]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c
Merge tag 'ecryptfs-4.3-rc1-stale-dcache' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
25 #include "ram.h"
26 #include "ramseq.h"
27 #include "nv50.h"
28
29 #include <core/option.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/perf.h>
32 #include <subdev/bios/pll.h>
33 #include <subdev/bios/rammap.h>
34 #include <subdev/bios/timing.h>
35 #include <subdev/clk/pll.h>
36
37 struct nv50_ramseq {
38 struct hwsq base;
39 struct hwsq_reg r_0x002504;
40 struct hwsq_reg r_0x004008;
41 struct hwsq_reg r_0x00400c;
42 struct hwsq_reg r_0x00c040;
43 struct hwsq_reg r_0x100200;
44 struct hwsq_reg r_0x100210;
45 struct hwsq_reg r_0x10021c;
46 struct hwsq_reg r_0x1002d0;
47 struct hwsq_reg r_0x1002d4;
48 struct hwsq_reg r_0x1002dc;
49 struct hwsq_reg r_0x10053c;
50 struct hwsq_reg r_0x1005a0;
51 struct hwsq_reg r_0x1005a4;
52 struct hwsq_reg r_0x100710;
53 struct hwsq_reg r_0x100714;
54 struct hwsq_reg r_0x100718;
55 struct hwsq_reg r_0x10071c;
56 struct hwsq_reg r_0x100da0;
57 struct hwsq_reg r_0x100e20;
58 struct hwsq_reg r_0x100e24;
59 struct hwsq_reg r_0x611200;
60 struct hwsq_reg r_timing[9];
61 struct hwsq_reg r_mr[4];
62 };
63
64 struct nv50_ram {
65 struct nvkm_ram base;
66 struct nv50_ramseq hwsq;
67 };
68
69 #define T(t) cfg->timing_10_##t
70 static int
71 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
72 {
73 struct nvbios_ramcfg *cfg = &ram->base.target.bios;
74 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
75 struct nvkm_device *device = subdev->device;
76 u32 cur2, cur4, cur7, cur8;
77 u8 unkt3b;
78
79 cur2 = nvkm_rd32(device, 0x100228);
80 cur4 = nvkm_rd32(device, 0x100230);
81 cur7 = nvkm_rd32(device, 0x10023c);
82 cur8 = nvkm_rd32(device, 0x100240);
83
84 switch ((!T(CWL)) * ram->base.type) {
85 case NVKM_RAM_TYPE_DDR2:
86 T(CWL) = T(CL) - 1;
87 break;
88 case NVKM_RAM_TYPE_GDDR3:
89 T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
90 break;
91 }
92
93 /* XXX: N=1 is not proper statistics */
94 if (device->chipset == 0xa0) {
95 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
96 timing[6] = (0x2d + T(CL) - T(CWL) +
97 ram->base.next->bios.rammap_00_16_40) << 16 |
98 T(CWL) << 8 |
99 (0x2f + T(CL) - T(CWL));
100 } else {
101 unkt3b = 0x16;
102 timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
103 max_t(s8, T(CWL) - 2, 1) << 8 |
104 (0x2e + T(CL) - T(CWL));
105 }
106
107 timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
108 timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
109 max_t(u8, T(18), 1) << 16 |
110 (T(WTR) + 1 + T(CWL)) << 8 |
111 (3 + T(CL) - T(CWL));
112 timing[2] = (T(CWL) - 1) << 24 |
113 (T(RRD) << 16) |
114 (T(RCDWR) << 8) |
115 T(RCDRD);
116 timing[3] = (unkt3b - 2 + T(CL)) << 24 |
117 unkt3b << 16 |
118 (T(CL) - 1) << 8 |
119 (T(CL) - 1);
120 timing[4] = (cur4 & 0xffff0000) |
121 T(13) << 8 |
122 T(13);
123 timing[5] = T(RFC) << 24 |
124 max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
125 T(RP);
126 /* Timing 6 is already done above */
127 timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
128 timing[8] = (cur8 & 0xffffff00);
129
130 /* XXX: P.version == 1 only has DDR2 and GDDR3? */
131 if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
132 timing[5] |= (T(CL) + 3) << 8;
133 timing[8] |= (T(CL) - 4);
134 } else
135 if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
136 timing[5] |= (T(CL) + 2) << 8;
137 timing[8] |= (T(CL) - 2);
138 }
139
140 nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
141 timing[0], timing[1], timing[2], timing[3]);
142 nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
143 timing[4], timing[5], timing[6], timing[7]);
144 nvkm_debug(subdev, " 240: %08x\n", timing[8]);
145 return 0;
146 }
147 #undef T
148
149 static void
150 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
151 {
152 ram_mask(hwsq, mr[0], 0x100, 0x100);
153 ram_mask(hwsq, mr[0], 0x100, 0x000);
154 ram_nsec(hwsq, 24000);
155 }
156
157 static int
158 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
159 {
160 struct nv50_ram *ram = nv50_ram(base);
161 struct nv50_ramseq *hwsq = &ram->hwsq;
162 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
163 struct nvkm_bios *bios = subdev->device->bios;
164 struct nvbios_perfE perfE;
165 struct nvbios_pll mpll;
166 struct nvkm_ram_data *next;
167 u8 ver, hdr, cnt, len, strap, size;
168 u32 data;
169 u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
170 int N1, M1, N2, M2, P;
171 int ret, i;
172 u32 timing[9];
173
174 next = &ram->base.target;
175 next->freq = freq;
176 ram->base.next = next;
177
178 /* lookup closest matching performance table entry for frequency */
179 i = 0;
180 do {
181 data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
182 &size, &perfE);
183 if (!data || (ver < 0x25 || ver >= 0x40) ||
