]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
drm/nouveau/mmu: remove old vmm frontend
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / instmem / gk20a.c
1 /*
2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /*
24 * GK20A does not have dedicated video memory, and to accurately represent this
25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
26 * implementation must be done directly on top of system memory, while
27 * preserving coherency for read and write operations.
28 *
29 * Instmem can be allocated through two means:
30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31 * pages contiguous to the GPU. This is the preferred way.
32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33 * contiguous memory.
34 *
35 * In both cases CPU read and writes are performed by creating a write-combined
36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37 * be conservative we do this every time we acquire or release an instobj, but
38 * ideally L2 management should be handled at a higher level.
39 *
40 * To improve performance, CPU mappings are not removed upon instobj release.
41 * Instead they are placed into a LRU list to be recycled when the mapped space
42 * goes beyond a certain threshold. At the moment this limit is 1MB.
43 */
44 #include "priv.h"
45
46 #include <core/memory.h>
47 #include <core/tegra.h>
48 #include <subdev/ltc.h>
49 #include <subdev/mmu.h>
50
51 struct gk20a_instobj {
52 struct nvkm_memory memory;
53 struct nvkm_mm_node *mn;
54 struct gk20a_instmem *imem;
55
56 /* CPU mapping */
57 u32 *vaddr;
58 };
59 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
60
61 /*
62 * Used for objects allocated using the DMA API
63 */
64 struct gk20a_instobj_dma {
65 struct gk20a_instobj base;
66
67 dma_addr_t handle;
68 struct nvkm_mm_node r;
69 };
70 #define gk20a_instobj_dma(p) \
71 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
72
73 /*
74 * Used for objects flattened using the IOMMU API
75 */
76 struct gk20a_instobj_iommu {
77 struct gk20a_instobj base;
78
79 /* to link into gk20a_instmem::vaddr_lru */
80 struct list_head vaddr_node;
81 /* how many clients are using vaddr? */
82 u32 use_cpt;
83
84 /* will point to the higher half of pages */
85 dma_addr_t *dma_addrs;
86 /* array of base.mem->size pages (+ dma_addr_ts) */
87 struct page *pages[];
88 };
89 #define gk20a_instobj_iommu(p) \
90 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
91
92 struct gk20a_instmem {
93 struct nvkm_instmem base;
94
95 /* protects vaddr_* and gk20a_instobj::vaddr* */
96 struct mutex lock;
97
98 /* CPU mappings LRU */
99 unsigned int vaddr_use;
100 unsigned int vaddr_max;
101 struct list_head vaddr_lru;
102
103 /* Only used if IOMMU if present */
104 struct mutex *mm_mutex;
105 struct nvkm_mm *mm;
106 struct iommu_domain *domain;
107 unsigned long iommu_pgshift;
108 u16 iommu_bit;
109
110 /* Only used by DMA API */
111 unsigned long attrs;
112 };
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
117 {
118 return NVKM_MEM_TARGET_NCOH;
119 }
120
121 static u8
122 gk20a_instobj_page(struct nvkm_memory *memory)
123 {
124 return 12;
125 }
126
127 static u64
128 gk20a_instobj_addr(struct nvkm_memory *memory)
129 {
130 return (u64)gk20a_instobj(memory)->mn->offset << 12;
131 }
132
133 static u64
134 gk20a_instobj_size(struct nvkm_memory *memory)
135 {
136 return (u64)gk20a_instobj(memory)->mn->length << 12;
137 }
138
139 /*
140 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
141 */
142 static void
143 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
144 {
145 struct gk20a_instmem *imem = obj->base.imem;
146 /* there should not be any user left... */
147 WARN_ON(obj->use_cpt);
148 list_del(&obj->vaddr_node);
149 vunmap(obj->base.vaddr);
150 obj->base.vaddr = NULL;
151 imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
152 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
153 imem->vaddr_max);
154 }
155
156 /*
157 * Must be called while holding gk20a_instmem::lock
158 */
159 static void
160 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
161 {
162 while (imem->vaddr_use + size > imem->vaddr_max) {
