]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/nouveau/nvkm/subdev/ltc/gf100.c
60a5e9e2b2643883db38641a5d2053d9c8cc7429
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / ltc / gf100.c
1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "priv.h"
25
26 #include <subdev/fb.h>
27 #include <subdev/timer.h>
28
29 void
30 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
31 {
32 struct nvkm_device *device = ltc->subdev.device;
33 nvkm_wr32(device, 0x17e8cc, start);
34 nvkm_wr32(device, 0x17e8d0, limit);
35 nvkm_wr32(device, 0x17e8c8, 0x00000004);
36 }
37
38 void
39 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
40 {
41 struct nvkm_device *device = ltc->subdev.device;
42 int c, s;
43 for (c = 0; c < ltc->ltc_nr; c++) {
44 for (s = 0; s < ltc->lts_nr; s++) {
45 const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
46 nvkm_msec(device, 2000,
47 if (!nvkm_rd32(device, addr))
48 break;
49 );
50 }
51 }
52 }
53
54 void
55 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
56 {
57 struct nvkm_device *device = ltc->subdev.device;
58 nvkm_mask(device, 0x17ea44, 0x0000000f, i);
59 nvkm_wr32(device, 0x17ea48, color[0]);
60 nvkm_wr32(device, 0x17ea4c, color[1]);
61 nvkm_wr32(device, 0x17ea50, color[2]);
62 nvkm_wr32(device, 0x17ea54, color[3]);
63 }
64
65 void
66 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
67 {
68 struct nvkm_device *device = ltc->subdev.device;
69 nvkm_mask(device, 0x17ea44, 0x0000000f, i);
70 nvkm_wr32(device, 0x17ea58, depth);
71 }
72
73 const struct nvkm_bitfield
74 gf100_ltc_lts_intr_name[] = {
75 { 0x00000001, "IDLE_ERROR_IQ" },
76 { 0x00000002, "IDLE_ERROR_CBC" },
77 { 0x00000004, "IDLE_ERROR_TSTG" },
78 { 0x00000008, "IDLE_ERROR_DSTG" },
79 { 0x00000010, "EVICTED_CB" },
80 { 0x00000020, "ILLEGAL_COMPSTAT" },
81 { 0x00000040, "BLOCKLINEAR_CB" },
82 { 0x00000100, "ECC_SEC_ERROR" },
83 { 0x00000200, "ECC_DED_ERROR" },
84 { 0x00000400, "DEBUG" },
85 { 0x00000800, "ATOMIC_TO_Z" },
86 { 0x00001000, "ILLEGAL_ATOMIC" },
87 { 0x00002000, "BLKACTIVITY_ERR" },
88 {}
89 };
90
91 static void
92 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
93 {
94 struct nvkm_subdev *subdev = &ltc->subdev;
95 struct nvkm_device *device = subdev->device;
96 u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
97 u32 intr = nvkm_rd32(device, base + 0x020);
98 u32 stat = intr & 0x0000ffff;
99 char msg[128];
100
101 if (stat) {
102 nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
103 nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
104 }
105
106 nvkm_wr32(device, base + 0x020, intr);
107 }
108
109 void
110 gf100_ltc_intr(struct nvkm_ltc *ltc)
111 {
112 struct nvkm_device *device = ltc->subdev.device;
113 u32 mask;
114
115 mask = nvkm_rd32(device, 0x00017c);
116 while (mask) {
117 u32 s, c = __ffs(mask);
118 for (s = 0; s < ltc->lts_nr; s++)
119 gf100_ltc_lts_intr(ltc, c, s);
120 mask &= ~(1 << c);
121 }
122 }
123
124 void
125 gf100_ltc_invalidate(struct nvkm_ltc *ltc)
126 {
127 struct nvkm_device *device = ltc->subdev.device;
128 s64 taken;
129
130 nvkm_wr32(device, 0x70004, 0x00000001);
131 taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
132
133 if (taken > 0)
134 nvkm_debug(&ltc->subdev, "LTC invalidate took %lld ns\n", taken);
135 }
136
137 void
138 gf100_ltc_flush(struct nvkm_ltc *ltc)
139 {
140 struct nvkm_device *device = ltc->subdev.device;
