]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nv50_crtc.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nv50_crtc.c
1 /*
2 * Copyright (C) 2008 Maarten Maathuis.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial
15 * portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
21 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27 #include "drmP.h"
28 #include "drm_mode.h"
29 #include "drm_crtc_helper.h"
30
31 #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
32 #include "nouveau_reg.h"
33 #include "nouveau_drv.h"
34 #include "nouveau_hw.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_crtc.h"
37 #include "nouveau_fb.h"
38 #include "nouveau_connector.h"
39 #include "nv50_display.h"
40
41 static void
42 nv50_crtc_lut_load(struct drm_crtc *crtc)
43 {
44 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
45 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
46 int i;
47
48 NV_DEBUG_KMS(crtc->dev, "\n");
49
50 for (i = 0; i < 256; i++) {
51 writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
52 writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
53 writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
54 }
55
56 if (nv_crtc->lut.depth == 30) {
57 writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
58 writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
59 writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
60 }
61 }
62
63 int
64 nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
65 {
66 struct drm_device *dev = nv_crtc->base.dev;
67 struct drm_nouveau_private *dev_priv = dev->dev_private;
68 struct nouveau_channel *evo = nv50_display(dev)->master;
69 int index = nv_crtc->index, ret;
70
71 NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
72 NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
73
74 if (blanked) {
75 nv_crtc->cursor.hide(nv_crtc, false);
76
77 ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
78 if (ret) {
79 NV_ERROR(dev, "no space while blanking crtc\n");
80 return ret;
81 }
82 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
83 OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
84 OUT_RING(evo, 0);
85 if (dev_priv->chipset != 0x50) {
86 BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
87 OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
88 }
89
90 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
91 OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
92 } else {
93 if (nv_crtc->cursor.visible)
94 nv_crtc->cursor.show(nv_crtc, false);
95 else
96 nv_crtc->cursor.hide(nv_crtc, false);
97
98 ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
99 if (ret) {
100 NV_ERROR(dev, "no space while unblanking crtc\n");
101 return ret;
102 }
103 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
104 OUT_RING(evo, nv_crtc->lut.depth == 8 ?
105 NV50_EVO_CRTC_CLUT_MODE_OFF :
106 NV50_EVO_CRTC_CLUT_MODE_ON);
107 OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
108 if (dev_priv->chipset != 0x50) {
109 BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
110 OUT_RING(evo, NvEvoVRAM);
111 }
112
113 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
114 OUT_RING(evo, nv_crtc->fb.offset >> 8);
115 OUT_RING(evo, 0);
116 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
117 if (dev_priv->chipset != 0x50)
118 if (nv_crtc->fb.tile_flags == 0x7a00 ||
119 nv_crtc->fb.tile_flags == 0xfe00)
120 OUT_RING(evo, NvEvoFB32);
121 else
122 if (nv_crtc->fb.tile_flags == 0x7000)
123 OUT_RING(evo, NvEvoFB16);
124 else
125 OUT_RING(evo, NvEvoVRAM_LP);
126 else
127 OUT_RING(evo, NvEvoVRAM_LP);
128 }
129
130 nv_crtc->fb.blanked = blanked;
131 return 0;
132 }
133
134 static int
135 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
136 {
137 struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master;
138 struct nouveau_connector *nv_connector;
139 struct drm_connector *connector;
140 int head = nv_crtc->index, ret;
141 u32 mode = 0x00;
142
143 nv_connector = nouveau_crtc_connector_get(nv_crtc);
144 connector = &nv_connector->base;
145 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
146 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
147 mode = DITHERING_MODE_DYNAMIC2X2;
148 } else {
149 mode = nv_connector->dithering_mode;
150 }
151
152 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
153 if (connector->display_info.bpc >= 8)
154 mode |= DITHERING_DEPTH_8BPC;
155 } else {
156 mode |= nv_connector->dithering_depth;
157 }
158
159 ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
160 if (ret == 0) {
161 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1);
162 OUT_RING (evo, mode);
163 if (update) {
164 BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1);
