]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/omapdrm/dss/dispc.c
drm/omap: Replace struct omap_video_timings with videomode
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / omapdrm / dss / dispc.c
1 /*
2 * linux/drivers/video/omap2/dss/dispc.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * Some code and ideas taken from drivers/video/omap/ driver
8 * by Imre Deak.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #define DSS_SUBSYS_NAME "DISPC"
24
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/vmalloc.h>
28 #include <linux/export.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/jiffies.h>
32 #include <linux/seq_file.h>
33 #include <linux/delay.h>
34 #include <linux/workqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/platform_device.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/sizes.h>
39 #include <linux/mfd/syscon.h>
40 #include <linux/regmap.h>
41 #include <linux/of.h>
42 #include <linux/component.h>
43
44 #include "omapdss.h"
45 #include "dss.h"
46 #include "dss_features.h"
47 #include "dispc.h"
48
49 /* DISPC */
50 #define DISPC_SZ_REGS SZ_4K
51
52 enum omap_burst_size {
53 BURST_SIZE_X2 = 0,
54 BURST_SIZE_X4 = 1,
55 BURST_SIZE_X8 = 2,
56 };
57
58 #define REG_GET(idx, start, end) \
59 FLD_GET(dispc_read_reg(idx), start, end)
60
61 #define REG_FLD_MOD(idx, val, start, end) \
62 dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
63
64 struct dispc_features {
65 u8 sw_start;
66 u8 fp_start;
67 u8 bp_start;
68 u16 sw_max;
69 u16 vp_max;
70 u16 hp_max;
71 u8 mgr_width_start;
72 u8 mgr_height_start;
73 u16 mgr_width_max;
74 u16 mgr_height_max;
75 unsigned long max_lcd_pclk;
76 unsigned long max_tv_pclk;
77 int (*calc_scaling) (unsigned long pclk, unsigned long lclk,
78 const struct videomode *mgr_timings,
79 u16 width, u16 height, u16 out_width, u16 out_height,
80 enum omap_color_mode color_mode, bool *five_taps,
81 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
82 u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
83 unsigned long (*calc_core_clk) (unsigned long pclk,
84 u16 width, u16 height, u16 out_width, u16 out_height,
85 bool mem_to_mem);
86 u8 num_fifos;
87
88 /* swap GFX & WB fifos */
89 bool gfx_fifo_workaround:1;
90
91 /* no DISPC_IRQ_FRAMEDONETV on this SoC */
92 bool no_framedone_tv:1;
93
94 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
95 bool mstandby_workaround:1;
96
97 bool set_max_preload:1;
98
99 /* PIXEL_INC is not added to the last pixel of a line */
100 bool last_pixel_inc_missing:1;
101
102 /* POL_FREQ has ALIGN bit */
103 bool supports_sync_align:1;
104
105 bool has_writeback:1;
106
107 bool supports_double_pixel:1;
108
109 /*
110 * Field order for VENC is different than HDMI. We should handle this in
111 * some intelligent manner, but as the SoCs have either HDMI or VENC,
112 * never both, we can just use this flag for now.
113 */
114 bool reverse_ilace_field_order:1;
115
116 bool has_gamma_table:1;
117
118 bool has_gamma_i734_bug:1;
119 };
120
121 #define DISPC_MAX_NR_FIFOS 5
122 #define DISPC_MAX_CHANNEL_GAMMA 4
123
124 static struct {
125 struct platform_device *pdev;
126 void __iomem *base;
127
128 int irq;
129 irq_handler_t user_handler;
130 void *user_data;
131
132 unsigned long core_clk_rate;
133 unsigned long tv_pclk_rate;
134
135 u32 fifo_size[DISPC_MAX_NR_FIFOS];
136 /* maps which plane is using a fifo. fifo-id -> plane-id */
137 int fifo_assignment[DISPC_MAX_NR_FIFOS];
138
139 bool ctx_valid;
140 u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
141
142 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
143
144 const struct dispc_features *feat;
145
146 bool is_enabled;
147
148 struct regmap *syscon_pol;
149 u32 syscon_pol_offset;
150
151 /* DISPC_CONTROL & DISPC_CONFIG lock*/
152 spinlock_t control_lock;
153 } dispc;
154
155 enum omap_color_component {
156 /* used for all color formats for OMAP3 and earlier
157 * and for RGB and Y color component on OMAP4
158 */
159 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
160 /* used for UV component for
161 * OMAP_DSS_COLOR_YUV2, OMAP_DSS_COLOR_UYVY, OMAP_DSS_COLOR_NV12
162 * color formats on OMAP4
163 */
164 DISPC_COLOR_COMPONENT_UV = 1 << 1,
165 };
166
167 enum mgr_reg_fields {
168 DISPC_MGR_FLD_ENABLE,
169 DISPC_MGR_FLD_STNTFT,
170 DISPC_MGR_FLD_GO,
171 DISPC_MGR_FLD_TFTDATALINES,
172 DISPC_MGR_FLD_STALLMODE,
173 DISPC_MGR_FLD_TCKENABLE,
174 DISPC_MGR_FLD_TCKSELECTION,
175 DISPC_MGR_FLD_CPR,
176 DISPC_MGR_FLD_FIFOHANDCHECK,
177 /* used to maintain a count of the above fields */
178 DISPC_MGR_FLD_NUM,
179 };
180
181 struct dispc_reg_field {
182 u16 reg;
183 u8 high;
184 u8 low;
185 };
186
187 struct dispc_gamma_desc {
188 u32 len;
189 u32 bits;
190 u16 reg;
191 bool has_index;
192 };
193
194 static const struct {
195 const char *name;
196 u32 vsync_irq;
197 u32 framedone_irq;
198 u32 sync_lost_irq;
199 struct dispc_gamma_desc gamma;
200 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
201 } mgr_desc[] = {
202 [OMAP_DSS_CHANNEL_LCD] = {
203 .name = "LCD",
204 .vsync_irq = DISPC_IRQ_VSYNC,
205 .framedone_irq = DISPC_IRQ_FRAMEDONE,
206 .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
207 .gamma = {
208 .len = 256,
209 .bits = 8,
210 .reg = DISPC_GAMMA_TABLE0,
211 .has_index = true,
212 },
213 .reg_desc = {
214 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
215 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
216 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
217 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
218 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
219 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
220 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
221 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
222 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
223 },
224 },
225 [OMAP_DSS_CHANNEL_DIGIT] = {
226 .name = "DIGIT",
227 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
228 .framedone_irq = DISPC_IRQ_FRAMEDONETV,
229 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
230 .gamma = {
231 .len = 1024,
232 .bits = 10,
233 .reg = DISPC_GAMMA_TABLE2,
234 .has_index = false,
235 },
236 .reg_desc = {
237 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
238 [DISPC_MGR_FLD_STNTFT] = { },
239 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
240 [DISPC_MGR_FLD_TFTDATALINES] = { },
241 [DISPC_MGR_FLD_STALLMODE] = { },
242 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
243 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
244 [DISPC_MGR_FLD_CPR] = { },
245 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
246 },
247 },
248 [OMAP_DSS_CHANNEL_LCD2] = {
249 .name = "LCD2",
250 .vsync_irq = DISPC_IRQ_VSYNC2,
251 .framedone_irq = DISPC_IRQ_FRAMEDONE2,
252 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
253 .gamma = {
254 .len = 256,
255 .bits = 8,
256 .reg = DISPC_GAMMA_TABLE1,
257 .has_index = true,
258 },
259 .reg_desc = {
260 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
261 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
262 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
263 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
264 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
265 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
266 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
267 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
268 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
269 },
270 },
271 [OMAP_DSS_CHANNEL_LCD3] = {
272 .name = "LCD3",
273 .vsync_irq = DISPC_IRQ_VSYNC3,
274 .framedone_irq = DISPC_IRQ_FRAMEDONE3,
275 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
276 .gamma = {
277 .len = 256,
278 .bits = 8,
279 .reg = DISPC_GAMMA_TABLE3,
280 .has_index = true,
281 },
282 .reg_desc = {
283 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
284 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
285 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
286 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
287 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
288 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
289 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
290 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
291 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
292 },
293 },
294 };
295
296 struct color_conv_coef {
297 int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
298 int full_range;
299 };
300
301 static unsigned long dispc_fclk_rate(void);
302 static unsigned long dispc_core_clk_rate(void);
303 static unsigned long dispc_mgr_lclk_rate(enum omap_channel channel);
304 static unsigned long dispc_mgr_pclk_rate(enum omap_channel channel);
305
306 static unsigned long dispc_plane_pclk_rate(enum omap_plane plane);
307 static unsigned long dispc_plane_lclk_rate(enum omap_plane plane);
308
309 static inline void dispc_write_reg(const u16 idx, u32 val)
310 {
311 __raw_writel(val, dispc.base + idx);
312 }
313
314 static inline u32 dispc_read_reg(const u16 idx)
315 {
316 return __raw_readl(dispc.base + idx);
317 }
318
319 static u32 mgr_fld_read(enum omap_channel channel, enum mgr_reg_fields regfld)
320 {
321 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
322 return REG_GET(rfld.reg, rfld.high, rfld.low);
323 }
324
325 static void mgr_fld_write(enum omap_channel channel,
326 enum mgr_reg_fields regfld, int val) {
327 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
328 const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
329 unsigned long flags;
330
331 if (need_lock)
332 spin_lock_irqsave(&dispc.control_lock, flags);
333
334 REG_FLD_MOD(rfld.reg, val, rfld.high, rfld.low);
335
336 if (need_lock)
337 spin_unlock_irqrestore(&dispc.control_lock, flags);
338 }
339
340 #define SR(reg) \
341 dispc.ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
342 #define RR(reg) \
343 dispc_write_reg(DISPC_##reg, dispc.ctx[DISPC_##reg / sizeof(u32)])
344
345 static void dispc_save_context(void)
346 {
347 int i, j;
348
349 DSSDBG("dispc_save_context\n");
350
351 SR(IRQENABLE);
352 SR(CONTROL);
353 SR(CONFIG);
354 SR(LINE_NUMBER);
355 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
356 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
357 SR(GLOBAL_ALPHA);
358 if (dss_has_feature(FEAT_MGR_LCD2)) {
359 SR(CONTROL2);
360 SR(CONFIG2);
361 }
362 if (dss_has_feature(FEAT_MGR_LCD3)) {
363 SR(CONTROL3);
364 SR(CONFIG3);
365 }
366
367 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
368 SR(DEFAULT_COLOR(i));
369 SR(TRANS_COLOR(i));
370 SR(SIZE_MGR(i));
371 if (i == OMAP_DSS_CHANNEL_DIGIT)
372 continue;
373 SR(TIMING_H(i));
374 SR(TIMING_V(i));
375 SR(POL_FREQ(i));
376 SR(DIVISORo(i));
377
378 SR(DATA_CYCLE1(i));
379 SR(DATA_CYCLE2(i));
380 SR(DATA_CYCLE3(i));
381
382 if (dss_has_feature(FEAT_CPR)) {
383 SR(CPR_COEF_R(i));
384 SR(CPR_COEF_G(i));
385 SR(CPR_COEF_B(i));
386 }
387 }
388
389 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
390 SR(OVL_BA0(i));
391 SR(OVL_BA1(i));
392 SR(OVL_POSITION(i));
393 SR(OVL_SIZE(i));
394 SR(OVL_ATTRIBUTES(i));
395 SR(OVL_FIFO_THRESHOLD(i));
396 SR(OVL_ROW_INC(i));
397 SR(OVL_PIXEL_INC(i));
398 if (dss_has_feature(FEAT_PRELOAD))
399 SR(OVL_PRELOAD(i));
400 if (i == OMAP_DSS_GFX) {
401 SR(OVL_WINDOW_SKIP(i));
402 SR(OVL_TABLE_BA(i));
403 continue;
404 }
405 SR(OVL_FIR(i));
406 SR(OVL_PICTURE_SIZE(i));
407 SR(OVL_ACCU0(i));
408 SR(OVL_ACCU1(i));
409
410 for (j = 0; j < 8; j++)
411 SR(OVL_FIR_COEF_H(i, j));
412
413 for (j = 0; j < 8; j++)
414 SR(OVL_FIR_COEF_HV(i, j));
415
416 for (j = 0; j < 5; j++)
417 SR(OVL_CONV_COEF(i, j));
418
419 if (dss_has_feature(FEAT_FIR_COEF_V)) {
420 for (j = 0; j < 8; j++)
421 SR(OVL_FIR_COEF_V(i, j));
422 }
423
424 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
425 SR(OVL_BA0_UV(i));
426 SR(OVL_BA1_UV(i));
427 SR(OVL_FIR2(i));
428 SR(OVL_ACCU2_0(i));
429 SR(OVL_ACCU2_1(i));
430
431 for (j = 0; j < 8; j++)
432 SR(OVL_FIR_COEF_H2(i, j));
433
434 for (j = 0; j < 8; j++)
435 SR(OVL_FIR_COEF_HV2(i, j));
436
437 for (j = 0; j < 8; j++)
438 SR(OVL_FIR_COEF_V2(i, j));
439 }
440 if (dss_has_feature(FEAT_ATTR2))
441 SR(OVL_ATTRIBUTES2(i));
442 }
443
444 if (dss_has_feature(FEAT_CORE_CLK_DIV))
445 SR(DIVISOR);
446
447 dispc.ctx_valid = true;
448
449 DSSDBG("context saved\n");
450 }
451
452 static void dispc_restore_context(void)
453 {
454 int i, j;
455
456 DSSDBG("dispc_restore_context\n");
457
458 if (!dispc.ctx_valid)
459 return;
460
461 /*RR(IRQENABLE);*/
462 /*RR(CONTROL);*/
463 RR(CONFIG);
464 RR(LINE_NUMBER);
465 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
466 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
467 RR(GLOBAL_ALPHA);
468 if (dss_has_feature(FEAT_MGR_LCD2))
469 RR(CONFIG2);
470 if (dss_has_feature(FEAT_MGR_LCD3))
471 RR(CONFIG3);
472
473 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
474 RR(DEFAULT_COLOR(i));
475 RR(TRANS_COLOR(i));
476 RR(SIZE_MGR(i));
477 if (i == OMAP_DSS_CHANNEL_DIGIT)
478 continue;
479 RR(TIMING_H(i));
480 RR(TIMING_V(i));
481 RR(POL_FREQ(i));
482 RR(DIVISORo(i));
483
484 RR(DATA_CYCLE1(i));
485 RR(DATA_CYCLE2(i));
486 RR(DATA_CYCLE3(i));
487
488 if (dss_has_feature(FEAT_CPR)) {
489 RR(CPR_COEF_R(i));
490 RR(CPR_COEF_G(i));
491 RR(CPR_COEF_B(i));
492 }
493 }
494
495 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
496 RR(OVL_BA0(i));
497 RR(OVL_BA1(i));
498 RR(OVL_POSITION(i));
499 RR(OVL_SIZE(i));
500 RR(OVL_ATTRIBUTES(i));
501 RR(OVL_FIFO_THRESHOLD(i));
502 RR(OVL_ROW_INC(i));
503 RR(OVL_PIXEL_INC(i));
504 if (dss_has_feature(FEAT_PRELOAD))
505 RR(OVL_PRELOAD(i));
506 if (i == OMAP_DSS_GFX) {
507 RR(OVL_WINDOW_SKIP(i));
508 RR(OVL_TABLE_BA(i));
509 continue;
510 }
511 RR(OVL_FIR(i));
512 RR(OVL_PICTURE_SIZE(i));
513 RR(OVL_ACCU0(i));
514 RR(OVL_ACCU1(i));
515
516 for (j = 0; j < 8; j++)
517 RR(OVL_FIR_COEF_H(i, j));
518
519 for (j = 0; j < 8; j++)
520 RR(OVL_FIR_COEF_HV(i, j));
521
522 for (j = 0; j < 5; j++)
523 RR(OVL_CONV_COEF(i, j));
524
525 if (dss_has_feature(FEAT_FIR_COEF_V)) {
526 for (j = 0; j < 8; j++)
527 RR(OVL_FIR_COEF_V(i, j));
528 }
529
530 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
531 RR(OVL_BA0_UV(i));
532 RR(OVL_BA1_UV(i));
533 RR(OVL_FIR2(i));
534 RR(OVL_ACCU2_0(i));
535 RR(OVL_ACCU2_1(i));
536
537 for (j = 0; j < 8; j++)
538 RR(OVL_FIR_COEF_H2(i, j));
539
540 for (j = 0; j < 8; j++)
541 RR(OVL_FIR_COEF_HV2(i, j));
542
543 for (j = 0; j < 8; j++)
544 RR(OVL_FIR_COEF_V2(i, j));
545 }
546 if (dss_has_feature(FEAT_ATTR2))
547 RR(OVL_ATTRIBUTES2(i));
548 }
549
550 if (dss_has_feature(FEAT_CORE_CLK_DIV))
551 RR(DIVISOR);
552
553 /* enable last, because LCD & DIGIT enable are here */
554 RR(CONTROL);
555 if (dss_has_feature(FEAT_MGR_LCD2))
556 RR(CONTROL2);
557 if (dss_has_feature(FEAT_MGR_LCD3))
558 RR(CONTROL3);
559 /* clear spurious SYNC_LOST_DIGIT interrupts */
560 dispc_clear_irqstatus(DISPC_IRQ_SYNC_LOST_DIGIT);
561
562 /*
563 * enable last so IRQs won't trigger before
564 * the context is fully restored
565 */
566 RR(IRQENABLE);
567
568 DSSDBG("context restored\n");
569 }
570
571 #undef SR
572 #undef RR
573
574 int dispc_runtime_get(void)
575 {
576 int r;
577
578 DSSDBG("dispc_runtime_get\n");
579
580 r = pm_runtime_get_sync(&dispc.pdev->dev);
581 WARN_ON(r < 0);
582 return r < 0 ? r : 0;
583 }
584 EXPORT_SYMBOL(dispc_runtime_get);
585
586 void dispc_runtime_put(void)
587 {
588 int r;
589
590 DSSDBG("dispc_runtime_put\n");
591
592 r = pm_runtime_put_sync(&dispc.pdev->dev);
593 WARN_ON(r < 0 && r != -ENOSYS);
594 }
595 EXPORT_SYMBOL(dispc_runtime_put);
596
597 u32 dispc_mgr_get_vsync_irq(enum omap_channel channel)
598 {
599 return mgr_desc[channel].vsync_irq;
600 }
601 EXPORT_SYMBOL(dispc_mgr_get_vsync_irq);
602
603 u32 dispc_mgr_get_framedone_irq(enum omap_channel channel)
604 {
605 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc.feat->no_framedone_tv)
606 return 0;
607
608 return mgr_desc[channel].framedone_irq;
609 }
610 EXPORT_SYMBOL(dispc_mgr_get_framedone_irq);
611
612 u32 dispc_mgr_get_sync_lost_irq(enum omap_channel channel)
613 {
614 return mgr_desc[channel].sync_lost_irq;
615 }
616 EXPORT_SYMBOL(dispc_mgr_get_sync_lost_irq);
617
618 u32 dispc_wb_get_framedone_irq(void)
619 {
620 return DISPC_IRQ_FRAMEDONEWB;
621 }
622
623 bool dispc_mgr_go_busy(enum omap_channel channel)
624 {
625 return mgr_fld_read(channel, DISPC_MGR_FLD_GO) == 1;
626 }
627 EXPORT_SYMBOL(dispc_mgr_go_busy);
628
629 void dispc_mgr_go(enum omap_channel channel)
630 {
631 WARN_ON(!dispc_mgr_is_enabled(channel));
