]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c
79312205b0e4544a23df663f01890698a76fe21a
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
25 #include "ram.h"
26 #include "ramseq.h"
27 #include "nv50.h"
28
29 #include <core/option.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/perf.h>
32 #include <subdev/bios/pll.h>
33 #include <subdev/bios/rammap.h>
34 #include <subdev/bios/timing.h>
35 #include <subdev/clk/pll.h>
36 #include <subdev/gpio.h>
37
38 struct nv50_ramseq {
39 struct hwsq base;
40 struct hwsq_reg r_0x002504;
41 struct hwsq_reg r_0x004008;
42 struct hwsq_reg r_0x00400c;
43 struct hwsq_reg r_0x00c040;
44 struct hwsq_reg r_0x100200;
45 struct hwsq_reg r_0x100210;
46 struct hwsq_reg r_0x10021c;
47 struct hwsq_reg r_0x1002d0;
48 struct hwsq_reg r_0x1002d4;
49 struct hwsq_reg r_0x1002dc;
50 struct hwsq_reg r_0x10053c;
51 struct hwsq_reg r_0x1005a0;
52 struct hwsq_reg r_0x1005a4;
53 struct hwsq_reg r_0x100710;
54 struct hwsq_reg r_0x100714;
55 struct hwsq_reg r_0x100718;
56 struct hwsq_reg r_0x10071c;
57 struct hwsq_reg r_0x100da0;
58 struct hwsq_reg r_0x100e20;
59 struct hwsq_reg r_0x100e24;
60 struct hwsq_reg r_0x611200;
61 struct hwsq_reg r_timing[9];
62 struct hwsq_reg r_mr[4];
63 struct hwsq_reg r_gpio[4];
64 };
65
66 struct nv50_ram {
67 struct nvkm_ram base;
68 struct nv50_ramseq hwsq;
69 };
70
71 #define T(t) cfg->timing_10_##t
72 static int
73 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
74 {
75 struct nvbios_ramcfg *cfg = &ram->base.target.bios;
76 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
77 struct nvkm_device *device = subdev->device;
78 u32 cur2, cur4, cur7, cur8;
79 u8 unkt3b;
80
81 cur2 = nvkm_rd32(device, 0x100228);
82 cur4 = nvkm_rd32(device, 0x100230);
83 cur7 = nvkm_rd32(device, 0x10023c);
84 cur8 = nvkm_rd32(device, 0x100240);
85
86 switch ((!T(CWL)) * ram->base.type) {
87 case NVKM_RAM_TYPE_DDR2:
88 T(CWL) = T(CL) - 1;
89 break;
90 case NVKM_RAM_TYPE_GDDR3:
91 T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
92 break;
93 }
94
95 /* XXX: N=1 is not proper statistics */
96 if (device->chipset == 0xa0) {
97 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
98 timing[6] = (0x2d + T(CL) - T(CWL) +
99 ram->base.next->bios.rammap_00_16_40) << 16 |
100 T(CWL) << 8 |
101 (0x2f + T(CL) - T(CWL));
102 } else {
103 unkt3b = 0x16;
104 timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
105 max_t(s8, T(CWL) - 2, 1) << 8 |
106 (0x2e + T(CL) - T(CWL));
107 }
108
109 timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
110 timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
111 max_t(u8, T(18), 1) << 16 |
112 (T(WTR) + 1 + T(CWL)) << 8 |
113 (3 + T(CL) - T(CWL));
114 timing[2] = (T(CWL) - 1) << 24 |
115 (T(RRD) << 16) |
116 (T(RCDWR) << 8) |
117 T(RCDRD);
118 timing[3] = (unkt3b - 2 + T(CL)) << 24 |
119 unkt3b << 16 |
120 (T(CL) - 1) << 8 |
121 (T(CL) - 1);
122 timing[4] = (cur4 & 0xffff0000) |
123 T(13) << 8 |
124 T(13);
125 timing[5] = T(RFC) << 24 |
126 max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
127 T(RP);
128 /* Timing 6 is already done above */
129 timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
130 timing[8] = (cur8 & 0xffffff00);
131
132 /* XXX: P.version == 1 only has DDR2 and GDDR3? */
133 if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
134 timing[5] |= (T(CL) + 3) << 8;
135 timing[8] |= (T(CL) - 4);
136 } else
137 if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
138 timing[5] |= (T(CL) + 2) << 8;
139 timing[8] |= (T(CL) - 2);
140 }
141
142 nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
143 timing[0], timing[1], timing[2], timing[3]);
144 nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
145 timing[4], timing[5], timing[6], timing[7]);
146 nvkm_debug(subdev, " 240: %08x\n", timing[8]);
147 return 0;
148 }
149
150 static int
151 nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
152 {
153 unsigned int i;
154 struct nvbios_ramcfg *cfg = &ram->base.target.bios;
155 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
156 struct nvkm_device *device = subdev->device;
157
158 for (i = 0; i <= 8; i++)
159 timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
160
161 /* Derive the bare minimum for the MR calculation to succeed */
162 cfg->timing_ver = 0x10;
163 T(CL) = (timing[3] & 0xff) + 1;