163 /* no candidate that can be unmapped, abort... */
164 if (list_empty(&imem->vaddr_lru))
165 break;
166
167 gk20a_instobj_iommu_recycle_vaddr(
168 list_first_entry(&imem->vaddr_lru,
169 struct gk20a_instobj_iommu, vaddr_node));
170 }
171 }
172
173 static void __iomem *
174 gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
175 {
176 struct gk20a_instobj *node = gk20a_instobj(memory);
177 struct gk20a_instmem *imem = node->imem;
178 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
179
180 nvkm_ltc_flush(ltc);
181
182 return node->vaddr;
183 }
184
185 static void __iomem *
186 gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
187 {
188 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
189 struct gk20a_instmem *imem = node->base.imem;
190 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
191 const u64 size = nvkm_memory_size(memory);
192
193 nvkm_ltc_flush(ltc);
194
195 mutex_lock(&imem->lock);
196
197 if (node->base.vaddr) {
198 if (!node->use_cpt) {
199 /* remove from LRU list since mapping in use again */
200 list_del(&node->vaddr_node);
201 }
202 goto out;
203 }
204
205 /* try to free some address space if we reached the limit */
206 gk20a_instmem_vaddr_gc(imem, size);
207
208 /* map the pages */
209 node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
210 pgprot_writecombine(PAGE_KERNEL));
211 if (!node->base.vaddr) {
212 nvkm_error(&imem->base.subdev, "cannot map instobj - "
213 "this is not going to end well...\n");
214 goto out;
215 }
216
217 imem->vaddr_use += size;
218 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
219 imem->vaddr_use, imem->vaddr_max);
220
221 out:
222 node->use_cpt++;
223 mutex_unlock(&imem->lock);
224
225 return node->base.vaddr;
226 }
227
228 static void
229 gk20a_instobj_release_dma(struct nvkm_memory *memory)
230 {
231 struct gk20a_instobj *node = gk20a_instobj(memory);
232 struct gk20a_instmem *imem = node->imem;
233 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
234
235 /* in case we got a write-combined mapping */
236 wmb();
237 nvkm_ltc_invalidate(ltc);
238 }
239
240 static void
241 gk20a_instobj_release_iommu(struct nvkm_memory *memory)
242 {
243 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
244 struct gk20a_instmem *imem = node->base.imem;
245 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
246
247 mutex_lock(&imem->lock);
248
249 /* we should at least have one user to release... */
250 if (WARN_ON(node->use_cpt == 0))
251 goto out;
252
253 /* add unused objs to the LRU list to recycle their mapping */
254 if (--node->use_cpt == 0)
255 list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
256
257 out:
258 mutex_unlock(&imem->lock);
259
260 wmb();
261 nvkm_ltc_invalidate(ltc);
262 }
263
264 static u32
265 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
266 {
267 struct gk20a_instobj *node = gk20a_instobj(memory);
268
269 return node->vaddr[offset / 4];
270 }
271
272 static void
273 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
274 {
275 struct gk20a_instobj *node = gk20a_instobj(memory);
276
277 node->vaddr[offset / 4] = data;
278 }
279
280 static int
281 gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm,
282 struct nvkm_vma *vma, void *argv, u32 argc)
283 {
284 struct gk20a_instobj *node = gk20a_instobj(memory);
285 struct nvkm_vmm_map map = {
286 .memory = &node->memory,
287 .offset = offset,
288 .mem = node->mn,
289 };
290
291 return nvkm_vmm_map(vmm, vma, argv, argc, &map);
292 }
293
294 static void *
295 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
296 {
297 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
298 struct gk20a_instmem *imem = node->base.imem;
299 struct device *dev = imem->base.subdev.device->dev;
300
301 if (unlikely(!node->base.vaddr))
302 goto out;
303
304 dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT,
305 node->base.vaddr, node->handle, imem->attrs);
306
307 out:
308 return node;
309 }
310
311 static void *
312 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
313 {
314 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