632 WARN_ON(dispc_mgr_go_busy(channel));
633
634 DSSDBG("GO %s\n", mgr_desc[channel].name);
635
636 mgr_fld_write(channel, DISPC_MGR_FLD_GO, 1);
637 }
638 EXPORT_SYMBOL(dispc_mgr_go);
639
640 bool dispc_wb_go_busy(void)
641 {
642 return REG_GET(DISPC_CONTROL2, 6, 6) == 1;
643 }
644
645 void dispc_wb_go(void)
646 {
647 enum omap_plane plane = OMAP_DSS_WB;
648 bool enable, go;
649
650 enable = REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
651
652 if (!enable)
653 return;
654
655 go = REG_GET(DISPC_CONTROL2, 6, 6) == 1;
656 if (go) {
657 DSSERR("GO bit not down for WB\n");
658 return;
659 }
660
661 REG_FLD_MOD(DISPC_CONTROL2, 1, 6, 6);
662 }
663
664 static void dispc_ovl_write_firh_reg(enum omap_plane plane, int reg, u32 value)
665 {
666 dispc_write_reg(DISPC_OVL_FIR_COEF_H(plane, reg), value);
667 }
668
669 static void dispc_ovl_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
670 {
671 dispc_write_reg(DISPC_OVL_FIR_COEF_HV(plane, reg), value);
672 }
673
674 static void dispc_ovl_write_firv_reg(enum omap_plane plane, int reg, u32 value)
675 {
676 dispc_write_reg(DISPC_OVL_FIR_COEF_V(plane, reg), value);
677 }
678
679 static void dispc_ovl_write_firh2_reg(enum omap_plane plane, int reg, u32 value)
680 {
681 BUG_ON(plane == OMAP_DSS_GFX);
682
683 dispc_write_reg(DISPC_OVL_FIR_COEF_H2(plane, reg), value);
684 }
685
686 static void dispc_ovl_write_firhv2_reg(enum omap_plane plane, int reg,
687 u32 value)
688 {
689 BUG_ON(plane == OMAP_DSS_GFX);
690
691 dispc_write_reg(DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
692 }
693
694 static void dispc_ovl_write_firv2_reg(enum omap_plane plane, int reg, u32 value)
695 {
696 BUG_ON(plane == OMAP_DSS_GFX);
697
698 dispc_write_reg(DISPC_OVL_FIR_COEF_V2(plane, reg), value);
699 }
700
701 static void dispc_ovl_set_scale_coef(enum omap_plane plane, int fir_hinc,
702 int fir_vinc, int five_taps,
703 enum omap_color_component color_comp)
704 {
705 const struct dispc_coef *h_coef, *v_coef;
706 int i;
707
708 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
709 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
710
711 for (i = 0; i < 8; i++) {
712 u32 h, hv;
713
714 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
715 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
716 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
717 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
718 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
719 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
720 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
721 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
722
723 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
724 dispc_ovl_write_firh_reg(plane, i, h);
725 dispc_ovl_write_firhv_reg(plane, i, hv);
726 } else {
727 dispc_ovl_write_firh2_reg(plane, i, h);
728 dispc_ovl_write_firhv2_reg(plane, i, hv);
729 }
730
731 }
732
733 if (five_taps) {
734 for (i = 0; i < 8; i++) {
735 u32 v;
736 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
737 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
738 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
739 dispc_ovl_write_firv_reg(plane, i, v);
740 else
741 dispc_ovl_write_firv2_reg(plane, i, v);
742 }
743 }
744 }
745
746
747 static void dispc_ovl_write_color_conv_coef(enum omap_plane plane,
748 const struct color_conv_coef *ct)
749 {
750 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
751
752 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
753 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
754 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
755 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
756 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
757
758 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
759
760 #undef CVAL
761 }
762
763 static void dispc_setup_color_conv_coef(void)
764 {
765 int i;
766 int num_ovl = dss_feat_get_num_ovls();
767 const struct color_conv_coef ctbl_bt601_5_ovl = {
768 /* YUV -> RGB */
769 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
770 };
771 const struct color_conv_coef ctbl_bt601_5_wb = {
772 /* RGB -> YUV */
773 66, 129, 25, 112, -94, -18, -38, -74, 112, 0,
774 };
775
776 for (i = 1; i < num_ovl; i++)
777 dispc_ovl_write_color_conv_coef(i, &ctbl_bt601_5_ovl);
778
779 if (dispc.feat->has_writeback)
780 dispc_ovl_write_color_conv_coef(OMAP_DSS_WB, &ctbl_bt601_5_wb);
781 }
782
783 static void dispc_ovl_set_ba0(enum omap_plane plane, u32 paddr)
784 {
785 dispc_write_reg(DISPC_OVL_BA0(plane), paddr);
786 }
787
788 static void dispc_ovl_set_ba1(enum omap_plane plane, u32 paddr)
789 {
790 dispc_write_reg(DISPC_OVL_BA1(plane), paddr);
791 }
792
793 static void dispc_ovl_set_ba0_uv(enum omap_plane plane, u32 paddr)
794 {
795 dispc_write_reg(DISPC_OVL_BA0_UV(plane), paddr);
796 }
797
798 static void dispc_ovl_set_ba1_uv(enum omap_plane plane, u32 paddr)
799 {
800 dispc_write_reg(DISPC_OVL_BA1_UV(plane), paddr);
801 }
802
803 static void dispc_ovl_set_pos(enum omap_plane plane,
804 enum omap_overlay_caps caps, int x, int y)
805 {
806 u32 val;
807
808 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
809 return;
810
811 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
812
813 dispc_write_reg(DISPC_OVL_POSITION(plane), val);
814 }
815
816 static void dispc_ovl_set_input_size(enum omap_plane plane, int width,
817 int height)
818 {
819 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
820
821 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
822 dispc_write_reg(DISPC_OVL_SIZE(plane), val);
823 else
824 dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
825 }
826
827 static void dispc_ovl_set_output_size(enum omap_plane plane, int width,
828 int height)
829 {
830 u32 val;
831
832 BUG_ON(plane == OMAP_DSS_GFX);
833
834 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
835
836 if (plane == OMAP_DSS_WB)
837 dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
838 else
839 dispc_write_reg(DISPC_OVL_SIZE(plane), val);
840 }
841
842 static void dispc_ovl_set_zorder(enum omap_plane plane,
843 enum omap_overlay_caps caps, u8 zorder)
844 {
845 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
846 return;
847
848 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
849 }
850
851 static void dispc_ovl_enable_zorder_planes(void)
852 {
853 int i;
854
855 if (!dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
856 return;
857
858 for (i = 0; i < dss_feat_get_num_ovls(); i++)
859 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
860 }
861
862 static void dispc_ovl_set_pre_mult_alpha(enum omap_plane plane,
863 enum omap_overlay_caps caps, bool enable)
864 {
865 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
866 return;
867
868 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
869 }
870
871 static void dispc_ovl_setup_global_alpha(enum omap_plane plane,
872 enum omap_overlay_caps caps, u8 global_alpha)
873 {
874 static const unsigned shifts[] = { 0, 8, 16, 24, };
875 int shift;
876
877 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
878 return;
879
880 shift = shifts[plane];
881 REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
882 }
883
884 static void dispc_ovl_set_pix_inc(enum omap_plane plane, s32 inc)
885 {
886 dispc_write_reg(DISPC_OVL_PIXEL_INC(plane), inc);
887 }
888
889 static void dispc_ovl_set_row_inc(enum omap_plane plane, s32 inc)
890 {
891 dispc_write_reg(DISPC_OVL_ROW_INC(plane), inc);
892 }
893
894 static void dispc_ovl_set_color_mode(enum omap_plane plane,
895 enum omap_color_mode color_mode)
896 {
897 u32 m = 0;
898 if (plane != OMAP_DSS_GFX) {
899 switch (color_mode) {
900 case OMAP_DSS_COLOR_NV12:
901 m = 0x0; break;
902 case OMAP_DSS_COLOR_RGBX16:
903 m = 0x1; break;
904 case OMAP_DSS_COLOR_RGBA16:
905 m = 0x2; break;
906 case OMAP_DSS_COLOR_RGB12U:
907 m = 0x4; break;
908 case OMAP_DSS_COLOR_ARGB16:
909 m = 0x5; break;
910 case OMAP_DSS_COLOR_RGB16:
911 m = 0x6; break;
912 case OMAP_DSS_COLOR_ARGB16_1555:
913 m = 0x7; break;
914 case OMAP_DSS_COLOR_RGB24U:
915 m = 0x8; break;
916 case OMAP_DSS_COLOR_RGB24P:
917 m = 0x9; break;
918 case OMAP_DSS_COLOR_YUV2:
919 m = 0xa; break;
920 case OMAP_DSS_COLOR_UYVY:
921 m = 0xb; break;
922 case OMAP_DSS_COLOR_ARGB32:
923 m = 0xc; break;
924 case OMAP_DSS_COLOR_RGBA32:
925 m = 0xd; break;
926 case OMAP_DSS_COLOR_RGBX32:
927 m = 0xe; break;
928 case OMAP_DSS_COLOR_XRGB16_1555:
929 m = 0xf; break;
930 default:
931 BUG(); return;
932 }
933 } else {
934 switch (color_mode) {
935 case OMAP_DSS_COLOR_CLUT1:
936 m = 0x0; break;
937 case OMAP_DSS_COLOR_CLUT2:
938 m = 0x1; break;
939 case OMAP_DSS_COLOR_CLUT4:
940 m = 0x2; break;
941 case OMAP_DSS_COLOR_CLUT8:
942 m = 0x3; break;
943 case OMAP_DSS_COLOR_RGB12U:
944 m = 0x4; break;
945 case OMAP_DSS_COLOR_ARGB16:
946 m = 0x5; break;
947 case OMAP_DSS_COLOR_RGB16:
948 m = 0x6; break;
949 case OMAP_DSS_COLOR_ARGB16_1555:
950 m = 0x7; break;
951 case OMAP_DSS_COLOR_RGB24U:
952 m = 0x8; break;
953 case OMAP_DSS_COLOR_RGB24P:
954 m = 0x9; break;
955 case OMAP_DSS_COLOR_RGBX16:
956 m = 0xa; break;
957 case OMAP_DSS_COLOR_RGBA16:
958 m = 0xb; break;
959 case OMAP_DSS_COLOR_ARGB32:
960 m = 0xc; break;
961 case OMAP_DSS_COLOR_RGBA32:
962 m = 0xd; break;
963 case OMAP_DSS_COLOR_RGBX32:
964 m = 0xe; break;
965 case OMAP_DSS_COLOR_XRGB16_1555:
966 m = 0xf; break;
967 default:
968 BUG(); return;
969 }
970 }
971
972 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
973 }
974
975 static void dispc_ovl_configure_burst_type(enum omap_plane plane,
976 enum omap_dss_rotation_type rotation_type)
977 {
978 if (dss_has_feature(FEAT_BURST_2D) == 0)
979 return;
980
981 if (rotation_type == OMAP_DSS_ROT_TILER)
982 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
983 else
984 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
985 }
986
987 void dispc_ovl_set_channel_out(enum omap_plane plane, enum omap_channel channel)
988 {
989 int shift;
990 u32 val;
991 int chan = 0, chan2 = 0;
992
993 switch (plane) {
994 case OMAP_DSS_GFX:
995 shift = 8;
996 break;
997 case OMAP_DSS_VIDEO1:
998 case OMAP_DSS_VIDEO2:
999 case OMAP_DSS_VIDEO3:
1000 shift = 16;
1001 break;
1002 default:
1003 BUG();
1004 return;
1005 }
1006
1007 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1008 if (dss_has_feature(FEAT_MGR_LCD2)) {
1009 switch (channel) {
1010 case OMAP_DSS_CHANNEL_LCD:
1011 chan = 0;
1012 chan2 = 0;
1013 break;
1014 case OMAP_DSS_CHANNEL_DIGIT:
1015 chan = 1;
1016 chan2 = 0;
1017 break;
1018 case OMAP_DSS_CHANNEL_LCD2:
1019 chan = 0;
1020 chan2 = 1;
1021 break;
1022 case OMAP_DSS_CHANNEL_LCD3:
1023 if (dss_has_feature(FEAT_MGR_LCD3)) {
1024 chan = 0;
1025 chan2 = 2;
1026 } else {
1027 BUG();
1028 return;
1029 }
1030 break;
1031 case OMAP_DSS_CHANNEL_WB:
1032 chan = 0;
1033 chan2 = 3;
1034 break;
1035 default:
1036 BUG();
1037 return;
1038 }
1039
1040 val = FLD_MOD(val, chan, shift, shift);
1041 val = FLD_MOD(val, chan2, 31, 30);
1042 } else {
1043 val = FLD_MOD(val, channel, shift, shift);
1044 }
1045 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
1046 }
1047 EXPORT_SYMBOL(dispc_ovl_set_channel_out);
1048
1049 static enum omap_channel dispc_ovl_get_channel_out(enum omap_plane plane)
1050 {
1051 int shift;
1052 u32 val;
1053
1054 switch (plane) {
1055 case OMAP_DSS_GFX:
1056 shift = 8;
1057 break;
1058 case OMAP_DSS_VIDEO1:
1059 case OMAP_DSS_VIDEO2:
1060 case OMAP_DSS_VIDEO3:
1061 shift = 16;
1062 break;
1063 default:
1064 BUG();
1065 return 0;
1066 }
1067
1068 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1069
1070 if (FLD_GET(val, shift, shift) == 1)
1071 return OMAP_DSS_CHANNEL_DIGIT;
1072
1073 if (!dss_has_feature(FEAT_MGR_LCD2))
1074 return OMAP_DSS_CHANNEL_LCD;
1075
1076 switch (FLD_GET(val, 31, 30)) {
1077 case 0:
1078 default:
1079 return OMAP_DSS_CHANNEL_LCD;
1080 case 1:
1081 return OMAP_DSS_CHANNEL_LCD2;
1082 case 2:
1083 return OMAP_DSS_CHANNEL_LCD3;
1084 case 3:
1085 return OMAP_DSS_CHANNEL_WB;
1086 }
1087 }
1088
1089 void dispc_wb_set_channel_in(enum dss_writeback_channel channel)
1090 {
1091 enum omap_plane plane = OMAP_DSS_WB;
1092
1093 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), channel, 18, 16);
1094 }
1095
1096 static void dispc_ovl_set_burst_size(enum omap_plane plane,
1097 enum omap_burst_size burst_size)
1098 {
1099 static const unsigned shifts[] = { 6, 14, 14, 14, 14, };
1100 int shift;
1101
1102 shift = shifts[plane];
1103 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), burst_size, shift + 1, shift);
1104 }
1105
1106 static void dispc_configure_burst_sizes(void)
1107 {
1108 int i;
1109 const int burst_size = BURST_SIZE_X8;
1110
1111 /* Configure burst size always to maximum size */
1112 for (i = 0; i < dss_feat_get_num_ovls(); ++i)
1113 dispc_ovl_set_burst_size(i, burst_size);
1114 if (dispc.feat->has_writeback)
1115 dispc_ovl_set_burst_size(OMAP_DSS_WB, burst_size);
1116 }
1117
1118 static u32 dispc_ovl_get_burst_size(enum omap_plane plane)
1119 {
1120 unsigned unit = dss_feat_get_burst_size_unit();
1121 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1122 return unit * 8;
1123 }
1124
1125 static void dispc_mgr_enable_cpr(enum omap_channel channel, bool enable)
1126 {
1127 if (channel == OMAP_DSS_CHANNEL_DIGIT)
1128 return;
1129
1130 mgr_fld_write(channel, DISPC_MGR_FLD_CPR, enable);
1131 }
1132
1133 static void dispc_mgr_set_cpr_coef(enum omap_channel channel,
1134 const struct omap_dss_cpr_coefs *coefs)
1135 {
1136 u32 coef_r, coef_g, coef_b;
1137
1138 if (!dss_mgr_is_lcd(channel))
1139 return;
1140
1141 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1142 FLD_VAL(coefs->rb, 9, 0);
1143 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1144 FLD_VAL(coefs->gb, 9, 0);
1145 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1146 FLD_VAL(coefs->bb, 9, 0);
1147
1148 dispc_write_reg(DISPC_CPR_COEF_R(channel), coef_r);
1149 dispc_write_reg(DISPC_CPR_COEF_G(channel), coef_g);
1150 dispc_write_reg(DISPC_CPR_COEF_B(channel), coef_b);
1151 }
1152
1153 static void dispc_ovl_set_vid_color_conv(enum omap_plane plane, bool enable)
1154 {
1155 u32 val;
1156
1157 BUG_ON(plane == OMAP_DSS_GFX);
1158
1159 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1160 val = FLD_MOD(val, enable, 9, 9);
1161 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
1162 }
1163
1164 static void dispc_ovl_enable_replication(enum omap_plane plane,
1165 enum omap_overlay_caps caps, bool enable)
1166 {
1167 static const unsigned shifts[] = { 5, 10, 10, 10 };
1168 int shift;
1169
1170 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1171 return;
1172
1173 shift = shifts[plane];
1174 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1175 }
1176
1177 static void dispc_mgr_set_size(enum omap_channel channel, u16 width,
1178 u16 height)
1179 {
1180 u32 val;
1181
1182 val = FLD_VAL(height - 1, dispc.feat->mgr_height_start, 16) |
1183 FLD_VAL(width - 1, dispc.feat->mgr_width_start, 0);
1184
1185 dispc_write_reg(DISPC_SIZE_MGR(channel), val);
1186 }
1187
1188 static void dispc_init_fifos(void)
1189 {
1190 u32 size;
1191 int fifo;
1192 u8 start, end;
1193 u32 unit;
1194 int i;
1195
1196 unit = dss_feat_get_buffer_size_unit();
1197
1198 dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
1199
1200 for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
1201 size = REG_GET(DISPC_OVL_FIFO_SIZE_STATUS(fifo), start, end);
1202 size *= unit;
1203 dispc.fifo_size[fifo] = size;
1204
1205 /*
1206 * By default fifos are mapped directly to overlays, fifo 0 to
1207 * ovl 0, fifo 1 to ovl 1, etc.
1208 */
1209 dispc.fifo_assignment[fifo] = fifo;
1210 }
1211
1212 /*
1213 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1214 * causes problems with certain use cases, like using the tiler in 2D
1215 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1216 * giving GFX plane a larger fifo. WB but should work fine with a
1217 * smaller fifo.
1218 */
1219 if (dispc.feat->gfx_fifo_workaround) {
1220 u32 v;
1221
1222 v = dispc_read_reg(DISPC_GLOBAL_BUFFER);
1223
1224 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1225 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1226 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1227 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1228
1229 dispc_write_reg(DISPC_GLOBAL_BUFFER, v);
1230
1231 dispc.fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1232 dispc.fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1233 }
1234
1235 /*
1236 * Setup default fifo thresholds.