164
165 switch (ram->base.type) {
166 case NVKM_RAM_TYPE_DDR2:
167 T(CWL) = T(CL) - 1;
168 break;
169 case NVKM_RAM_TYPE_GDDR3:
170 T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
171 break;
172 default:
173 return -ENOSYS;
174 break;
175 }
176
177 T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
178
179 return 0;
180 }
181 #undef T
182
183 static void
184 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
185 {
186 ram_mask(hwsq, mr[0], 0x100, 0x100);
187 ram_mask(hwsq, mr[0], 0x100, 0x000);
188 ram_nsec(hwsq, 24000);
189 }
190
191 static void
192 nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
193 {
194 struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
195 struct dcb_gpio_func func;
196 u32 reg, sh, gpio_val;
197 int ret;
198
199 if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
200 ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
201 if (ret)
202 return;
203
204 reg = func.line >> 3;
205 sh = (func.line & 0x7) << 2;
206 gpio_val = ram_rd32(hwsq, gpio[reg]);
207
208 if (gpio_val & (8 << sh))
209 val = !val;
210 if (!(func.log[1] & 1))
211 val = !val;
212
213 ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
214 ram_nsec(hwsq, 20000);
215 }
216 }
217
218 static int
219 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
220 {
221 struct nv50_ram *ram = nv50_ram(base);
222 struct nv50_ramseq *hwsq = &ram->hwsq;
223 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
224 struct nvkm_bios *bios = subdev->device->bios;
225 struct nvbios_perfE perfE;
226 struct nvbios_pll mpll;
227 struct nvkm_ram_data *next;
228 u8 ver, hdr, cnt, len, strap, size;
229 u32 data;
230 u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
231 int N1, M1, N2, M2, P;
232 int ret, i;
233 u32 timing[9];
234
235 next = &ram->base.target;
236 next->freq = freq;
237 ram->base.next = next;
238
239 /* lookup closest matching performance table entry for frequency */
240 i = 0;
241 do {
242 data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
243 &size, &perfE);
244 if (!data || (ver < 0x25 || ver >= 0x40) ||
245 (size < 2)) {
246 nvkm_error(subdev, "invalid/missing perftab entry\n");
247 return -EINVAL;
248 }
249 } while (perfE.memory < freq);
250
251 nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
252
253 /* locate specific data set for the attached memory */
254 strap = nvbios_ramcfg_index(subdev);
255 if (strap >= cnt) {
256 nvkm_error(subdev, "invalid ramcfg strap\n");
257 return -EINVAL;
258 }
259
260 data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
261 &next->bios);
262 if (!data) {
263 nvkm_error(subdev, "invalid/missing rammap entry ");
264 return -EINVAL;
265 }
266
267 /* lookup memory timings, if bios says they're present */
268 if (next->bios.ramcfg_timing != 0xff) {
269 data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
270 &ver, &hdr, &cnt, &len, &next->bios);
271 if (!data || ver != 0x10 || hdr < 0x12) {
272 nvkm_error(subdev, "invalid/missing timing entry "
273 "%02x %04x %02x %02x\n",
274 strap, data, ver, hdr);
275 return -EINVAL;
276 }
277 nv50_ram_timing_calc(ram, timing);
278 } else {
279 nv50_ram_timing_read(ram, timing);
280 }
281
282 ret = ram_init(hwsq, subdev);
283 if (ret)
284 return ret;
285
286 /* Determine ram-specific MR values */
287 ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
288 ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
289 ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
290
291 switch (ram->base.type) {
292 case NVKM_RAM_TYPE_GDDR3:
293 ret = nvkm_gddr3_calc(&ram->base);
294 break;
295 default:
296 ret = -ENOSYS;
297 break;
298 }
299
300 if (ret) {
301 nvkm_error(subdev, "Could not calculate MR\n");
302 return ret;
303 }
304
305 if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
306 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
307
308 /* Always disable this bit during reclock */
309 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
310
311 ram_wait_vblank(hwsq);
312 ram_wr32(hwsq, 0x611200, 0x00003300);
313 ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
314 ram_nsec(hwsq, 8000);
315 ram_setf(hwsq, 0x10, 0x00); /* disable fb */
316 ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
317 ram_nsec(hwsq, 2000);
318
319 if (next->bios.timing_10_ODT)
320 nv50_ram_gpio(hwsq, 0x2e, 1);