184 (size < 2)) {
185 nvkm_error(subdev, "invalid/missing perftab entry\n");
186 return -EINVAL;
187 }
188 } while (perfE.memory < freq);
189
190 nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
191
192 /* locate specific data set for the attached memory */
193 strap = nvbios_ramcfg_index(subdev);
194 if (strap >= cnt) {
195 nvkm_error(subdev, "invalid ramcfg strap\n");
196 return -EINVAL;
197 }
198
199 data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
200 &next->bios);
201 if (!data) {
202 nvkm_error(subdev, "invalid/missing rammap entry ");
203 return -EINVAL;
204 }
205
206 /* lookup memory timings, if bios says they're present */
207 if (next->bios.ramcfg_timing != 0xff) {
208 data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
209 &ver, &hdr, &cnt, &len, &next->bios);
210 if (!data || ver != 0x10 || hdr < 0x12) {
211 nvkm_error(subdev, "invalid/missing timing entry "
212 "%02x %04x %02x %02x\n",
213 strap, data, ver, hdr);
214 return -EINVAL;
215 }
216 }
217
218 nv50_ram_timing_calc(ram, timing);
219
220 ret = ram_init(hwsq, subdev);
221 if (ret)
222 return ret;
223
224 /* Determine ram-specific MR values */
225 ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
226 ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
227 ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
228
229 switch (ram->base.type) {
230 case NVKM_RAM_TYPE_GDDR3:
231 ret = nvkm_gddr3_calc(&ram->base);
232 break;
233 default:
234 ret = -ENOSYS;
235 break;
236 }
237
238 if (ret)
239 return ret;
240
241 /* Always disable this bit during reclock */
242 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
243
244 ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
245 ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
246 ram_wr32(hwsq, 0x611200, 0x00003300);
247 ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
248 ram_nsec(hwsq, 8000);
249 ram_setf(hwsq, 0x10, 0x00); /* disable fb */
250 ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
251 ram_nsec(hwsq, 2000);
252
253 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
254 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
255 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
256 ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
257 ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
258
259 ret = nvbios_pll_parse(bios, 0x004008, &mpll);
260 mpll.vco2.max_freq = 0;
261 if (ret >= 0) {
262 ret = nv04_pll_calc(subdev, &mpll, freq,
263 &N1, &M1, &N2, &M2, &P);
264 if (ret <= 0)
265 ret = -EINVAL;
266 }
267
268 if (ret < 0)
269 return ret;
270
271 /* XXX: 750MHz seems rather arbitrary */
272 if (freq <= 750000) {
273 r100da0 = 0x00000010;
274 r004008 = 0x90000000;
275 } else {
276 r100da0 = 0x00000000;
277 r004008 = 0x80000000;
278 }
279
280 r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
281
282 ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
283 /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
284 * it have a different rammap bit from DLLoff? */
285 ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
286 next->bios.rammap_00_16_40 << 14);
287 ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
288 ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
289 if (subdev->device->chipset >= 0x96)
290 ram_wr32(hwsq, 0x100da0, r100da0);
291 ram_nsec(hwsq, 64000); /*XXX*/
292 ram_nsec(hwsq, 32000); /*XXX*/
293
294 ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
295
296 ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
297 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
298 ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
299
300 ram_nsec(hwsq, 12000);
301
302 switch (ram->base.type) {
303 case NVKM_RAM_TYPE_DDR2:
304 ram_nuke(hwsq, mr[0]); /* force update */
305 ram_mask(hwsq, mr[0], 0x000, 0x000);
306 break;
307 case NVKM_RAM_TYPE_GDDR3:
308 ram_nuke(hwsq, mr[1]); /* force update */
309 ram_wr32(hwsq, mr[1], ram->base.mr[1]);
310 ram_nuke(hwsq, mr[0]); /* force update */
311 ram_wr32(hwsq, mr[0], ram->base.mr[0]);
312 break;
313 default:
314 break;
315 }
316
317 ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
318 ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
319 ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
320 ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
321 ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
322 ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
323 ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
324 ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
325 ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
326
327 if (!next->bios.ramcfg_00_03_02)
328 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
329 ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
330
331 /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