1237 */
1238 for (i = 0; i < dss_feat_get_num_ovls(); ++i) {
1239 u32 low, high;
1240 const bool use_fifomerge = false;
1241 const bool manual_update = false;
1242
1243 dispc_ovl_compute_fifo_thresholds(i, &low, &high,
1244 use_fifomerge, manual_update);
1245
1246 dispc_ovl_set_fifo_threshold(i, low, high);
1247 }
1248
1249 if (dispc.feat->has_writeback) {
1250 u32 low, high;
1251 const bool use_fifomerge = false;
1252 const bool manual_update = false;
1253
1254 dispc_ovl_compute_fifo_thresholds(OMAP_DSS_WB, &low, &high,
1255 use_fifomerge, manual_update);
1256
1257 dispc_ovl_set_fifo_threshold(OMAP_DSS_WB, low, high);
1258 }
1259 }
1260
1261 static u32 dispc_ovl_get_fifo_size(enum omap_plane plane)
1262 {
1263 int fifo;
1264 u32 size = 0;
1265
1266 for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
1267 if (dispc.fifo_assignment[fifo] == plane)
1268 size += dispc.fifo_size[fifo];
1269 }
1270
1271 return size;
1272 }
1273
1274 void dispc_ovl_set_fifo_threshold(enum omap_plane plane, u32 low, u32 high)
1275 {
1276 u8 hi_start, hi_end, lo_start, lo_end;
1277 u32 unit;
1278
1279 unit = dss_feat_get_buffer_size_unit();
1280
1281 WARN_ON(low % unit != 0);
1282 WARN_ON(high % unit != 0);
1283
1284 low /= unit;
1285 high /= unit;
1286
1287 dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
1288 dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
1289
1290 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1291 plane,
1292 REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
1293 lo_start, lo_end) * unit,
1294 REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
1295 hi_start, hi_end) * unit,
1296 low * unit, high * unit);
1297
1298 dispc_write_reg(DISPC_OVL_FIFO_THRESHOLD(plane),
1299 FLD_VAL(high, hi_start, hi_end) |
1300 FLD_VAL(low, lo_start, lo_end));
1301
1302 /*
1303 * configure the preload to the pipeline's high threhold, if HT it's too
1304 * large for the preload field, set the threshold to the maximum value
1305 * that can be held by the preload register
1306 */
1307 if (dss_has_feature(FEAT_PRELOAD) && dispc.feat->set_max_preload &&
1308 plane != OMAP_DSS_WB)
1309 dispc_write_reg(DISPC_OVL_PRELOAD(plane), min(high, 0xfffu));
1310 }
1311
1312 void dispc_enable_fifomerge(bool enable)
1313 {
1314 if (!dss_has_feature(FEAT_FIFO_MERGE)) {
1315 WARN_ON(enable);
1316 return;
1317 }
1318
1319 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1320 REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1321 }
1322
1323 void dispc_ovl_compute_fifo_thresholds(enum omap_plane plane,
1324 u32 *fifo_low, u32 *fifo_high, bool use_fifomerge,
1325 bool manual_update)
1326 {
1327 /*
1328 * All sizes are in bytes. Both the buffer and burst are made of
1329 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1330 */
1331
1332 unsigned buf_unit = dss_feat_get_buffer_size_unit();
1333 unsigned ovl_fifo_size, total_fifo_size, burst_size;
1334 int i;
1335
1336 burst_size = dispc_ovl_get_burst_size(plane);
1337 ovl_fifo_size = dispc_ovl_get_fifo_size(plane);
1338
1339 if (use_fifomerge) {
1340 total_fifo_size = 0;
1341 for (i = 0; i < dss_feat_get_num_ovls(); ++i)
1342 total_fifo_size += dispc_ovl_get_fifo_size(i);
1343 } else {
1344 total_fifo_size = ovl_fifo_size;
1345 }
1346
1347 /*
1348 * We use the same low threshold for both fifomerge and non-fifomerge
1349 * cases, but for fifomerge we calculate the high threshold using the
1350 * combined fifo size
1351 */
1352
1353 if (manual_update && dss_has_feature(FEAT_OMAP3_DSI_FIFO_BUG)) {
1354 *fifo_low = ovl_fifo_size - burst_size * 2;
1355 *fifo_high = total_fifo_size - burst_size;
1356 } else if (plane == OMAP_DSS_WB) {
1357 /*
1358 * Most optimal configuration for writeback is to push out data
1359 * to the interconnect the moment writeback pushes enough pixels
1360 * in the FIFO to form a burst
1361 */
1362 *fifo_low = 0;
1363 *fifo_high = burst_size;
1364 } else {
1365 *fifo_low = ovl_fifo_size - burst_size;
1366 *fifo_high = total_fifo_size - buf_unit;
1367 }
1368 }
1369
1370 static void dispc_ovl_set_mflag(enum omap_plane plane, bool enable)
1371 {
1372 int bit;
1373
1374 if (plane == OMAP_DSS_GFX)
1375 bit = 14;
1376 else
1377 bit = 23;
1378
1379 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1380 }
1381
1382 static void dispc_ovl_set_mflag_threshold(enum omap_plane plane,
1383 int low, int high)
1384 {
1385 dispc_write_reg(DISPC_OVL_MFLAG_THRESHOLD(plane),
1386 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
1387 }
1388
1389 static void dispc_init_mflag(void)
1390 {
1391 int i;
1392
1393 /*
1394 * HACK: NV12 color format and MFLAG seem to have problems working
1395 * together: using two displays, and having an NV12 overlay on one of
1396 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1397 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1398 * remove the errors, but there doesn't seem to be a clear logic on
1399 * which values work and which not.
1400 *
1401 * As a work-around, set force MFLAG to always on.
1402 */
1403 dispc_write_reg(DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1404 (1 << 0) | /* MFLAG_CTRL = force always on */
1405 (0 << 2)); /* MFLAG_START = disable */
1406
1407 for (i = 0; i < dss_feat_get_num_ovls(); ++i) {
1408 u32 size = dispc_ovl_get_fifo_size(i);
1409 u32 unit = dss_feat_get_buffer_size_unit();
1410 u32 low, high;
1411
1412 dispc_ovl_set_mflag(i, true);
1413
1414 /*
1415 * Simulation team suggests below thesholds:
1416 * HT = fifosize * 5 / 8;
1417 * LT = fifosize * 4 / 8;
1418 */
1419
1420 low = size * 4 / 8 / unit;
1421 high = size * 5 / 8 / unit;
1422
1423 dispc_ovl_set_mflag_threshold(i, low, high);
1424 }
1425
1426 if (dispc.feat->has_writeback) {
1427 u32 size = dispc_ovl_get_fifo_size(OMAP_DSS_WB);
1428 u32 unit = dss_feat_get_buffer_size_unit();
1429 u32 low, high;
1430
1431 dispc_ovl_set_mflag(OMAP_DSS_WB, true);
1432
1433 /*
1434 * Simulation team suggests below thesholds:
1435 * HT = fifosize * 5 / 8;
1436 * LT = fifosize * 4 / 8;
1437 */
1438
1439 low = size * 4 / 8 / unit;
1440 high = size * 5 / 8 / unit;
1441
1442 dispc_ovl_set_mflag_threshold(OMAP_DSS_WB, low, high);
1443 }
1444 }
1445
1446 static void dispc_ovl_set_fir(enum omap_plane plane,
1447 int hinc, int vinc,
1448 enum omap_color_component color_comp)
1449 {
1450 u32 val;
1451
1452 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1453 u8 hinc_start, hinc_end, vinc_start, vinc_end;
1454
1455 dss_feat_get_reg_field(FEAT_REG_FIRHINC,
1456 &hinc_start, &hinc_end);
1457 dss_feat_get_reg_field(FEAT_REG_FIRVINC,
1458 &vinc_start, &vinc_end);
1459 val = FLD_VAL(vinc, vinc_start, vinc_end) |
1460 FLD_VAL(hinc, hinc_start, hinc_end);
1461
1462 dispc_write_reg(DISPC_OVL_FIR(plane), val);
1463 } else {
1464 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1465 dispc_write_reg(DISPC_OVL_FIR2(plane), val);
1466 }
1467 }
1468
1469 static void dispc_ovl_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
1470 {
1471 u32 val;
1472 u8 hor_start, hor_end, vert_start, vert_end;
1473
1474 dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
1475 dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
1476
1477 val = FLD_VAL(vaccu, vert_start, vert_end) |
1478 FLD_VAL(haccu, hor_start, hor_end);
1479
1480 dispc_write_reg(DISPC_OVL_ACCU0(plane), val);
1481 }
1482
1483 static void dispc_ovl_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
1484 {
1485 u32 val;
1486 u8 hor_start, hor_end, vert_start, vert_end;
1487
1488 dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
1489 dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
1490
1491 val = FLD_VAL(vaccu, vert_start, vert_end) |
1492 FLD_VAL(haccu, hor_start, hor_end);
1493
1494 dispc_write_reg(DISPC_OVL_ACCU1(plane), val);
1495 }
1496
1497 static void dispc_ovl_set_vid_accu2_0(enum omap_plane plane, int haccu,
1498 int vaccu)
1499 {
1500 u32 val;
1501
1502 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1503 dispc_write_reg(DISPC_OVL_ACCU2_0(plane), val);
1504 }
1505
1506 static void dispc_ovl_set_vid_accu2_1(enum omap_plane plane, int haccu,
1507 int vaccu)
1508 {
1509 u32 val;
1510
1511 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1512 dispc_write_reg(DISPC_OVL_ACCU2_1(plane), val);
1513 }
1514
1515 static void dispc_ovl_set_scale_param(enum omap_plane plane,
1516 u16 orig_width, u16 orig_height,
1517 u16 out_width, u16 out_height,
1518 bool five_taps, u8 rotation,
1519 enum omap_color_component color_comp)
1520 {
1521 int fir_hinc, fir_vinc;
1522
1523 fir_hinc = 1024 * orig_width / out_width;
1524 fir_vinc = 1024 * orig_height / out_height;
1525
1526 dispc_ovl_set_scale_coef(plane, fir_hinc, fir_vinc, five_taps,
1527 color_comp);
1528 dispc_ovl_set_fir(plane, fir_hinc, fir_vinc, color_comp);
1529 }
1530
1531 static void dispc_ovl_set_accu_uv(enum omap_plane plane,
1532 u16 orig_width, u16 orig_height, u16 out_width, u16 out_height,
1533 bool ilace, enum omap_color_mode color_mode, u8 rotation)
1534 {
1535 int h_accu2_0, h_accu2_1;
1536 int v_accu2_0, v_accu2_1;
1537 int chroma_hinc, chroma_vinc;
1538 int idx;
1539
1540 struct accu {
1541 s8 h0_m, h0_n;
1542 s8 h1_m, h1_n;
1543 s8 v0_m, v0_n;
1544 s8 v1_m, v1_n;
1545 };
1546
1547 const struct accu *accu_table;
1548 const struct accu *accu_val;
1549
1550 static const struct accu accu_nv12[4] = {
1551 { 0, 1, 0, 1 , -1, 2, 0, 1 },
1552 { 1, 2, -3, 4 , 0, 1, 0, 1 },
1553 { -1, 1, 0, 1 , -1, 2, 0, 1 },
1554 { -1, 2, -1, 2 , -1, 1, 0, 1 },
1555 };
1556
1557 static const struct accu accu_nv12_ilace[4] = {
1558 { 0, 1, 0, 1 , -3, 4, -1, 4 },
1559 { -1, 4, -3, 4 , 0, 1, 0, 1 },
1560 { -1, 1, 0, 1 , -1, 4, -3, 4 },
1561 { -3, 4, -3, 4 , -1, 1, 0, 1 },
1562 };
1563
1564 static const struct accu accu_yuv[4] = {
1565 { 0, 1, 0, 1, 0, 1, 0, 1 },
1566 { 0, 1, 0, 1, 0, 1, 0, 1 },
1567 { -1, 1, 0, 1, 0, 1, 0, 1 },
1568 { 0, 1, 0, 1, -1, 1, 0, 1 },
1569 };
1570
1571 switch (rotation) {
1572 case OMAP_DSS_ROT_0:
1573 idx = 0;
1574 break;
1575 case OMAP_DSS_ROT_90:
1576 idx = 1;
1577 break;
1578 case OMAP_DSS_ROT_180:
1579 idx = 2;
1580 break;
1581 case OMAP_DSS_ROT_270:
1582 idx = 3;
1583 break;
1584 default:
1585 BUG();
1586 return;
1587 }
1588
1589 switch (color_mode) {
1590 case OMAP_DSS_COLOR_NV12:
1591 if (ilace)
1592 accu_table = accu_nv12_ilace;
1593 else
1594 accu_table = accu_nv12;
1595 break;
1596 case OMAP_DSS_COLOR_YUV2:
1597 case OMAP_DSS_COLOR_UYVY:
1598 accu_table = accu_yuv;
1599 break;
1600 default:
1601 BUG();
1602 return;
1603 }
1604
1605 accu_val = &accu_table[idx];
1606
1607 chroma_hinc = 1024 * orig_width / out_width;
1608 chroma_vinc = 1024 * orig_height / out_height;
1609
1610 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1611 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1612 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1613 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1614
1615 dispc_ovl_set_vid_accu2_0(plane, h_accu2_0, v_accu2_0);
1616 dispc_ovl_set_vid_accu2_1(plane, h_accu2_1, v_accu2_1);
1617 }
1618
1619 static void dispc_ovl_set_scaling_common(enum omap_plane plane,
1620 u16 orig_width, u16 orig_height,
1621 u16 out_width, u16 out_height,
1622 bool ilace, bool five_taps,
1623 bool fieldmode, enum omap_color_mode color_mode,
1624 u8 rotation)
1625 {
1626 int accu0 = 0;
1627 int accu1 = 0;
1628 u32 l;
1629
1630 dispc_ovl_set_scale_param(plane, orig_width, orig_height,
1631 out_width, out_height, five_taps,
1632 rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1633 l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1634
1635 /* RESIZEENABLE and VERTICALTAPS */
1636 l &= ~((0x3 << 5) | (0x1 << 21));
1637 l |= (orig_width != out_width) ? (1 << 5) : 0;
1638 l |= (orig_height != out_height) ? (1 << 6) : 0;
1639 l |= five_taps ? (1 << 21) : 0;
1640
1641 /* VRESIZECONF and HRESIZECONF */
1642 if (dss_has_feature(FEAT_RESIZECONF)) {
1643 l &= ~(0x3 << 7);
1644 l |= (orig_width <= out_width) ? 0 : (1 << 7);
1645 l |= (orig_height <= out_height) ? 0 : (1 << 8);
1646 }
1647
1648 /* LINEBUFFERSPLIT */
1649 if (dss_has_feature(FEAT_LINEBUFFERSPLIT)) {
1650 l &= ~(0x1 << 22);
1651 l |= five_taps ? (1 << 22) : 0;
1652 }
1653
1654 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
1655
1656 /*
1657 * field 0 = even field = bottom field
1658 * field 1 = odd field = top field
1659 */
1660 if (ilace && !fieldmode) {
1661 accu1 = 0;
1662 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1663 if (accu0 >= 1024/2) {
1664 accu1 = 1024/2;
1665 accu0 -= accu1;
1666 }
1667 }
1668
1669 dispc_ovl_set_vid_accu0(plane, 0, accu0);
1670 dispc_ovl_set_vid_accu1(plane, 0, accu1);
1671 }
1672
1673 static void dispc_ovl_set_scaling_uv(enum omap_plane plane,
1674 u16 orig_width, u16 orig_height,
1675 u16 out_width, u16 out_height,
1676 bool ilace, bool five_taps,
1677 bool fieldmode, enum omap_color_mode color_mode,
1678 u8 rotation)
1679 {
1680 int scale_x = out_width != orig_width;
1681 int scale_y = out_height != orig_height;
1682 bool chroma_upscale = plane != OMAP_DSS_WB;
1683
1684 if (!dss_has_feature(FEAT_HANDLE_UV_SEPARATE))
1685 return;
1686 if ((color_mode != OMAP_DSS_COLOR_YUV2 &&
1687 color_mode != OMAP_DSS_COLOR_UYVY &&
1688 color_mode != OMAP_DSS_COLOR_NV12)) {
1689 /* reset chroma resampling for RGB formats */
1690 if (plane != OMAP_DSS_WB)
1691 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane), 0, 8, 8);
1692 return;
1693 }
1694
1695 dispc_ovl_set_accu_uv(plane, orig_width, orig_height, out_width,
1696 out_height, ilace, color_mode, rotation);
1697
1698 switch (color_mode) {
1699 case OMAP_DSS_COLOR_NV12:
1700 if (chroma_upscale) {
1701 /* UV is subsampled by 2 horizontally and vertically */
1702 orig_height >>= 1;
1703 orig_width >>= 1;
1704 } else {
1705 /* UV is downsampled by 2 horizontally and vertically */
1706 orig_height <<= 1;
1707 orig_width <<= 1;
1708 }
1709
1710 break;
1711 case OMAP_DSS_COLOR_YUV2:
1712 case OMAP_DSS_COLOR_UYVY:
1713 /* For YUV422 with 90/270 rotation, we don't upsample chroma */
1714 if (rotation == OMAP_DSS_ROT_0 ||
1715 rotation == OMAP_DSS_ROT_180) {
1716 if (chroma_upscale)
1717 /* UV is subsampled by 2 horizontally */
1718 orig_width >>= 1;
1719 else
1720 /* UV is downsampled by 2 horizontally */
1721 orig_width <<= 1;
1722 }
1723
1724 /* must use FIR for YUV422 if rotated */
1725 if (rotation != OMAP_DSS_ROT_0)
1726 scale_x = scale_y = true;
1727
1728 break;
1729 default:
1730 BUG();
1731 return;
1732 }
1733
1734 if (out_width != orig_width)
1735 scale_x = true;
1736 if (out_height != orig_height)
1737 scale_y = true;
1738
1739 dispc_ovl_set_scale_param(plane, orig_width, orig_height,
1740 out_width, out_height, five_taps,
1741 rotation, DISPC_COLOR_COMPONENT_UV);
1742
1743 if (plane != OMAP_DSS_WB)
1744 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane),
1745 (scale_x || scale_y) ? 1 : 0, 8, 8);
1746
1747 /* set H scaling */
1748 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1749 /* set V scaling */
1750 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1751 }
1752
1753 static void dispc_ovl_set_scaling(enum omap_plane plane,
1754 u16 orig_width, u16 orig_height,
1755 u16 out_width, u16 out_height,
1756 bool ilace, bool five_taps,
1757 bool fieldmode, enum omap_color_mode color_mode,
1758 u8 rotation)
1759 {
1760 BUG_ON(plane == OMAP_DSS_GFX);
1761
1762 dispc_ovl_set_scaling_common(plane,
1763 orig_width, orig_height,
1764 out_width, out_height,
1765 ilace, five_taps,
1766 fieldmode, color_mode,
1767 rotation);
1768
1769 dispc_ovl_set_scaling_uv(plane,
1770 orig_width, orig_height,
1771 out_width, out_height,
1772 ilace, five_taps,
1773 fieldmode, color_mode,
1774 rotation);
1775 }
1776
1777 static void dispc_ovl_set_rotation_attrs(enum omap_plane plane, u8 rotation,
1778 enum omap_dss_rotation_type rotation_type,
1779 bool mirroring, enum omap_color_mode color_mode)
1780 {
1781 bool row_repeat = false;
1782 int vidrot = 0;
1783
1784 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1785 color_mode == OMAP_DSS_COLOR_UYVY) {
1786
1787 if (mirroring) {
1788 switch (rotation) {
1789 case OMAP_DSS_ROT_0:
1790 vidrot = 2;
1791 break;
1792 case OMAP_DSS_ROT_90:
1793 vidrot = 1;
1794 break;
1795 case OMAP_DSS_ROT_180:
1796 vidrot = 0;
1797 break;
1798 case OMAP_DSS_ROT_270:
1799 vidrot = 3;
1800 break;
1801 }
1802 } else {
1803 switch (rotation) {
1804 case OMAP_DSS_ROT_0:
1805 vidrot = 0;
1806 break;
1807 case OMAP_DSS_ROT_90:
1808 vidrot = 1;
1809 break;
1810 case OMAP_DSS_ROT_180:
1811 vidrot = 2;
1812 break;
1813 case OMAP_DSS_ROT_270:
1814 vidrot = 3;
1815 break;
1816 }
1817 }
1818
1819 if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
1820 row_repeat = true;
1821 else
1822 row_repeat = false;
1823 }
1824
1825 /*
1826 * OMAP4/5 Errata i631:
1827 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
1828 * rows beyond the framebuffer, which may cause OCP error.