321
322 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
323 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
324 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
325 ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
326 ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
327
328 ret = nvbios_pll_parse(bios, 0x004008, &mpll);
329 mpll.vco2.max_freq = 0;
330 if (ret >= 0) {
331 ret = nv04_pll_calc(subdev, &mpll, freq,
332 &N1, &M1, &N2, &M2, &P);
333 if (ret <= 0)
334 ret = -EINVAL;
335 }
336
337 if (ret < 0)
338 return ret;
339
340 /* XXX: 750MHz seems rather arbitrary */
341 if (freq <= 750000) {
342 r100da0 = 0x00000010;
343 r004008 = 0x90000000;
344 } else {
345 r100da0 = 0x00000000;
346 r004008 = 0x80000000;
347 }
348
349 r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
350
351 ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
352 /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
353 * it have a different rammap bit from DLLoff? */
354 ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
355 next->bios.rammap_00_16_40 << 14);
356 ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
357 ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
358
359 /* XXX: GDDR3 only? */
360 if (subdev->device->chipset >= 0x92)
361 ram_wr32(hwsq, 0x100da0, r100da0);
362
363 nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
364 ram_nsec(hwsq, 64000); /*XXX*/
365 ram_nsec(hwsq, 32000); /*XXX*/
366
367 ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
368
369 ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
370 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
371 ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
372
373 ram_nsec(hwsq, 12000);
374
375 switch (ram->base.type) {
376 case NVKM_RAM_TYPE_DDR2:
377 ram_nuke(hwsq, mr[0]); /* force update */
378 ram_mask(hwsq, mr[0], 0x000, 0x000);
379 break;
380 case NVKM_RAM_TYPE_GDDR3:
381 ram_nuke(hwsq, mr[1]); /* force update */
382 ram_wr32(hwsq, mr[1], ram->base.mr[1]);
383 ram_nuke(hwsq, mr[0]); /* force update */
384 ram_wr32(hwsq, mr[0], ram->base.mr[0]);
385 break;
386 default:
387 break;
388 }
389
390 ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
391 ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
392 ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
393 ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
394 ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
395 ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
396 ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
397 ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
398 ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
399
400 if (!next->bios.ramcfg_00_03_02)
401 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
402 ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
403
404 /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
405 unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100;
406 unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
407 unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
408 unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
409 if (subdev->device->chipset <= 0x96) {
410 unk710 &= ~0x0000006e;
411 unk714 &= ~0x00000100;
412
413 if (!next->bios.ramcfg_00_03_08)
414 unk710 |= 0x00000060;
415 if (!next->bios.ramcfg_FBVDDQ)
416 unk714 |= 0x00000100;
417 if ( next->bios.ramcfg_00_04_04)
418 unk710 |= 0x0000000e;
419 } else {
420 unk710 &= ~0x00000001;
421
422 if (!next->bios.ramcfg_00_03_08)
423 unk710 |= 0x00000001;
424 }
425
426 if ( next->bios.ramcfg_00_03_01)
427 unk71c |= 0x00000100;
428 if ( next->bios.ramcfg_00_03_02)
429 unk710 |= 0x00000100;
430 if (!next->bios.ramcfg_00_03_08)
431 unk714 |= 0x00000020;
432 if ( next->bios.ramcfg_00_04_04)
433 unk714 |= 0x70000000;
434 if ( next->bios.ramcfg_00_04_20)
435 unk718 |= 0x00000100;
436
437 ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
438 ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
439 ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
440 ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
441
442 /* XXX: G94 does not even test these regs in trace. Harmless we do it,
443 * but why is it omitted? */
444 if (next->bios.rammap_00_16_20) {
445 ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
