]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/omapdrm/dss/dsi.c
drm/omap: add field for PLL type
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / omapdrm / dss / dsi.c
1 /*
2 * linux/drivers/video/omap2/dss/dsi.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #define DSS_SUBSYS_NAME "DSI"
21
22 #include <linux/kernel.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/device.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31 #include <linux/semaphore.h>
32 #include <linux/seq_file.h>
33 #include <linux/platform_device.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/wait.h>
36 #include <linux/workqueue.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/debugfs.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/of.h>
42 #include <linux/of_platform.h>
43 #include <linux/component.h>
44
45 #include <video/omapdss.h>
46 #include <video/mipi_display.h>
47
48 #include "dss.h"
49 #include "dss_features.h"
50
51 #define DSI_CATCH_MISSING_TE
52
53 struct dsi_reg { u16 module; u16 idx; };
54
55 #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
56
57 /* DSI Protocol Engine */
58
59 #define DSI_PROTO 0
60 #define DSI_PROTO_SZ 0x200
61
62 #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
63 #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
64 #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
65 #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
66 #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
67 #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
68 #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
69 #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
70 #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
71 #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
72 #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
73 #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
74 #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
75 #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
76 #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
77 #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
78 #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
79 #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
80 #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
81 #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
82 #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
83 #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
84 #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
85 #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
86 #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
87 #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
88 #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
89 #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
90 #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
91 #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
92 #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
93 #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
94 #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
95 #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
96
97 /* DSIPHY_SCP */
98
99 #define DSI_PHY 1
100 #define DSI_PHY_OFFSET 0x200
101 #define DSI_PHY_SZ 0x40
102
103 #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
104 #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
105 #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
106 #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
107 #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
108
109 /* DSI_PLL_CTRL_SCP */
110
111 #define DSI_PLL 2
112 #define DSI_PLL_OFFSET 0x300
113 #define DSI_PLL_SZ 0x20
114
115 #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
116 #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
117 #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
118 #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
119 #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
120
121 #define REG_GET(dsidev, idx, start, end) \
122 FLD_GET(dsi_read_reg(dsidev, idx), start, end)
123
124 #define REG_FLD_MOD(dsidev, idx, val, start, end) \
125 dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
126
127 /* Global interrupts */
128 #define DSI_IRQ_VC0 (1 << 0)
129 #define DSI_IRQ_VC1 (1 << 1)
130 #define DSI_IRQ_VC2 (1 << 2)
131 #define DSI_IRQ_VC3 (1 << 3)
132 #define DSI_IRQ_WAKEUP (1 << 4)
133 #define DSI_IRQ_RESYNC (1 << 5)
134 #define DSI_IRQ_PLL_LOCK (1 << 7)
135 #define DSI_IRQ_PLL_UNLOCK (1 << 8)
136 #define DSI_IRQ_PLL_RECALL (1 << 9)
137 #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
138 #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
139 #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
140 #define DSI_IRQ_TE_TRIGGER (1 << 16)
141 #define DSI_IRQ_ACK_TRIGGER (1 << 17)
142 #define DSI_IRQ_SYNC_LOST (1 << 18)
143 #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
144 #define DSI_IRQ_TA_TIMEOUT (1 << 20)
145 #define DSI_IRQ_ERROR_MASK \
146 (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
147 DSI_IRQ_TA_TIMEOUT)
148 #define DSI_IRQ_CHANNEL_MASK 0xf
149
150 /* Virtual channel interrupts */
151 #define DSI_VC_IRQ_CS (1 << 0)
152 #define DSI_VC_IRQ_ECC_CORR (1 << 1)
153 #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
154 #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
155 #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
156 #define DSI_VC_IRQ_BTA (1 << 5)
157 #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
158 #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
159 #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
160 #define DSI_VC_IRQ_ERROR_MASK \
161 (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
162 DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
163 DSI_VC_IRQ_FIFO_TX_UDF)
164
165 /* ComplexIO interrupts */
166 #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
167 #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
168 #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
169 #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
170 #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
171 #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
172 #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
173 #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
174 #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
175 #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
176 #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
177 #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
178 #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
179 #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
180 #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
181 #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
182 #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
183 #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
184 #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
185 #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
186 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
187 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
188 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
189 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
190 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
191 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
192 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
193 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
194 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
195 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
196 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
197 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
198 #define DSI_CIO_IRQ_ERROR_MASK \
199 (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
200 DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
201 DSI_CIO_IRQ_ERRSYNCESC5 | \
202 DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
203 DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
204 DSI_CIO_IRQ_ERRESC5 | \
205 DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
206 DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
207 DSI_CIO_IRQ_ERRCONTROL5 | \
208 DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
209 DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
210 DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
211 DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
212 DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
213
214 typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
215
216 static int dsi_display_init_dispc(struct platform_device *dsidev,
217 enum omap_channel channel);
218 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
219 enum omap_channel channel);
220
221 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
222
223 /* DSI PLL HSDIV indices */
224 #define HSDIV_DISPC 0
225 #define HSDIV_DSI 1
226
227 #define DSI_MAX_NR_ISRS 2
228 #define DSI_MAX_NR_LANES 5
229
230 enum dsi_lane_function {
231 DSI_LANE_UNUSED = 0,
232 DSI_LANE_CLK,
233 DSI_LANE_DATA1,
234 DSI_LANE_DATA2,
235 DSI_LANE_DATA3,
236 DSI_LANE_DATA4,
237 };
238
239 struct dsi_lane_config {
240 enum dsi_lane_function function;
241 u8 polarity;
242 };
243
244 struct dsi_isr_data {
245 omap_dsi_isr_t isr;
246 void *arg;
247 u32 mask;
248 };
249
250 enum fifo_size {
251 DSI_FIFO_SIZE_0 = 0,
252 DSI_FIFO_SIZE_32 = 1,
253 DSI_FIFO_SIZE_64 = 2,
254 DSI_FIFO_SIZE_96 = 3,
255 DSI_FIFO_SIZE_128 = 4,
256 };
257
258 enum dsi_vc_source {
259 DSI_VC_SOURCE_L4 = 0,
260 DSI_VC_SOURCE_VP,
261 };
262
263 struct dsi_irq_stats {
264 unsigned long last_reset;
265 unsigned irq_count;
266 unsigned dsi_irqs[32];
267 unsigned vc_irqs[4][32];
268 unsigned cio_irqs[32];
269 };
270
271 struct dsi_isr_tables {
272 struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
273 struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
274 struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
275 };
276
277 struct dsi_clk_calc_ctx {
278 struct platform_device *dsidev;
279 struct dss_pll *pll;
280
281 /* inputs */
282
283 const struct omap_dss_dsi_config *config;
284
285 unsigned long req_pck_min, req_pck_nom, req_pck_max;
286
287 /* outputs */
288
289 struct dss_pll_clock_info dsi_cinfo;
290 struct dispc_clock_info dispc_cinfo;
291
292 struct omap_video_timings dispc_vm;
293 struct omap_dss_dsi_videomode_timings dsi_vm;
294 };
295
296 struct dsi_lp_clock_info {
297 unsigned long lp_clk;
298 u16 lp_clk_div;
299 };
300
301 struct dsi_data {
302 struct platform_device *pdev;
303 void __iomem *proto_base;
304 void __iomem *phy_base;
305 void __iomem *pll_base;
306
307 int module_id;
308
309 int irq;
310
311 bool is_enabled;
312
313 struct clk *dss_clk;
314
315 struct dispc_clock_info user_dispc_cinfo;
316 struct dss_pll_clock_info user_dsi_cinfo;
317
318 struct dsi_lp_clock_info user_lp_cinfo;
319 struct dsi_lp_clock_info current_lp_cinfo;
320
321 struct dss_pll pll;
322
323 bool vdds_dsi_enabled;
324 struct regulator *vdds_dsi_reg;
325
326 struct {
327 enum dsi_vc_source source;
328 struct omap_dss_device *dssdev;
329 enum fifo_size tx_fifo_size;
330 enum fifo_size rx_fifo_size;
331 int vc_id;
332 } vc[4];
333
334 struct mutex lock;
335 struct semaphore bus_lock;
336
337 spinlock_t irq_lock;
338 struct dsi_isr_tables isr_tables;
339 /* space for a copy used by the interrupt handler */
340 struct dsi_isr_tables isr_tables_copy;