1829 */
1830 if (color_mode == OMAP_DSS_COLOR_NV12 &&
1831 rotation_type != OMAP_DSS_ROT_TILER)
1832 vidrot = 1;
1833
1834 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
1835 if (dss_has_feature(FEAT_ROWREPEATENABLE))
1836 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane),
1837 row_repeat ? 1 : 0, 18, 18);
1838
1839 if (color_mode == OMAP_DSS_COLOR_NV12) {
1840 bool doublestride = (rotation_type == OMAP_DSS_ROT_TILER) &&
1841 (rotation == OMAP_DSS_ROT_0 ||
1842 rotation == OMAP_DSS_ROT_180);
1843 /* DOUBLESTRIDE */
1844 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), doublestride, 22, 22);
1845 }
1846
1847 }
1848
1849 static int color_mode_to_bpp(enum omap_color_mode color_mode)
1850 {
1851 switch (color_mode) {
1852 case OMAP_DSS_COLOR_CLUT1:
1853 return 1;
1854 case OMAP_DSS_COLOR_CLUT2:
1855 return 2;
1856 case OMAP_DSS_COLOR_CLUT4:
1857 return 4;
1858 case OMAP_DSS_COLOR_CLUT8:
1859 case OMAP_DSS_COLOR_NV12:
1860 return 8;
1861 case OMAP_DSS_COLOR_RGB12U:
1862 case OMAP_DSS_COLOR_RGB16:
1863 case OMAP_DSS_COLOR_ARGB16:
1864 case OMAP_DSS_COLOR_YUV2:
1865 case OMAP_DSS_COLOR_UYVY:
1866 case OMAP_DSS_COLOR_RGBA16:
1867 case OMAP_DSS_COLOR_RGBX16:
1868 case OMAP_DSS_COLOR_ARGB16_1555:
1869 case OMAP_DSS_COLOR_XRGB16_1555:
1870 return 16;
1871 case OMAP_DSS_COLOR_RGB24P:
1872 return 24;
1873 case OMAP_DSS_COLOR_RGB24U:
1874 case OMAP_DSS_COLOR_ARGB32:
1875 case OMAP_DSS_COLOR_RGBA32:
1876 case OMAP_DSS_COLOR_RGBX32:
1877 return 32;
1878 default:
1879 BUG();
1880 return 0;
1881 }
1882 }
1883
1884 static s32 pixinc(int pixels, u8 ps)
1885 {
1886 if (pixels == 1)
1887 return 1;
1888 else if (pixels > 1)
1889 return 1 + (pixels - 1) * ps;
1890 else if (pixels < 0)
1891 return 1 - (-pixels + 1) * ps;
1892 else
1893 BUG();
1894 return 0;
1895 }
1896
1897 static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
1898 u16 screen_width,
1899 u16 width, u16 height,
1900 enum omap_color_mode color_mode, bool fieldmode,
1901 unsigned int field_offset,
1902 unsigned *offset0, unsigned *offset1,
1903 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
1904 {
1905 u8 ps;
1906
1907 /* FIXME CLUT formats */
1908 switch (color_mode) {
1909 case OMAP_DSS_COLOR_CLUT1:
1910 case OMAP_DSS_COLOR_CLUT2:
1911 case OMAP_DSS_COLOR_CLUT4:
1912 case OMAP_DSS_COLOR_CLUT8:
1913 BUG();
1914 return;
1915 case OMAP_DSS_COLOR_YUV2:
1916 case OMAP_DSS_COLOR_UYVY:
1917 ps = 4;
1918 break;
1919 default:
1920 ps = color_mode_to_bpp(color_mode) / 8;
1921 break;
1922 }
1923
1924 DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
1925 width, height);
1926
1927 /*
1928 * field 0 = even field = bottom field
1929 * field 1 = odd field = top field
1930 */
1931 switch (rotation + mirror * 4) {
1932 case OMAP_DSS_ROT_0:
1933 case OMAP_DSS_ROT_180:
1934 /*
1935 * If the pixel format is YUV or UYVY divide the width
1936 * of the image by 2 for 0 and 180 degree rotation.
1937 */
1938 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1939 color_mode == OMAP_DSS_COLOR_UYVY)
1940 width = width >> 1;
1941 case OMAP_DSS_ROT_90:
1942 case OMAP_DSS_ROT_270:
1943 *offset1 = 0;
1944 if (field_offset)
1945 *offset0 = field_offset * screen_width * ps;
1946 else
1947 *offset0 = 0;
1948
1949 *row_inc = pixinc(1 +
1950 (y_predecim * screen_width - x_predecim * width) +
1951 (fieldmode ? screen_width : 0), ps);
1952 *pix_inc = pixinc(x_predecim, ps);
1953 break;
1954
1955 case OMAP_DSS_ROT_0 + 4:
1956 case OMAP_DSS_ROT_180 + 4:
1957 /* If the pixel format is YUV or UYVY divide the width
1958 * of the image by 2 for 0 degree and 180 degree
1959 */
1960 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1961 color_mode == OMAP_DSS_COLOR_UYVY)
1962 width = width >> 1;
1963 case OMAP_DSS_ROT_90 + 4:
1964 case OMAP_DSS_ROT_270 + 4:
1965 *offset1 = 0;
1966 if (field_offset)
1967 *offset0 = field_offset * screen_width * ps;
1968 else
1969 *offset0 = 0;
1970 *row_inc = pixinc(1 -
1971 (y_predecim * screen_width + x_predecim * width) -
1972 (fieldmode ? screen_width : 0), ps);
1973 *pix_inc = pixinc(x_predecim, ps);
1974 break;
1975
1976 default:
1977 BUG();
1978 return;
1979 }
1980 }
1981
1982 static void calc_dma_rotation_offset(u8 rotation, bool mirror,
1983 u16 screen_width,
1984 u16 width, u16 height,
1985 enum omap_color_mode color_mode, bool fieldmode,
1986 unsigned int field_offset,
1987 unsigned *offset0, unsigned *offset1,
1988 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
1989 {
1990 u8 ps;
1991 u16 fbw, fbh;
1992
1993 /* FIXME CLUT formats */
1994 switch (color_mode) {
1995 case OMAP_DSS_COLOR_CLUT1:
1996 case OMAP_DSS_COLOR_CLUT2:
1997 case OMAP_DSS_COLOR_CLUT4:
1998 case OMAP_DSS_COLOR_CLUT8:
1999 BUG();
2000 return;
2001 default:
2002 ps = color_mode_to_bpp(color_mode) / 8;
2003 break;
2004 }
2005
2006 DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
2007 width, height);
2008
2009 /* width & height are overlay sizes, convert to fb sizes */
2010
2011 if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
2012 fbw = width;
2013 fbh = height;
2014 } else {
2015 fbw = height;
2016 fbh = width;
2017 }
2018
2019 /*
2020 * field 0 = even field = bottom field
2021 * field 1 = odd field = top field
2022 */
2023 switch (rotation + mirror * 4) {
2024 case OMAP_DSS_ROT_0:
2025 *offset1 = 0;
2026 if (field_offset)
2027 *offset0 = *offset1 + field_offset * screen_width * ps;
2028 else
2029 *offset0 = *offset1;
2030 *row_inc = pixinc(1 +
2031 (y_predecim * screen_width - fbw * x_predecim) +
2032 (fieldmode ? screen_width : 0), ps);
2033 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2034 color_mode == OMAP_DSS_COLOR_UYVY)
2035 *pix_inc = pixinc(x_predecim, 2 * ps);
2036 else
2037 *pix_inc = pixinc(x_predecim, ps);
2038 break;
2039 case OMAP_DSS_ROT_90:
2040 *offset1 = screen_width * (fbh - 1) * ps;
2041 if (field_offset)
2042 *offset0 = *offset1 + field_offset * ps;
2043 else
2044 *offset0 = *offset1;
2045 *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) +
2046 y_predecim + (fieldmode ? 1 : 0), ps);
2047 *pix_inc = pixinc(-x_predecim * screen_width, ps);
2048 break;
2049 case OMAP_DSS_ROT_180:
2050 *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
2051 if (field_offset)
2052 *offset0 = *offset1 - field_offset * screen_width * ps;
2053 else
2054 *offset0 = *offset1;
2055 *row_inc = pixinc(-1 -
2056 (y_predecim * screen_width - fbw * x_predecim) -
2057 (fieldmode ? screen_width : 0), ps);
2058 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2059 color_mode == OMAP_DSS_COLOR_UYVY)
2060 *pix_inc = pixinc(-x_predecim, 2 * ps);
2061 else
2062 *pix_inc = pixinc(-x_predecim, ps);
2063 break;
2064 case OMAP_DSS_ROT_270:
2065 *offset1 = (fbw - 1) * ps;
2066 if (field_offset)
2067 *offset0 = *offset1 - field_offset * ps;
2068 else
2069 *offset0 = *offset1;
2070 *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) -
2071 y_predecim - (fieldmode ? 1 : 0), ps);
2072 *pix_inc = pixinc(x_predecim * screen_width, ps);
2073 break;
2074
2075 /* mirroring */
2076 case OMAP_DSS_ROT_0 + 4:
2077 *offset1 = (fbw - 1) * ps;
2078 if (field_offset)
2079 *offset0 = *offset1 + field_offset * screen_width * ps;
2080 else
2081 *offset0 = *offset1;
2082 *row_inc = pixinc(y_predecim * screen_width * 2 - 1 +
2083 (fieldmode ? screen_width : 0),
2084 ps);
2085 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2086 color_mode == OMAP_DSS_COLOR_UYVY)
2087 *pix_inc = pixinc(-x_predecim, 2 * ps);
2088 else
2089 *pix_inc = pixinc(-x_predecim, ps);
2090 break;
2091
2092 case OMAP_DSS_ROT_90 + 4:
2093 *offset1 = 0;
2094 if (field_offset)
2095 *offset0 = *offset1 + field_offset * ps;
2096 else
2097 *offset0 = *offset1;
2098 *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) +
2099 y_predecim + (fieldmode ? 1 : 0),
2100 ps);
2101 *pix_inc = pixinc(x_predecim * screen_width, ps);
2102 break;
2103
2104 case OMAP_DSS_ROT_180 + 4:
2105 *offset1 = screen_width * (fbh - 1) * ps;
2106 if (field_offset)
2107 *offset0 = *offset1 - field_offset * screen_width * ps;
2108 else
2109 *offset0 = *offset1;
2110 *row_inc = pixinc(1 - y_predecim * screen_width * 2 -
2111 (fieldmode ? screen_width : 0),
2112 ps);
2113 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2114 color_mode == OMAP_DSS_COLOR_UYVY)
2115 *pix_inc = pixinc(x_predecim, 2 * ps);
2116 else
2117 *pix_inc = pixinc(x_predecim, ps);
2118 break;
2119
2120 case OMAP_DSS_ROT_270 + 4:
2121 *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
2122 if (field_offset)
2123 *offset0 = *offset1 - field_offset * ps;
2124 else
2125 *offset0 = *offset1;
2126 *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) -
2127 y_predecim - (fieldmode ? 1 : 0),
2128 ps);
2129 *pix_inc = pixinc(-x_predecim * screen_width, ps);
2130 break;
2131
2132 default:
2133 BUG();
2134 return;
2135 }
2136 }
2137
2138 static void calc_tiler_rotation_offset(u16 screen_width, u16 width,
2139 enum omap_color_mode color_mode, bool fieldmode,
2140 unsigned int field_offset, unsigned *offset0, unsigned *offset1,
2141 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
2142 {
2143 u8 ps;
2144
2145 switch (color_mode) {
2146 case OMAP_DSS_COLOR_CLUT1:
2147 case OMAP_DSS_COLOR_CLUT2:
2148 case OMAP_DSS_COLOR_CLUT4:
2149 case OMAP_DSS_COLOR_CLUT8:
2150 BUG();
2151 return;
2152 default:
2153 ps = color_mode_to_bpp(color_mode) / 8;
2154 break;
2155 }
2156
2157 DSSDBG("scrw %d, width %d\n", screen_width, width);
2158
2159 /*
2160 * field 0 = even field = bottom field
2161 * field 1 = odd field = top field
2162 */
2163 *offset1 = 0;
2164 if (field_offset)
2165 *offset0 = *offset1 + field_offset * screen_width * ps;
2166 else
2167 *offset0 = *offset1;
2168 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2169 (fieldmode ? screen_width : 0), ps);
2170 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2171 color_mode == OMAP_DSS_COLOR_UYVY)
2172 *pix_inc = pixinc(x_predecim, 2 * ps);
2173 else
2174 *pix_inc = pixinc(x_predecim, ps);
2175 }
2176
2177 /*
2178 * This function is used to avoid synclosts in OMAP3, because of some
2179 * undocumented horizontal position and timing related limitations.
2180 */
2181 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2182 const struct videomode *t, u16 pos_x,
2183 u16 width, u16 height, u16 out_width, u16 out_height,
2184 bool five_taps)
2185 {
2186 const int ds = DIV_ROUND_UP(height, out_height);
2187 unsigned long nonactive;
2188 static const u8 limits[3] = { 8, 10, 20 };
2189 u64 val, blank;
2190 int i;
2191
2192 nonactive = t->hactive + t->hfront_porch + t->hsync_len +
2193 t->hback_porch - out_width;
2194
2195 i = 0;
2196 if (out_height < height)
2197 i++;
2198 if (out_width < width)
2199 i++;
2200 blank = div_u64((u64)(t->hback_porch + t->hsync_len + t->hfront_porch) *
2201 lclk, pclk);
2202 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2203 if (blank <= limits[i])
2204 return -EINVAL;
2205
2206 /* FIXME add checks for 3-tap filter once the limitations are known */
2207 if (!five_taps)
2208 return 0;
2209
2210 /*
2211 * Pixel data should be prepared before visible display point starts.
2212 * So, atleast DS-2 lines must have already been fetched by DISPC
2213 * during nonactive - pos_x period.
2214 */
2215 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2216 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2217 val, max(0, ds - 2) * width);
2218 if (val < max(0, ds - 2) * width)
2219 return -EINVAL;
2220
2221 /*
2222 * All lines need to be refilled during the nonactive period of which
2223 * only one line can be loaded during the active period. So, atleast
2224 * DS - 1 lines should be loaded during nonactive period.
2225 */
2226 val = div_u64((u64)nonactive * lclk, pclk);
2227 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
2228 val, max(0, ds - 1) * width);
2229 if (val < max(0, ds - 1) * width)
2230 return -EINVAL;
2231
2232 return 0;
2233 }
2234
2235 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2236 const struct videomode *mgr_timings, u16 width,
2237 u16 height, u16 out_width, u16 out_height,
2238 enum omap_color_mode color_mode)
2239 {
2240 u32 core_clk = 0;
2241 u64 tmp;
2242
2243 if (height <= out_height && width <= out_width)
2244 return (unsigned long) pclk;
2245
2246 if (height > out_height) {
2247 unsigned int ppl = mgr_timings->hactive;
2248
2249 tmp = (u64)pclk * height * out_width;
2250 do_div(tmp, 2 * out_height * ppl);
2251 core_clk = tmp;
2252
2253 if (height > 2 * out_height) {
2254 if (ppl == out_width)
2255 return 0;
2256
2257 tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2258 do_div(tmp, 2 * out_height * (ppl - out_width));
2259 core_clk = max_t(u32, core_clk, tmp);
2260 }
2261 }
2262
2263 if (width > out_width) {
2264 tmp = (u64)pclk * width;
2265 do_div(tmp, out_width);
2266 core_clk = max_t(u32, core_clk, tmp);
2267
2268 if (color_mode == OMAP_DSS_COLOR_RGB24U)
2269 core_clk <<= 1;
2270 }
2271
2272 return core_clk;
2273 }
2274
2275 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2276 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2277 {
2278 if (height > out_height && width > out_width)
2279 return pclk * 4;
2280 else
2281 return pclk * 2;
2282 }
2283
2284 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2285 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2286 {
2287 unsigned int hf, vf;
2288
2289 /*
2290 * FIXME how to determine the 'A' factor
2291 * for the no downscaling case ?