165 OUT_RING (evo, 0);
166 FIRE_RING (evo);
167 }
168 }
169
170 return ret;
171 }
172
173 static int
174 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
175 {
176 struct drm_device *dev = nv_crtc->base.dev;
177 struct nouveau_channel *evo = nv50_display(dev)->master;
178 int ret;
179 int adj;
180 u32 hue, vib;
181
182 NV_DEBUG_KMS(dev, "vibrance = %i, hue = %i\n",
183 nv_crtc->color_vibrance, nv_crtc->vibrant_hue);
184
185 ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
186 if (ret) {
187 NV_ERROR(dev, "no space while setting color vibrance\n");
188 return ret;
189 }
190
191 adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
192 vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
193
194 hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
195
196 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
197 OUT_RING (evo, (hue << 20) | (vib << 8));
198
199 if (update) {
200 BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1);
201 OUT_RING (evo, 0);
202 FIRE_RING (evo);
203 }
204
205 return 0;
206 }
207
208 struct nouveau_connector *
209 nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
210 {
211 struct drm_device *dev = nv_crtc->base.dev;
212 struct drm_connector *connector;
213 struct drm_crtc *crtc = to_drm_crtc(nv_crtc);
214
215 /* The safest approach is to find an encoder with the right crtc, that
216 * is also linked to a connector. */
217 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
218 if (connector->encoder)
219 if (connector->encoder->crtc == crtc)
220 return nouveau_connector(connector);
221 }
222
223 return NULL;
224 }
225
226 static int
227 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
228 {
229 struct nouveau_connector *nv_connector;
230 struct drm_crtc *crtc = &nv_crtc->base;
231 struct drm_device *dev = crtc->dev;
232 struct nouveau_channel *evo = nv50_display(dev)->master;
233 struct drm_display_mode *umode = &crtc->mode;
234 struct drm_display_mode *omode;
235 int scaling_mode, ret;
236 u32 ctrl = 0, oX, oY;
237
238 NV_DEBUG_KMS(dev, "\n");
239
240 nv_connector = nouveau_crtc_connector_get(nv_crtc);
241 if (!nv_connector || !nv_connector->native_mode) {
242 NV_ERROR(dev, "no native mode, forcing panel scaling\n");
243 scaling_mode = DRM_MODE_SCALE_NONE;
244 } else {
245 scaling_mode = nv_connector->scaling_mode;
246 }
247
248 /* start off at the resolution we programmed the crtc for, this
249 * effectively handles NONE/FULL scaling
250 */
251 if (scaling_mode != DRM_MODE_SCALE_NONE)
252 omode = nv_connector->native_mode;
253 else
254 omode = umode;
255
256 oX = omode->hdisplay;
257 oY = omode->vdisplay;
258 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
259 oY *= 2;
260
261 /* add overscan compensation if necessary, will keep the aspect
262 * ratio the same as the backend mode unless overridden by the
263 * user setting both hborder and vborder properties.
264 */
265 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
266 (nv_connector->underscan == UNDERSCAN_AUTO &&
267 nv_connector->edid &&
268 drm_detect_hdmi_monitor(nv_connector->edid)))) {
269 u32 bX = nv_connector->underscan_hborder;
270 u32 bY = nv_connector->underscan_vborder;
271 u32 aspect = (oY << 19) / oX;
272
273 if (bX) {
274 oX -= (bX * 2);
275 if (bY) oY -= (bY * 2);
276 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
277 } else {
278 oX -= (oX >> 4) + 32;
279 if (bY) oY -= (bY * 2);
280 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
281 }
282 }
283
284 /* handle CENTER/ASPECT scaling, taking into account the areas
285 * removed already for overscan compensation
286 */
287 switch (scaling_mode) {
288 case DRM_MODE_SCALE_CENTER:
289 oX = min((u32)umode->hdisplay, oX);
290 oY = min((u32)umode->vdisplay, oY);
291 /* fall-through */
292 case DRM_MODE_SCALE_ASPECT:
293 if (oY < oX) {
294 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
295 oX = ((oY * aspect) + (aspect / 2)) >> 19;
296 } else {
297 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
298 oY = ((oX * aspect) + (aspect / 2)) >> 19;
299 }
300 break;
301 default:
302 break;
303 }
304
305 if (umode->hdisplay != oX || umode->vdisplay != oY ||
306 umode->flags & DRM_MODE_FLAG_INTERLACE ||
307 umode->flags & DRM_MODE_FLAG_DBLSCAN)
308 ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE;
309
310 ret = RING_SPACE(evo, 5);
311 if (ret)
312 return ret;
313
314 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
315 OUT_RING (evo, ctrl);
316 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
317 OUT_RING (evo, oY << 16 | oX);
318 OUT_RING (evo, oY << 16 | oX);
319
320 if (update) {
321 nv50_display_flip_stop(crtc);