341
342 int update_channel;
343 #ifdef DSI_PERF_MEASURE
344 unsigned update_bytes;
345 #endif
346
347 bool te_enabled;
348 bool ulps_enabled;
349
350 void (*framedone_callback)(int, void *);
351 void *framedone_data;
352
353 struct delayed_work framedone_timeout_work;
354
355 #ifdef DSI_CATCH_MISSING_TE
356 struct timer_list te_timer;
357 #endif
358
359 unsigned long cache_req_pck;
360 unsigned long cache_clk_freq;
361 struct dss_pll_clock_info cache_cinfo;
362
363 u32 errors;
364 spinlock_t errors_lock;
365 #ifdef DSI_PERF_MEASURE
366 ktime_t perf_setup_time;
367 ktime_t perf_start_time;
368 #endif
369 int debug_read;
370 int debug_write;
371
372 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
373 spinlock_t irq_stats_lock;
374 struct dsi_irq_stats irq_stats;
375 #endif
376
377 unsigned num_lanes_supported;
378 unsigned line_buffer_size;
379
380 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
381 unsigned num_lanes_used;
382
383 unsigned scp_clk_refcount;
384
385 struct dss_lcd_mgr_config mgr_config;
386 struct omap_video_timings timings;
387 enum omap_dss_dsi_pixel_format pix_fmt;
388 enum omap_dss_dsi_mode mode;
389 struct omap_dss_dsi_videomode_timings vm_timings;
390
391 struct omap_dss_device output;
392 };
393
394 struct dsi_packet_sent_handler_data {
395 struct platform_device *dsidev;
396 struct completion *completion;
397 };
398
399 struct dsi_module_id_data {
400 u32 address;
401 int id;
402 };
403
404 static const struct of_device_id dsi_of_match[];
405
406 #ifdef DSI_PERF_MEASURE
407 static bool dsi_perf;
408 module_param(dsi_perf, bool, 0644);
409 #endif
410
411 static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
412 {
413 return dev_get_drvdata(&dsidev->dev);
414 }
415
416 static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
417 {
418 return to_platform_device(dssdev->dev);
419 }
420
421 static struct platform_device *dsi_get_dsidev_from_id(int module)
422 {
423 struct omap_dss_device *out;
424 enum omap_dss_output_id id;
425
426 switch (module) {
427 case 0:
428 id = OMAP_DSS_OUTPUT_DSI1;
429 break;
430 case 1:
431 id = OMAP_DSS_OUTPUT_DSI2;
432 break;
433 default:
434 return NULL;
435 }
436
437 out = omap_dss_get_output(id);
438
439 return out ? to_platform_device(out->dev) : NULL;
440 }
441
442 static inline void dsi_write_reg(struct platform_device *dsidev,
443 const struct dsi_reg idx, u32 val)
444 {
445 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
446 void __iomem *base;
447
448 switch(idx.module) {
449 case DSI_PROTO: base = dsi->proto_base; break;
450 case DSI_PHY: base = dsi->phy_base; break;
451 case DSI_PLL: base = dsi->pll_base; break;
452 default: return;
453 }
454
455 __raw_writel(val, base + idx.idx);
456 }
457
458 static inline u32 dsi_read_reg(struct platform_device *dsidev,
459 const struct dsi_reg idx)
460 {
461 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
462 void __iomem *base;
463
464 switch(idx.module) {
465 case DSI_PROTO: base = dsi->proto_base; break;
466 case DSI_PHY: base = dsi->phy_base; break;
467 case DSI_PLL: base = dsi->pll_base; break;
468 default: return 0;
469 }
470
471 return __raw_readl(base + idx.idx);
472 }
473
474 static void dsi_bus_lock(struct omap_dss_device *dssdev)
475 {
476 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
477 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
478
479 down(&dsi->bus_lock);
480 }
481
482 static void dsi_bus_unlock(struct omap_dss_device *dssdev)
483 {
484 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
486
487 up(&dsi->bus_lock);
488 }
489
490 static bool dsi_bus_is_locked(struct platform_device *dsidev)
491 {
492 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
493
494 return dsi->bus_lock.count == 0;
495 }
496
497 static void dsi_completion_handler(void *data, u32 mask)
498 {
499 complete((struct completion *)data);
500 }
501
502 static inline int wait_for_bit_change(struct platform_device *dsidev,
503 const struct dsi_reg idx, int bitnum, int value)
504 {
505 unsigned long timeout;
506 ktime_t wait;
507 int t;
508
509 /* first busyloop to see if the bit changes right away */
510 t = 100;
511 while (t-- > 0) {
512 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
513 return value;
514 }
515
516 /* then loop for 500ms, sleeping for 1ms in between */
517 timeout = jiffies + msecs_to_jiffies(500);
518 while (time_before(jiffies, timeout)) {
519 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
520 return value;
521
522 wait = ns_to_ktime(1000 * 1000);
523 set_current_state(TASK_UNINTERRUPTIBLE);
524 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
525 }
526
527 return !value;
528 }
529
530 u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
531 {
532 switch (fmt) {
533 case OMAP_DSS_DSI_FMT_RGB888:
534 case OMAP_DSS_DSI_FMT_RGB666:
535 return 24;
536 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
537 return 18;
538 case OMAP_DSS_DSI_FMT_RGB565:
539 return 16;
540 default:
541 BUG();
542 return 0;
543 }
544 }
545
546 #ifdef DSI_PERF_MEASURE
547 static void dsi_perf_mark_setup(struct platform_device *dsidev)
548 {
549 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
550 dsi->perf_setup_time = ktime_get();
551 }
552
553 static void dsi_perf_mark_start(struct platform_device *dsidev)
554 {
555 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
556 dsi->perf_start_time = ktime_get();
557 }
558
559 static void dsi_perf_show(struct platform_device *dsidev, const char *name)
560 {
561 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
562 ktime_t t, setup_time, trans_time;
563 u32 total_bytes;
564 u32 setup_us, trans_us, total_us;
565
566 if (!dsi_perf)
567 return;
568
569 t = ktime_get();
570
571 setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
572 setup_us = (u32)ktime_to_us(setup_time);
573 if (setup_us == 0)
574 setup_us = 1;
575
576 trans_time = ktime_sub(t, dsi->perf_start_time);
577 trans_us = (u32)ktime_to_us(trans_time);
578 if (trans_us == 0)
579 trans_us = 1;
580
581 total_us = setup_us + trans_us;
582
583 total_bytes = dsi->update_bytes;
584
585 printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
586 "%u bytes, %u kbytes/sec\n",
587 name,
588 setup_us,
589 trans_us,
590 total_us,
591 1000*1000 / total_us,
592 total_bytes,
593 total_bytes * 1000 / total_us);
594 }
595 #else
596 static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
597 {
598 }
599
600 static inline void dsi_perf_mark_start(struct platform_device *dsidev)
601 {
602 }
603
604 static inline void dsi_perf_show(struct platform_device *dsidev,
605 const char *name)
606 {
607 }
608 #endif
609
610 static int verbose_irq;
611
612 static void print_irq_status(u32 status)
613 {
614 if (status == 0)
615 return;
616
617 if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
618 return;
619
620 #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
621
622 pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
623 status,
624 verbose_irq ? PIS(VC0) : "",
625 verbose_irq ? PIS(VC1) : "",
626 verbose_irq ? PIS(VC2) : "",
627 verbose_irq ? PIS(VC3) : "",
628 PIS(WAKEUP),
629 PIS(RESYNC),
630 PIS(PLL_LOCK),
631 PIS(PLL_UNLOCK),
632 PIS(PLL_RECALL),
633 PIS(COMPLEXIO_ERR),
634 PIS(HS_TX_TIMEOUT),
635 PIS(LP_RX_TIMEOUT),
636 PIS(TE_TRIGGER),
637 PIS(ACK_TRIGGER),
638 PIS(SYNC_LOST),
639 PIS(LDO_POWER_GOOD),
640 PIS(TA_TIMEOUT));
641 #undef PIS
642 }
643
644 static void print_irq_status_vc(int channel, u32 status)
645 {
646 if (status == 0)
647 return;
648
649 if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
650 return;
651
652 #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
653
654 pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
655 channel,
656 status,
657 PIS(CS),
658 PIS(ECC_CORR),
659 PIS(ECC_NO_CORR),
660 verbose_irq ? PIS(PACKET_SENT) : "",
661 PIS(BTA),
662 PIS(FIFO_TX_OVF),
663 PIS(FIFO_RX_OVF),
664 PIS(FIFO_TX_UDF),
665 PIS(PP_BUSY_CHANGE));
666 #undef PIS
667 }
668
669 static void print_irq_status_cio(u32 status)
670 {
671 if (status == 0)
672 return;
673
674 #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
675
676 pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
677 status,
678 PIS(ERRSYNCESC1),
679 PIS(ERRSYNCESC2),
680 PIS(ERRSYNCESC3),
681 PIS(ERRESC1),
682 PIS(ERRESC2),
683 PIS(ERRESC3),
684 PIS(ERRCONTROL1),
685 PIS(ERRCONTROL2),
686 PIS(ERRCONTROL3),
687 PIS(STATEULPS1),
688 PIS(STATEULPS2),
689 PIS(STATEULPS3),
690 PIS(ERRCONTENTIONLP0_1),
691 PIS(ERRCONTENTIONLP1_1),
692 PIS(ERRCONTENTIONLP0_2),
693 PIS(ERRCONTENTIONLP1_2),
694 PIS(ERRCONTENTIONLP0_3),
695 PIS(ERRCONTENTIONLP1_3),
696 PIS(ULPSACTIVENOT_ALL0),
697 PIS(ULPSACTIVENOT_ALL1));
698 #undef PIS
699 }
700
701 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
702 static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
703 u32 *vcstatus, u32 ciostatus)
704 {
705 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
706 int i;
707
708 spin_lock(&dsi->irq_stats_lock);
709
710 dsi->irq_stats.irq_count++;
711 dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
712
713 for (i = 0; i < 4; ++i)
714 dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
715
716 dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
717
718 spin_unlock(&dsi->irq_stats_lock);
719 }
720 #else
721 #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
722 #endif
723
724 static int debug_irq;
725
726 static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
727 u32 *vcstatus, u32 ciostatus)
728 {
729 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
730 int i;
731
732 if (irqstatus & DSI_IRQ_ERROR_MASK) {
733 DSSERR("DSI error, irqstatus %x\n", irqstatus);
734 print_irq_status(irqstatus);
735 spin_lock(&dsi->errors_lock);
736 dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
737 spin_unlock(&dsi->errors_lock);
738 } else if (debug_irq) {
739 print_irq_status(irqstatus);
740 }
741
742 for (i = 0; i < 4; ++i) {
743 if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
744 DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
745 i, vcstatus[i]);
746 print_irq_status_vc(i, vcstatus[i]);
747 } else if (debug_irq) {
748 print_irq_status_vc(i, vcstatus[i]);
749 }
750 }
751
752 if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
753 DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
754 print_irq_status_cio(ciostatus);
755 } else if (debug_irq) {
756 print_irq_status_cio(ciostatus);
757 }
758 }
759
760 static void dsi_call_isrs(struct dsi_isr_data *isr_array,
761 unsigned isr_array_size, u32 irqstatus)
762 {
763 struct dsi_isr_data *isr_data;
764 int i;
765
766 for (i = 0; i < isr_array_size; i++) {
767 isr_data = &isr_array[i];
768 if (isr_data->isr && isr_data->mask & irqstatus)
769 isr_data->isr(isr_data->arg, irqstatus);
770 }
771 }
772
773 static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
774 u32 irqstatus, u32 *vcstatus, u32 ciostatus)
775 {
776 int i;
777
778 dsi_call_isrs(isr_tables->isr_table,
779 ARRAY_SIZE(isr_tables->isr_table),
780 irqstatus);
781
782 for (i = 0; i < 4; ++i) {
783 if (vcstatus[i] == 0)
784 continue;
785 dsi_call_isrs(isr_tables->isr_table_vc[i],
786 ARRAY_SIZE(isr_tables->isr_table_vc[i]),
787 vcstatus[i]);
788 }
789
790 if (ciostatus != 0)
791 dsi_call_isrs(isr_tables->isr_table_cio,
792 ARRAY_SIZE(isr_tables->isr_table_cio),
793 ciostatus);
794 }
795
796 static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
797 {
798 struct platform_device *dsidev;