332 unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000101;
333 unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
334 unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
335 unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
336
337 if ( next->bios.ramcfg_00_03_01)
338 unk71c |= 0x00000100;
339 if ( next->bios.ramcfg_00_03_02)
340 unk710 |= 0x00000100;
341 if (!next->bios.ramcfg_00_03_08) {
342 unk710 |= 0x1;
343 unk714 |= 0x20;
344 }
345 if ( next->bios.ramcfg_00_04_04)
346 unk714 |= 0x70000000;
347 if ( next->bios.ramcfg_00_04_20)
348 unk718 |= 0x00000100;
349
350 ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
351 ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
352 ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
353 ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
354
355 if (next->bios.rammap_00_16_20) {
356 ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
357 next->bios.ramcfg_00_06 << 8 |
358 next->bios.ramcfg_00_05);
359 ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
360 next->bios.ramcfg_00_08);
361 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
362 } else {
363 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
364 }
365 ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
366
367 /* Reset DLL */
368 if (!next->bios.ramcfg_DLLoff)
369 nvkm_sddr2_dll_reset(hwsq);
370
371 ram_setf(hwsq, 0x10, 0x01); /* enable fb */
372 ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
373 ram_wr32(hwsq, 0x611200, 0x00003330);
374 ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
375
376 if (next->bios.rammap_00_17_02)
377 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
378 if (!next->bios.rammap_00_16_40)
379 ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
380 if (next->bios.ramcfg_00_03_02)
381 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
382
383 return 0;
384 }
385
386 static int
387 nv50_ram_prog(struct nvkm_ram *base)
388 {
389 struct nv50_ram *ram = nv50_ram(base);
390 struct nvkm_device *device = ram->base.fb->subdev.device;
391 ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
392 return 0;
393 }
394
395 static void
396 nv50_ram_tidy(struct nvkm_ram *base)
397 {
398 struct nv50_ram *ram = nv50_ram(base);
399 ram_exec(&ram->hwsq, false);
400 }
401
402 void
403 __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
404 {
405 struct nvkm_mm_node *this;
406
407 while (!list_empty(&mem->regions)) {
408 this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
409
410 list_del(&this->rl_entry);
411 nvkm_mm_free(&ram->vram, &this);
412 }
413
414 nvkm_mm_free(&ram->tags, &mem->tag);
415 }
416
417 void
418 nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
419 {
420 struct nvkm_mem *mem = *pmem;
421
422 *pmem = NULL;
423 if (unlikely(mem == NULL))
424 return;
425
426 mutex_lock(&ram->fb->subdev.mutex);
427 __nv50_ram_put(ram, mem);
428 mutex_unlock(&ram->fb->subdev.mutex);
429
430 kfree(mem);
431 }
432
433 int
434 nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
435 u32 memtype, struct nvkm_mem **pmem)
436 {
437 struct nvkm_mm *heap = &ram->vram;
438 struct nvkm_mm *tags = &ram->tags;
439 struct nvkm_mm_node *r;
440 struct nvkm_mem *mem;
441 int comp = (memtype & 0x300) >> 8;
442 int type = (memtype & 0x07f);
443 int back = (memtype & 0x800);
444 int min, max, ret;
445
446 max = (size >> NVKM_RAM_MM_SHIFT);
447 min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
448 align >>= NVKM_RAM_MM_SHIFT;
449
450 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
451 if (!mem)
452 return -ENOMEM;
453
454 mutex_lock(&ram->fb->subdev.mutex);
455 if (comp) {
456 if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
457 int n = (max >> 4) * comp;
458
459 ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
460 if (ret)
461 mem->tag = NULL;
462 }
463
464 if (unlikely(!mem->tag))
465 comp = 0;
466 }
467
468 INIT_LIST_HEAD(&mem->regions);
469 mem->memtype = (comp << 7) | type;
470 mem->size = max;
471
472 type = nv50_fb_memtype[type];
473 do {
474 if (back)
475 ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
476 else
477 ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
478 if (ret) {
479 mutex_unlock(&ram->fb->subdev.mutex);
480 ram->func->put(ram, &mem);
481 return ret;
482 }
483
484 list_add_tail(&r->rl_entry, &mem->regions);
485 max -= r->length;
486 } while (max);
487 mutex_unlock(&ram->fb->subdev.mutex);
488
489 r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
490 mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
491 *pmem = mem;
492 return 0;
493 }
494
495 static const struct nvkm_ram_func
496 nv50_ram_func = {
497 .get = nv50_ram_get,
498 .put = nv50_ram_put,
499 .calc = nv50_ram_calc,
500 .prog = nv50_ram_prog,
501 .tidy = nv50_ram_tidy,
502 };
503
504 static u32