2292 */
2293
2294 if (width > 3 * out_width)
2295 hf = 4;
2296 else if (width > 2 * out_width)
2297 hf = 3;
2298 else if (width > out_width)
2299 hf = 2;
2300 else
2301 hf = 1;
2302 if (height > out_height)
2303 vf = 2;
2304 else
2305 vf = 1;
2306
2307 return pclk * vf * hf;
2308 }
2309
2310 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2311 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2312 {
2313 /*
2314 * If the overlay/writeback is in mem to mem mode, there are no
2315 * downscaling limitations with respect to pixel clock, return 1 as
2316 * required core clock to represent that we have sufficient enough
2317 * core clock to do maximum downscaling
2318 */
2319 if (mem_to_mem)
2320 return 1;
2321
2322 if (width > out_width)
2323 return DIV_ROUND_UP(pclk, out_width) * width;
2324 else
2325 return pclk;
2326 }
2327
2328 static int dispc_ovl_calc_scaling_24xx(unsigned long pclk, unsigned long lclk,
2329 const struct videomode *mgr_timings,
2330 u16 width, u16 height, u16 out_width, u16 out_height,
2331 enum omap_color_mode color_mode, bool *five_taps,
2332 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2333 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2334 {
2335 int error;
2336 u16 in_width, in_height;
2337 int min_factor = min(*decim_x, *decim_y);
2338 const int maxsinglelinewidth =
2339 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2340
2341 *five_taps = false;
2342
2343 do {
2344 in_height = height / *decim_y;
2345 in_width = width / *decim_x;
2346 *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
2347 in_height, out_width, out_height, mem_to_mem);
2348 error = (in_width > maxsinglelinewidth || !*core_clk ||
2349 *core_clk > dispc_core_clk_rate());
2350 if (error) {
2351 if (*decim_x == *decim_y) {
2352 *decim_x = min_factor;
2353 ++*decim_y;
2354 } else {
2355 swap(*decim_x, *decim_y);
2356 if (*decim_x < *decim_y)
2357 ++*decim_x;
2358 }
2359 }
2360 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2361
2362 if (error) {
2363 DSSERR("failed to find scaling settings\n");
2364 return -EINVAL;
2365 }
2366
2367 if (in_width > maxsinglelinewidth) {
2368 DSSERR("Cannot scale max input width exceeded");
2369 return -EINVAL;
2370 }
2371 return 0;
2372 }
2373
2374 static int dispc_ovl_calc_scaling_34xx(unsigned long pclk, unsigned long lclk,
2375 const struct videomode *mgr_timings,
2376 u16 width, u16 height, u16 out_width, u16 out_height,
2377 enum omap_color_mode color_mode, bool *five_taps,
2378 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2379 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2380 {
2381 int error;
2382 u16 in_width, in_height;
2383 const int maxsinglelinewidth =
2384 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2385
2386 do {
2387 in_height = height / *decim_y;
2388 in_width = width / *decim_x;
2389 *five_taps = in_height > out_height;
2390
2391 if (in_width > maxsinglelinewidth)
2392 if (in_height > out_height &&
2393 in_height < out_height * 2)
2394 *five_taps = false;
2395 again:
2396 if (*five_taps)
2397 *core_clk = calc_core_clk_five_taps(pclk, mgr_timings,
2398 in_width, in_height, out_width,
2399 out_height, color_mode);
2400 else
2401 *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
2402 in_height, out_width, out_height,
2403 mem_to_mem);
2404
2405 error = check_horiz_timing_omap3(pclk, lclk, mgr_timings,
2406 pos_x, in_width, in_height, out_width,
2407 out_height, *five_taps);
2408 if (error && *five_taps) {
2409 *five_taps = false;
2410 goto again;
2411 }
2412
2413 error = (error || in_width > maxsinglelinewidth * 2 ||
2414 (in_width > maxsinglelinewidth && *five_taps) ||
2415 !*core_clk || *core_clk > dispc_core_clk_rate());
2416
2417 if (!error) {
2418 /* verify that we're inside the limits of scaler */
2419 if (in_width / 4 > out_width)
2420 error = 1;
2421
2422 if (*five_taps) {
2423 if (in_height / 4 > out_height)
2424 error = 1;
2425 } else {
2426 if (in_height / 2 > out_height)
2427 error = 1;
2428 }
2429 }
2430
2431 if (error)
2432 ++*decim_y;
2433 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2434
2435 if (error) {
2436 DSSERR("failed to find scaling settings\n");
2437 return -EINVAL;
2438 }
2439
2440 if (check_horiz_timing_omap3(pclk, lclk, mgr_timings, pos_x, in_width,
2441 in_height, out_width, out_height, *five_taps)) {
2442 DSSERR("horizontal timing too tight\n");
2443 return -EINVAL;
2444 }
2445
2446 if (in_width > (maxsinglelinewidth * 2)) {
2447 DSSERR("Cannot setup scaling");
2448 DSSERR("width exceeds maximum width possible");
2449 return -EINVAL;
2450 }
2451
2452 if (in_width > maxsinglelinewidth && *five_taps) {
2453 DSSERR("cannot setup scaling with five taps");
2454 return -EINVAL;
2455 }
2456 return 0;
2457 }
2458
2459 static int dispc_ovl_calc_scaling_44xx(unsigned long pclk, unsigned long lclk,
2460 const struct videomode *mgr_timings,
2461 u16 width, u16 height, u16 out_width, u16 out_height,
2462 enum omap_color_mode color_mode, bool *five_taps,
2463 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2464 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2465 {
2466 u16 in_width, in_width_max;
2467 int decim_x_min = *decim_x;
2468 u16 in_height = height / *decim_y;
2469 const int maxsinglelinewidth =
2470 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2471 const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
2472
2473 if (mem_to_mem) {
2474 in_width_max = out_width * maxdownscale;
2475 } else {
2476 in_width_max = dispc_core_clk_rate() /
2477 DIV_ROUND_UP(pclk, out_width);
2478 }
2479
2480 *decim_x = DIV_ROUND_UP(width, in_width_max);
2481
2482 *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2483 if (*decim_x > *x_predecim)
2484 return -EINVAL;
2485
2486 do {
2487 in_width = width / *decim_x;
2488 } while (*decim_x <= *x_predecim &&
2489 in_width > maxsinglelinewidth && ++*decim_x);
2490
2491 if (in_width > maxsinglelinewidth) {
2492 DSSERR("Cannot scale width exceeds max line width");
2493 return -EINVAL;
2494 }
2495
2496 *core_clk = dispc.feat->calc_core_clk(pclk, in_width, in_height,
2497 out_width, out_height, mem_to_mem);
2498 return 0;
2499 }
2500
2501 #define DIV_FRAC(dividend, divisor) \
2502 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2503
2504 static int dispc_ovl_calc_scaling(unsigned long pclk, unsigned long lclk,
2505 enum omap_overlay_caps caps,
2506 const struct videomode *mgr_timings,
2507 u16 width, u16 height, u16 out_width, u16 out_height,
2508 enum omap_color_mode color_mode, bool *five_taps,
2509 int *x_predecim, int *y_predecim, u16 pos_x,
2510 enum omap_dss_rotation_type rotation_type, bool mem_to_mem)
2511 {
2512 const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
2513 const int max_decim_limit = 16;
2514 unsigned long core_clk = 0;
2515 int decim_x, decim_y, ret;
2516
2517 if (width == out_width && height == out_height)
2518 return 0;
2519
2520 if (!mem_to_mem && (pclk == 0 || mgr_timings->pixelclock == 0)) {
2521 DSSERR("cannot calculate scaling settings: pclk is zero\n");
2522 return -EINVAL;
2523 }
2524
2525 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2526 return -EINVAL;
2527
2528 if (mem_to_mem) {
2529 *x_predecim = *y_predecim = 1;
2530 } else {
2531 *x_predecim = max_decim_limit;
2532 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2533 dss_has_feature(FEAT_BURST_2D)) ?
2534 2 : max_decim_limit;
2535 }
2536
2537 if (color_mode == OMAP_DSS_COLOR_CLUT1 ||
2538 color_mode == OMAP_DSS_COLOR_CLUT2 ||
2539 color_mode == OMAP_DSS_COLOR_CLUT4 ||
2540 color_mode == OMAP_DSS_COLOR_CLUT8) {
2541 *x_predecim = 1;
2542 *y_predecim = 1;
2543 *five_taps = false;
2544 return 0;
2545 }
2546
2547 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxdownscale);
2548 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxdownscale);
2549
2550 if (decim_x > *x_predecim || out_width > width * 8)
2551 return -EINVAL;
2552
2553 if (decim_y > *y_predecim || out_height > height * 8)
2554 return -EINVAL;
2555
2556 ret = dispc.feat->calc_scaling(pclk, lclk, mgr_timings, width, height,
2557 out_width, out_height, color_mode, five_taps,
2558 x_predecim, y_predecim, &decim_x, &decim_y, pos_x, &core_clk,
2559 mem_to_mem);
2560 if (ret)
2561 return ret;
2562
2563 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2564 width, height,
2565 out_width, out_height,
2566 out_width / width, DIV_FRAC(out_width, width),
2567 out_height / height, DIV_FRAC(out_height, height),
2568
2569 decim_x, decim_y,
2570 width / decim_x, height / decim_y,
2571 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2572 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2573
2574 *five_taps ? 5 : 3,
2575 core_clk, dispc_core_clk_rate());
2576
2577 if (!core_clk || core_clk > dispc_core_clk_rate()) {
2578 DSSERR("failed to set up scaling, "
2579 "required core clk rate = %lu Hz, "
2580 "current core clk rate = %lu Hz\n",
2581 core_clk, dispc_core_clk_rate());
2582 return -EINVAL;
2583 }
2584
2585 *x_predecim = decim_x;
2586 *y_predecim = decim_y;
2587 return 0;
2588 }
2589
2590 static int dispc_ovl_setup_common(enum omap_plane plane,
2591 enum omap_overlay_caps caps, u32 paddr, u32 p_uv_addr,
2592 u16 screen_width, int pos_x, int pos_y, u16 width, u16 height,
2593 u16 out_width, u16 out_height, enum omap_color_mode color_mode,
2594 u8 rotation, bool mirror, u8 zorder, u8 pre_mult_alpha,
2595 u8 global_alpha, enum omap_dss_rotation_type rotation_type,
2596 bool replication, const struct videomode *mgr_timings,
2597 bool mem_to_mem)
2598 {
2599 bool five_taps = true;
2600 bool fieldmode = false;
2601 int r, cconv = 0;
2602 unsigned offset0, offset1;
2603 s32 row_inc;
2604 s32 pix_inc;
2605 u16 frame_width, frame_height;
2606 unsigned int field_offset = 0;
2607 u16 in_height = height;
2608 u16 in_width = width;
2609 int x_predecim = 1, y_predecim = 1;
2610 bool ilace = !!(mgr_timings->flags & DISPLAY_FLAGS_INTERLACED);
2611 unsigned long pclk = dispc_plane_pclk_rate(plane);
2612 unsigned long lclk = dispc_plane_lclk_rate(plane);
2613
2614 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2615 return -EINVAL;
2616
2617 switch (color_mode) {
2618 case OMAP_DSS_COLOR_YUV2:
2619 case OMAP_DSS_COLOR_UYVY:
2620 case OMAP_DSS_COLOR_NV12:
2621 if (in_width & 1) {
2622 DSSERR("input width %d is not even for YUV format\n",
2623 in_width);
2624 return -EINVAL;
2625 }
2626 break;
2627
2628 default:
2629 break;
2630 }
2631
2632 out_width = out_width == 0 ? width : out_width;
2633 out_height = out_height == 0 ? height : out_height;
2634
2635 if (ilace && height == out_height)
2636 fieldmode = true;
2637
2638 if (ilace) {
2639 if (fieldmode)
2640 in_height /= 2;
2641 pos_y /= 2;
2642 out_height /= 2;
2643
2644 DSSDBG("adjusting for ilace: height %d, pos_y %d, "
2645 "out_height %d\n", in_height, pos_y,
2646 out_height);
2647 }
2648
2649 if (!dss_feat_color_mode_supported(plane, color_mode))
2650 return -EINVAL;
2651
2652 r = dispc_ovl_calc_scaling(pclk, lclk, caps, mgr_timings, in_width,
2653 in_height, out_width, out_height, color_mode,
2654 &five_taps, &x_predecim, &y_predecim, pos_x,
2655 rotation_type, mem_to_mem);
2656 if (r)
2657 return r;
2658
2659 in_width = in_width / x_predecim;
2660 in_height = in_height / y_predecim;
2661
2662 if (x_predecim > 1 || y_predecim > 1)
2663 DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2664 x_predecim, y_predecim, in_width, in_height);
2665
2666 switch (color_mode) {
2667 case OMAP_DSS_COLOR_YUV2:
2668 case OMAP_DSS_COLOR_UYVY:
2669 case OMAP_DSS_COLOR_NV12:
2670 if (in_width & 1) {
2671 DSSDBG("predecimated input width is not even for YUV format\n");
2672 DSSDBG("adjusting input width %d -> %d\n",
2673 in_width, in_width & ~1);
2674
2675 in_width &= ~1;
2676 }
2677 break;
2678
2679 default:
2680 break;
2681 }
2682
2683 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2684 color_mode == OMAP_DSS_COLOR_UYVY ||
2685 color_mode == OMAP_DSS_COLOR_NV12)
2686 cconv = 1;
2687
2688 if (ilace && !fieldmode) {
2689 /*
2690 * when downscaling the bottom field may have to start several
2691 * source lines below the top field. Unfortunately ACCUI
2692 * registers will only hold the fractional part of the offset
2693 * so the integer part must be added to the base address of the
2694 * bottom field.
2695 */
2696 if (!in_height || in_height == out_height)
2697 field_offset = 0;
2698 else
2699 field_offset = in_height / out_height / 2;
2700 }
2701
2702 /* Fields are independent but interleaved in memory. */
2703 if (fieldmode)
2704 field_offset = 1;
2705
2706 offset0 = 0;
2707 offset1 = 0;
2708 row_inc = 0;
2709 pix_inc = 0;
2710
2711 if (plane == OMAP_DSS_WB) {
2712 frame_width = out_width;
2713 frame_height = out_height;
2714 } else {
2715 frame_width = in_width;
2716 frame_height = height;
2717 }
2718
2719 if (rotation_type == OMAP_DSS_ROT_TILER)
2720 calc_tiler_rotation_offset(screen_width, frame_width,
2721 color_mode, fieldmode, field_offset,
2722 &offset0, &offset1, &row_inc, &pix_inc,
2723 x_predecim, y_predecim);
2724 else if (rotation_type == OMAP_DSS_ROT_DMA)
2725 calc_dma_rotation_offset(rotation, mirror, screen_width,
2726 frame_width, frame_height,
2727 color_mode, fieldmode, field_offset,
2728 &offset0, &offset1, &row_inc, &pix_inc,
2729 x_predecim, y_predecim);
2730 else
2731 calc_vrfb_rotation_offset(rotation, mirror,
2732 screen_width, frame_width, frame_height,
2733 color_mode, fieldmode, field_offset,
2734 &offset0, &offset1, &row_inc, &pix_inc,
2735 x_predecim, y_predecim);
2736
2737 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2738 offset0, offset1, row_inc, pix_inc);
2739
2740 dispc_ovl_set_color_mode(plane, color_mode);
2741
2742 dispc_ovl_configure_burst_type(plane, rotation_type);
2743
2744 if (dispc.feat->reverse_ilace_field_order)
2745 swap(offset0, offset1);
2746
2747 dispc_ovl_set_ba0(plane, paddr + offset0);
2748 dispc_ovl_set_ba1(plane, paddr + offset1);
2749
2750 if (OMAP_DSS_COLOR_NV12 == color_mode) {
2751 dispc_ovl_set_ba0_uv(plane, p_uv_addr + offset0);
2752 dispc_ovl_set_ba1_uv(plane, p_uv_addr + offset1);
2753 }
2754
2755 if (dispc.feat->last_pixel_inc_missing)
2756 row_inc += pix_inc - 1;
2757
2758 dispc_ovl_set_row_inc(plane, row_inc);
2759 dispc_ovl_set_pix_inc(plane, pix_inc);
2760
2761 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2762 in_height, out_width, out_height);
2763
2764 dispc_ovl_set_pos(plane, caps, pos_x, pos_y);
2765
2766 dispc_ovl_set_input_size(plane, in_width, in_height);
2767
2768 if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2769 dispc_ovl_set_scaling(plane, in_width, in_height, out_width,
2770 out_height, ilace, five_taps, fieldmode,
2771 color_mode, rotation);
2772 dispc_ovl_set_output_size(plane, out_width, out_height);
2773 dispc_ovl_set_vid_color_conv(plane, cconv);
2774 }
2775
2776 dispc_ovl_set_rotation_attrs(plane, rotation, rotation_type, mirror,
2777 color_mode);
2778
2779 dispc_ovl_set_zorder(plane, caps, zorder);
2780 dispc_ovl_set_pre_mult_alpha(plane, caps, pre_mult_alpha);
2781 dispc_ovl_setup_global_alpha(plane, caps, global_alpha);
2782
2783 dispc_ovl_enable_replication(plane, caps, replication);
2784
2785 return 0;
2786 }
2787
2788 int dispc_ovl_setup(enum omap_plane plane, const struct omap_overlay_info *oi,
2789 bool replication, const struct videomode *mgr_timings,
2790 bool mem_to_mem)
2791 {
2792 int r;
2793 enum omap_overlay_caps caps = dss_feat_get_overlay_caps(plane);
2794 enum omap_channel channel;
2795
2796 channel = dispc_ovl_get_channel_out(plane);
2797
2798 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2799 " %dx%d, cmode %x, rot %d, mir %d, chan %d repl %d\n",
2800 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2801 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2802 oi->color_mode, oi->rotation, oi->mirror, channel, replication);
2803
2804 r = dispc_ovl_setup_common(plane, caps, oi->paddr, oi->p_uv_addr,
2805 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2806 oi->out_width, oi->out_height, oi->color_mode, oi->rotation,
2807 oi->mirror, oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2808 oi->rotation_type, replication, mgr_timings, mem_to_mem);
