i++)
307 gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
308 break;
309 }
310 cp_ctx(ctx, 0x401a08, 8);
311 gr_def(ctx, 0x401a10, 0x0fff0000);
312 gr_def(ctx, 0x401a14, 0x0fff0000);
313 gr_def(ctx, 0x401a1c, 0x00011100);
314 cp_ctx(ctx, 0x401a2c, 4);
315 cp_ctx(ctx, 0x401a44, 26);
316 for (i = 0; i < 16; i++)
317 gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
318 gr_def(ctx, 0x401a8c, 0x4b7fffff);
319 if (dev_priv->chipset == 0x40) {
320 cp_ctx(ctx, 0x401ab8, 3);
321 } else {
322 cp_ctx(ctx, 0x401ab8, 1);
323 cp_ctx(ctx, 0x401ac0, 1);
324 }
325 cp_ctx(ctx, 0x401ad0, 8);
326 gr_def(ctx, 0x401ad0, 0x30201000);
327 gr_def(ctx, 0x401ad4, 0x70605040);
328 gr_def(ctx, 0x401ad8, 0xb8a89888);
329 gr_def(ctx, 0x401adc, 0xf8e8d8c8);
330 cp_ctx(ctx, 0x401b10, dev_priv->chipset == 0x40 ? 2 : 1);
331 gr_def(ctx, 0x401b10, 0x40100000);
332 cp_ctx(ctx, 0x401b18, dev_priv->chipset == 0x40 ? 6 : 5);
333 gr_def(ctx, 0x401b28, dev_priv->chipset == 0x40 ?
334 0x00000004 : 0x00000000);
335 cp_ctx(ctx, 0x401b30, 25);
336 gr_def(ctx, 0x401b34, 0x0000ffff);
337 gr_def(ctx, 0x401b68, 0x435185d6);
338 gr_def(ctx, 0x401b6c, 0x2155b699);
339 gr_def(ctx, 0x401b70, 0xfedcba98);
340 gr_def(ctx, 0x401b74, 0x00000098);
341 gr_def(ctx, 0x401b84, 0xffffffff);
342 gr_def(ctx, 0x401b88, 0x00ff7000);
343 gr_def(ctx, 0x401b8c, 0x0000ffff);
344 if (dev_priv->chipset != 0x44 && dev_priv->chipset != 0x4a &&
345 dev_priv->chipset != 0x4e)
346 cp_ctx(ctx, 0x401b94, 1);
347 cp_ctx(ctx, 0x401b98, 8);
348 gr_def(ctx, 0x401b9c, 0x00ff0000);
349 cp_ctx(ctx, 0x401bc0, 9);
350 gr_def(ctx, 0x401be0, 0x00ffff00);
351 cp_ctx(ctx, 0x401c00, 192);
352 for (i = 0; i < 16; i++) { /* fragment texture units */
353 gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
354 gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
355 gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
356 gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
357 gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
358 gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
359 }
360 for (i = 0; i < 4; i++) { /* vertex texture units */
361 gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
362 gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
363 gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
364 gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
365 }
366 cp_ctx(ctx, 0x400f5c, 3);
367 gr_def(ctx, 0x400f5c, 0x00000002);
368 cp_ctx(ctx, 0x400f84, 1);
369 }
370
371 static void
372 nv40_graph_construct_state3d_2(struct nouveau_grctx *ctx)