505 nv50_fb_vram_rblock(struct nvkm_ram *ram)
506 {
507 struct nvkm_subdev *subdev = &ram->fb->subdev;
508 struct nvkm_device *device = subdev->device;
509 int colbits, rowbitsa, rowbitsb, banks;
510 u64 rowsize, predicted;
511 u32 r0, r4, rt, rblock_size;
512
513 r0 = nvkm_rd32(device, 0x100200);
514 r4 = nvkm_rd32(device, 0x100204);
515 rt = nvkm_rd32(device, 0x100250);
516 nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
517 r0, r4, rt, nvkm_rd32(device, 0x001540));
518
519 colbits = (r4 & 0x0000f000) >> 12;
520 rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
521 rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
522 banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
523
524 rowsize = ram->parts * banks * (1 << colbits) * 8;
525 predicted = rowsize << rowbitsa;
526 if (r0 & 0x00000004)
527 predicted += rowsize << rowbitsb;
528
529 if (predicted != ram->size) {
530 nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
531 (u32)(ram->size >> 20));
532 }
533
534 rblock_size = rowsize;
535 if (rt & 1)
536 rblock_size *= 3;
537
538 nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
539 return rblock_size;
540 }
541
542 int
543 nv50_ram_ctor(const struct nvkm_ram_func *func,
544 struct nvkm_fb *fb, struct nvkm_ram *ram)
545 {
546 struct nvkm_device *device = fb->subdev.device;
547 struct nvkm_bios *bios = device->bios;
548 const u32 rsvd_head = ( 256 * 1024); /* vga memory */
549 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
550 u64 size = nvkm_rd32(device, 0x10020c);
551 u32 tags = nvkm_rd32(device, 0x100320);
552 enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
553 int ret;
554
555 switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
556 case 0: type = NVKM_RAM_TYPE_DDR1; break;
557 case 1:
558 if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
559 type = NVKM_RAM_TYPE_DDR3;
560 else
561 type = NVKM_RAM_TYPE_DDR2;
562 break;
563 case 2: type = NVKM_RAM_TYPE_GDDR3; break;
564 case 3: type = NVKM_RAM_TYPE_GDDR4; break;
565 case 4: type = NVKM_RAM_TYPE_GDDR5; break;
566 default:
567 break;
568 }
569
570 size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
571
572 ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
573 if (ret)
574 return ret;
575
576 ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
577 ram->parts = hweight8(ram->part_mask);
578 ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
579 nvkm_mm_fini(&ram->vram);
580
581 return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
582 (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
583 nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
584 }
585
586 int
587 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
588 {
589 struct nv50_ram *ram;
590 int ret, i;
591
592 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
593 return -ENOMEM;
594 *pram = &ram->base;
595
596 ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
597 if (ret)
598 return ret;
599
600 ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
601 ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
602 ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
603 ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
604 ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
605 ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
606 ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
607 ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
608 ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
609 ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
610 ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
611 ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
612 ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
613 ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
614 ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
615 ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
616 ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
617 ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
618 ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
619 ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
620 ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
621
622 for (i = 0; i < 9; i++)
623 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
624
625 if (ram->base.ranks > 1) {
626 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
627 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
628 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
629 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
630 } else {
631 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
632 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
633 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
634 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
635 }
636
637 return 0;
638 }