2809
2810 return r;
2811 }
2812 EXPORT_SYMBOL(dispc_ovl_setup);
2813
2814 int dispc_wb_setup(const struct omap_dss_writeback_info *wi,
2815 bool mem_to_mem, const struct videomode *mgr_timings)
2816 {
2817 int r;
2818 u32 l;
2819 enum omap_plane plane = OMAP_DSS_WB;
2820 const int pos_x = 0, pos_y = 0;
2821 const u8 zorder = 0, global_alpha = 0;
2822 const bool replication = false;
2823 bool truncation;
2824 int in_width = mgr_timings->hactive;
2825 int in_height = mgr_timings->vactive;
2826 enum omap_overlay_caps caps =
2827 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2828
2829 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2830 "rot %d, mir %d\n", wi->paddr, wi->p_uv_addr, in_width,
2831 in_height, wi->width, wi->height, wi->color_mode, wi->rotation,
2832 wi->mirror);
2833
2834 r = dispc_ovl_setup_common(plane, caps, wi->paddr, wi->p_uv_addr,
2835 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2836 wi->height, wi->color_mode, wi->rotation, wi->mirror, zorder,
2837 wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2838 replication, mgr_timings, mem_to_mem);
2839
2840 switch (wi->color_mode) {
2841 case OMAP_DSS_COLOR_RGB16:
2842 case OMAP_DSS_COLOR_RGB24P:
2843 case OMAP_DSS_COLOR_ARGB16:
2844 case OMAP_DSS_COLOR_RGBA16:
2845 case OMAP_DSS_COLOR_RGB12U:
2846 case OMAP_DSS_COLOR_ARGB16_1555:
2847 case OMAP_DSS_COLOR_XRGB16_1555:
2848 case OMAP_DSS_COLOR_RGBX16:
2849 truncation = true;
2850 break;
2851 default:
2852 truncation = false;
2853 break;
2854 }
2855
2856 /* setup extra DISPC_WB_ATTRIBUTES */
2857 l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
2858 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
2859 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
2860 if (mem_to_mem)
2861 l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */
2862 else
2863 l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */
2864 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
2865
2866 if (mem_to_mem) {
2867 /* WBDELAYCOUNT */
2868 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2869 } else {
2870 int wbdelay;
2871
2872 wbdelay = min(mgr_timings->vfront_porch +
2873 mgr_timings->vsync_len + mgr_timings->vback_porch,
2874 (u32)255);
2875
2876 /* WBDELAYCOUNT */
2877 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2878 }
2879
2880 return r;
2881 }
2882
2883 int dispc_ovl_enable(enum omap_plane plane, bool enable)
2884 {
2885 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2886
2887 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2888
2889 return 0;
2890 }
2891 EXPORT_SYMBOL(dispc_ovl_enable);
2892
2893 bool dispc_ovl_enabled(enum omap_plane plane)
2894 {
2895 return REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0);
2896 }
2897 EXPORT_SYMBOL(dispc_ovl_enabled);
2898
2899 enum omap_dss_output_id dispc_mgr_get_supported_outputs(enum omap_channel channel)
2900 {
2901 return dss_feat_get_supported_outputs(channel);
2902 }
2903 EXPORT_SYMBOL(dispc_mgr_get_supported_outputs);
2904
2905 void dispc_mgr_enable(enum omap_channel channel, bool enable)
2906 {
2907 mgr_fld_write(channel, DISPC_MGR_FLD_ENABLE, enable);
2908 /* flush posted write */
2909 mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
2910 }
2911 EXPORT_SYMBOL(dispc_mgr_enable);
2912
2913 bool dispc_mgr_is_enabled(enum omap_channel channel)
2914 {
2915 return !!mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
2916 }
2917 EXPORT_SYMBOL(dispc_mgr_is_enabled);
2918
2919 void dispc_wb_enable(bool enable)
2920 {
2921 dispc_ovl_enable(OMAP_DSS_WB, enable);
2922 }
2923
2924 bool dispc_wb_is_enabled(void)
2925 {
2926 return dispc_ovl_enabled(OMAP_DSS_WB);
2927 }
2928
2929 static void dispc_lcd_enable_signal_polarity(bool act_high)
2930 {
2931 if (!dss_has_feature(FEAT_LCDENABLEPOL))
2932 return;
2933
2934 REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2935 }
2936
2937 void dispc_lcd_enable_signal(bool enable)
2938 {
2939 if (!dss_has_feature(FEAT_LCDENABLESIGNAL))
2940 return;
2941
2942 REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2943 }
2944
2945 void dispc_pck_free_enable(bool enable)
2946 {
2947 if (!dss_has_feature(FEAT_PCKFREEENABLE))
2948 return;
2949
2950 REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2951 }
2952
2953 static void dispc_mgr_enable_fifohandcheck(enum omap_channel channel, bool enable)
2954 {
2955 mgr_fld_write(channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2956 }
2957
2958
2959 static void dispc_mgr_set_lcd_type_tft(enum omap_channel channel)
2960 {
2961 mgr_fld_write(channel, DISPC_MGR_FLD_STNTFT, 1);
2962 }
2963
2964 static void dispc_set_loadmode(enum omap_dss_load_mode mode)
2965 {
2966 REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
2967 }
2968
2969
2970 static void dispc_mgr_set_default_color(enum omap_channel channel, u32 color)
2971 {
2972 dispc_write_reg(DISPC_DEFAULT_COLOR(channel), color);
2973 }
2974
2975 static void dispc_mgr_set_trans_key(enum omap_channel ch,
2976 enum omap_dss_trans_key_type type,
2977 u32 trans_key)
2978 {
2979 mgr_fld_write(ch, DISPC_MGR_FLD_TCKSELECTION, type);
2980
2981 dispc_write_reg(DISPC_TRANS_COLOR(ch), trans_key);
2982 }
2983
2984 static void dispc_mgr_enable_trans_key(enum omap_channel ch, bool enable)
2985 {
2986 mgr_fld_write(ch, DISPC_MGR_FLD_TCKENABLE, enable);
2987 }
2988
2989 static void dispc_mgr_enable_alpha_fixed_zorder(enum omap_channel ch,
2990 bool enable)
2991 {
2992 if (!dss_has_feature(FEAT_ALPHA_FIXED_ZORDER))
2993 return;
2994
2995 if (ch == OMAP_DSS_CHANNEL_LCD)
2996 REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
2997 else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2998 REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
2999 }
3000
3001 void dispc_mgr_setup(enum omap_channel channel,
3002 const struct omap_overlay_manager_info *info)
3003 {
3004 dispc_mgr_set_default_color(channel, info->default_color);
3005 dispc_mgr_set_trans_key(channel, info->trans_key_type, info->trans_key);
3006 dispc_mgr_enable_trans_key(channel, info->trans_enabled);
3007 dispc_mgr_enable_alpha_fixed_zorder(channel,
3008 info->partial_alpha_enabled);
3009 if (dss_has_feature(FEAT_CPR)) {
3010 dispc_mgr_enable_cpr(channel, info->cpr_enable);
3011 dispc_mgr_set_cpr_coef(channel, &info->cpr_coefs);
3012 }
3013 }
3014 EXPORT_SYMBOL(dispc_mgr_setup);
3015
3016 static void dispc_mgr_set_tft_data_lines(enum omap_channel channel, u8 data_lines)
3017 {
3018 int code;
3019
3020 switch (data_lines) {
3021 case 12:
3022 code = 0;
3023 break;
3024 case 16:
3025 code = 1;
3026 break;
3027 case 18:
3028 code = 2;
3029 break;
3030 case 24:
3031 code = 3;
3032 break;
3033 default:
3034 BUG();
3035 return;
3036 }
3037
3038 mgr_fld_write(channel, DISPC_MGR_FLD_TFTDATALINES, code);
3039 }
3040
3041 static void dispc_mgr_set_io_pad_mode(enum dss_io_pad_mode mode)
3042 {
3043 u32 l;
3044 int gpout0, gpout1;
3045
3046 switch (mode) {
3047 case DSS_IO_PAD_MODE_RESET:
3048 gpout0 = 0;
3049 gpout1 = 0;
3050 break;
3051 case DSS_IO_PAD_MODE_RFBI:
3052 gpout0 = 1;
3053 gpout1 = 0;
3054 break;
3055 case DSS_IO_PAD_MODE_BYPASS:
3056 gpout0 = 1;
3057 gpout1 = 1;
3058 break;
3059 default:
3060 BUG();
3061 return;
3062 }
3063
3064 l = dispc_read_reg(DISPC_CONTROL);
3065 l = FLD_MOD(l, gpout0, 15, 15);
3066 l = FLD_MOD(l, gpout1, 16, 16);
3067 dispc_write_reg(DISPC_CONTROL, l);
3068 }
3069
3070 static void dispc_mgr_enable_stallmode(enum omap_channel channel, bool enable)
3071 {
3072 mgr_fld_write(channel, DISPC_MGR_FLD_STALLMODE, enable);
3073 }
3074
3075 void dispc_mgr_set_lcd_config(enum omap_channel channel,
3076 const struct dss_lcd_mgr_config *config)
3077 {
3078 dispc_mgr_set_io_pad_mode(config->io_pad_mode);
3079
3080 dispc_mgr_enable_stallmode(channel, config->stallmode);
3081 dispc_mgr_enable_fifohandcheck(channel, config->fifohandcheck);
3082
3083 dispc_mgr_set_clock_div(channel, &config->clock_info);
3084
3085 dispc_mgr_set_tft_data_lines(channel, config->video_port_width);
3086
3087 dispc_lcd_enable_signal_polarity(config->lcden_sig_polarity);
3088
3089 dispc_mgr_set_lcd_type_tft(channel);
3090 }
3091 EXPORT_SYMBOL(dispc_mgr_set_lcd_config);
3092
3093 static bool _dispc_mgr_size_ok(u16 width, u16 height)
3094 {
3095 return width <= dispc.feat->mgr_width_max &&
3096 height <= dispc.feat->mgr_height_max;
3097 }
3098
3099 static bool _dispc_lcd_timings_ok(int hsync_len, int hfp, int hbp,
3100 int vsw, int vfp, int vbp)
3101 {
3102 if (hsync_len < 1 || hsync_len > dispc.feat->sw_max ||
3103 hfp < 1 || hfp > dispc.feat->hp_max ||
3104 hbp < 1 || hbp > dispc.feat->hp_max ||
3105 vsw < 1 || vsw > dispc.feat->sw_max ||
3106 vfp < 0 || vfp > dispc.feat->vp_max ||
3107 vbp < 0 || vbp > dispc.feat->vp_max)
3108 return false;
3109 return true;
3110 }
3111
3112 static bool _dispc_mgr_pclk_ok(enum omap_channel channel,
3113 unsigned long pclk)
3114 {
3115 if (dss_mgr_is_lcd(channel))
3116 return pclk <= dispc.feat->max_lcd_pclk;
3117 else
3118 return pclk <= dispc.feat->max_tv_pclk;
3119 }
3120
3121 bool dispc_mgr_timings_ok(enum omap_channel channel,
3122 const struct videomode *timings)
3123 {
3124 if (!_dispc_mgr_size_ok(timings->hactive, timings->vactive))
3125 return false;
3126
3127 if (!_dispc_mgr_pclk_ok(channel, timings->pixelclock))
3128 return false;
3129
3130 if (dss_mgr_is_lcd(channel)) {
3131 /* TODO: OMAP4+ supports interlace for LCD outputs */
3132 if (timings->flags & DISPLAY_FLAGS_INTERLACED)
3133 return false;
3134
3135 if (!_dispc_lcd_timings_ok(timings->hsync_len,
3136 timings->hfront_porch, timings->hback_porch,
3137 timings->vsync_len, timings->vfront_porch,
3138 timings->vback_porch))
3139 return false;
3140 }
3141
3142 return true;
3143 }
3144
3145 static void _dispc_mgr_set_lcd_timings(enum omap_channel channel,
3146 const struct videomode *ovt)
3147 {
3148 u32 timing_h, timing_v, l;
3149 bool onoff, rf, ipc, vs, hs, de;
3150
3151 timing_h = FLD_VAL(ovt->hsync_len - 1, dispc.feat->sw_start, 0) |
3152 FLD_VAL(ovt->hfront_porch - 1, dispc.feat->fp_start, 8) |
3153 FLD_VAL(ovt->hback_porch - 1, dispc.feat->bp_start, 20);
3154 timing_v = FLD_VAL(ovt->vsync_len - 1, dispc.feat->sw_start, 0) |
3155 FLD_VAL(ovt->vfront_porch, dispc.feat->fp_start, 8) |
3156 FLD_VAL(ovt->vback_porch, dispc.feat->bp_start, 20);
3157
3158 dispc_write_reg(DISPC_TIMING_H(channel), timing_h);
3159 dispc_write_reg(DISPC_TIMING_V(channel), timing_v);
3160
3161 if (ovt->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3162 vs = false;
3163 else
3164 vs = true;
3165
3166 if (ovt->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3167 hs = false;
3168 else
3169 hs = true;
3170
3171 if (ovt->flags & DISPLAY_FLAGS_DE_HIGH)
3172 de = false;
3173 else
3174 de = true;
3175
3176 if (ovt->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3177 ipc = false;
3178 else
3179 ipc = true;
3180
3181 /* always use the 'rf' setting */
3182 onoff = true;
3183
3184 if (ovt->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3185 rf = true;
3186 else
3187 rf = false;
3188
3189 l = FLD_VAL(onoff, 17, 17) |
3190 FLD_VAL(rf, 16, 16) |
3191 FLD_VAL(de, 15, 15) |
3192 FLD_VAL(ipc, 14, 14) |
3193 FLD_VAL(hs, 13, 13) |
3194 FLD_VAL(vs, 12, 12);
3195
3196 /* always set ALIGN bit when available */
3197 if (dispc.feat->supports_sync_align)
3198 l |= (1 << 18);
3199
3200 dispc_write_reg(DISPC_POL_FREQ(channel), l);
3201
3202 if (dispc.syscon_pol) {
3203 const int shifts[] = {
3204 [OMAP_DSS_CHANNEL_LCD] = 0,
3205 [OMAP_DSS_CHANNEL_LCD2] = 1,
3206 [OMAP_DSS_CHANNEL_LCD3] = 2,
3207 };
3208
3209 u32 mask, val;
3210
3211 mask = (1 << 0) | (1 << 3) | (1 << 6);
3212 val = (rf << 0) | (ipc << 3) | (onoff << 6);
3213
3214 mask <<= 16 + shifts[channel];
3215 val <<= 16 + shifts[channel];
3216
3217 regmap_update_bits(dispc.syscon_pol, dispc.syscon_pol_offset,
3218 mask, val);
3219 }
3220 }
3221
3222 /* change name to mode? */
3223 void dispc_mgr_set_timings(enum omap_channel channel,
3224 const struct videomode *timings)
3225 {
3226 unsigned xtot, ytot;
3227 unsigned long ht, vt;
3228 struct videomode t = *timings;
3229
3230 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3231
3232 if (!dispc_mgr_timings_ok(channel, &t)) {
3233 BUG();
3234 return;
3235 }
3236
3237 if (dss_mgr_is_lcd(channel)) {
3238 _dispc_mgr_set_lcd_timings(channel, &t);
3239
3240 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3241 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3242
3243 ht = timings->pixelclock / xtot;
3244 vt = timings->pixelclock / xtot / ytot;
3245
3246 DSSDBG("pck %lu\n", timings->pixelclock);
3247 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3248 t.hsync_len, t.hfront_porch, t.hback_porch,
3249 t.vsync_len, t.vfront_porch, t.vback_porch);
3250 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3251 !!(t.flags & DISPLAY_FLAGS_VSYNC_HIGH),
3252 !!(t.flags & DISPLAY_FLAGS_HSYNC_HIGH),
3253 !!(t.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE),
3254 !!(t.flags & DISPLAY_FLAGS_DE_HIGH),
3255 !!(t.flags & DISPLAY_FLAGS_SYNC_POSEDGE));
3256
3257 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3258 } else {
3259 if (t.flags & DISPLAY_FLAGS_INTERLACED)
3260 t.vactive /= 2;
3261
3262 if (dispc.feat->supports_double_pixel)
3263 REG_FLD_MOD(DISPC_CONTROL,
3264 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3265 19, 17);
3266 }
3267
3268 dispc_mgr_set_size(channel, t.hactive, t.vactive);
3269 }
3270 EXPORT_SYMBOL(dispc_mgr_set_timings);
3271
3272 static void dispc_mgr_set_lcd_divisor(enum omap_channel channel, u16 lck_div,
3273 u16 pck_div)
3274 {
3275 BUG_ON(lck_div < 1);
3276 BUG_ON(pck_div < 1);
3277
3278 dispc_write_reg(DISPC_DIVISORo(channel),
3279 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3280
3281 if (!dss_has_feature(FEAT_CORE_CLK_DIV) &&
3282 channel == OMAP_DSS_CHANNEL_LCD)
3283 dispc.core_clk_rate = dispc_fclk_rate() / lck_div;
3284 }
3285
3286 static void dispc_mgr_get_lcd_divisor(enum omap_channel channel, int *lck_div,
3287 int *pck_div)
3288 {
3289 u32 l;
3290 l = dispc_read_reg(DISPC_DIVISORo(channel));
3291 *lck_div = FLD_GET(l, 23, 16);
3292 *pck_div = FLD_GET(l, 7, 0);
3293 }
3294
3295 static unsigned long dispc_fclk_rate(void)
3296 {
3297 unsigned long r;
3298 enum dss_clk_source src;
3299
3300 src = dss_get_dispc_clk_source();
3301
3302 if (src == DSS_CLK_SRC_FCK) {
3303 r = dss_get_dispc_clk_rate();
3304 } else {
3305 struct dss_pll *pll;
3306 unsigned clkout_idx;
3307
3308 pll = dss_pll_find_by_src(src);
3309 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3310
3311 r = pll->cinfo.clkout[clkout_idx];
3312 }
3313
3314 return r;
3315 }
3316
3317 static unsigned long dispc_mgr_lclk_rate(enum omap_channel channel)
3318 {
3319 int lcd;
3320 unsigned long r;
3321 enum dss_clk_source src;
3322
3323 /* for TV, LCLK rate is the FCLK rate */
3324 if (!dss_mgr_is_lcd(channel))
3325 return dispc_fclk_rate();
3326
3327 src = dss_get_lcd_clk_source(channel);
3328
3329 if (src == DSS_CLK_SRC_FCK) {
3330 r = dss_get_dispc_clk_rate();
3331 } else {
3332 struct dss_pll *pll;
3333 unsigned clkout_idx;
3334
3335 pll = dss_pll_find_by_src(src);
3336 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3337
3338 r = pll->cinfo.clkout[clkout_idx];
3339 }
3340
3341 lcd = REG_GET(DISPC_DIVISORo(channel), 23, 16);
3342
3343 return r / lcd;
3344 }
3345
3346 static unsigned long dispc_mgr_pclk_rate(enum omap_channel channel)
3347 {
3348 unsigned long r;
3349
3350 if (dss_mgr_is_lcd(channel)) {
3351 int pcd;
3352 u32 l;
3353
3354 l = dispc_read_reg(DISPC_DIVISORo(channel));
3355
3356 pcd = FLD_GET(l, 7, 0);
3357
3358 r = dispc_mgr_lclk_rate(channel);
3359
3360 return r / pcd;
3361 } else {
3362 return dispc.tv_pclk_rate;
3363 }
3364 }
3365
3366 void dispc_set_tv_pclk(unsigned long pclk)
3367 {
3368 dispc.tv_pclk_rate = pclk;
3369 }
3370
3371 static unsigned long dispc_core_clk_rate(void)
3372 {
3373 return dispc.core_clk_rate;
3374 }
3375
3376 static unsigned long dispc_plane_pclk_rate(enum omap_plane plane)
3377 {
3378 enum omap_channel channel;
3379
3380 if (plane == OMAP_DSS_WB)
3381 return 0;
3382