141 s64 taken;
142
143 nvkm_wr32(device, 0x70010, 0x00000001);
144 taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
145
146 if (taken > 0)
147 nvkm_debug(&ltc->subdev, "LTC flush took %lld ns\n", taken);
148 }
149
150 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
151 */
152 int
153 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
154 {
155 struct nvkm_fb *fb = ltc->subdev.device->fb;
156 struct nvkm_ram *ram = fb->ram;
157 u32 tag_size, tag_margin, tag_align;
158 int ret;
159
160 /* No VRAM, no tags for now. */
161 if (!ram) {
162 ltc->num_tags = 0;
163 goto mm_init;
164 }
165
166 /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
167 ltc->num_tags = (ram->size >> 17) / 4;
168 if (ltc->num_tags > (1 << 17))
169 ltc->num_tags = 1 << 17; /* we have 17 bits in PTE */
170 ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
171
172 tag_align = ltc->ltc_nr * 0x800;
173 tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
174
175 /* 4 part 4 sub: 0x2000 bytes for 56 tags */
176 /* 3 part 4 sub: 0x6000 bytes for 168 tags */
177 /*
178 * About 147 bytes per tag. Let's be safe and allocate x2, which makes
179 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
180 *
181 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
182 */
183 tag_size = (ltc->num_tags / 64) * 0x6000 + tag_margin;
184 tag_size += tag_align;
185 tag_size = (tag_size + 0xfff) >> 12; /* round up */
186
187 ret = nvkm_mm_tail(&ram->vram, NVKM_RAM_MM_NORMAL, 1, tag_size,
188 tag_size, 1, &ltc->tag_ram);
189 if (ret) {
190 ltc->num_tags = 0;
191 } else {
192 u64 tag_base = ((u64)ltc->tag_ram->offset << 12) + tag_margin;
193
194 tag_base += tag_align - 1;
195 do_div(tag_base, tag_align);
196
197 ltc->tag_base = tag_base;
198 }
199
200 mm_init:
201 nvkm_mm_fini(&fb->tags);
202 return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
203 }
204
205 int
206 gf100_ltc_oneinit(struct nvkm_ltc *ltc)
207 {
208 struct nvkm_device *device = ltc->subdev.device;
209 const u32 parts = nvkm_rd32(device, 0x022438);
210 const u32 mask = nvkm_rd32(device, 0x022554);
211 const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
212 int i;
213
214 for (i = 0; i < parts; i++) {
215 if (!(mask & (1 << i)))
216 ltc->ltc_nr++;
217 }
218 ltc->lts_nr = slice;
219
220 return gf100_ltc_oneinit_tag_ram(ltc);
221 }
222
223 static void
224 gf100_ltc_init(struct nvkm_ltc *ltc)
225 {
226 struct nvkm_device *device = ltc->subdev.device;
227 u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
228
229 nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
230 nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
231 nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
232 nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
233 }
234
235 static const struct nvkm_ltc_func
236 gf100_ltc = {
237 .oneinit = gf100_ltc_oneinit,
238 .init = gf100_ltc_init,
239 .intr = gf100_ltc_intr,
240 .cbc_clear = gf100_ltc_cbc_clear,
241 .cbc_wait = gf100_ltc_cbc_wait,
242 .zbc = 16,
243 .zbc_clear_color = gf100_ltc_zbc_clear_color,
244 .zbc_clear_depth = gf100_ltc_zbc_clear_depth,
245 .invalidate = gf100_ltc_invalidate,
246 .flush = gf100_ltc_flush,
247 };
248
249 int
250 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
251 {
252 return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
253 }