322 nv50_display_sync(dev);
323 nv50_display_flip_next(crtc, crtc->fb, NULL);
324 }
325
326 return 0;
327 }
328
329 int
330 nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
331 {
332 struct drm_nouveau_private *dev_priv = dev->dev_private;
333 struct pll_lims pll;
334 uint32_t reg1, reg2;
335 int ret, N1, M1, N2, M2, P;
336
337 ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll);
338 if (ret)
339 return ret;
340
341 if (pll.vco2.maxfreq) {
342 ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P);
343 if (ret <= 0)
344 return 0;
345
346 NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
347 pclk, ret, N1, M1, N2, M2, P);
348
349 reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00;
350 reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00;
351 nv_wr32(dev, pll.reg + 0, 0x10000611);
352 nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1);
353 nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2);
354 } else
355 if (dev_priv->chipset < NV_C0) {
356 ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
357 if (ret <= 0)
358 return 0;
359
360 NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
361 pclk, ret, N1, N2, M1, P);
362
363 reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000;
364 nv_wr32(dev, pll.reg + 0, 0x50000610);
365 nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1);
366 nv_wr32(dev, pll.reg + 8, N2);
367 } else {
368 ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
369 if (ret <= 0)
370 return 0;
371
372 NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
373 pclk, ret, N1, N2, M1, P);
374
375 nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100);
376 nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1);
377 nv_wr32(dev, pll.reg + 0x10, N2 << 16);
378 }
379
380 return 0;
381 }
382
383 static void
384 nv50_crtc_destroy(struct drm_crtc *crtc)
385 {
386 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
387
388 NV_DEBUG_KMS(crtc->dev, "\n");
389
390 nouveau_bo_unmap(nv_crtc->lut.nvbo);
391 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
392 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
393 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
394 drm_crtc_cleanup(&nv_crtc->base);
395 kfree(nv_crtc);
396 }
397
398 int
399 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
400 uint32_t buffer_handle, uint32_t width, uint32_t height)
401 {
402 struct drm_device *dev = crtc->dev;
403 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
404 struct nouveau_bo *cursor = NULL;
405 struct drm_gem_object *gem;
406 int ret = 0, i;
407
408 if (!buffer_handle) {
409 nv_crtc->cursor.hide(nv_crtc, true);
410 return 0;
411 }
412
413 if (width != 64 || height != 64)
414 return -EINVAL;
415
416 gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
417 if (!gem)
418 return -ENOENT;
419 cursor = nouveau_gem_object(gem);
420
421 ret = nouveau_bo_map(cursor);
422 if (ret)
423 goto out;
424
425 /* The simple will do for now. */
426 for (i = 0; i < 64 * 64; i++)
427 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));
428
429 nouveau_bo_unmap(cursor);
430
431 nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
432 nv_crtc->cursor.show(nv_crtc, true);
433
434 out:
435 drm_gem_object_unreference_unlocked(gem);
436 return ret;
437 }
438
439 int
440 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
441 {
442 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
443
444 nv_crtc->cursor.set_pos(nv_crtc, x, y);
445 return 0;
446 }
447
448 static void
449 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
450 uint32_t start, uint32_t size)
451 {
452 int end = (start + size > 256) ? 256 : start + size, i;
453 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
454
455 for (i = start; i < end; i++) {
456 nv_crtc->lut.r[i] = r[i];
457 nv_crtc->lut.g[i] = g[i];
458 nv_crtc->lut.b[i] = b[i];
459 }
460
461 /* We need to know the depth before we upload, but it's possible to
462 * get called before a framebuffer is bound. If this is the case,
463 * mark the lut values as dirty by setting depth==0, and it'll be
464 * uploaded on the first mode_set_base()
465 */
466 if (!nv_crtc->base.fb) {
467 nv_crtc->lut.depth = 0;
468 return;
469 }
470
471 nv50_crtc_lut_load(crtc);
472 }
473
474 static void
475 nv50_crtc_save(struct drm_crtc *crtc)
476 {
477 NV_ERROR(crtc->dev, "!!\n");
478 }
479
480 static void
481 nv50_crtc_restore(struct drm_crtc *crtc)
482 {
483 NV_ERROR(crtc->dev, "!!\n");
484 }
485
486 static const struct drm_crtc_funcs nv50_crtc_funcs = {
487 .save = nv50_crtc_save,
488 .restore = nv50_crtc_restore,
489 .cursor_set = nv50_crtc_cursor_set,
490 .cursor_move = nv50_crtc_cursor_move,