3383 channel = dispc_ovl_get_channel_out(plane);
3384
3385 return dispc_mgr_pclk_rate(channel);
3386 }
3387
3388 static unsigned long dispc_plane_lclk_rate(enum omap_plane plane)
3389 {
3390 enum omap_channel channel;
3391
3392 if (plane == OMAP_DSS_WB)
3393 return 0;
3394
3395 channel = dispc_ovl_get_channel_out(plane);
3396
3397 return dispc_mgr_lclk_rate(channel);
3398 }
3399
3400 static void dispc_dump_clocks_channel(struct seq_file *s, enum omap_channel channel)
3401 {
3402 int lcd, pcd;
3403 enum dss_clk_source lcd_clk_src;
3404
3405 seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3406
3407 lcd_clk_src = dss_get_lcd_clk_source(channel);
3408
3409 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3410 dss_get_clk_source_name(lcd_clk_src));
3411
3412 dispc_mgr_get_lcd_divisor(channel, &lcd, &pcd);
3413
3414 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3415 dispc_mgr_lclk_rate(channel), lcd);
3416 seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3417 dispc_mgr_pclk_rate(channel), pcd);
3418 }
3419
3420 void dispc_dump_clocks(struct seq_file *s)
3421 {
3422 int lcd;
3423 u32 l;
3424 enum dss_clk_source dispc_clk_src = dss_get_dispc_clk_source();
3425
3426 if (dispc_runtime_get())
3427 return;
3428
3429 seq_printf(s, "- DISPC -\n");
3430
3431 seq_printf(s, "dispc fclk source = %s\n",
3432 dss_get_clk_source_name(dispc_clk_src));
3433
3434 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
3435
3436 if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
3437 seq_printf(s, "- DISPC-CORE-CLK -\n");
3438 l = dispc_read_reg(DISPC_DIVISOR);
3439 lcd = FLD_GET(l, 23, 16);
3440
3441 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3442 (dispc_fclk_rate()/lcd), lcd);
3443 }
3444
3445 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD);
3446
3447 if (dss_has_feature(FEAT_MGR_LCD2))
3448 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD2);
3449 if (dss_has_feature(FEAT_MGR_LCD3))
3450 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD3);
3451
3452 dispc_runtime_put();
3453 }
3454
3455 static void dispc_dump_regs(struct seq_file *s)
3456 {
3457 int i, j;
3458 const char *mgr_names[] = {
3459 [OMAP_DSS_CHANNEL_LCD] = "LCD",
3460 [OMAP_DSS_CHANNEL_DIGIT] = "TV",
3461 [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
3462 [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
3463 };
3464 const char *ovl_names[] = {
3465 [OMAP_DSS_GFX] = "GFX",
3466 [OMAP_DSS_VIDEO1] = "VID1",
3467 [OMAP_DSS_VIDEO2] = "VID2",
3468 [OMAP_DSS_VIDEO3] = "VID3",
3469 [OMAP_DSS_WB] = "WB",
3470 };
3471 const char **p_names;
3472
3473 #define DUMPREG(r) seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(r))
3474
3475 if (dispc_runtime_get())
3476 return;
3477
3478 /* DISPC common registers */
3479 DUMPREG(DISPC_REVISION);
3480 DUMPREG(DISPC_SYSCONFIG);
3481 DUMPREG(DISPC_SYSSTATUS);
3482 DUMPREG(DISPC_IRQSTATUS);
3483 DUMPREG(DISPC_IRQENABLE);
3484 DUMPREG(DISPC_CONTROL);
3485 DUMPREG(DISPC_CONFIG);
3486 DUMPREG(DISPC_CAPABLE);
3487 DUMPREG(DISPC_LINE_STATUS);
3488 DUMPREG(DISPC_LINE_NUMBER);
3489 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
3490 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
3491 DUMPREG(DISPC_GLOBAL_ALPHA);
3492 if (dss_has_feature(FEAT_MGR_LCD2)) {
3493 DUMPREG(DISPC_CONTROL2);
3494 DUMPREG(DISPC_CONFIG2);
3495 }
3496 if (dss_has_feature(FEAT_MGR_LCD3)) {
3497 DUMPREG(DISPC_CONTROL3);
3498 DUMPREG(DISPC_CONFIG3);
3499 }
3500 if (dss_has_feature(FEAT_MFLAG))
3501 DUMPREG(DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3502
3503 #undef DUMPREG
3504
3505 #define DISPC_REG(i, name) name(i)
3506 #define DUMPREG(i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3507 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3508 dispc_read_reg(DISPC_REG(i, r)))
3509
3510 p_names = mgr_names;
3511
3512 /* DISPC channel specific registers */
3513 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
3514 DUMPREG(i, DISPC_DEFAULT_COLOR);
3515 DUMPREG(i, DISPC_TRANS_COLOR);
3516 DUMPREG(i, DISPC_SIZE_MGR);
3517
3518 if (i == OMAP_DSS_CHANNEL_DIGIT)
3519 continue;
3520
3521 DUMPREG(i, DISPC_TIMING_H);
3522 DUMPREG(i, DISPC_TIMING_V);
3523 DUMPREG(i, DISPC_POL_FREQ);
3524 DUMPREG(i, DISPC_DIVISORo);
3525
3526 DUMPREG(i, DISPC_DATA_CYCLE1);
3527 DUMPREG(i, DISPC_DATA_CYCLE2);
3528 DUMPREG(i, DISPC_DATA_CYCLE3);
3529
3530 if (dss_has_feature(FEAT_CPR)) {
3531 DUMPREG(i, DISPC_CPR_COEF_R);
3532 DUMPREG(i, DISPC_CPR_COEF_G);
3533 DUMPREG(i, DISPC_CPR_COEF_B);
3534 }
3535 }
3536
3537 p_names = ovl_names;
3538
3539 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
3540 DUMPREG(i, DISPC_OVL_BA0);
3541 DUMPREG(i, DISPC_OVL_BA1);
3542 DUMPREG(i, DISPC_OVL_POSITION);
3543 DUMPREG(i, DISPC_OVL_SIZE);
3544 DUMPREG(i, DISPC_OVL_ATTRIBUTES);
3545 DUMPREG(i, DISPC_OVL_FIFO_THRESHOLD);
3546 DUMPREG(i, DISPC_OVL_FIFO_SIZE_STATUS);
3547 DUMPREG(i, DISPC_OVL_ROW_INC);
3548 DUMPREG(i, DISPC_OVL_PIXEL_INC);
3549
3550 if (dss_has_feature(FEAT_PRELOAD))
3551 DUMPREG(i, DISPC_OVL_PRELOAD);
3552 if (dss_has_feature(FEAT_MFLAG))
3553 DUMPREG(i, DISPC_OVL_MFLAG_THRESHOLD);
3554
3555 if (i == OMAP_DSS_GFX) {
3556 DUMPREG(i, DISPC_OVL_WINDOW_SKIP);
3557 DUMPREG(i, DISPC_OVL_TABLE_BA);
3558 continue;
3559 }
3560
3561 DUMPREG(i, DISPC_OVL_FIR);
3562 DUMPREG(i, DISPC_OVL_PICTURE_SIZE);
3563 DUMPREG(i, DISPC_OVL_ACCU0);
3564 DUMPREG(i, DISPC_OVL_ACCU1);
3565 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
3566 DUMPREG(i, DISPC_OVL_BA0_UV);
3567 DUMPREG(i, DISPC_OVL_BA1_UV);
3568 DUMPREG(i, DISPC_OVL_FIR2);
3569 DUMPREG(i, DISPC_OVL_ACCU2_0);
3570 DUMPREG(i, DISPC_OVL_ACCU2_1);
3571 }
3572 if (dss_has_feature(FEAT_ATTR2))
3573 DUMPREG(i, DISPC_OVL_ATTRIBUTES2);
3574 }
3575
3576 if (dispc.feat->has_writeback) {
3577 i = OMAP_DSS_WB;
3578 DUMPREG(i, DISPC_OVL_BA0);
3579 DUMPREG(i, DISPC_OVL_BA1);
3580 DUMPREG(i, DISPC_OVL_SIZE);
3581 DUMPREG(i, DISPC_OVL_ATTRIBUTES);
3582 DUMPREG(i, DISPC_OVL_FIFO_THRESHOLD);
3583 DUMPREG(i, DISPC_OVL_FIFO_SIZE_STATUS);
3584 DUMPREG(i, DISPC_OVL_ROW_INC);
3585 DUMPREG(i, DISPC_OVL_PIXEL_INC);
3586
3587 if (dss_has_feature(FEAT_MFLAG))
3588 DUMPREG(i, DISPC_OVL_MFLAG_THRESHOLD);
3589
3590 DUMPREG(i, DISPC_OVL_FIR);
3591 DUMPREG(i, DISPC_OVL_PICTURE_SIZE);
3592 DUMPREG(i, DISPC_OVL_ACCU0);
3593 DUMPREG(i, DISPC_OVL_ACCU1);
3594 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
3595 DUMPREG(i, DISPC_OVL_BA0_UV);
3596 DUMPREG(i, DISPC_OVL_BA1_UV);
3597 DUMPREG(i, DISPC_OVL_FIR2);
3598 DUMPREG(i, DISPC_OVL_ACCU2_0);
3599 DUMPREG(i, DISPC_OVL_ACCU2_1);
3600 }
3601 if (dss_has_feature(FEAT_ATTR2))
3602 DUMPREG(i, DISPC_OVL_ATTRIBUTES2);
3603 }
3604
3605 #undef DISPC_REG
3606 #undef DUMPREG
3607
3608 #define DISPC_REG(plane, name, i) name(plane, i)
3609 #define DUMPREG(plane, name, i) \
3610 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3611 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3612 dispc_read_reg(DISPC_REG(plane, name, i)))
3613
3614 /* Video pipeline coefficient registers */
3615
3616 /* start from OMAP_DSS_VIDEO1 */
3617 for (i = 1; i < dss_feat_get_num_ovls(); i++) {
3618 for (j = 0; j < 8; j++)
3619 DUMPREG(i, DISPC_OVL_FIR_COEF_H, j);
3620
3621 for (j = 0; j < 8; j++)
3622 DUMPREG(i, DISPC_OVL_FIR_COEF_HV, j);
3623
3624 for (j = 0; j < 5; j++)
3625 DUMPREG(i, DISPC_OVL_CONV_COEF, j);
3626
3627 if (dss_has_feature(FEAT_FIR_COEF_V)) {
3628 for (j = 0; j < 8; j++)
3629 DUMPREG(i, DISPC_OVL_FIR_COEF_V, j);
3630 }
3631
3632 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
3633 for (j = 0; j < 8; j++)
3634 DUMPREG(i, DISPC_OVL_FIR_COEF_H2, j);
3635
3636 for (j = 0; j < 8; j++)
3637 DUMPREG(i, DISPC_OVL_FIR_COEF_HV2, j);
3638
3639 for (j = 0; j < 8; j++)
3640 DUMPREG(i, DISPC_OVL_FIR_COEF_V2, j);
3641 }
3642 }
3643
3644 dispc_runtime_put();
3645
3646 #undef DISPC_REG
3647 #undef DUMPREG
3648 }
3649
3650 /* calculate clock rates using dividers in cinfo */
3651 int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
3652 struct dispc_clock_info *cinfo)
3653 {
3654 if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3655 return -EINVAL;
3656 if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3657 return -EINVAL;
3658
3659 cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3660 cinfo->pck = cinfo->lck / cinfo->pck_div;
3661
3662 return 0;
3663 }
3664
3665 bool dispc_div_calc(unsigned long dispc,
3666 unsigned long pck_min, unsigned long pck_max,
3667 dispc_div_calc_func func, void *data)
3668 {
3669 int lckd, lckd_start, lckd_stop;
3670 int pckd, pckd_start, pckd_stop;
3671 unsigned long pck, lck;
3672 unsigned long lck_max;
3673 unsigned long pckd_hw_min, pckd_hw_max;
3674 unsigned min_fck_per_pck;
3675 unsigned long fck;
3676
3677 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3678 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3679 #else
3680 min_fck_per_pck = 0;
3681 #endif
3682
3683 pckd_hw_min = dss_feat_get_param_min(FEAT_PARAM_DSS_PCD);
3684 pckd_hw_max = dss_feat_get_param_max(FEAT_PARAM_DSS_PCD);
3685
3686 lck_max = dss_feat_get_param_max(FEAT_PARAM_DSS_FCK);
3687
3688 pck_min = pck_min ? pck_min : 1;
3689 pck_max = pck_max ? pck_max : ULONG_MAX;
3690
3691 lckd_start = max(DIV_ROUND_UP(dispc, lck_max), 1ul);
3692 lckd_stop = min(dispc / pck_min, 255ul);
3693
3694 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3695 lck = dispc / lckd;
3696
3697 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3698 pckd_stop = min(lck / pck_min, pckd_hw_max);
3699
3700 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3701 pck = lck / pckd;
3702
3703 /*
3704 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3705 * clock, which means we're configuring DISPC fclk here
3706 * also. Thus we need to use the calculated lck. For
3707 * OMAP4+ the DISPC fclk is a separate clock.
3708 */
3709 if (dss_has_feature(FEAT_CORE_CLK_DIV))
3710 fck = dispc_core_clk_rate();
3711 else
3712 fck = lck;
3713
3714 if (fck < pck * min_fck_per_pck)
3715 continue;
3716
3717 if (func(lckd, pckd, lck, pck, data))
3718 return true;
3719 }
3720 }
3721
3722 return false;
3723 }
3724
3725 void dispc_mgr_set_clock_div(enum omap_channel channel,
3726 const struct dispc_clock_info *cinfo)
3727 {
3728 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3729 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3730
3731 dispc_mgr_set_lcd_divisor(channel, cinfo->lck_div, cinfo->pck_div);
3732 }
3733
3734 int dispc_mgr_get_clock_div(enum omap_channel channel,
3735 struct dispc_clock_info *cinfo)
3736 {
3737 unsigned long fck;
3738
3739 fck = dispc_fclk_rate();
3740
3741 cinfo->lck_div = REG_GET(DISPC_DIVISORo(channel), 23, 16);
3742 cinfo->pck_div = REG_GET(DISPC_DIVISORo(channel), 7, 0);
3743
3744 cinfo->lck = fck / cinfo->lck_div;
3745 cinfo->pck = cinfo->lck / cinfo->pck_div;
3746
3747 return 0;
3748 }
3749
3750 u32 dispc_read_irqstatus(void)
3751 {
3752 return dispc_read_reg(DISPC_IRQSTATUS);
3753 }
3754 EXPORT_SYMBOL(dispc_read_irqstatus);
3755
3756 void dispc_clear_irqstatus(u32 mask)
3757 {
3758 dispc_write_reg(DISPC_IRQSTATUS, mask);
3759 }
3760 EXPORT_SYMBOL(dispc_clear_irqstatus);
3761
3762 u32 dispc_read_irqenable(void)
3763 {
3764 return dispc_read_reg(DISPC_IRQENABLE);
3765 }
3766 EXPORT_SYMBOL(dispc_read_irqenable);
3767
3768 void dispc_write_irqenable(u32 mask)
3769 {
3770 u32 old_mask = dispc_read_reg(DISPC_IRQENABLE);
3771
3772 /* clear the irqstatus for newly enabled irqs */
3773 dispc_clear_irqstatus((mask ^ old_mask) & mask);
3774
3775 dispc_write_reg(DISPC_IRQENABLE, mask);
3776 }
3777 EXPORT_SYMBOL(dispc_write_irqenable);
3778
3779 void dispc_enable_sidle(void)
3780 {
3781 REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
3782 }
3783
3784 void dispc_disable_sidle(void)
3785 {
3786 REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
3787 }
3788
3789 u32 dispc_mgr_gamma_size(enum omap_channel channel)
3790 {
3791 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3792
3793 if (!dispc.feat->has_gamma_table)
3794 return 0;
3795
3796 return gdesc->len;
3797 }
3798 EXPORT_SYMBOL(dispc_mgr_gamma_size);
3799
3800 static void dispc_mgr_write_gamma_table(enum omap_channel channel)
3801 {
3802 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3803 u32 *table = dispc.gamma_table[channel];
3804 unsigned int i;
3805
3806 DSSDBG("%s: channel %d\n", __func__, channel);
3807
3808 for (i = 0; i < gdesc->len; ++i) {
3809 u32 v = table[i];
3810
3811 if (gdesc->has_index)
3812 v |= i << 24;
3813 else if (i == 0)
3814 v |= 1 << 31;
3815
3816 dispc_write_reg(gdesc->reg, v);
3817 }
3818 }
3819
3820 static void dispc_restore_gamma_tables(void)
3821 {
3822 DSSDBG("%s()\n", __func__);
3823
3824 if (!dispc.feat->has_gamma_table)
3825 return;
3826
3827 dispc_mgr_write_gamma_table(OMAP_DSS_CHANNEL_LCD);
3828
3829 dispc_mgr_write_gamma_table(OMAP_DSS_CHANNEL_DIGIT);
3830
3831 if (dss_has_feature(FEAT_MGR_LCD2))
3832 dispc_mgr_write_gamma_table(OMAP_DSS_CHANNEL_LCD2);
3833
3834 if (dss_has_feature(FEAT_MGR_LCD3))
3835 dispc_mgr_write_gamma_table(OMAP_DSS_CHANNEL_LCD3);
3836 }
3837
3838 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3839 { .red = 0, .green = 0, .blue = 0, },
3840 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3841 };
3842
3843 void dispc_mgr_set_gamma(enum omap_channel channel,
3844 const struct drm_color_lut *lut,
3845 unsigned int length)
3846 {
3847 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3848 u32 *table = dispc.gamma_table[channel];
3849 uint i;
3850
3851 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3852 channel, length, gdesc->len);
3853
3854 if (!dispc.feat->has_gamma_table)
3855 return;
3856
3857 if (lut == NULL || length < 2) {
3858 lut = dispc_mgr_gamma_default_lut;
3859 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3860 }
3861
3862 for (i = 0; i < length - 1; ++i) {
3863 uint first = i * (gdesc->len - 1) / (length - 1);
3864 uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3865 uint w = last - first;
3866 u16 r, g, b;
3867 uint j;
3868
3869 if (w == 0)
3870 continue;
3871
3872 for (j = 0; j <= w; j++) {
3873 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3874 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3875 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3876
3877 r >>= 16 - gdesc->bits;
3878 g >>= 16 - gdesc->bits;
3879 b >>= 16 - gdesc->bits;
3880
3881 table[first + j] = (r << (gdesc->bits * 2)) |
3882 (g << gdesc->bits) | b;
3883 }
3884 }
3885
3886 if (dispc.is_enabled)
3887 dispc_mgr_write_gamma_table(channel);
3888 }
3889 EXPORT_SYMBOL(dispc_mgr_set_gamma);
3890
3891 static int dispc_init_gamma_tables(void)
3892 {
3893 int channel;
3894
3895 if (!dispc.feat->has_gamma_table)
3896 return 0;
3897
3898 for (channel = 0; channel < ARRAY_SIZE(dispc.gamma_table); channel++) {
3899 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3900 u32 *gt;
3901
3902 if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3903 !dss_has_feature(FEAT_MGR_LCD2))
3904 continue;
3905
3906 if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3907 !dss_has_feature(FEAT_MGR_LCD3))
3908 continue;
3909
3910 gt = devm_kmalloc_array(&dispc.pdev->dev, gdesc->len,
3911 sizeof(u32), GFP_KERNEL);
3912 if (!gt)
3913 return -ENOMEM;
3914
3915 dispc.gamma_table[channel] = gt;
3916
3917 dispc_mgr_set_gamma(channel, NULL, 0);
3918 }
3919 return 0;
3920 }
3921
3922 static void _omap_dispc_initial_config(void)
3923 {
3924 u32 l;
3925
3926 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3927 if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
3928 l = dispc_read_reg(DISPC_DIVISOR);
3929 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3930 l = FLD_MOD(l, 1, 0, 0);
3931 l = FLD_MOD(l, 1, 23, 16);
3932 dispc_write_reg(DISPC_DIVISOR, l);
3933
3934 dispc.core_clk_rate = dispc_fclk_rate();
3935 }
3936
3937 /* Use gamma table mode, instead of palette mode */
3938 if (dispc.feat->has_gamma_table)
3939 REG_FLD_MOD(DISPC_CONFIG, 1, 3, 3);
3940
3941 /* For older DSS versions (FEAT_FUNCGATED) this enables
3942 * func-clock auto-gating. For newer versions
3943 * (dispc.feat->has_gamma_table) this enables tv-out gamma tables.