799 struct dsi_data *dsi;
800 u32 irqstatus, vcstatus[4], ciostatus;
801 int i;
802
803 dsidev = (struct platform_device *) arg;
804 dsi = dsi_get_dsidrv_data(dsidev);
805
806 if (!dsi->is_enabled)
807 return IRQ_NONE;
808
809 spin_lock(&dsi->irq_lock);
810
811 irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
812
813 /* IRQ is not for us */
814 if (!irqstatus) {
815 spin_unlock(&dsi->irq_lock);
816 return IRQ_NONE;
817 }
818
819 dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
820 /* flush posted write */
821 dsi_read_reg(dsidev, DSI_IRQSTATUS);
822
823 for (i = 0; i < 4; ++i) {
824 if ((irqstatus & (1 << i)) == 0) {
825 vcstatus[i] = 0;
826 continue;
827 }
828
829 vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
830
831 dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
832 /* flush posted write */
833 dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
834 }
835
836 if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
837 ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
838
839 dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
840 /* flush posted write */
841 dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
842 } else {
843 ciostatus = 0;
844 }
845
846 #ifdef DSI_CATCH_MISSING_TE
847 if (irqstatus & DSI_IRQ_TE_TRIGGER)
848 del_timer(&dsi->te_timer);
849 #endif
850
851 /* make a copy and unlock, so that isrs can unregister
852 * themselves */
853 memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
854 sizeof(dsi->isr_tables));
855
856 spin_unlock(&dsi->irq_lock);
857
858 dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
859
860 dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
861
862 dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
863
864 return IRQ_HANDLED;
865 }
866
867 /* dsi->irq_lock has to be locked by the caller */
868 static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
869 struct dsi_isr_data *isr_array,
870 unsigned isr_array_size, u32 default_mask,
871 const struct dsi_reg enable_reg,
872 const struct dsi_reg status_reg)
873 {
874 struct dsi_isr_data *isr_data;
875 u32 mask;
876 u32 old_mask;
877 int i;
878
879 mask = default_mask;
880
881 for (i = 0; i < isr_array_size; i++) {
882 isr_data = &isr_array[i];
883
884 if (isr_data->isr == NULL)
885 continue;
886
887 mask |= isr_data->mask;
888 }
889
890 old_mask = dsi_read_reg(dsidev, enable_reg);
891 /* clear the irqstatus for newly enabled irqs */
892 dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
893 dsi_write_reg(dsidev, enable_reg, mask);
894
895 /* flush posted writes */
896 dsi_read_reg(dsidev, enable_reg);
897 dsi_read_reg(dsidev, status_reg);
898 }
899
900 /* dsi->irq_lock has to be locked by the caller */
901 static void _omap_dsi_set_irqs(struct platform_device *dsidev)
902 {
903 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
904 u32 mask = DSI_IRQ_ERROR_MASK;
905 #ifdef DSI_CATCH_MISSING_TE
906 mask |= DSI_IRQ_TE_TRIGGER;
907 #endif
908 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
909 ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
910 DSI_IRQENABLE, DSI_IRQSTATUS);
911 }
912
913 /* dsi->irq_lock has to be locked by the caller */
914 static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
915 {
916 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
917
918 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
919 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
920 DSI_VC_IRQ_ERROR_MASK,
921 DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
922 }
923
924 /* dsi->irq_lock has to be locked by the caller */
925 static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
926 {
927 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
928
929 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
930 ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
931 DSI_CIO_IRQ_ERROR_MASK,
932 DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
933 }
934
935 static void _dsi_initialize_irq(struct platform_device *dsidev)
936 {
937 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
938 unsigned long flags;
939 int vc;
940
941 spin_lock_irqsave(&dsi->irq_lock, flags);
942
943 memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
944
945 _omap_dsi_set_irqs(dsidev);
946 for (vc = 0; vc < 4; ++vc)
947 _omap_dsi_set_irqs_vc(dsidev, vc);
948 _omap_dsi_set_irqs_cio(dsidev);
949
950 spin_unlock_irqrestore(&dsi->irq_lock, flags);
951 }
952
953 static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
954 struct dsi_isr_data *isr_array, unsigned isr_array_size)
955 {
956 struct dsi_isr_data *isr_data;
957 int free_idx;
958 int i;
959
960 BUG_ON(isr == NULL);
961
962 /* check for duplicate entry and find a free slot */
963 free_idx = -1;
964 for (i = 0; i < isr_array_size; i++) {
965 isr_data = &isr_array[i];
966
967 if (isr_data->isr == isr && isr_data->arg == arg &&
968 isr_data->mask == mask) {
969 return -EINVAL;
970 }
971
972 if (isr_data->isr == NULL && free_idx == -1)
973 free_idx = i;
974 }
975
976 if (free_idx == -1)
977 return -EBUSY;
978
979 isr_data = &isr_array[free_idx];
980 isr_data->isr = isr;
981 isr_data->arg = arg;
982 isr_data->mask = mask;
983
984 return 0;
985 }
986
987 static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
988 struct dsi_isr_data *isr_array, unsigned isr_array_size)
989 {
990 struct dsi_isr_data *isr_data;
991 int i;
992
993 for (i = 0; i < isr_array_size; i++) {
994 isr_data = &isr_array[i];
995 if (isr_data->isr != isr || isr_data->arg != arg ||
996 isr_data->mask != mask)
997 continue;
998
999 isr_data->isr = NULL;
1000 isr_data->arg = NULL;
1001 isr_data->mask = 0;
1002
1003 return 0;
1004 }
1005
1006 return -EINVAL;
1007 }
1008
1009 static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
1010 void *arg, u32 mask)
1011 {
1012 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1013 unsigned long flags;
1014 int r;
1015
1016 spin_lock_irqsave(&dsi->irq_lock, flags);
1017
1018 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1019 ARRAY_SIZE(dsi->isr_tables.isr_table));
1020
1021 if (r == 0)
1022 _omap_dsi_set_irqs(dsidev);
1023
1024 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1025
1026 return r;
1027 }
1028
1029 static int dsi_unregister_isr(struct platform_device *dsidev,
1030 omap_dsi_isr_t isr, void *arg, u32 mask)
1031 {
1032 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1033 unsigned long flags;
1034 int r;
1035
1036 spin_lock_irqsave(&dsi->irq_lock, flags);
1037
1038 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1039 ARRAY_SIZE(dsi->isr_tables.isr_table));
1040
1041 if (r == 0)
1042 _omap_dsi_set_irqs(dsidev);
1043
1044 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1045
1046 return r;
1047 }
1048
1049 static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
1050 omap_dsi_isr_t isr, void *arg, u32 mask)
1051 {
1052 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1053 unsigned long flags;
1054 int r;
1055
1056 spin_lock_irqsave(&dsi->irq_lock, flags);
1057
1058 r = _dsi_register_isr(isr, arg, mask,
1059 dsi->isr_tables.isr_table_vc[channel],
1060 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1061
1062 if (r == 0)
1063 _omap_dsi_set_irqs_vc(dsidev, channel);
1064
1065 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1066
1067 return r;
1068 }
1069
1070 static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
1071 omap_dsi_isr_t isr, void *arg, u32 mask)
1072 {
1073 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1074 unsigned long flags;
1075 int r;
1076
1077 spin_lock_irqsave(&dsi->irq_lock, flags);
1078
1079 r = _dsi_unregister_isr(isr, arg, mask,
1080 dsi->isr_tables.isr_table_vc[channel],
1081 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1082
1083 if (r == 0)
1084 _omap_dsi_set_irqs_vc(dsidev, channel);
1085
1086 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1087
1088 return r;
1089 }
1090
1091 static int dsi_register_isr_cio(struct platform_device *dsidev,
1092 omap_dsi_isr_t isr, void *arg, u32 mask)
1093 {
1094 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1095 unsigned long flags;
1096 int r;
1097
1098 spin_lock_irqsave(&dsi->irq_lock, flags);
1099
1100 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1101 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1102
1103 if (r == 0)
1104 _omap_dsi_set_irqs_cio(dsidev);
1105
1106 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1107
1108 return r;
1109 }
1110
1111 static int dsi_unregister_isr_cio(struct platform_device *dsidev,
1112 omap_dsi_isr_t isr, void *arg, u32 mask)
1113 {
1114 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1115 unsigned long flags;
1116 int r;
1117
1118 spin_lock_irqsave(&dsi->irq_lock, flags);
1119
1120 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1121 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1122
1123 if (r == 0)
1124 _omap_dsi_set_irqs_cio(dsidev);
1125
1126 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1127
1128 return r;
1129 }
1130
1131 static u32 dsi_get_errors(struct platform_device *dsidev)
1132 {
1133 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1134 unsigned long flags;
1135 u32 e;
1136 spin_lock_irqsave(&dsi->errors_lock, flags);
1137 e = dsi->errors;
1138 dsi->errors = 0;
1139 spin_unlock_irqrestore(&dsi->errors_lock, flags);
1140 return e;
1141 }
1142
1143 static int dsi_runtime_get(struct platform_device *dsidev)
1144 {
1145 int r;
1146 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1147
1148 DSSDBG("dsi_runtime_get\n");
1149
1150 r = pm_runtime_get_sync(&dsi->pdev->dev);
1151 WARN_ON(r < 0);
1152 return r < 0 ? r : 0;
1153 }
1154
1155 static void dsi_runtime_put(struct platform_device *dsidev)
1156 {
1157 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1158 int r;
1159
1160 DSSDBG("dsi_runtime_put\n");
1161
1162 r = pm_runtime_put_sync(&dsi->pdev->dev);
1163 WARN_ON(r < 0 && r != -ENOSYS);
1164 }
1165
1166 static int dsi_regulator_init(struct platform_device *dsidev)
1167 {
1168 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1169 struct regulator *vdds_dsi;
1170 int r;
1171
1172 if (dsi->vdds_dsi_reg != NULL)
1173 return 0;
1174
1175 vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
1176
1177 if (IS_ERR(vdds_dsi)) {
1178 if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
1179 DSSERR("can't get DSI VDD regulator\n");
1180 return PTR_ERR(vdds_dsi);
1181 }
1182
1183 if (regulator_can_change_voltage(vdds_dsi)) {
1184 r = regulator_set_voltage(vdds_dsi, 1800000, 1800000);
1185 if (r) {
1186 devm_regulator_put(vdds_dsi);
1187 DSSERR("can't set the DSI regulator voltage\n");
1188 return r;
1189 }
1190 }
1191
1192 dsi->vdds_dsi_reg = vdds_dsi;
1193
1194 return 0;
1195 }
1196
1197 static void _dsi_print_reset_status(struct platform_device *dsidev)
1198 {
1199 u32 l;
1200 int b0, b1, b2;
1201
1202 /* A dummy read using the SCP interface to any DSIPHY register is
1203 * required after DSIPHY reset to complete the reset of the DSI complex
1204 * I/O. */
1205 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
1206
1207 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
1208 b0 = 28;
1209 b1 = 27;
1210 b2 = 26;
1211 } else {
1212 b0 = 24;
1213 b1 = 25;
1214 b2 = 26;
1215 }
1216
1217 #define DSI_FLD_GET(fld, start, end)\
1218 FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
1219
1220 pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
1221 DSI_FLD_GET(PLL_STATUS, 0, 0),
1222 DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
