]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "nv50.h"
25 #include "ramseq.h"
26
27 #include <core/device.h>
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/perf.h>
31 #include <subdev/bios/pll.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk/pll.h>
34
35 struct nv50_ramseq {
36 struct hwsq base;
37 struct hwsq_reg r_0x002504;
38 struct hwsq_reg r_0x004008;
39 struct hwsq_reg r_0x00400c;
40 struct hwsq_reg r_0x00c040;
41 struct hwsq_reg r_0x100210;
42 struct hwsq_reg r_0x1002d0;
43 struct hwsq_reg r_0x1002d4;
44 struct hwsq_reg r_0x1002dc;
45 struct hwsq_reg r_0x100da0[8];
46 struct hwsq_reg r_0x100e20;
47 struct hwsq_reg r_0x100e24;
48 struct hwsq_reg r_0x611200;
49 struct hwsq_reg r_timing[9];
50 struct hwsq_reg r_mr[4];
51 };
52
53 struct nv50_ram {
54 struct nvkm_ram base;
55 struct nv50_ramseq hwsq;
56 };
57
58 #define QFX5800NVA0 1
59
60 static int
61 nv50_ram_calc(struct nvkm_fb *pfb, u32 freq)
62 {
63 struct nvkm_bios *bios = nvkm_bios(pfb);
64 struct nv50_ram *ram = (void *)pfb->ram;
65 struct nv50_ramseq *hwsq = &ram->hwsq;
66 struct nvbios_perfE perfE;
67 struct nvbios_pll mpll;
68 struct {
69 u32 data;
70 u8 size;
71 } ramcfg, timing;
72 u8 ver, hdr, cnt, len, strap;
73 int N1, M1, N2, M2, P;
74 int ret, i;
75
76 /* lookup closest matching performance table entry for frequency */
77 i = 0;
78 do {
79 ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
80 &ramcfg.size, &perfE);
81 if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) ||
82 (ramcfg.size < 2)) {
83 nv_error(pfb, "invalid/missing perftab entry\n");
84 return -EINVAL;
85 }
86 } while (perfE.memory < freq);
87
88 /* locate specific data set for the attached memory */
89 strap = nvbios_ramcfg_index(nv_subdev(pfb));
90 if (strap >= cnt) {
91 nv_error(pfb, "invalid ramcfg strap\n");
92 return -EINVAL;
93 }
94
95 ramcfg.data += hdr + (strap * ramcfg.size);
96
97 /* lookup memory timings, if bios says they're present */
98 strap = nv_ro08(bios, ramcfg.data + 0x01);
99 if (strap != 0xff) {
100 timing.data = nvbios_timingEe(bios, strap, &ver, &hdr,
101 &cnt, &len);
102 if (!timing.data || ver != 0x10 || hdr < 0x12) {
103 nv_error(pfb, "invalid/missing timing entry "
104 "%02x %04x %02x %02x\n",
105 strap, timing.data, ver, hdr);
106 return -EINVAL;
107 }
108 } else {
109 timing.data = 0;
110 }
111
112 ret = ram_init(hwsq, nv_subdev(pfb));
113 if (ret)
114 return ret;
115
116 ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
117 ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
118 ram_wr32(hwsq, 0x611200, 0x00003300);
119 ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
120 ram_nsec(hwsq, 8000);
121 ram_setf(hwsq, 0x10, 0x00); /* disable fb */
122 ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
123
124 ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
125 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
126 ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
127 ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
128 ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
129
130 ret = nvbios_pll_parse(bios, 0x004008, &mpll);
131 mpll.vco2.max_freq = 0;
132 if (ret == 0) {
133 ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq,
134 &N1, &M1, &N2, &M2, &P);
135 if (ret == 0)
136 ret = -EINVAL;
137 }
138
139 if (ret < 0)
140 return ret;
141
142 ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
143 ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200);
144 ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
145 ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) |
146 (P << 22) | (P << 16));
147 #if QFX5800NVA0
148 for (i = 0; i < 8; i++)
149 ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/
150 #endif
151 ram_nsec(hwsq, 96000); /*XXX*/
152 ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
153
154 ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
155 ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
156
157 ram_nsec(hwsq, 12000);
158
159 switch (ram->base.type) {
160 case NV_MEM_TYPE_DDR2:
161 ram_nuke(hwsq, mr[0]); /* force update */
162 ram_mask(hwsq, mr[0], 0x000, 0x000);
163 break;
164 case NV_MEM_TYPE_GDDR3:
165 ram_mask(hwsq, mr[2], 0x000, 0x000);
166 ram_nuke(hwsq, mr[0]); /* force update */
167 ram_mask(hwsq, mr[0], 0x000, 0x000);
168 break;
169 default:
170 break;