373 {
374 struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
375 int i;
376
377 cp_ctx(ctx, 0x402000, 1);
378 cp_ctx(ctx, 0x402404, dev_priv->chipset == 0x40 ? 1 : 2);
379 switch (dev_priv->chipset) {
380 case 0x40:
381 gr_def(ctx, 0x402404, 0x00000001);
382 break;
383 case 0x4c:
384 case 0x4e:
385 case 0x67:
386 gr_def(ctx, 0x402404, 0x00000020);
387 break;
388 case 0x46:
389 case 0x49:
390 case 0x4b:
391 gr_def(ctx, 0x402404, 0x00000421);
392 break;
393 default:
394 gr_def(ctx, 0x402404, 0x00000021);
395 }
396 if (dev_priv->chipset != 0x40)
397 gr_def(ctx, 0x402408, 0x030c30c3);
398 switch (dev_priv->chipset) {
399 case 0x44:
400 case 0x46:
401 case 0x4a:
402 case 0x4c:
403 case 0x4e:
404 case 0x67:
405 cp_ctx(ctx, 0x402440, 1);
406 gr_def(ctx, 0x402440, 0x00011001);
407 break;
408 default:
409 break;
410 }
411 cp_ctx(ctx, 0x402480, dev_priv->chipset == 0x40 ? 8 : 9);
412 gr_def(ctx, 0x402488, 0x3e020200);
413 gr_def(ctx, 0x40248c, 0x00ffffff);
414 switch (dev_priv->chipset) {
415 case 0x40:
416 gr_def(ctx, 0x402490, 0x60103f00);
417 break;
418 case 0x47:
419 gr_def(ctx, 0x402490, 0x40103f00);
420 break;
421 case 0x41:
422 case 0x42:
423 case 0x49:
424 case 0x4b:
425 gr_def(ctx, 0x402490, 0x20103f00);
426 break;
427 default:
428 gr_def(ctx, 0x402490, 0x0c103f00);
429 break;
430 }
431 gr_def(ctx, 0x40249c, dev_priv->chipset <= 0x43 ?
432 0x00020000 : 0x00040000);
433 cp_ctx(ctx, 0x402500, 31);
434 gr_def(ctx, 0x402530, 0x00008100);
435 if (dev_priv->chipset == 0x40)
436 cp_ctx(ctx, 0x40257c, 6);
437 cp_ctx(ctx, 0x402594, 16);
438 cp_ctx(ctx, 0x402800, 17);
439 gr_def(ctx, 0x402800, 0x00000001);
440 switch (dev_priv->chipset) {
441 case 0x47:
442 case 0x49:
443 case 0x4b:
444 cp_ctx(ctx, 0x402864, 1);
445 gr_def(ctx, 0x402864, 0x00001001);
446 cp_ctx(ctx, 0x402870, 3);
447 gr_def(ctx, 0x402878, 0x00000003);
448 if (dev_priv->chipset != 0x47) { /* belong at end!! */
449 cp_ctx(ctx, 0x402900, 1);
450 cp_ctx(ctx, 0x402940, 1);
451 cp_ctx(ctx, 0x402980, 1);
452 cp_ctx(ctx, 0x4029c0, 1);
453 cp_ctx(ctx, 0x402a00, 1);
454 cp_ctx(ctx, 0x402a40, 1);
455 cp_ctx(ctx, 0x402a80, 1);
456 cp_ctx(ctx, 0x402ac0, 1);
457 }
458 break;
459 case 0x40:
460 cp_ctx(ctx, 0x402844, 1);
461 gr_def(ctx, 0x402844, 0x00000001);
462 cp_ctx(ctx, 0x402850, 1);
463 break;
464 default:
465 cp_ctx(ctx, 0x402844, 1);
466 gr_def(ctx, 0x402844, 0x00001001);
467 cp_ctx(ctx, 0x402850, 2);
468 gr_def(ctx, 0x402854, 0x00000003);
469 break;
470 }
471
472 cp_ctx(ctx, 0x402c00, 4);
473 gr_def(ctx, 0x402c00, dev_priv->chipset == 0x40 ?