1223 DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
1224 DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
1225 DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
1226 DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
1227 DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
1228 DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
1229
1230 #undef DSI_FLD_GET
1231 }
1232
1233 static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
1234 {
1235 DSSDBG("dsi_if_enable(%d)\n", enable);
1236
1237 enable = enable ? 1 : 0;
1238 REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
1239
1240 if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
1241 DSSERR("Failed to set dsi_if_enable to %d\n", enable);
1242 return -EIO;
1243 }
1244
1245 return 0;
1246 }
1247
1248 static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
1249 {
1250 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1251
1252 return dsi->pll.cinfo.clkout[HSDIV_DISPC];
1253 }
1254
1255 static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
1256 {
1257 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1258
1259 return dsi->pll.cinfo.clkout[HSDIV_DSI];
1260 }
1261
1262 static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
1263 {
1264 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1265
1266 return dsi->pll.cinfo.clkdco / 16;
1267 }
1268
1269 static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
1270 {
1271 unsigned long r;
1272 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1273
1274 if (dss_get_dsi_clk_source(dsi->module_id) == DSS_CLK_SRC_FCK) {
1275 /* DSI FCLK source is DSS_CLK_FCK */
1276 r = clk_get_rate(dsi->dss_clk);
1277 } else {
1278 /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
1279 r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
1280 }
1281
1282 return r;
1283 }
1284
1285 static int dsi_lp_clock_calc(unsigned long dsi_fclk,
1286 unsigned long lp_clk_min, unsigned long lp_clk_max,
1287 struct dsi_lp_clock_info *lp_cinfo)
1288 {
1289 unsigned lp_clk_div;
1290 unsigned long lp_clk;
1291
1292 lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
1293 lp_clk = dsi_fclk / 2 / lp_clk_div;
1294
1295 if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
1296 return -EINVAL;
1297
1298 lp_cinfo->lp_clk_div = lp_clk_div;
1299 lp_cinfo->lp_clk = lp_clk;
1300
1301 return 0;
1302 }
1303
1304 static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
1305 {
1306 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1307 unsigned long dsi_fclk;
1308 unsigned lp_clk_div;
1309 unsigned long lp_clk;
1310 unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
1311
1312
1313 lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
1314
1315 if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
1316 return -EINVAL;
1317
1318 dsi_fclk = dsi_fclk_rate(dsidev);
1319
1320 lp_clk = dsi_fclk / 2 / lp_clk_div;
1321
1322 DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
1323 dsi->current_lp_cinfo.lp_clk = lp_clk;
1324 dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
1325
1326 /* LP_CLK_DIVISOR */
1327 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
1328
1329 /* LP_RX_SYNCHRO_ENABLE */
1330 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
1331
1332 return 0;
1333 }
1334
1335 static void dsi_enable_scp_clk(struct platform_device *dsidev)
1336 {
1337 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1338
1339 if (dsi->scp_clk_refcount++ == 0)
1340 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
1341 }
1342
1343 static void dsi_disable_scp_clk(struct platform_device *dsidev)
1344 {
1345 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1346
1347 WARN_ON(dsi->scp_clk_refcount == 0);
1348 if (--dsi->scp_clk_refcount == 0)
1349 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
1350 }
1351
1352 enum dsi_pll_power_state {
1353 DSI_PLL_POWER_OFF = 0x0,
1354 DSI_PLL_POWER_ON_HSCLK = 0x1,
1355 DSI_PLL_POWER_ON_ALL = 0x2,
1356 DSI_PLL_POWER_ON_DIV = 0x3,
1357 };
1358
1359 static int dsi_pll_power(struct platform_device *dsidev,
1360 enum dsi_pll_power_state state)
1361 {
1362 int t = 0;
1363
1364 /* DSI-PLL power command 0x3 is not working */
1365 if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
1366 state == DSI_PLL_POWER_ON_DIV)
1367 state = DSI_PLL_POWER_ON_ALL;
1368
1369 /* PLL_PWR_CMD */
1370 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
1371
1372 /* PLL_PWR_STATUS */
1373 while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
1374 if (++t > 1000) {
1375 DSSERR("Failed to set DSI PLL power mode to %d\n",
1376 state);
1377 return -ENODEV;
1378 }
1379 udelay(1);
1380 }
1381
1382 return 0;
1383 }
1384
1385
1386 static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
1387 {
1388 unsigned long max_dsi_fck;
1389
1390 max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
1391
1392 cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
1393 cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
1394 }
1395
1396 static int dsi_pll_enable(struct dss_pll *pll)
1397 {
1398 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1399 struct platform_device *dsidev = dsi->pdev;
1400 int r = 0;
1401
1402 DSSDBG("PLL init\n");
1403
1404 r = dsi_regulator_init(dsidev);
1405 if (r)
1406 return r;
1407
1408 r = dsi_runtime_get(dsidev);
1409 if (r)
1410 return r;
1411
1412 /*
1413 * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
1414 */
1415 dsi_enable_scp_clk(dsidev);
1416
1417 if (!dsi->vdds_dsi_enabled) {
1418 r = regulator_enable(dsi->vdds_dsi_reg);
1419 if (r)
1420 goto err0;
1421 dsi->vdds_dsi_enabled = true;
1422 }
1423
1424 /* XXX PLL does not come out of reset without this... */
1425 dispc_pck_free_enable(1);
1426
1427 if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
1428 DSSERR("PLL not coming out of reset.\n");
1429 r = -ENODEV;
1430 dispc_pck_free_enable(0);
1431 goto err1;
1432 }
1433
1434 /* XXX ... but if left on, we get problems when planes do not
1435 * fill the whole display. No idea about this */
1436 dispc_pck_free_enable(0);
1437
1438 r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
1439
1440 if (r)
1441 goto err1;
1442
1443 DSSDBG("PLL init done\n");
1444
1445 return 0;
1446 err1:
1447 if (dsi->vdds_dsi_enabled) {
1448 regulator_disable(dsi->vdds_dsi_reg);
1449 dsi->vdds_dsi_enabled = false;
1450 }
1451 err0:
1452 dsi_disable_scp_clk(dsidev);
1453 dsi_runtime_put(dsidev);
1454 return r;
1455 }
1456
1457 static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
1458 {
1459 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1460
1461 dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
1462 if (disconnect_lanes) {
1463 WARN_ON(!dsi->vdds_dsi_enabled);
1464 regulator_disable(dsi->vdds_dsi_reg);
1465 dsi->vdds_dsi_enabled = false;
1466 }
1467
1468 dsi_disable_scp_clk(dsidev);
1469 dsi_runtime_put(dsidev);
1470
1471 DSSDBG("PLL uninit done\n");
1472 }
1473
1474 static void dsi_pll_disable(struct dss_pll *pll)
1475 {
1476 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1477 struct platform_device *dsidev = dsi->pdev;
1478
1479 dsi_pll_uninit(dsidev, true);
1480 }
1481
1482 static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
1483 struct seq_file *s)
1484 {
1485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1486 struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
1487 enum dss_clk_source dispc_clk_src, dsi_clk_src;
1488 int dsi_module = dsi->module_id;
1489 struct dss_pll *pll = &dsi->pll;
1490
1491 dispc_clk_src = dss_get_dispc_clk_source();
1492 dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
1493
1494 if (dsi_runtime_get(dsidev))
1495 return;
1496
1497 seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
1498
1499 seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
1500
1501 seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
1502
1503 seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
1504 cinfo->clkdco, cinfo->m);
1505
1506 seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
1507 dss_get_clk_source_name(dsi_module == 0 ?
1508 DSS_CLK_SRC_PLL1_1 :
1509 DSS_CLK_SRC_PLL2_1),
1510 cinfo->clkout[HSDIV_DISPC],
1511 cinfo->mX[HSDIV_DISPC],
1512 dispc_clk_src == DSS_CLK_SRC_FCK ?
1513 "off" : "on");
1514
1515 seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
1516 dss_get_clk_source_name(dsi_module == 0 ?
1517 DSS_CLK_SRC_PLL1_2 :
1518 DSS_CLK_SRC_PLL2_2),
1519 cinfo->clkout[HSDIV_DSI],
1520 cinfo->mX[HSDIV_DSI],
1521 dsi_clk_src == DSS_CLK_SRC_FCK ?
1522 "off" : "on");
1523
1524 seq_printf(s, "- DSI%d -\n", dsi_module + 1);
1525
1526 seq_printf(s, "dsi fclk source = %s\n",
1527 dss_get_clk_source_name(dsi_clk_src));
1528
1529 seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
1530
1531 seq_printf(s, "DDR_CLK\t\t%lu\n",
1532 cinfo->clkdco / 4);
1533
1534 seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
1535
1536 seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
1537
1538 dsi_runtime_put(dsidev);
1539 }
1540
1541 void dsi_dump_clocks(struct seq_file *s)
1542 {
1543 struct platform_device *dsidev;
1544 int i;
1545
1546 for (i = 0; i < MAX_NUM_DSI; i++) {
1547 dsidev = dsi_get_dsidev_from_id(i);
1548 if (dsidev)
1549 dsi_dump_dsidev_clocks(dsidev, s);
1550 }
1551 }
1552
1553 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
1554 static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
1555 struct seq_file *s)
1556 {
1557 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1558 unsigned long flags;
1559 struct dsi_irq_stats stats;
1560
1561 spin_lock_irqsave(&dsi->irq_stats_lock, flags);
1562
1563 stats = dsi->irq_stats;
1564 memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
1565 dsi->irq_stats.last_reset = jiffies;
1566
1567 spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
1568
1569 seq_printf(s, "period %u ms\n",
1570 jiffies_to_msecs(jiffies - stats.last_reset));
1571
1572 seq_printf(s, "irqs %d\n", stats.irq_count);
1573 #define PIS(x) \
1574 seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
1575
1576 seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
1577 PIS(VC0);
1578 PIS(VC1);
1579 PIS(VC2);
1580 PIS(VC3);
1581 PIS(WAKEUP);
1582 PIS(RESYNC);
1583 PIS(PLL_LOCK);
1584 PIS(PLL_UNLOCK);
1585 PIS(PLL_RECALL);
1586 PIS(COMPLEXIO_ERR);
1587 PIS(HS_TX_TIMEOUT);
1588 PIS(LP_RX_TIMEOUT);
1589 PIS(TE_TRIGGER);
1590 PIS(ACK_TRIGGER);
1591 PIS(SYNC_LOST);
1592 PIS(LDO_POWER_GOOD);
1593 PIS(TA_TIMEOUT);
1594 #undef PIS
1595
1596 #define PIS(x) \
1597 seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
1598 stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
1599 stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
1600 stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
1601 stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
1602
1603 seq_printf(s, "-- VC interrupts --\n");
1604 PIS(CS);
1605 PIS(ECC_CORR);
1606 PIS(PACKET_SENT);
1607 PIS(FIFO_TX_OVF);
1608 PIS(FIFO_RX_OVF);
1609 PIS(BTA);
1610 PIS(ECC_NO_CORR);
1611 PIS(FIFO_TX_UDF);
1612 PIS(PP_BUSY_CHANGE);
1613 #undef PIS
1614
1615 #define PIS(x) \
1616 seq_printf(s, "%-20s %10d\n", #x, \
1617 stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
1618
1619 seq_printf(s, "-- CIO interrupts --\n");
1620 PIS(ERRSYNCESC1);
1621 PIS(ERRSYNCESC2);
1622 PIS(ERRSYNCESC3);
1623 PIS(ERRESC1);
1624 PIS(ERRESC2);
1625 PIS(ERRESC3);
1626 PIS(ERRCONTROL1);
1627 PIS(ERRCONTROL2);
1628 PIS(ERRCONTROL3);