491 .gamma_set = nv50_crtc_gamma_set,
492 .set_config = drm_crtc_helper_set_config,
493 .page_flip = nouveau_crtc_page_flip,
494 .destroy = nv50_crtc_destroy,
495 };
496
497 static void
498 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
499 {
500 }
501
502 static void
503 nv50_crtc_prepare(struct drm_crtc *crtc)
504 {
505 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
506 struct drm_device *dev = crtc->dev;
507
508 NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
509
510 nv50_display_flip_stop(crtc);
511 drm_vblank_pre_modeset(dev, nv_crtc->index);
512 nv50_crtc_blank(nv_crtc, true);
513 }
514
515 static void
516 nv50_crtc_commit(struct drm_crtc *crtc)
517 {
518 struct drm_device *dev = crtc->dev;
519 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
520
521 NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
522
523 nv50_crtc_blank(nv_crtc, false);
524 drm_vblank_post_modeset(dev, nv_crtc->index);
525 nv50_display_sync(dev);
526 nv50_display_flip_next(crtc, crtc->fb, NULL);
527 }
528
529 static bool
530 nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
531 struct drm_display_mode *adjusted_mode)
532 {
533 return true;
534 }
535
536 static int
537 nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
538 struct drm_framebuffer *passed_fb,
539 int x, int y, bool atomic)
540 {
541 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
542 struct drm_device *dev = nv_crtc->base.dev;
543 struct drm_nouveau_private *dev_priv = dev->dev_private;
544 struct nouveau_channel *evo = nv50_display(dev)->master;
545 struct drm_framebuffer *drm_fb;
546 struct nouveau_framebuffer *fb;
547 int ret;
548
549 NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
550
551 /* no fb bound */
552 if (!atomic && !crtc->fb) {
553 NV_DEBUG_KMS(dev, "No FB bound\n");
554 return 0;
555 }
556
557 /* If atomic, we want to switch to the fb we were passed, so
558 * now we update pointers to do that. (We don't pin; just
559 * assume we're already pinned and update the base address.)
560 */
561 if (atomic) {
562 drm_fb = passed_fb;
563 fb = nouveau_framebuffer(passed_fb);
564 } else {
565 drm_fb = crtc->fb;
566 fb = nouveau_framebuffer(crtc->fb);
567 /* If not atomic, we can go ahead and pin, and unpin the
568 * old fb we were passed.
569 */
570 ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
571 if (ret)
572 return ret;
573
574 if (passed_fb) {
575 struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
576 nouveau_bo_unpin(ofb->nvbo);
577 }
578 }
579
580 nv_crtc->fb.offset = fb->nvbo->bo.offset;
581 nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
582 nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
583 if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
584 ret = RING_SPACE(evo, 2);
585 if (ret)
586 return ret;
587
588 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
589 OUT_RING (evo, fb->r_dma);
590 }
591
592 ret = RING_SPACE(evo, 12);
593 if (ret)
594 return ret;
595
596 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
597 OUT_RING (evo, nv_crtc->fb.offset >> 8);
598 OUT_RING (evo, 0);
599 OUT_RING (evo, (drm_fb->height << 16) | drm_fb->width);
600 OUT_RING (evo, fb->r_pitch);
601 OUT_RING (evo, fb->r_format);
602
603 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
604 OUT_RING (evo, fb->base.depth == 8 ?
605 NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
606
607 BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
608 OUT_RING (evo, (y << 16) | x);
609
610 if (nv_crtc->lut.depth != fb->base.depth) {
611 nv_crtc->lut.depth = fb->base.depth;
612 nv50_crtc_lut_load(crtc);
613 }
614
615 return 0;
616 }
617
618 static int
619 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
620 struct drm_display_mode *mode, int x, int y,
621 struct drm_framebuffer *old_fb)
622 {
623 struct drm_device *dev = crtc->dev;
624 struct nouveau_channel *evo = nv50_display(dev)->master;
625 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
626 u32 head = nv_crtc->index * 0x400;
627 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
628 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
629 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
630 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
631 u32 vblan2e = 0, vblan2s = 1;
632 int ret;
633
634 /* hw timing description looks like this:
635 *
636 * <sync> <back porch> <---------display---------> <front porch>
637 * ______
638 * |____________|---------------------------|____________|
639 *
640 * ^ synce ^ blanke ^ blanks ^ active
641 *
642 * interlaced modes also have 2 additional values pointing at the end
643 * and start of the next field's blanking period.