171 }
172
173 ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/
174 ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/
175 ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/
176 ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/
177 ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/
178 ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
179 ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/
180 ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/
181 ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/
182
183 ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
184
185 #if QFX5800NVA0
186 ram_nuke(hwsq, 0x100e24);
187 ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000);
188 ram_nuke(hwsq, 0x100e20);
189 ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000);
190 #endif
191
192 ram_mask(hwsq, mr[0], 0x100, 0x100);
193 ram_mask(hwsq, mr[0], 0x100, 0x000);
194
195 ram_setf(hwsq, 0x10, 0x01); /* enable fb */
196 ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
197 ram_wr32(hwsq, 0x611200, 0x00003330);
198 ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
199 return 0;
200 }
201
202 static int
203 nv50_ram_prog(struct nvkm_fb *pfb)
204 {
205 struct nvkm_device *device = nv_device(pfb);
206 struct nv50_ram *ram = (void *)pfb->ram;
207 struct nv50_ramseq *hwsq = &ram->hwsq;
208
209 ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
210 return 0;
211 }
212
213 static void
214 nv50_ram_tidy(struct nvkm_fb *pfb)
215 {
216 struct nv50_ram *ram = (void *)pfb->ram;
217 struct nv50_ramseq *hwsq = &ram->hwsq;
218 ram_exec(hwsq, false);
219 }
220
221 void
222 __nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem *mem)
223 {
224 struct nvkm_mm_node *this;
225
226 while (!list_empty(&mem->regions)) {
227 this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
228
229 list_del(&this->rl_entry);
230 nvkm_mm_free(&pfb->vram, &this);
231 }
232
233 nvkm_mm_free(&pfb->tags, &mem->tag);
234 }
235
236 void
237 nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem)
238 {
239 struct nvkm_mem *mem = *pmem;
240
241 *pmem = NULL;
242 if (unlikely(mem == NULL))
243 return;
244
245 mutex_lock(&pfb->base.mutex);
246 __nv50_ram_put(pfb, mem);
247 mutex_unlock(&pfb->base.mutex);
248
249 kfree(mem);
250 }
251
252 int
253 nv50_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin,
254 u32 memtype, struct nvkm_mem **pmem)
255 {
256 struct nvkm_mm *heap = &pfb->vram;
257 struct nvkm_mm *tags = &pfb->tags;
258 struct nvkm_mm_node *r;
259 struct nvkm_mem *mem;
260 int comp = (memtype & 0x300) >> 8;
261 int type = (memtype & 0x07f);
262 int back = (memtype & 0x800);
263 int min, max, ret;
264
265 max = (size >> 12);
266 min = ncmin ? (ncmin >> 12) : max;
267 align >>= 12;
268
269 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
270 if (!mem)
271 return -ENOMEM;
272
273 mutex_lock(&pfb->base.mutex);
274 if (comp) {
275 if (align == 16) {
276 int n = (max >> 4) * comp;
277
278 ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
279 if (ret)
280 mem->tag = NULL;
281 }
282
283 if (unlikely(!mem->tag))
284 comp = 0;
285 }
286
287 INIT_LIST_HEAD(&mem->regions);
288 mem->memtype = (comp << 7) | type;
289 mem->size = max;
290
291 type = nv50_fb_memtype[type];
292 do {
293 if (back)
294 ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
295 else
296 ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
297 if (ret) {
298 mutex_unlock(&pfb->base.mutex);
299 pfb->ram->put(pfb, &mem);
300 return ret;
301 }
302
303 list_add_tail(&r->rl_entry, &mem->regions);
304 max -= r->length;
305 } while (max);
306 mutex_unlock(&pfb->base.mutex);
307
308 r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
309 mem->offset = (u64)r->offset << 12;
310 *pmem = mem;
311 return 0;
312 }
313
314 static u32
315 nv50_fb_vram_rblock(struct nvkm_fb *pfb, struct nvkm_ram *ram)
316 {
317 int colbits, rowbitsa, rowbitsb, banks;
318 u64 rowsize, predicted;
319 u32 r0, r4, rt, rblock_size;
320
321 r0 = nv_rd32(pfb, 0x100200);
322 r4 = nv_rd32(pfb, 0x100204);
323 rt = nv_rd32(pfb, 0x100250);
324 nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
325 r0, r4, rt, nv_rd32(pfb, 0x001540));
326
327 colbits = (r4 & 0x0000f000) >> 12;
328 rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
329 rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