315 struct gk20a_instmem *imem = node->base.imem;
316 struct device *dev = imem->base.subdev.device->dev;
317 struct nvkm_mm_node *r = node->base.mn;
318 int i;
319
320 if (unlikely(!r))
321 goto out;
322
323 mutex_lock(&imem->lock);
324
325 /* vaddr has already been recycled */
326 if (node->base.vaddr)
327 gk20a_instobj_iommu_recycle_vaddr(node);
328
329 mutex_unlock(&imem->lock);
330
331 /* clear IOMMU bit to unmap pages */
332 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
333
334 /* Unmap pages from GPU address space and free them */
335 for (i = 0; i < node->base.mn->length; i++) {
336 iommu_unmap(imem->domain,
337 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
338 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
339 DMA_BIDIRECTIONAL);
340 __free_page(node->pages[i]);
341 }
342
343 /* Release area from GPU address space */
344 mutex_lock(imem->mm_mutex);
345 nvkm_mm_free(imem->mm, &r);
346 mutex_unlock(imem->mm_mutex);
347
348 out:
349 return node;
350 }
351
352 static const struct nvkm_memory_func
353 gk20a_instobj_func_dma = {
354 .dtor = gk20a_instobj_dtor_dma,
355 .target = gk20a_instobj_target,
356 .page = gk20a_instobj_page,
357 .addr = gk20a_instobj_addr,
358 .size = gk20a_instobj_size,
359 .acquire = gk20a_instobj_acquire_dma,
360 .release = gk20a_instobj_release_dma,
361 .map = gk20a_instobj_map,
362 };
363
364 static const struct nvkm_memory_func
365 gk20a_instobj_func_iommu = {
366 .dtor = gk20a_instobj_dtor_iommu,
367 .target = gk20a_instobj_target,
368 .page = gk20a_instobj_page,
369 .addr = gk20a_instobj_addr,
370 .size = gk20a_instobj_size,
371 .acquire = gk20a_instobj_acquire_iommu,
372 .release = gk20a_instobj_release_iommu,
373 .map = gk20a_instobj_map,
374 };
375
376 static const struct nvkm_memory_ptrs
377 gk20a_instobj_ptrs = {
378 .rd32 = gk20a_instobj_rd32,
379 .wr32 = gk20a_instobj_wr32,
380 };
381
382 static int
383 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
384 struct gk20a_instobj **_node)
385 {
386 struct gk20a_instobj_dma *node;
387 struct nvkm_subdev *subdev = &imem->base.subdev;
388 struct device *dev = subdev->device->dev;
389
390 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
391 return -ENOMEM;
392 *_node = &node->base;
393
394 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
395 node->base.memory.ptrs = &gk20a_instobj_ptrs;
396
397 node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
398 &node->handle, GFP_KERNEL,
399 imem->attrs);
400 if (!node->base.vaddr) {
401 nvkm_error(subdev, "cannot allocate DMA memory\n");
402 return -ENOMEM;
403 }
404
405 /* alignment check */
406 if (unlikely(node->handle & (align - 1)))
407 nvkm_warn(subdev,
408 "memory not aligned as requested: %pad (0x%x)\n",
409 &node->handle, align);
410
411 /* present memory for being mapped using small pages */
412 node->r.type = 12;
413 node->r.offset = node->handle >> 12;
414 node->r.length = (npages << PAGE_SHIFT) >> 12;
415
416 node->base.mn = &node->r;
417 return 0;
418 }
419
420 static int
421 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
422 struct gk20a_instobj **_node)
423 {
424 struct gk20a_instobj_iommu *node;
425 struct nvkm_subdev *subdev = &imem->base.subdev;
426 struct device *dev = subdev->device->dev;
427 struct nvkm_mm_node *r;
428 int ret;
429 int i;
430
431 /*
432 * despite their variable size, instmem allocations are small enough
433 * (< 1 page) to be handled by kzalloc
434 */
435 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
436 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
437 return -ENOMEM;
438 *_node = &node->base;
439 node->dma_addrs = (void *)(node->pages + npages);
440
441 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
442 node->base.memory.ptrs = &gk20a_instobj_ptrs;
443
444 /* Allocate backing memory */
445 for (i = 0; i < npages; i++) {
446 struct page *p = alloc_page(GFP_KERNEL);
447 dma_addr_t dma_adr;
448
449 if (p == NULL) {
450 ret = -ENOMEM;
451 goto free_pages;
452 }
453 node->pages[i] = p;
454 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
455 if (dma_mapping_error(dev, dma_adr)) {
456 nvkm_error(subdev, "DMA mapping error!\n");