474 0x80800001 : 0x00888001);
475 switch (dev_priv->chipset) {
476 case 0x47:
477 case 0x49:
478 case 0x4b:
479 cp_ctx(ctx, 0x402c20, 40);
480 for (i = 0; i < 32; i++)
481 gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
482 cp_ctx(ctx, 0x4030b8, 13);
483 gr_def(ctx, 0x4030dc, 0x00000005);
484 gr_def(ctx, 0x4030e8, 0x0000ffff);
485 break;
486 default:
487 cp_ctx(ctx, 0x402c10, 4);
488 if (dev_priv->chipset == 0x40)
489 cp_ctx(ctx, 0x402c20, 36);
490 else
491 if (dev_priv->chipset <= 0x42)
492 cp_ctx(ctx, 0x402c20, 24);
493 else
494 if (dev_priv->chipset <= 0x4a)
495 cp_ctx(ctx, 0x402c20, 16);
496 else
497 cp_ctx(ctx, 0x402c20, 8);
498 cp_ctx(ctx, 0x402cb0, dev_priv->chipset == 0x40 ? 12 : 13);
499 gr_def(ctx, 0x402cd4, 0x00000005);
500 if (dev_priv->chipset != 0x40)
501 gr_def(ctx, 0x402ce0, 0x0000ffff);
502 break;
503 }
504
505 cp_ctx(ctx, 0x403400, dev_priv->chipset == 0x40 ? 4 : 3);
506 cp_ctx(ctx, 0x403410, dev_priv->chipset == 0x40 ? 4 : 3);
507 cp_ctx(ctx, 0x403420, nv40_graph_vs_count(ctx->dev));
508 for (i = 0; i < nv40_graph_vs_count(ctx->dev); i++)
509 gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
510
511 if (dev_priv->chipset != 0x40) {
512 cp_ctx(ctx, 0x403600, 1);
513 gr_def(ctx, 0x403600, 0x00000001);
514 }
515 cp_ctx(ctx, 0x403800, 1);
516
517 cp_ctx(ctx, 0x403c18, 1);
518 gr_def(ctx, 0x403c18, 0x00000001);
519 switch (dev_priv->chipset) {
520 case 0x46:
521 case 0x47:
522 case 0x49:
523 case 0x4b:
524 cp_ctx(ctx, 0x405018, 1);
525 gr_def(ctx, 0x405018, 0x08e00001);
526 cp_ctx(ctx, 0x405c24, 1);
527 gr_def(ctx, 0x405c24, 0x000e3000);
528 break;
529 }
530 if (dev_priv->chipset != 0x4e)
531 cp_ctx(ctx, 0x405800, 11);
532 cp_ctx(ctx, 0x407000, 1);
533 }
534
535 static void
536 nv40_graph_construct_state3d_3(struct nouveau_grctx *ctx)
537 {
538 int len = nv44_graph_class(ctx->dev) ? 0x0084 : 0x0684;
539
540 cp_out (ctx, 0x300000);
541 cp_lsr (ctx, len - 4);
542 cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
543 cp_lsr (ctx, len);
544 cp_name(ctx, cp_swap_state3d_3_is_save);
545 cp_out (ctx, 0x800001);
546
547 ctx->ctxvals_pos += len;
548 }
549
550 static void
551 nv40_graph_construct_shader(struct nouveau_grctx *ctx)
552 {
553 struct drm_device *dev = ctx->dev;
554 struct drm_nouveau_private *dev_priv = dev->dev_private;
555 struct nouveau_gpuobj *obj = ctx->data;
556 int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
557 int offset, i;
558
559 vs_nr = nv40_graph_vs_count(ctx->dev);
560 vs_nr_b0 = 363;
561 vs_nr_b1 = dev_priv->chipset == 0x40 ? 128 : 64;
562 if (dev_priv->chipset == 0x40) {
563 b0_offset = 0x2200/4; /* 33a0 */
564 b1_offset = 0x55a0/4; /* 1500 */
565 vs_len = 0x6aa0/4;
566 } else
567 if (dev_priv->chipset == 0x41 || dev_priv->chipset == 0x42) {
568 b0_offset = 0x2200/4; /* 2200 */
569 b1_offset = 0x4400/4; /* 0b00 */
570 vs_len = 0x4f00/4;
571 } else {
572 b0_offset = 0x1d40/4; /* 2200 */
573 b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
574 vs_len = nv44_graph_class(dev) ? 0x4980/4 : 0x4a40/4;
575 }
576
577 cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
578 cp_out(ctx, nv44_graph_class(dev) ? 0x800029 : 0x800041);
579
580 offset = ctx->ctxvals_pos;
581 ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
582