330 banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
331
332 rowsize = ram->parts * banks * (1 << colbits) * 8;
333 predicted = rowsize << rowbitsa;
334 if (r0 & 0x00000004)
335 predicted += rowsize << rowbitsb;
336
337 if (predicted != ram->size) {
338 nv_warn(pfb, "memory controller reports %d MiB VRAM\n",
339 (u32)(ram->size >> 20));
340 }
341
342 rblock_size = rowsize;
343 if (rt & 1)
344 rblock_size *= 3;
345
346 nv_debug(pfb, "rblock %d bytes\n", rblock_size);
347 return rblock_size;
348 }
349
350 int
351 nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
352 struct nvkm_oclass *oclass, int length, void **pobject)
353 {
354 const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
355 const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
356 struct nvkm_bios *bios = nvkm_bios(parent);
357 struct nvkm_fb *pfb = nvkm_fb(parent);
358 struct nvkm_ram *ram;
359 int ret;
360
361 ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
362 ram = *pobject;
363 if (ret)
364 return ret;
365
366 ram->size = nv_rd32(pfb, 0x10020c);
367 ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
368
369 ram->part_mask = (nv_rd32(pfb, 0x001540) & 0x00ff0000) >> 16;
370 ram->parts = hweight8(ram->part_mask);
371
372 switch (nv_rd32(pfb, 0x100714) & 0x00000007) {
373 case 0: ram->type = NV_MEM_TYPE_DDR1; break;
374 case 1:
375 if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
376 ram->type = NV_MEM_TYPE_DDR3;
377 else
378 ram->type = NV_MEM_TYPE_DDR2;
379 break;
380 case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
381 case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
382 case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
383 default:
384 break;
385 }
386
387 ret = nvkm_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) -
388 (rsvd_head + rsvd_tail),
389 nv50_fb_vram_rblock(pfb, ram) >> 12);
390 if (ret)
391 return ret;
392
393 ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1;
394 ram->tags = nv_rd32(pfb, 0x100320);
395 ram->get = nv50_ram_get;
396 ram->put = nv50_ram_put;
397 return 0;
398 }
399
400 static int
401 nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
402 struct nvkm_oclass *oclass, void *data, u32 datasize,
403 struct nvkm_object **pobject)
404 {
405 struct nv50_ram *ram;
406 int ret, i;
407
408 ret = nv50_ram_create(parent, engine, oclass, &ram);
409 *pobject = nv_object(ram);
410 if (ret)
411 return ret;
412
413 switch (ram->base.type) {
414 case NV_MEM_TYPE_DDR2:
415 case NV_MEM_TYPE_GDDR3:
416 ram->base.calc = nv50_ram_calc;
417 ram->base.prog = nv50_ram_prog;
418 ram->base.tidy = nv50_ram_tidy;
419 break;
420 default:
421 nv_warn(ram, "reclocking of this ram type unsupported\n");
422 return 0;
423 }
424
425 ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
426 ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
427 ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
428 ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
429 ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
430 ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
431 ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
432 ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
433 for (i = 0; i < 8; i++)
434 ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04));
435 ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
436 ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
437 ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
438
439 for (i = 0; i < 9; i++)
440 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
441
442 if (ram->base.ranks > 1) {
443 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
444 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
445 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
446 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
447 } else {
448 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
449 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
450 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
451 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
452 }
453
454 return 0;
455 }
456
457 struct nvkm_oclass
458 nv50_ram_oclass = {
459 .ofuncs = &(struct nvkm_ofuncs) {
460 .ctor = nv50_ram_ctor,
461 .dtor = _nvkm_ram_dtor,
462 .init = _nvkm_ram_init,
463 .fini = _nvkm_ram_fini,
464 }
465 };