457 ret = -ENOMEM;
458 goto free_pages;
459 }
460 node->dma_addrs[i] = dma_adr;
461 }
462
463 mutex_lock(imem->mm_mutex);
464 /* Reserve area from GPU address space */
465 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
466 align >> imem->iommu_pgshift, &r);
467 mutex_unlock(imem->mm_mutex);
468 if (ret) {
469 nvkm_error(subdev, "IOMMU space is full!\n");
470 goto free_pages;
471 }
472
473 /* Map into GPU address space */
474 for (i = 0; i < npages; i++) {
475 u32 offset = (r->offset + i) << imem->iommu_pgshift;
476
477 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
478 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
479 if (ret < 0) {
480 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
481
482 while (i-- > 0) {
483 offset -= PAGE_SIZE;
484 iommu_unmap(imem->domain, offset, PAGE_SIZE);
485 }
486 goto release_area;
487 }
488 }
489
490 /* IOMMU bit tells that an address is to be resolved through the IOMMU */
491 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
492
493 node->base.mn = r;
494 return 0;
495
496 release_area:
497 mutex_lock(imem->mm_mutex);
498 nvkm_mm_free(imem->mm, &r);
499 mutex_unlock(imem->mm_mutex);
500
501 free_pages:
502 for (i = 0; i < npages && node->pages[i] != NULL; i++) {
503 dma_addr_t dma_addr = node->dma_addrs[i];
504 if (dma_addr)
505 dma_unmap_page(dev, dma_addr, PAGE_SIZE,
506 DMA_BIDIRECTIONAL);
507 __free_page(node->pages[i]);
508 }
509
510 return ret;
511 }
512
513 static int
514 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
515 struct nvkm_memory **pmemory)
516 {
517 struct gk20a_instmem *imem = gk20a_instmem(base);
518 struct nvkm_subdev *subdev = &imem->base.subdev;
519 struct gk20a_instobj *node = NULL;
520 int ret;
521
522 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
523 imem->domain ? "IOMMU" : "DMA", size, align);
524
525 /* Round size and align to page bounds */
526 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
527 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
528
529 if (imem->domain)
530 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
531 align, &node);
532 else
533 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
534 align, &node);
535 *pmemory = node ? &node->memory : NULL;
536 if (ret)
537 return ret;
538
539 node->imem = imem;
540
541 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
542 size, align, (u64)node->mn->offset << 12);
543
544 return 0;
545 }
546
547 static void *
548 gk20a_instmem_dtor(struct nvkm_instmem *base)
549 {
550 struct gk20a_instmem *imem = gk20a_instmem(base);
551
552 /* perform some sanity checks... */
553 if (!list_empty(&imem->vaddr_lru))
554 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
555
556 if (imem->vaddr_use != 0)
557 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
558 "0x%x bytes still mapped\n", imem->vaddr_use);
559
560 return imem;
561 }
562
563 static const struct nvkm_instmem_func
564 gk20a_instmem = {
565 .dtor = gk20a_instmem_dtor,
566 .memory_new = gk20a_instobj_new,
567 .zero = false,
568 };
569
570 int
571 gk20a_instmem_new(struct nvkm_device *device, int index,
572 struct nvkm_instmem **pimem)
573 {
574 struct nvkm_device_tegra *tdev = device->func->tegra(device);
575 struct gk20a_instmem *imem;
576
577 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
578 return -ENOMEM;
579 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
580 mutex_init(&imem->lock);
581 *pimem = &imem->base;
582
583 /* do not allow more than 1MB of CPU-mapped instmem */
584 imem->vaddr_use = 0;
585 imem->vaddr_max = 0x100000;
586 INIT_LIST_HEAD(&imem->vaddr_lru);
587
588 if (tdev->iommu.domain) {
589 imem->mm_mutex = &tdev->iommu.mutex;
590 imem->mm = &tdev->iommu.mm;
591 imem->domain = tdev->iommu.domain;
592 imem->iommu_pgshift = tdev->iommu.pgshift;
593 imem->iommu_bit = tdev->func->iommu_bit;
594
595 nvkm_info(&imem->base.subdev, "using IOMMU\n");
596 } else {
597 imem->attrs = DMA_ATTR_NON_CONSISTENT |
598 DMA_ATTR_WEAK_ORDERING |
599 DMA_ATTR_WRITE_COMBINE;
600
601 nvkm_info(&imem->base.subdev, "using DMA API\n");
602 }
603
604 return 0;
605 }