1629 PIS(STATEULPS1);
1630 PIS(STATEULPS2);
1631 PIS(STATEULPS3);
1632 PIS(ERRCONTENTIONLP0_1);
1633 PIS(ERRCONTENTIONLP1_1);
1634 PIS(ERRCONTENTIONLP0_2);
1635 PIS(ERRCONTENTIONLP1_2);
1636 PIS(ERRCONTENTIONLP0_3);
1637 PIS(ERRCONTENTIONLP1_3);
1638 PIS(ULPSACTIVENOT_ALL0);
1639 PIS(ULPSACTIVENOT_ALL1);
1640 #undef PIS
1641 }
1642
1643 static void dsi1_dump_irqs(struct seq_file *s)
1644 {
1645 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1646
1647 dsi_dump_dsidev_irqs(dsidev, s);
1648 }
1649
1650 static void dsi2_dump_irqs(struct seq_file *s)
1651 {
1652 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1653
1654 dsi_dump_dsidev_irqs(dsidev, s);
1655 }
1656 #endif
1657
1658 static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
1659 struct seq_file *s)
1660 {
1661 #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
1662
1663 if (dsi_runtime_get(dsidev))
1664 return;
1665 dsi_enable_scp_clk(dsidev);
1666
1667 DUMPREG(DSI_REVISION);
1668 DUMPREG(DSI_SYSCONFIG);
1669 DUMPREG(DSI_SYSSTATUS);
1670 DUMPREG(DSI_IRQSTATUS);
1671 DUMPREG(DSI_IRQENABLE);
1672 DUMPREG(DSI_CTRL);
1673 DUMPREG(DSI_COMPLEXIO_CFG1);
1674 DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
1675 DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
1676 DUMPREG(DSI_CLK_CTRL);
1677 DUMPREG(DSI_TIMING1);
1678 DUMPREG(DSI_TIMING2);
1679 DUMPREG(DSI_VM_TIMING1);
1680 DUMPREG(DSI_VM_TIMING2);
1681 DUMPREG(DSI_VM_TIMING3);
1682 DUMPREG(DSI_CLK_TIMING);
1683 DUMPREG(DSI_TX_FIFO_VC_SIZE);
1684 DUMPREG(DSI_RX_FIFO_VC_SIZE);
1685 DUMPREG(DSI_COMPLEXIO_CFG2);
1686 DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
1687 DUMPREG(DSI_VM_TIMING4);
1688 DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
1689 DUMPREG(DSI_VM_TIMING5);
1690 DUMPREG(DSI_VM_TIMING6);
1691 DUMPREG(DSI_VM_TIMING7);
1692 DUMPREG(DSI_STOPCLK_TIMING);
1693
1694 DUMPREG(DSI_VC_CTRL(0));
1695 DUMPREG(DSI_VC_TE(0));
1696 DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
1697 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
1698 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
1699 DUMPREG(DSI_VC_IRQSTATUS(0));
1700 DUMPREG(DSI_VC_IRQENABLE(0));
1701
1702 DUMPREG(DSI_VC_CTRL(1));
1703 DUMPREG(DSI_VC_TE(1));
1704 DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
1705 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
1706 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
1707 DUMPREG(DSI_VC_IRQSTATUS(1));
1708 DUMPREG(DSI_VC_IRQENABLE(1));
1709
1710 DUMPREG(DSI_VC_CTRL(2));
1711 DUMPREG(DSI_VC_TE(2));
1712 DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
1713 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
1714 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
1715 DUMPREG(DSI_VC_IRQSTATUS(2));
1716 DUMPREG(DSI_VC_IRQENABLE(2));
1717
1718 DUMPREG(DSI_VC_CTRL(3));
1719 DUMPREG(DSI_VC_TE(3));
1720 DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
1721 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
1722 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
1723 DUMPREG(DSI_VC_IRQSTATUS(3));
1724 DUMPREG(DSI_VC_IRQENABLE(3));
1725
1726 DUMPREG(DSI_DSIPHY_CFG0);
1727 DUMPREG(DSI_DSIPHY_CFG1);
1728 DUMPREG(DSI_DSIPHY_CFG2);
1729 DUMPREG(DSI_DSIPHY_CFG5);
1730
1731 DUMPREG(DSI_PLL_CONTROL);
1732 DUMPREG(DSI_PLL_STATUS);
1733 DUMPREG(DSI_PLL_GO);
1734 DUMPREG(DSI_PLL_CONFIGURATION1);
1735 DUMPREG(DSI_PLL_CONFIGURATION2);
1736
1737 dsi_disable_scp_clk(dsidev);
1738 dsi_runtime_put(dsidev);
1739 #undef DUMPREG
1740 }
1741
1742 static void dsi1_dump_regs(struct seq_file *s)
1743 {
1744 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1745
1746 dsi_dump_dsidev_regs(dsidev, s);
1747 }
1748
1749 static void dsi2_dump_regs(struct seq_file *s)
1750 {
1751 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1752
1753 dsi_dump_dsidev_regs(dsidev, s);
1754 }
1755
1756 enum dsi_cio_power_state {
1757 DSI_COMPLEXIO_POWER_OFF = 0x0,
1758 DSI_COMPLEXIO_POWER_ON = 0x1,
1759 DSI_COMPLEXIO_POWER_ULPS = 0x2,
1760 };
1761
1762 static int dsi_cio_power(struct platform_device *dsidev,
1763 enum dsi_cio_power_state state)
1764 {
1765 int t = 0;
1766
1767 /* PWR_CMD */
1768 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
1769
1770 /* PWR_STATUS */
1771 while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
1772 26, 25) != state) {
1773 if (++t > 1000) {
1774 DSSERR("failed to set complexio power state to "
1775 "%d\n", state);
1776 return -ENODEV;
1777 }
1778 udelay(1);
1779 }
1780
1781 return 0;
1782 }
1783
1784 static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
1785 {
1786 int val;
1787
1788 /* line buffer on OMAP3 is 1024 x 24bits */
1789 /* XXX: for some reason using full buffer size causes
1790 * considerable TX slowdown with update sizes that fill the
1791 * whole buffer */
1792 if (!dss_has_feature(FEAT_DSI_GNQ))
1793 return 1023 * 3;
1794
1795 val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
1796
1797 switch (val) {
1798 case 1:
1799 return 512 * 3; /* 512x24 bits */
1800 case 2:
1801 return 682 * 3; /* 682x24 bits */
1802 case 3:
1803 return 853 * 3; /* 853x24 bits */
1804 case 4:
1805 return 1024 * 3; /* 1024x24 bits */
1806 case 5:
1807 return 1194 * 3; /* 1194x24 bits */
1808 case 6:
1809 return 1365 * 3; /* 1365x24 bits */
1810 case 7:
1811 return 1920 * 3; /* 1920x24 bits */
1812 default:
1813 BUG();
1814 return 0;
1815 }
1816 }
1817
1818 static int dsi_set_lane_config(struct platform_device *dsidev)
1819 {
1820 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1821 static const u8 offsets[] = { 0, 4, 8, 12, 16 };
1822 static const enum dsi_lane_function functions[] = {
1823 DSI_LANE_CLK,
1824 DSI_LANE_DATA1,
1825 DSI_LANE_DATA2,
1826 DSI_LANE_DATA3,
1827 DSI_LANE_DATA4,
1828 };
1829 u32 r;
1830 int i;
1831
1832 r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
1833
1834 for (i = 0; i < dsi->num_lanes_used; ++i) {
1835 unsigned offset = offsets[i];
1836 unsigned polarity, lane_number;
1837 unsigned t;
1838
1839 for (t = 0; t < dsi->num_lanes_supported; ++t)
1840 if (dsi->lanes[t].function == functions[i])
1841 break;
1842
1843 if (t == dsi->num_lanes_supported)
1844 return -EINVAL;
1845
1846 lane_number = t;
1847 polarity = dsi->lanes[t].polarity;
1848
1849 r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
1850 r = FLD_MOD(r, polarity, offset + 3, offset + 3);
1851 }
1852
1853 /* clear the unused lanes */
1854 for (; i < dsi->num_lanes_supported; ++i) {
1855 unsigned offset = offsets[i];
1856
1857 r = FLD_MOD(r, 0, offset + 2, offset);
1858 r = FLD_MOD(r, 0, offset + 3, offset + 3);
1859 }
1860
1861 dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
1862
1863 return 0;
1864 }
1865
1866 static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
1867 {
1868 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1869
1870 /* convert time in ns to ddr ticks, rounding up */
1871 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1872 return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
1873 }
1874
1875 static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
1876 {
1877 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1878
1879 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1880 return ddr * 1000 * 1000 / (ddr_clk / 1000);
1881 }
1882
1883 static void dsi_cio_timings(struct platform_device *dsidev)
1884 {
1885 u32 r;
1886 u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
1887 u32 tlpx_half, tclk_trail, tclk_zero;
1888 u32 tclk_prepare;
1889
1890 /* calculate timings */
1891
1892 /* 1 * DDR_CLK = 2 * UI */
1893
1894 /* min 40ns + 4*UI max 85ns + 6*UI */
1895 ths_prepare = ns2ddr(dsidev, 70) + 2;
1896
1897 /* min 145ns + 10*UI */
1898 ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
1899
1900 /* min max(8*UI, 60ns+4*UI) */
1901 ths_trail = ns2ddr(dsidev, 60) + 5;
1902
1903 /* min 100ns */
1904 ths_exit = ns2ddr(dsidev, 145);
1905
1906 /* tlpx min 50n */
1907 tlpx_half = ns2ddr(dsidev, 25);
1908
1909 /* min 60ns */
1910 tclk_trail = ns2ddr(dsidev, 60) + 2;
1911
1912 /* min 38ns, max 95ns */
1913 tclk_prepare = ns2ddr(dsidev, 65);
1914
1915 /* min tclk-prepare + tclk-zero = 300ns */
1916 tclk_zero = ns2ddr(dsidev, 260);
1917
1918 DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
1919 ths_prepare, ddr2ns(dsidev, ths_prepare),
1920 ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
1921 DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
1922 ths_trail, ddr2ns(dsidev, ths_trail),
1923 ths_exit, ddr2ns(dsidev, ths_exit));
1924
1925 DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
1926 "tclk_zero %u (%uns)\n",
1927 tlpx_half, ddr2ns(dsidev, tlpx_half),
1928 tclk_trail, ddr2ns(dsidev, tclk_trail),
1929 tclk_zero, ddr2ns(dsidev, tclk_zero));
1930 DSSDBG("tclk_prepare %u (%uns)\n",
1931 tclk_prepare, ddr2ns(dsidev, tclk_prepare));
1932
1933 /* program timings */
1934
1935 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
1936 r = FLD_MOD(r, ths_prepare, 31, 24);
1937 r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
1938 r = FLD_MOD(r, ths_trail, 15, 8);
1939 r = FLD_MOD(r, ths_exit, 7, 0);
1940 dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
1941
1942 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
1943 r = FLD_MOD(r, tlpx_half, 20, 16);
1944 r = FLD_MOD(r, tclk_trail, 15, 8);
1945 r = FLD_MOD(r, tclk_zero, 7, 0);
1946
1947 if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
1948 r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
1949 r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
1950 r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
1951 }
1952
1953 dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
1954
1955 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
1956 r = FLD_MOD(r, tclk_prepare, 7, 0);
1957 dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
1958 }
1959
1960 /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
1961 static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
1962 unsigned mask_p, unsigned mask_n)
1963 {
1964 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1965 int i;
1966 u32 l;
1967 u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
1968
1969 l = 0;
1970
1971 for (i = 0; i < dsi->num_lanes_supported; ++i) {
1972 unsigned p = dsi->lanes[i].polarity;
1973
1974 if (mask_p & (1 << i))
1975 l |= 1 << (i * 2 + (p ? 0 : 1));
1976
1977 if (mask_n & (1 << i))
1978 l |= 1 << (i * 2 + (p ? 1 : 0));
1979 }
1980
1981 /*
1982 * Bits in REGLPTXSCPDAT4TO0DXDY:
1983 * 17: DY0 18: DX0
1984 * 19: DY1 20: DX1
1985 * 21: DY2 22: DX2
1986 * 23: DY3 24: DX3
1987 * 25: DY4 26: DX4
1988 */
1989
1990 /* Set the lane override configuration */
1991
1992 /* REGLPTXSCPDAT4TO0DXDY */
1993 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
1994
1995 /* Enable lane override */
1996
1997 /* ENLPTXSCPDAT */
1998 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
1999 }
2000
2001 static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
2002 {
2003 /* Disable lane override */
2004 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
2005 /* Reset the lane override configuration */
2006 /* REGLPTXSCPDAT4TO0DXDY */
2007 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
2008 }
2009
2010 static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
2011 {
2012 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2013 int t, i;
2014 bool in_use[DSI_MAX_NR_LANES];
2015 static const u8 offsets_old[] = { 28, 27, 26 };