446 next->bios.ramcfg_00_06 << 8 |
447 next->bios.ramcfg_00_05);
448 ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
449 next->bios.ramcfg_00_08);
450 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
451 } else {
452 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
453 }
454 ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
455
456 if (!next->bios.timing_10_ODT)
457 nv50_ram_gpio(hwsq, 0x2e, 0);
458
459 /* Reset DLL */
460 if (!next->bios.ramcfg_DLLoff)
461 nvkm_sddr2_dll_reset(hwsq);
462
463 ram_setf(hwsq, 0x10, 0x01); /* enable fb */
464 ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
465 ram_wr32(hwsq, 0x611200, 0x00003330);
466 ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
467
468 if (next->bios.rammap_00_17_02)
469 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
470 if (!next->bios.rammap_00_16_40)
471 ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
472 if (next->bios.ramcfg_00_03_02)
473 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
474 if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
475 ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
476
477 return 0;
478 }
479
480 static int
481 nv50_ram_prog(struct nvkm_ram *base)
482 {
483 struct nv50_ram *ram = nv50_ram(base);
484 struct nvkm_device *device = ram->base.fb->subdev.device;
485 ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
486 return 0;
487 }
488
489 static void
490 nv50_ram_tidy(struct nvkm_ram *base)
491 {
492 struct nv50_ram *ram = nv50_ram(base);
493 ram_exec(&ram->hwsq, false);
494 }
495
496 void
497 __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
498 {
499 struct nvkm_mm_node *next = mem->mem;
500 struct nvkm_mm_node *node;
501 while ((node = next)) {
502 next = node->next;
503 nvkm_mm_free(&ram->vram, &node);
504 }
505 }
506
507 void
508 nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
509 {
510 struct nvkm_mem *mem = *pmem;
511
512 *pmem = NULL;
513 if (unlikely(mem == NULL))
514 return;
515
516 mutex_lock(&ram->fb->subdev.mutex);
517 __nv50_ram_put(ram, mem);
518 mutex_unlock(&ram->fb->subdev.mutex);
519
520 kfree(mem);
521 }
522
523 int
524 nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
525 u32 memtype, struct nvkm_mem **pmem)
526 {
527 struct nvkm_mm *heap = &ram->vram;
528 struct nvkm_mm_node **node, *r;
529 struct nvkm_mem *mem;
530 int comp = (memtype & 0x300) >> 8;
531 int type = (memtype & 0x07f);
532 int back = (memtype & 0x800);
533 int min, max, ret;
534
535 max = (size >> NVKM_RAM_MM_SHIFT);
536 min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
537 align >>= NVKM_RAM_MM_SHIFT;
538
539 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
540 if (!mem)
541 return -ENOMEM;
542
543 mutex_lock(&ram->fb->subdev.mutex);
544 mem->memtype = (comp << 7) | type;
545 mem->size = max;
546
547 type = nv50_fb_memtype[type];
548 node = &mem->mem;
549 do {
550 if (back)
551 ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
552 else
553 ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
554 if (ret) {
555 mutex_unlock(&ram->fb->subdev.mutex);
556 ram->func->put(ram, &mem);
557 return ret;
558 }
559
560 *node = r;
561 node = &r->next;
562 max -= r->length;
563 } while (max);
564 mutex_unlock(&ram->fb->subdev.mutex);
565
566 mem->offset = (u64)mem->mem->offset << NVKM_RAM_MM_SHIFT;
567 *pmem = mem;
568 return 0;
569 }
570
571 static const struct nvkm_ram_func
572 nv50_ram_func = {
573 .get = nv50_ram_get,
574 .put = nv50_ram_put,
575 .calc = nv50_ram_calc,
576 .prog = nv50_ram_prog,
577 .tidy = nv50_ram_tidy,
578 };
579
580 static u32
581 nv50_fb_vram_rblock(struct nvkm_ram *ram)
582 {
583 struct nvkm_subdev *subdev = &ram->fb->subdev;
584 struct nvkm_device *device = subdev->device;
585 int colbits, rowbitsa, rowbitsb, banks;
586 u64 rowsize, predicted;
587 u32 r0, r4, rt, rblock_size;
588
589 r0 = nvkm_rd32(device, 0x100200);
590 r4 = nvkm_rd32(device, 0x100204);
591 rt = nvkm_rd32(device, 0x100250);
592 nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
593 r0, r4, rt, nvkm_rd32(device, 0x001540));
594
595 colbits = (r4 & 0x0000f000) >> 12;
596 rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
597 rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
598 banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
599