644 */
645
646 hactive = mode->htotal;
647 hsynce = mode->hsync_end - mode->hsync_start - 1;
648 hbackp = mode->htotal - mode->hsync_end;
649 hblanke = hsynce + hbackp;
650 hfrontp = mode->hsync_start - mode->hdisplay;
651 hblanks = mode->htotal - hfrontp - 1;
652
653 vactive = mode->vtotal * vscan / ilace;
654 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
655 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
656 vblanke = vsynce + vbackp;
657 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
658 vblanks = vactive - vfrontp - 1;
659 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
660 vblan2e = vactive + vsynce + vbackp;
661 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
662 vactive = (vactive * 2) + 1;
663 }
664
665 ret = RING_SPACE(evo, 18);
666 if (ret == 0) {
667 BEGIN_NV04(evo, 0, 0x0804 + head, 2);
668 OUT_RING (evo, 0x00800000 | mode->clock);
669 OUT_RING (evo, (ilace == 2) ? 2 : 0);
670 BEGIN_NV04(evo, 0, 0x0810 + head, 6);
671 OUT_RING (evo, 0x00000000); /* border colour */
672 OUT_RING (evo, (vactive << 16) | hactive);
673 OUT_RING (evo, ( vsynce << 16) | hsynce);
674 OUT_RING (evo, (vblanke << 16) | hblanke);
675 OUT_RING (evo, (vblanks << 16) | hblanks);
676 OUT_RING (evo, (vblan2e << 16) | vblan2s);
677 BEGIN_NV04(evo, 0, 0x082c + head, 1);
678 OUT_RING (evo, 0x00000000);
679 BEGIN_NV04(evo, 0, 0x0900 + head, 1);
680 OUT_RING (evo, 0x00000311); /* makes sync channel work */
681 BEGIN_NV04(evo, 0, 0x08c8 + head, 1);
682 OUT_RING (evo, (umode->vdisplay << 16) | umode->hdisplay);
683 BEGIN_NV04(evo, 0, 0x08d4 + head, 1);
684 OUT_RING (evo, 0x00000000); /* screen position */
685 }
686
687 nv_crtc->set_dither(nv_crtc, false);
688 nv_crtc->set_scale(nv_crtc, false);
689 nv_crtc->set_color_vibrance(nv_crtc, false);
690
691 return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
692 }
693
694 static int
695 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
696 struct drm_framebuffer *old_fb)
697 {
698 int ret;
699
700 nv50_display_flip_stop(crtc);
701 ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
702 if (ret)
703 return ret;
704
705 ret = nv50_display_sync(crtc->dev);
706 if (ret)
707 return ret;
708
709 return nv50_display_flip_next(crtc, crtc->fb, NULL);
710 }
711
712 static int
713 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
714 struct drm_framebuffer *fb,
715 int x, int y, enum mode_set_atomic state)
716 {
717 int ret;
718
719 nv50_display_flip_stop(crtc);
720 ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
721 if (ret)
722 return ret;
723
724 return nv50_display_sync(crtc->dev);
725 }
726
727 static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
728 .dpms = nv50_crtc_dpms,
729 .prepare = nv50_crtc_prepare,
730 .commit = nv50_crtc_commit,
731 .mode_fixup = nv50_crtc_mode_fixup,
732 .mode_set = nv50_crtc_mode_set,
733 .mode_set_base = nv50_crtc_mode_set_base,
734 .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
735 .load_lut = nv50_crtc_lut_load,
736 };
737
738 int
739 nv50_crtc_create(struct drm_device *dev, int index)
740 {
741 struct nouveau_crtc *nv_crtc = NULL;
742 int ret, i;
743
744 NV_DEBUG_KMS(dev, "\n");
745
746 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
747 if (!nv_crtc)
748 return -ENOMEM;
749
750 nv_crtc->index = index;
751 nv_crtc->set_dither = nv50_crtc_set_dither;
752 nv_crtc->set_scale = nv50_crtc_set_scale;
753 nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance;
754 nv_crtc->color_vibrance = 50;
755 nv_crtc->vibrant_hue = 0;
756 nv_crtc->lut.depth = 0;
757 for (i = 0; i < 256; i++) {
758 nv_crtc->lut.r[i] = i << 8;
759 nv_crtc->lut.g[i] = i << 8;
760 nv_crtc->lut.b[i] = i << 8;
761 }
762
763 drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
764 drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
765 drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
766
767 ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
768 0, 0x0000, NULL, &nv_crtc->lut.nvbo);
769 if (!ret) {
770 ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
771 if (!ret)
772 ret = nouveau_bo_map(nv_crtc->lut.nvbo);
773 if (ret)
774 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
775 }
776
777 if (ret)
778 goto out;
779
780
781 ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
782 0, 0x0000, NULL, &nv_crtc->cursor.nvbo);
783 if (!ret) {
784 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
785 if (!ret)
786 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
787 if (ret)
788 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
789 }
790
791 if (ret)
792 goto out;
793
794 nv50_cursor_init(nv_crtc);
795 out:
796 if (ret)
797 nv50_crtc_destroy(&nv_crtc->base);
798 return ret;
799 }