2016 static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
2017 const u8 *offsets;
2018
2019 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
2020 offsets = offsets_old;
2021 else
2022 offsets = offsets_new;
2023
2024 for (i = 0; i < dsi->num_lanes_supported; ++i)
2025 in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
2026
2027 t = 100000;
2028 while (true) {
2029 u32 l;
2030 int ok;
2031
2032 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2033
2034 ok = 0;
2035 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2036 if (!in_use[i] || (l & (1 << offsets[i])))
2037 ok++;
2038 }
2039
2040 if (ok == dsi->num_lanes_supported)
2041 break;
2042
2043 if (--t == 0) {
2044 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2045 if (!in_use[i] || (l & (1 << offsets[i])))
2046 continue;
2047
2048 DSSERR("CIO TXCLKESC%d domain not coming " \
2049 "out of reset\n", i);
2050 }
2051 return -EIO;
2052 }
2053 }
2054
2055 return 0;
2056 }
2057
2058 /* return bitmask of enabled lanes, lane0 being the lsb */
2059 static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
2060 {
2061 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2062 unsigned mask = 0;
2063 int i;
2064
2065 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2066 if (dsi->lanes[i].function != DSI_LANE_UNUSED)
2067 mask |= 1 << i;
2068 }
2069
2070 return mask;
2071 }
2072
2073 static int dsi_cio_init(struct platform_device *dsidev)
2074 {
2075 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2076 int r;
2077 u32 l;
2078
2079 DSSDBG("DSI CIO init starts");
2080
2081 r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2082 if (r)
2083 return r;
2084
2085 dsi_enable_scp_clk(dsidev);
2086
2087 /* A dummy read using the SCP interface to any DSIPHY register is
2088 * required after DSIPHY reset to complete the reset of the DSI complex
2089 * I/O. */
2090 dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2091
2092 if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
2093 DSSERR("CIO SCP Clock domain not coming out of reset.\n");
2094 r = -EIO;
2095 goto err_scp_clk_dom;
2096 }
2097
2098 r = dsi_set_lane_config(dsidev);
2099 if (r)
2100 goto err_scp_clk_dom;
2101
2102 /* set TX STOP MODE timer to maximum for this operation */
2103 l = dsi_read_reg(dsidev, DSI_TIMING1);
2104 l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2105 l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
2106 l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
2107 l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
2108 dsi_write_reg(dsidev, DSI_TIMING1, l);
2109
2110 if (dsi->ulps_enabled) {
2111 unsigned mask_p;
2112 int i;
2113
2114 DSSDBG("manual ulps exit\n");
2115
2116 /* ULPS is exited by Mark-1 state for 1ms, followed by
2117 * stop state. DSS HW cannot do this via the normal
2118 * ULPS exit sequence, as after reset the DSS HW thinks
2119 * that we are not in ULPS mode, and refuses to send the
2120 * sequence. So we need to send the ULPS exit sequence
2121 * manually by setting positive lines high and negative lines
2122 * low for 1ms.
2123 */
2124
2125 mask_p = 0;
2126
2127 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2128 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
2129 continue;
2130 mask_p |= 1 << i;
2131 }
2132
2133 dsi_cio_enable_lane_override(dsidev, mask_p, 0);
2134 }
2135
2136 r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
2137 if (r)
2138 goto err_cio_pwr;
2139
2140 if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
2141 DSSERR("CIO PWR clock domain not coming out of reset.\n");
2142 r = -ENODEV;
2143 goto err_cio_pwr_dom;
2144 }
2145
2146 dsi_if_enable(dsidev, true);
2147 dsi_if_enable(dsidev, false);
2148 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
2149
2150 r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
2151 if (r)
2152 goto err_tx_clk_esc_rst;
2153
2154 if (dsi->ulps_enabled) {
2155 /* Keep Mark-1 state for 1ms (as per DSI spec) */
2156 ktime_t wait = ns_to_ktime(1000 * 1000);
2157 set_current_state(TASK_UNINTERRUPTIBLE);
2158 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
2159
2160 /* Disable the override. The lanes should be set to Mark-11
2161 * state by the HW */
2162 dsi_cio_disable_lane_override(dsidev);
2163 }
2164
2165 /* FORCE_TX_STOP_MODE_IO */
2166 REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
2167
2168 dsi_cio_timings(dsidev);
2169
2170 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
2171 /* DDR_CLK_ALWAYS_ON */
2172 REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
2173 dsi->vm_timings.ddr_clk_always_on, 13, 13);
2174 }
2175
2176 dsi->ulps_enabled = false;
2177
2178 DSSDBG("CIO init done\n");
2179
2180 return 0;
2181
2182 err_tx_clk_esc_rst:
2183 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
2184 err_cio_pwr_dom:
2185 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2186 err_cio_pwr:
2187 if (dsi->ulps_enabled)
2188 dsi_cio_disable_lane_override(dsidev);
2189 err_scp_clk_dom:
2190 dsi_disable_scp_clk(dsidev);
2191 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2192 return r;
2193 }
2194
2195 static void dsi_cio_uninit(struct platform_device *dsidev)
2196 {
2197 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2198
2199 /* DDR_CLK_ALWAYS_ON */
2200 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
2201
2202 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2203 dsi_disable_scp_clk(dsidev);
2204 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2205 }
2206
2207 static void dsi_config_tx_fifo(struct platform_device *dsidev,
2208 enum fifo_size size1, enum fifo_size size2,
2209 enum fifo_size size3, enum fifo_size size4)
2210 {
2211 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2212 u32 r = 0;
2213 int add = 0;
2214 int i;
2215
2216 dsi->vc[0].tx_fifo_size = size1;
2217 dsi->vc[1].tx_fifo_size = size2;
2218 dsi->vc[2].tx_fifo_size = size3;
2219 dsi->vc[3].tx_fifo_size = size4;
2220
2221 for (i = 0; i < 4; i++) {
2222 u8 v;
2223 int size = dsi->vc[i].tx_fifo_size;
2224
2225 if (add + size > 4) {
2226 DSSERR("Illegal FIFO configuration\n");
2227 BUG();
2228 return;
2229 }
2230
2231 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2232 r |= v << (8 * i);
2233 /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
2234 add += size;
2235 }
2236
2237 dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
2238 }
2239
2240 static void dsi_config_rx_fifo(struct platform_device *dsidev,
2241 enum fifo_size size1, enum fifo_size size2,
2242 enum fifo_size size3, enum fifo_size size4)
2243 {
2244 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2245 u32 r = 0;
2246 int add = 0;
2247 int i;
2248
2249 dsi->vc[0].rx_fifo_size = size1;
2250 dsi->vc[1].rx_fifo_size = size2;
2251 dsi->vc[2].rx_fifo_size = size3;
2252 dsi->vc[3].rx_fifo_size = size4;
2253
2254 for (i = 0; i < 4; i++) {
2255 u8 v;
2256 int size = dsi->vc[i].rx_fifo_size;
2257
2258 if (add + size > 4) {
2259 DSSERR("Illegal FIFO configuration\n");
2260 BUG();
2261 return;
2262 }
2263
2264 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2265 r |= v << (8 * i);
2266 /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
2267 add += size;
2268 }
2269
2270 dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
2271 }
2272
2273 static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
2274 {
2275 u32 r;
2276
2277 r = dsi_read_reg(dsidev, DSI_TIMING1);
2278 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2279 dsi_write_reg(dsidev, DSI_TIMING1, r);
2280
2281 if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
2282 DSSERR("TX_STOP bit not going down\n");
2283 return -EIO;
2284 }
2285
2286 return 0;
2287 }
2288
2289 static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
2290 {
2291 return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
2292 }
2293
2294 static void dsi_packet_sent_handler_vp(void *data, u32 mask)
2295 {
2296 struct dsi_packet_sent_handler_data *vp_data =
2297 (struct dsi_packet_sent_handler_data *) data;
2298 struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
2299 const int channel = dsi->update_channel;
2300 u8 bit = dsi->te_enabled ? 30 : 31;
2301
2302 if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
2303 complete(vp_data->completion);
2304 }
2305
2306 static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
2307 {
2308 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2309 DECLARE_COMPLETION_ONSTACK(completion);
2310 struct dsi_packet_sent_handler_data vp_data = {
2311 .dsidev = dsidev,
2312 .completion = &completion
2313 };
2314 int r = 0;
2315 u8 bit;
2316
2317 bit = dsi->te_enabled ? 30 : 31;
2318
2319 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2320 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2321 if (r)
2322 goto err0;
2323
2324 /* Wait for completion only if TE_EN/TE_START is still set */
2325 if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
2326 if (wait_for_completion_timeout(&completion,
2327 msecs_to_jiffies(10)) == 0) {
2328 DSSERR("Failed to complete previous frame transfer\n");
2329 r = -EIO;
2330 goto err1;
2331 }
2332 }
2333
2334 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2335 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2336
2337 return 0;
2338 err1:
2339 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2340 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2341 err0:
2342 return r;
2343 }
2344
2345 static void dsi_packet_sent_handler_l4(void *data, u32 mask)
2346 {
2347 struct dsi_packet_sent_handler_data *l4_data =
2348 (struct dsi_packet_sent_handler_data *) data;
2349 struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
2350 const int channel = dsi->update_channel;
2351
2352 if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
2353 complete(l4_data->completion);
2354 }
2355
2356 static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
2357 {
2358 DECLARE_COMPLETION_ONSTACK(completion);
2359 struct dsi_packet_sent_handler_data l4_data = {
2360 .dsidev = dsidev,
2361 .completion = &completion
2362 };
2363 int r = 0;
2364
2365 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2366 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2367 if (r)
2368 goto err0;
2369
2370 /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
2371 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
2372 if (wait_for_completion_timeout(&completion,
2373 msecs_to_jiffies(10)) == 0) {
2374 DSSERR("Failed to complete previous l4 transfer\n");
2375 r = -EIO;
2376 goto err1;
2377 }
2378 }
2379
2380 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2381 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2382
2383 return 0;
2384 err1:
2385 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2386 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2387 err0:
2388 return r;
2389 }
2390
2391 static int dsi_sync_vc(struct platform_device *dsidev, int channel)
2392 {
2393 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2394
2395 WARN_ON(!dsi_bus_is_locked(dsidev));
2396
2397 WARN_ON(in_interrupt());
2398
2399 if (!dsi_vc_is_enabled(dsidev, channel))
2400 return 0;
2401
2402 switch (dsi->vc[channel].source) {
2403 case DSI_VC_SOURCE_VP:
2404 return dsi_sync_vc_vp(dsidev, channel);
2405 case DSI_VC_SOURCE_L4:
2406 return dsi_sync_vc_l4(dsidev, channel);
2407 default:
2408 BUG();
2409 return -EINVAL;
2410 }
2411 }
2412
2413 static int dsi_vc_enable(struct platform_device *dsidev, int channel,
2414 bool enable)