600 rowsize = ram->parts * banks * (1 << colbits) * 8;
601 predicted = rowsize << rowbitsa;
602 if (r0 & 0x00000004)
603 predicted += rowsize << rowbitsb;
604
605 if (predicted != ram->size) {
606 nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
607 (u32)(ram->size >> 20));
608 }
609
610 rblock_size = rowsize;
611 if (rt & 1)
612 rblock_size *= 3;
613
614 nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
615 return rblock_size;
616 }
617
618 int
619 nv50_ram_ctor(const struct nvkm_ram_func *func,
620 struct nvkm_fb *fb, struct nvkm_ram *ram)
621 {
622 struct nvkm_device *device = fb->subdev.device;
623 struct nvkm_bios *bios = device->bios;
624 const u32 rsvd_head = ( 256 * 1024); /* vga memory */
625 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
626 u64 size = nvkm_rd32(device, 0x10020c);
627 enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
628 int ret;
629
630 switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
631 case 0: type = NVKM_RAM_TYPE_DDR1; break;
632 case 1:
633 if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
634 type = NVKM_RAM_TYPE_DDR3;
635 else
636 type = NVKM_RAM_TYPE_DDR2;
637 break;
638 case 2: type = NVKM_RAM_TYPE_GDDR3; break;
639 case 3: type = NVKM_RAM_TYPE_GDDR4; break;
640 case 4: type = NVKM_RAM_TYPE_GDDR5; break;
641 default:
642 break;
643 }
644
645 size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
646
647 ret = nvkm_ram_ctor(func, fb, type, size, ram);
648 if (ret)
649 return ret;
650
651 ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
652 ram->parts = hweight8(ram->part_mask);
653 ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
654 nvkm_mm_fini(&ram->vram);
655
656 return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
657 rsvd_head >> NVKM_RAM_MM_SHIFT,
658 (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
659 nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
660 }
661
662 int
663 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
664 {
665 struct nv50_ram *ram;
666 int ret, i;
667
668 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
669 return -ENOMEM;
670 *pram = &ram->base;
671
672 ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
673 if (ret)
674 return ret;
675
676 ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
677 ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
678 ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
679 ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
680 ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
681 ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
682 ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
683 ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
684 ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
685 ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
686 ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
687 ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
688 ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
689 ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
690 ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
691 ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
692 ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
693 ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
694 ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
695 ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
696 ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
697
698 for (i = 0; i < 9; i++)
699 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
700
701 if (ram->base.ranks > 1) {
702 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
703 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
704 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
705 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
706 } else {
707 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
708 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
709 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
710 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
711 }
712
713 ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
714 ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
715 ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
716 ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
717
718 return 0;
719 }