583 if (ctx->mode != NOUVEAU_GRCTX_VALS)
584 return;
585
586 offset += 0x0280/4;
587 for (i = 0; i < 16; i++, offset += 2)
588 nv_wo32(obj, offset * 4, 0x3f800000);
589
590 for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
591 for (i = 0; i < vs_nr_b0 * 6; i += 6)
592 nv_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
593 for (i = 0; i < vs_nr_b1 * 4; i += 4)
594 nv_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
595 }
596 }
597
598 static void
599 nv40_grctx_generate(struct nouveau_grctx *ctx)
600 {
601 /* decide whether we're loading/unloading the context */
602 cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
603 cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
604
605 cp_name(ctx, cp_check_load);
606 cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
607 cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
608 cp_bra (ctx, ALWAYS, TRUE, cp_exit);
609
610 /* setup for context load */
611 cp_name(ctx, cp_setup_auto_load);
612 cp_wait(ctx, STATUS, IDLE);
613 cp_out (ctx, CP_NEXT_TO_SWAP);
614 cp_name(ctx, cp_setup_load);
615 cp_wait(ctx, STATUS, IDLE);
616 cp_set (ctx, SWAP_DIRECTION, LOAD);
617 cp_out (ctx, 0x00910880); /* ?? */
618 cp_out (ctx, 0x00901ffe); /* ?? */
619 cp_out (ctx, 0x01940000); /* ?? */
620 cp_lsr (ctx, 0x20);
621 cp_out (ctx, 0x0060000b); /* ?? */
622 cp_wait(ctx, UNK57, CLEAR);
623 cp_out (ctx, 0x0060000c); /* ?? */
624 cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
625
626 /* setup for context save */
627 cp_name(ctx, cp_setup_save);
628 cp_set (ctx, SWAP_DIRECTION, SAVE);
629
630 /* general PGRAPH state */
631 cp_name(ctx, cp_swap_state);
632 cp_pos (ctx, 0x00020/4);
633 nv40_graph_construct_general(ctx);
634 cp_wait(ctx, STATUS, IDLE);
635
636 /* 3D state, block 1 */
637 cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
638 nv40_graph_construct_state3d(ctx);
639 cp_wait(ctx, STATUS, IDLE);
640
641 /* 3D state, block 2 */
642 nv40_graph_construct_state3d_2(ctx);
643
644 /* Some other block of "random" state */
645 nv40_graph_construct_state3d_3(ctx);
646
647 /* Per-vertex shader state */
648 cp_pos (ctx, ctx->ctxvals_pos);
649 nv40_graph_construct_shader(ctx);
650
651 /* pre-exit state updates */
652 cp_name(ctx, cp_prepare_exit);
653 cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
654 cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
655 cp_out (ctx, CP_NEXT_TO_CURRENT);
656
657 cp_name(ctx, cp_exit);
658 cp_set (ctx, USER_SAVE, NOT_PENDING);
659 cp_set (ctx, USER_LOAD, NOT_PENDING);
660 cp_out (ctx, CP_END);
661 }
662
663 void
664 nv40_grctx_fill(struct drm_device *dev, struct nouveau_gpuobj *mem)
665 {
666 nv40_grctx_generate(&(struct nouveau_grctx) {
667 .dev = dev,
668 .mode = NOUVEAU_GRCTX_VALS,
669 .data = mem,
670 });
671 }
672
673 void
674 nv40_grctx_init(struct drm_device *dev, u32 *size)
675 {
676 u32 ctxprog[256], i;
677 struct nouveau_grctx ctx = {
678 .dev = dev,
679 .mode = NOUVEAU_GRCTX_PROG,
680 .data = ctxprog,
681 .ctxprog_max = ARRAY_SIZE(ctxprog)
682 };
683
684 nv40_grctx_generate(&ctx);
685
686 nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_INDEX, 0);
687 for (i = 0; i < ctx.ctxprog_len; i++)
688 nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_DATA, ctxprog[i]);
689 *size = ctx.ctxvals_pos * 4;
690 }