3944 */
3945 if (dss_has_feature(FEAT_FUNCGATED) || dispc.feat->has_gamma_table)
3946 REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
3947
3948 dispc_setup_color_conv_coef();
3949
3950 dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
3951
3952 dispc_init_fifos();
3953
3954 dispc_configure_burst_sizes();
3955
3956 dispc_ovl_enable_zorder_planes();
3957
3958 if (dispc.feat->mstandby_workaround)
3959 REG_FLD_MOD(DISPC_MSTANDBY_CTRL, 1, 0, 0);
3960
3961 if (dss_has_feature(FEAT_MFLAG))
3962 dispc_init_mflag();
3963 }
3964
3965 static const struct dispc_features omap24xx_dispc_feats = {
3966 .sw_start = 5,
3967 .fp_start = 15,
3968 .bp_start = 27,
3969 .sw_max = 64,
3970 .vp_max = 255,
3971 .hp_max = 256,
3972 .mgr_width_start = 10,
3973 .mgr_height_start = 26,
3974 .mgr_width_max = 2048,
3975 .mgr_height_max = 2048,
3976 .max_lcd_pclk = 66500000,
3977 .calc_scaling = dispc_ovl_calc_scaling_24xx,
3978 .calc_core_clk = calc_core_clk_24xx,
3979 .num_fifos = 3,
3980 .no_framedone_tv = true,
3981 .set_max_preload = false,
3982 .last_pixel_inc_missing = true,
3983 };
3984
3985 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
3986 .sw_start = 5,
3987 .fp_start = 15,
3988 .bp_start = 27,
3989 .sw_max = 64,
3990 .vp_max = 255,
3991 .hp_max = 256,
3992 .mgr_width_start = 10,
3993 .mgr_height_start = 26,
3994 .mgr_width_max = 2048,
3995 .mgr_height_max = 2048,
3996 .max_lcd_pclk = 173000000,
3997 .max_tv_pclk = 59000000,
3998 .calc_scaling = dispc_ovl_calc_scaling_34xx,
3999 .calc_core_clk = calc_core_clk_34xx,
4000 .num_fifos = 3,
4001 .no_framedone_tv = true,
4002 .set_max_preload = false,
4003 .last_pixel_inc_missing = true,
4004 };
4005
4006 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4007 .sw_start = 7,
4008 .fp_start = 19,
4009 .bp_start = 31,
4010 .sw_max = 256,
4011 .vp_max = 4095,
4012 .hp_max = 4096,
4013 .mgr_width_start = 10,
4014 .mgr_height_start = 26,
4015 .mgr_width_max = 2048,
4016 .mgr_height_max = 2048,
4017 .max_lcd_pclk = 173000000,
4018 .max_tv_pclk = 59000000,
4019 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4020 .calc_core_clk = calc_core_clk_34xx,
4021 .num_fifos = 3,
4022 .no_framedone_tv = true,
4023 .set_max_preload = false,
4024 .last_pixel_inc_missing = true,
4025 };
4026
4027 static const struct dispc_features omap44xx_dispc_feats = {
4028 .sw_start = 7,
4029 .fp_start = 19,
4030 .bp_start = 31,
4031 .sw_max = 256,
4032 .vp_max = 4095,
4033 .hp_max = 4096,
4034 .mgr_width_start = 10,
4035 .mgr_height_start = 26,
4036 .mgr_width_max = 2048,
4037 .mgr_height_max = 2048,
4038 .max_lcd_pclk = 170000000,
4039 .max_tv_pclk = 185625000,
4040 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4041 .calc_core_clk = calc_core_clk_44xx,
4042 .num_fifos = 5,
4043 .gfx_fifo_workaround = true,
4044 .set_max_preload = true,
4045 .supports_sync_align = true,
4046 .has_writeback = true,
4047 .supports_double_pixel = true,
4048 .reverse_ilace_field_order = true,
4049 .has_gamma_table = true,
4050 .has_gamma_i734_bug = true,
4051 };
4052
4053 static const struct dispc_features omap54xx_dispc_feats = {
4054 .sw_start = 7,
4055 .fp_start = 19,
4056 .bp_start = 31,
4057 .sw_max = 256,
4058 .vp_max = 4095,
4059 .hp_max = 4096,
4060 .mgr_width_start = 11,
4061 .mgr_height_start = 27,
4062 .mgr_width_max = 4096,
4063 .mgr_height_max = 4096,
4064 .max_lcd_pclk = 170000000,
4065 .max_tv_pclk = 186000000,
4066 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4067 .calc_core_clk = calc_core_clk_44xx,
4068 .num_fifos = 5,
4069 .gfx_fifo_workaround = true,
4070 .mstandby_workaround = true,
4071 .set_max_preload = true,
4072 .supports_sync_align = true,
4073 .has_writeback = true,
4074 .supports_double_pixel = true,
4075 .reverse_ilace_field_order = true,
4076 .has_gamma_table = true,
4077 .has_gamma_i734_bug = true,
4078 };
4079
4080 static int dispc_init_features(struct platform_device *pdev)
4081 {
4082 const struct dispc_features *src;
4083 struct dispc_features *dst;
4084
4085 dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
4086 if (!dst) {
4087 dev_err(&pdev->dev, "Failed to allocate DISPC Features\n");
4088 return -ENOMEM;
4089 }
4090
4091 switch (omapdss_get_version()) {
4092 case OMAPDSS_VER_OMAP24xx:
4093 src = &omap24xx_dispc_feats;
4094 break;
4095
4096 case OMAPDSS_VER_OMAP34xx_ES1:
4097 src = &omap34xx_rev1_0_dispc_feats;
4098 break;
4099
4100 case OMAPDSS_VER_OMAP34xx_ES3:
4101 case OMAPDSS_VER_OMAP3630:
4102 case OMAPDSS_VER_AM35xx:
4103 case OMAPDSS_VER_AM43xx:
4104 src = &omap34xx_rev3_0_dispc_feats;
4105 break;
4106
4107 case OMAPDSS_VER_OMAP4430_ES1:
4108 case OMAPDSS_VER_OMAP4430_ES2:
4109 case OMAPDSS_VER_OMAP4:
4110 src = &omap44xx_dispc_feats;
4111 break;
4112
4113 case OMAPDSS_VER_OMAP5:
4114 case OMAPDSS_VER_DRA7xx:
4115 src = &omap54xx_dispc_feats;
4116 break;
4117
4118 default:
4119 return -ENODEV;
4120 }
4121
4122 memcpy(dst, src, sizeof(*dst));
4123 dispc.feat = dst;
4124
4125 return 0;
4126 }
4127
4128 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4129 {
4130 if (!dispc.is_enabled)
4131 return IRQ_NONE;
4132
4133 return dispc.user_handler(irq, dispc.user_data);
4134 }
4135
4136 int dispc_request_irq(irq_handler_t handler, void *dev_id)
4137 {
4138 int r;
4139
4140 if (dispc.user_handler != NULL)
4141 return -EBUSY;
4142
4143 dispc.user_handler = handler;
4144 dispc.user_data = dev_id;
4145
4146 /* ensure the dispc_irq_handler sees the values above */
4147 smp_wmb();
4148
4149 r = devm_request_irq(&dispc.pdev->dev, dispc.irq, dispc_irq_handler,
4150 IRQF_SHARED, "OMAP DISPC", &dispc);
4151 if (r) {
4152 dispc.user_handler = NULL;
4153 dispc.user_data = NULL;
4154 }
4155
4156 return r;
4157 }
4158 EXPORT_SYMBOL(dispc_request_irq);
4159
4160 void dispc_free_irq(void *dev_id)
4161 {
4162 devm_free_irq(&dispc.pdev->dev, dispc.irq, &dispc);
4163
4164 dispc.user_handler = NULL;
4165 dispc.user_data = NULL;
4166 }
4167 EXPORT_SYMBOL(dispc_free_irq);
4168
4169 /*
4170 * Workaround for errata i734 in DSS dispc
4171 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4172 *
4173 * For gamma tables to work on LCD1 the GFX plane has to be used at
4174 * least once after DSS HW has come out of reset. The workaround
4175 * sets up a minimal LCD setup with GFX plane and waits for one
4176 * vertical sync irq before disabling the setup and continuing with
4177 * the context restore. The physical outputs are gated during the
4178 * operation. This workaround requires that gamma table's LOADMODE
4179 * is set to 0x2 in DISPC_CONTROL1 register.
4180 *
4181 * For details see:
4182 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4183 * Literature Number: SWPZ037E
4184 * Or some other relevant errata document for the DSS IP version.
4185 */
4186
4187 static const struct dispc_errata_i734_data {
4188 struct videomode timings;
4189 struct omap_overlay_info ovli;
4190 struct omap_overlay_manager_info mgri;
4191 struct dss_lcd_mgr_config lcd_conf;
4192 } i734 = {
4193 .timings = {
4194 .hactive = 8, .vactive = 1,
4195 .pixelclock = 16000000,
4196 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4197 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4198
4199 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4200 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4201 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4202 },
4203 .ovli = {
4204 .screen_width = 1,
4205 .width = 1, .height = 1,
4206 .color_mode = OMAP_DSS_COLOR_RGB24U,
4207 .rotation = OMAP_DSS_ROT_0,
4208 .rotation_type = OMAP_DSS_ROT_DMA,
4209 .mirror = 0,
4210 .pos_x = 0, .pos_y = 0,
4211 .out_width = 0, .out_height = 0,
4212 .global_alpha = 0xff,
4213 .pre_mult_alpha = 0,
4214 .zorder = 0,
4215 },
4216 .mgri = {
4217 .default_color = 0,
4218 .trans_enabled = false,
4219 .partial_alpha_enabled = false,
4220 .cpr_enable = false,
4221 },
4222 .lcd_conf = {
4223 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4224 .stallmode = false,
4225 .fifohandcheck = false,
4226 .clock_info = {
4227 .lck_div = 1,
4228 .pck_div = 2,
4229 },
4230 .video_port_width = 24,
4231 .lcden_sig_polarity = 0,
4232 },
4233 };
4234
4235 static struct i734_buf {
4236 size_t size;
4237 dma_addr_t paddr;
4238 void *vaddr;
4239 } i734_buf;
4240
4241 static int dispc_errata_i734_wa_init(void)
4242 {
4243 if (!dispc.feat->has_gamma_i734_bug)
4244 return 0;
4245
4246 i734_buf.size = i734.ovli.width * i734.ovli.height *
4247 color_mode_to_bpp(i734.ovli.color_mode) / 8;
4248
4249 i734_buf.vaddr = dma_alloc_writecombine(&dispc.pdev->dev, i734_buf.size,
4250 &i734_buf.paddr, GFP_KERNEL);
4251 if (!i734_buf.vaddr) {
4252 dev_err(&dispc.pdev->dev, "%s: dma_alloc_writecombine failed",
4253 __func__);
4254 return -ENOMEM;
4255 }
4256
4257 return 0;
4258 }
4259
4260 static void dispc_errata_i734_wa_fini(void)
4261 {
4262 if (!dispc.feat->has_gamma_i734_bug)
4263 return;
4264
4265 dma_free_writecombine(&dispc.pdev->dev, i734_buf.size, i734_buf.vaddr,
4266 i734_buf.paddr);
4267 }
4268
4269 static void dispc_errata_i734_wa(void)
4270 {
4271 u32 framedone_irq = dispc_mgr_get_framedone_irq(OMAP_DSS_CHANNEL_LCD);
4272 struct omap_overlay_info ovli;
4273 struct dss_lcd_mgr_config lcd_conf;
4274 u32 gatestate;
4275 unsigned int count;
4276
4277 if (!dispc.feat->has_gamma_i734_bug)
4278 return;
4279
4280 gatestate = REG_GET(DISPC_CONFIG, 8, 4);
4281
4282 ovli = i734.ovli;
4283 ovli.paddr = i734_buf.paddr;
4284 lcd_conf = i734.lcd_conf;
4285
4286 /* Gate all LCD1 outputs */
4287 REG_FLD_MOD(DISPC_CONFIG, 0x1f, 8, 4);
4288
4289 /* Setup and enable GFX plane */
4290 dispc_ovl_set_channel_out(OMAP_DSS_GFX, OMAP_DSS_CHANNEL_LCD);
4291 dispc_ovl_setup(OMAP_DSS_GFX, &ovli, false, &i734.timings, false);
4292 dispc_ovl_enable(OMAP_DSS_GFX, true);
4293
4294 /* Set up and enable display manager for LCD1 */
4295 dispc_mgr_setup(OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4296 dispc_calc_clock_rates(dss_get_dispc_clk_rate(),
4297 &lcd_conf.clock_info);
4298 dispc_mgr_set_lcd_config(OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4299 dispc_mgr_set_timings(OMAP_DSS_CHANNEL_LCD, &i734.timings);
4300
4301 dispc_clear_irqstatus(framedone_irq);
4302
4303 /* Enable and shut the channel to produce just one frame */
4304 dispc_mgr_enable(OMAP_DSS_CHANNEL_LCD, true);
4305 dispc_mgr_enable(OMAP_DSS_CHANNEL_LCD, false);
4306
4307 /* Busy wait for framedone. We can't fiddle with irq handlers
4308 * in PM resume. Typically the loop runs less than 5 times and
4309 * waits less than a micro second.
4310 */
4311 count = 0;
4312 while (!(dispc_read_irqstatus() & framedone_irq)) {
4313 if (count++ > 10000) {
4314 dev_err(&dispc.pdev->dev, "%s: framedone timeout\n",
4315 __func__);
4316 break;
4317 }
4318 }
4319 dispc_ovl_enable(OMAP_DSS_GFX, false);
4320
4321 /* Clear all irq bits before continuing */
4322 dispc_clear_irqstatus(0xffffffff);
4323
4324 /* Restore the original state to LCD1 output gates */
4325 REG_FLD_MOD(DISPC_CONFIG, gatestate, 8, 4);
4326 }
4327
4328 /* DISPC HW IP initialisation */
4329 static int dispc_bind(struct device *dev, struct device *master, void *data)
4330 {
4331 struct platform_device *pdev = to_platform_device(dev);
4332 u32 rev;
4333 int r = 0;
4334 struct resource *dispc_mem;
4335 struct device_node *np = pdev->dev.of_node;
4336
4337 dispc.pdev = pdev;
4338
4339 spin_lock_init(&dispc.control_lock);
4340
4341 r = dispc_init_features(dispc.pdev);
4342 if (r)
4343 return r;
4344
4345 r = dispc_errata_i734_wa_init();
4346 if (r)
4347 return r;
4348
4349 dispc_mem = platform_get_resource(dispc.pdev, IORESOURCE_MEM, 0);
4350 if (!dispc_mem) {
4351 DSSERR("can't get IORESOURCE_MEM DISPC\n");
4352 return -EINVAL;
4353 }
4354
4355 dispc.base = devm_ioremap(&pdev->dev, dispc_mem->start,
4356 resource_size(dispc_mem));
4357 if (!dispc.base) {
4358 DSSERR("can't ioremap DISPC\n");
4359 return -ENOMEM;
4360 }
4361
4362 dispc.irq = platform_get_irq(dispc.pdev, 0);
4363 if (dispc.irq < 0) {
4364 DSSERR("platform_get_irq failed\n");
4365 return -ENODEV;
4366 }
4367
4368 if (np && of_property_read_bool(np, "syscon-pol")) {
4369 dispc.syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4370 if (IS_ERR(dispc.syscon_pol)) {
4371 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4372 return PTR_ERR(dispc.syscon_pol);
4373 }
4374
4375 if (of_property_read_u32_index(np, "syscon-pol", 1,
4376 &dispc.syscon_pol_offset)) {
4377 dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4378 return -EINVAL;
4379 }
4380 }
4381
4382 r = dispc_init_gamma_tables();
4383 if (r)
4384 return r;
4385
4386 pm_runtime_enable(&pdev->dev);
4387
4388 r = dispc_runtime_get();
4389 if (r)
4390 goto err_runtime_get;
4391
4392 _omap_dispc_initial_config();
4393
4394 rev = dispc_read_reg(DISPC_REVISION);
4395 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4396 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4397
4398 dispc_runtime_put();
4399
4400 dss_debugfs_create_file("dispc", dispc_dump_regs);
4401
4402 return 0;
4403
4404 err_runtime_get:
4405 pm_runtime_disable(&pdev->dev);
4406 return r;
4407 }
4408
4409 static void dispc_unbind(struct device *dev, struct device *master,
4410 void *data)
4411 {
4412 pm_runtime_disable(dev);
4413
4414 dispc_errata_i734_wa_fini();
4415 }
4416
4417 static const struct component_ops dispc_component_ops = {
4418 .bind = dispc_bind,
4419 .unbind = dispc_unbind,
4420 };
4421
4422 static int dispc_probe(struct platform_device *pdev)
4423 {
4424 return component_add(&pdev->dev, &dispc_component_ops);
4425 }
4426
4427 static int dispc_remove(struct platform_device *pdev)
4428 {
4429 component_del(&pdev->dev, &dispc_component_ops);
4430 return 0;
4431 }
4432
4433 static int dispc_runtime_suspend(struct device *dev)
4434 {
4435 dispc.is_enabled = false;
4436 /* ensure the dispc_irq_handler sees the is_enabled value */
4437 smp_wmb();
4438 /* wait for current handler to finish before turning the DISPC off */
4439 synchronize_irq(dispc.irq);
4440
4441 dispc_save_context();
4442
4443 return 0;
4444 }
4445
4446 static int dispc_runtime_resume(struct device *dev)
4447 {
4448 /*
4449 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4450 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4451 * _omap_dispc_initial_config(). We can thus use it to detect if
4452 * we have lost register context.
4453 */
4454 if (REG_GET(DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4455 _omap_dispc_initial_config();
4456
4457 dispc_errata_i734_wa();
4458
4459 dispc_restore_context();
4460
4461 dispc_restore_gamma_tables();
4462 }
4463
4464 dispc.is_enabled = true;
4465 /* ensure the dispc_irq_handler sees the is_enabled value */
4466 smp_wmb();
4467
4468 return 0;
4469 }
4470
4471 static const struct dev_pm_ops dispc_pm_ops = {
4472 .runtime_suspend = dispc_runtime_suspend,
4473 .runtime_resume = dispc_runtime_resume,
4474 };
4475
4476 static const struct of_device_id dispc_of_match[] = {
4477 { .compatible = "ti,omap2-dispc", },
4478 { .compatible = "ti,omap3-dispc", },
4479 { .compatible = "ti,omap4-dispc", },
4480 { .compatible = "ti,omap5-dispc", },
4481 { .compatible = "ti,dra7-dispc", },
4482 {},
4483 };
4484
4485 static struct platform_driver omap_dispchw_driver = {
4486 .probe = dispc_probe,
4487 .remove = dispc_remove,
4488 .driver = {
4489 .name = "omapdss_dispc",
4490 .pm = &dispc_pm_ops,
4491 .of_match_table = dispc_of_match,
4492 .suppress_bind_attrs = true,
4493 },
4494 };
4495
4496 int __init dispc_init_platform_driver(void)
4497 {
4498 return platform_driver_register(&omap_dispchw_driver);
4499 }
4500
4501 void dispc_uninit_platform_driver(void)
4502 {
4503 platform_driver_unregister(&omap_dispchw_driver);
4504 }