2415 {
2416 DSSDBG("dsi_vc_enable channel %d, enable %d\n",
2417 channel, enable);
2418
2419 enable = enable ? 1 : 0;
2420
2421 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
2422
2423 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
2424 0, enable) != enable) {
2425 DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
2426 return -EIO;
2427 }
2428
2429 return 0;
2430 }
2431
2432 static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
2433 {
2434 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2435 u32 r;
2436
2437 DSSDBG("Initial config of virtual channel %d", channel);
2438
2439 r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2440
2441 if (FLD_GET(r, 15, 15)) /* VC_BUSY */
2442 DSSERR("VC(%d) busy when trying to configure it!\n",
2443 channel);
2444
2445 r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
2446 r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
2447 r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
2448 r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
2449 r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
2450 r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
2451 r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
2452 if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
2453 r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
2454
2455 r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
2456 r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
2457
2458 dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
2459
2460 dsi->vc[channel].source = DSI_VC_SOURCE_L4;
2461 }
2462
2463 static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
2464 enum dsi_vc_source source)
2465 {
2466 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2467
2468 if (dsi->vc[channel].source == source)
2469 return 0;
2470
2471 DSSDBG("Source config of virtual channel %d", channel);
2472
2473 dsi_sync_vc(dsidev, channel);
2474
2475 dsi_vc_enable(dsidev, channel, 0);
2476
2477 /* VC_BUSY */
2478 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
2479 DSSERR("vc(%d) busy when trying to config for VP\n", channel);
2480 return -EIO;
2481 }
2482
2483 /* SOURCE, 0 = L4, 1 = video port */
2484 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
2485
2486 /* DCS_CMD_ENABLE */
2487 if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
2488 bool enable = source == DSI_VC_SOURCE_VP;
2489 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
2490 }
2491
2492 dsi_vc_enable(dsidev, channel, 1);
2493
2494 dsi->vc[channel].source = source;
2495
2496 return 0;
2497 }
2498
2499 static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
2500 bool enable)
2501 {
2502 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2503 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2504
2505 DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
2506
2507 WARN_ON(!dsi_bus_is_locked(dsidev));
2508
2509 dsi_vc_enable(dsidev, channel, 0);
2510 dsi_if_enable(dsidev, 0);
2511
2512 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
2513
2514 dsi_vc_enable(dsidev, channel, 1);
2515 dsi_if_enable(dsidev, 1);
2516
2517 dsi_force_tx_stop_mode_io(dsidev);
2518
2519 /* start the DDR clock by sending a NULL packet */
2520 if (dsi->vm_timings.ddr_clk_always_on && enable)
2521 dsi_vc_send_null(dssdev, channel);
2522 }
2523
2524 static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
2525 {
2526 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2527 u32 val;
2528 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2529 DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
2530 (val >> 0) & 0xff,
2531 (val >> 8) & 0xff,
2532 (val >> 16) & 0xff,
2533 (val >> 24) & 0xff);
2534 }
2535 }
2536
2537 static void dsi_show_rx_ack_with_err(u16 err)
2538 {
2539 DSSERR("\tACK with ERROR (%#x):\n", err);
2540 if (err & (1 << 0))
2541 DSSERR("\t\tSoT Error\n");
2542 if (err & (1 << 1))
2543 DSSERR("\t\tSoT Sync Error\n");
2544 if (err & (1 << 2))
2545 DSSERR("\t\tEoT Sync Error\n");
2546 if (err & (1 << 3))
2547 DSSERR("\t\tEscape Mode Entry Command Error\n");
2548 if (err & (1 << 4))
2549 DSSERR("\t\tLP Transmit Sync Error\n");
2550 if (err & (1 << 5))
2551 DSSERR("\t\tHS Receive Timeout Error\n");
2552 if (err & (1 << 6))
2553 DSSERR("\t\tFalse Control Error\n");
2554 if (err & (1 << 7))
2555 DSSERR("\t\t(reserved7)\n");
2556 if (err & (1 << 8))
2557 DSSERR("\t\tECC Error, single-bit (corrected)\n");
2558 if (err & (1 << 9))
2559 DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
2560 if (err & (1 << 10))
2561 DSSERR("\t\tChecksum Error\n");
2562 if (err & (1 << 11))
2563 DSSERR("\t\tData type not recognized\n");
2564 if (err & (1 << 12))
2565 DSSERR("\t\tInvalid VC ID\n");
2566 if (err & (1 << 13))
2567 DSSERR("\t\tInvalid Transmission Length\n");
2568 if (err & (1 << 14))
2569 DSSERR("\t\t(reserved14)\n");
2570 if (err & (1 << 15))
2571 DSSERR("\t\tDSI Protocol Violation\n");
2572 }
2573
2574 static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
2575 int channel)
2576 {
2577 /* RX_FIFO_NOT_EMPTY */
2578 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2579 u32 val;
2580 u8 dt;
2581 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2582 DSSERR("\trawval %#08x\n", val);
2583 dt = FLD_GET(val, 5, 0);
2584 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2585 u16 err = FLD_GET(val, 23, 8);
2586 dsi_show_rx_ack_with_err(err);
2587 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
2588 DSSERR("\tDCS short response, 1 byte: %#x\n",
2589 FLD_GET(val, 23, 8));
2590 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
2591 DSSERR("\tDCS short response, 2 byte: %#x\n",
2592 FLD_GET(val, 23, 8));
2593 } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
2594 DSSERR("\tDCS long response, len %d\n",
2595 FLD_GET(val, 23, 8));
2596 dsi_vc_flush_long_data(dsidev, channel);
2597 } else {
2598 DSSERR("\tunknown datatype 0x%02x\n", dt);
2599 }
2600 }
2601 return 0;
2602 }
2603
2604 static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
2605 {
2606 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2607
2608 if (dsi->debug_write || dsi->debug_read)
2609 DSSDBG("dsi_vc_send_bta %d\n", channel);
2610
2611 WARN_ON(!dsi_bus_is_locked(dsidev));
2612
2613 /* RX_FIFO_NOT_EMPTY */
2614 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2615 DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
2616 dsi_vc_flush_receive_data(dsidev, channel);
2617 }
2618
2619 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
2620
2621 /* flush posted write */
2622 dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2623
2624 return 0;
2625 }
2626
2627 static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
2628 {
2629 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2630 DECLARE_COMPLETION_ONSTACK(completion);
2631 int r = 0;
2632 u32 err;
2633
2634 r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
2635 &completion, DSI_VC_IRQ_BTA);
2636 if (r)
2637 goto err0;
2638
2639 r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
2640 DSI_IRQ_ERROR_MASK);
2641 if (r)
2642 goto err1;
2643
2644 r = dsi_vc_send_bta(dsidev, channel);
2645 if (r)
2646 goto err2;
2647
2648 if (wait_for_completion_timeout(&completion,
2649 msecs_to_jiffies(500)) == 0) {
2650 DSSERR("Failed to receive BTA\n");
2651 r = -EIO;
2652 goto err2;
2653 }
2654
2655 err = dsi_get_errors(dsidev);
2656 if (err) {
2657 DSSERR("Error while sending BTA: %x\n", err);
2658 r = -EIO;
2659 goto err2;
2660 }
2661 err2:
2662 dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
2663 DSI_IRQ_ERROR_MASK);
2664 err1:
2665 dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
2666 &completion, DSI_VC_IRQ_BTA);
2667 err0:
2668 return r;
2669 }
2670
2671 static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
2672 int channel, u8 data_type, u16 len, u8 ecc)
2673 {
2674 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2675 u32 val;
2676 u8 data_id;
2677
2678 WARN_ON(!dsi_bus_is_locked(dsidev));
2679
2680 data_id = data_type | dsi->vc[channel].vc_id << 6;
2681
2682 val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
2683 FLD_VAL(ecc, 31, 24);
2684
2685 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
2686 }
2687
2688 static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
2689 int channel, u8 b1, u8 b2, u8 b3, u8 b4)
2690 {
2691 u32 val;
2692
2693 val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
2694
2695 /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
2696 b1, b2, b3, b4, val); */
2697
2698 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
2699 }
2700
2701 static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
2702 u8 data_type, u8 *data, u16 len, u8 ecc)
2703 {
2704 /*u32 val; */
2705 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2706 int i;
2707 u8 *p;
2708 int r = 0;
2709 u8 b1, b2, b3, b4;
2710
2711 if (dsi->debug_write)
2712 DSSDBG("dsi_vc_send_long, %d bytes\n", len);
2713
2714 /* len + header */
2715 if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
2716 DSSERR("unable to send long packet: packet too long.\n");
2717 return -EINVAL;
2718 }
2719
2720 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2721
2722 dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
2723
2724 p = data;
2725 for (i = 0; i < len >> 2; i++) {
2726 if (dsi->debug_write)
2727 DSSDBG("\tsending full packet %d\n", i);
2728
2729 b1 = *p++;
2730 b2 = *p++;
2731 b3 = *p++;
2732 b4 = *p++;
2733
2734 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
2735 }
2736
2737 i = len % 4;
2738 if (i) {
2739 b1 = 0; b2 = 0; b3 = 0;
2740
2741 if (dsi->debug_write)
2742 DSSDBG("\tsending remainder bytes %d\n", i);
2743
2744 switch (i) {
2745 case 3:
2746 b1 = *p++;
2747 b2 = *p++;
2748 b3 = *p++;
2749 break;
2750 case 2:
2751 b1 = *p++;
2752 b2 = *p++;
2753 break;
2754 case 1:
2755 b1 = *p++;
2756 break;
2757 }
2758
2759 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
2760 }
2761
2762 return r;
2763 }
2764
2765 static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
2766 u8 data_type, u16 data, u8 ecc)
2767 {
2768 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2769 u32 r;
2770 u8 data_id;
2771
2772 WARN_ON(!dsi_bus_is_locked(dsidev));
2773
2774 if (dsi->debug_write)
2775 DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
2776 channel,
2777 data_type, data & 0xff, (data >> 8) & 0xff);
2778
2779 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2780
2781 if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
2782 DSSERR("ERROR FIFO FULL, aborting transfer\n");
2783 return -EINVAL;
2784 }
2785
2786 data_id = data_type | dsi->vc[channel].vc_id << 6;
2787
2788 r = (data_id << 0) | (data << 8) | (ecc << 24);
2789
2790 dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
2791
2792 return 0;
2793 }
2794
2795 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
2796 {
2797 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2798
2799 return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
2800 0, 0);
2801 }
2802
2803 static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
2804 int channel, u8 *data, int len, enum dss_dsi_content_type type)
2805 {
2806 int r;
2807
2808 if (len == 0) {
2809 BUG_ON(type == DSS_DSI_CONTENT_DCS);
2810 r = dsi_vc_send_short(dsidev, channel,
2811 MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
2812 } else if (len == 1) {
2813 r = dsi_vc_send_short(dsidev, channel,
2814 type == DSS_DSI_CONTENT_GENERIC ?
2815 MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
2816 MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
2817 } else if (len == 2) {
2818 r = dsi_vc_send_short(dsidev, channel,
2819 type == DSS_DSI_CONTENT_GENERIC ?
2820 MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
2821 MIPI_DSI_DCS_SHORT_WRITE_PARAM,
2822 data[0] | (data[1] << 8), 0);
2823 } else {
2824 r = dsi_vc_send_long(dsidev, channel,
2825 type == DSS_DSI_CONTENT_GENERIC ?
2826 MIPI_DSI_GENERIC_LONG_WRITE :
2827 MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
2828 }
2829
2830 return r;
2831 }
2832
2833 static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
2834 u8 *data, int len)
2835 {
2836 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2837
2838 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2839 DSS_DSI_CONTENT_DCS);
2840 }
2841
2842 static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
2843 u8 *data, int len)
2844 {
2845 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2846
2847 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2848 DSS_DSI_CONTENT_GENERIC);
2849 }
2850
2851 static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
2852 u8 *data, int len, enum dss_dsi_content_type type)
2853 {
2854 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2855 int r;
2856
2857 r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
2858 if (r)
2859 goto err;
2860
2861 r = dsi_vc_send_bta_sync(dssdev, channel);
2862 if (r)
2863 goto err;
2864
2865 /* RX_FIFO_NOT_EMPTY */
2866 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2867 DSSERR("rx fifo not empty after write, dumping data:\n");
2868 dsi_vc_flush_receive_data(dsidev, channel);
2869 r = -EIO;
2870 goto err;
2871 }
2872
2873 return 0;
2874 err:
2875 DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
2876 channel, data[0], len);
2877 return r;
2878 }
2879
2880 static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2881 int len)
2882 {
2883 return dsi_vc_write_common(dssdev, channel, data, len,
2884 DSS_DSI_CONTENT_DCS);
2885 }
2886
2887 static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2888 int len)
2889 {
2890 return dsi_vc_write_common(dssdev, channel, data, len,
2891 DSS_DSI_CONTENT_GENERIC);
2892 }
2893
2894 static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
2895 int channel, u8 dcs_cmd)
2896 {
2897 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2898 int r;
2899
2900 if (dsi->debug_read)
2901 DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
2902 channel, dcs_cmd);
2903
2904 r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
2905 if (r) {
2906 DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
2907 " failed\n", channel, dcs_cmd);
2908 return r;
2909 }
2910
2911 return 0;
2912 }
2913
2914 static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
2915 int channel, u8 *reqdata, int reqlen)
2916 {
2917 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2918 u16 data;
2919 u8 data_type;
2920 int r;
2921
2922 if (dsi->debug_read)
2923 DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
2924 channel, reqlen);
2925
2926 if (reqlen == 0) {
2927 data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
2928 data = 0;
2929 } else if (reqlen == 1) {
2930 data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
2931 data = reqdata[0];
2932 } else if (reqlen == 2) {
2933 data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
2934 data = reqdata[0] | (reqdata[1] << 8);
2935 } else {
2936 BUG();
2937 return -EINVAL;
2938 }
2939
2940 r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
2941 if (r) {
2942 DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
2943 " failed\n", channel, reqlen);
2944 return r;
2945 }
2946
2947 return 0;
2948 }
2949
2950 static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
2951 u8 *buf, int buflen, enum dss_dsi_content_type type)
2952 {
2953 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2954 u32 val;
2955 u8 dt;
2956 int r;
2957
2958 /* RX_FIFO_NOT_EMPTY */
2959 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
2960 DSSERR("RX fifo empty when trying to read.\n");
2961 r = -EIO;
2962 goto err;
2963 }
2964
2965 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2966 if (dsi->debug_read)
2967 DSSDBG("\theader: %08x\n", val);
2968 dt = FLD_GET(val, 5, 0);
2969 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2970 u16 err = FLD_GET(val, 23, 8);
2971 dsi_show_rx_ack_with_err(err);
2972 r = -EIO;
2973 goto err;
2974
2975 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2976 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
2977 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
2978 u8 data = FLD_GET(val, 15, 8);
2979 if (dsi->debug_read)
2980 DSSDBG("\t%s short response, 1 byte: %02x\n",
2981 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2982 "DCS", data);
2983
2984 if (buflen < 1) {
2985 r = -EIO;
2986 goto err;
2987 }
2988
2989 buf[0] = data;
2990
2991 return 1;
2992 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2993 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
2994 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
2995 u16 data = FLD_GET(val, 23, 8);
2996 if (dsi->debug_read)
2997 DSSDBG("\t%s short response, 2 byte: %04x\n",
2998 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2999 "DCS", data);
3000
3001 if (buflen < 2) {
3002 r = -EIO;
3003 goto err;
3004 }
3005
3006 buf[0] = data & 0xff;
3007 buf[1] = (data >> 8) & 0xff;
3008
3009 return 2;
3010 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
3011 MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
3012 MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
3013 int w;
3014 int len = FLD_GET(val, 23, 8);
3015 if (dsi->debug_read)
3016 DSSDBG("\t%s long response, len %d\n",
3017 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3018 "DCS", len);
3019
3020 if (len > buflen) {
3021 r = -EIO;
3022 goto err;
3023 }
3024
3025 /* two byte checksum ends the packet, not included in len */
3026 for (w = 0; w < len + 2;) {
3027 int b;
3028 val = dsi_read_reg(dsidev,
3029 DSI_VC_SHORT_PACKET_HEADER(channel));
3030 if (dsi->debug_read)
3031 DSSDBG("\t\t%02x %02x %02x %02x\n",
3032 (val >> 0) & 0xff,
3033 (val >> 8) & 0xff,
3034 (val >> 16) & 0xff,
3035 (val >> 24) & 0xff);
3036
3037 for (b = 0; b < 4; ++b) {
3038 if (w < len)
3039 buf[w] = (val >> (b * 8)) & 0xff;
3040 /* we discard the 2 byte checksum */
3041 ++w;
3042 }
3043 }
3044
3045 return len;
3046 } else {
3047 DSSERR("\tunknown datatype 0x%02x\n", dt);
3048 r = -EIO;
3049 goto err;
3050 }
3051
3052 err:
3053 DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
3054 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
3055
3056 return r;
3057 }
3058
3059 static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
3060 u8 *buf, int buflen)
3061 {
3062 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3063 int r;
3064
3065 r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
3066 if (r)
3067 goto err;
3068
3069 r = dsi_vc_send_bta_sync(dssdev, channel);
3070 if (r)
3071 goto err;
3072
3073 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3074 DSS_DSI_CONTENT_DCS);
3075 if (r < 0)
3076 goto err;
3077
3078 if (r != buflen) {
3079 r = -EIO;
3080 goto err;
3081 }
3082
3083 return 0;
3084 err:
3085 DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
3086 return r;
3087 }
3088
3089 static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
3090 u8 *reqdata, int reqlen, u8 *buf, int buflen)
3091 {
3092 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3093 int r;
3094
3095 r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
3096 if (r)
3097 return r;
3098
3099 r = dsi_vc_send_bta_sync(dssdev, channel);
3100 if (r)
3101 return r;
3102
3103 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3104 DSS_DSI_CONTENT_GENERIC);
3105 if (r < 0)
3106 return r;
3107
3108 if (r != buflen) {
3109 r = -EIO;
3110 return r;
3111 }
3112
3113 return 0;
3114 }
3115
3116 static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
3117 u16 len)
3118 {
3119 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3120
3121 return dsi_vc_send_short(dsidev, channel,
3122 MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
3123 }
3124
3125 static int dsi_enter_ulps(struct platform_device *dsidev)
3126 {
3127 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3128 DECLARE_COMPLETION_ONSTACK(completion);
3129 int r, i;
3130 unsigned mask;
3131
3132 DSSDBG("Entering ULPS");
3133
3134 WARN_ON(!dsi_bus_is_locked(dsidev));
3135
3136 WARN_ON(dsi->ulps_enabled);
3137
3138 if (dsi->ulps_enabled)
3139 return 0;
3140
3141 /* DDR_CLK_ALWAYS_ON */
3142 if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
3143 dsi_if_enable(dsidev, 0);
3144 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
3145 dsi_if_enable(dsidev, 1);
3146 }
3147
3148 dsi_sync_vc(dsidev, 0);
3149 dsi_sync_vc(dsidev, 1);
3150 dsi_sync_vc(dsidev, 2);
3151 dsi_sync_vc(dsidev, 3);
3152
3153 dsi_force_tx_stop_mode_io(dsidev);
3154
3155 dsi_vc_enable(dsidev, 0, false);
3156 dsi_vc_enable(dsidev, 1, false);
3157 dsi_vc_enable(dsidev, 2, false);
3158 dsi_vc_enable(dsidev, 3, false);
3159
3160 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
3161 DSSERR("HS busy when enabling ULPS\n");
3162 return -EIO;
3163 }
3164
3165 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
3166 DSSERR("LP busy when enabling ULPS\n");
3167 return -EIO;
3168 }
3169
3170 r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
3171 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3172 if (r)
3173 return r;
3174
3175 mask = 0;
3176
3177 for (i = 0; i < dsi->num_lanes_supported; ++i) {
3178 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
3179 continue;
3180 mask |= 1 << i;
3181 }
3182 /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
3183 /* LANEx_ULPS_SIG2 */
3184 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
3185
3186 /* flush posted write and wait for SCP interface to finish the write */
3187 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3188
3189 if (wait_for_completion_timeout(&completion,
3190 msecs_to_jiffies(1000)) == 0) {
3191 DSSERR("ULPS enable timeout\n");
3192 r = -EIO;
3193 goto err;
3194 }
3195
3196 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3197 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3198
3199 /* Reset LANEx_ULPS_SIG2 */
3200 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
3201
3202 /* flush posted write and wait for SCP interface to finish the write */
3203 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3204
3205 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
3206
3207 dsi_if_enable(dsidev, false);
3208
3209 dsi->ulps_enabled = true;
3210
3211 return 0;
3212
3213 err:
3214 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3215 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3216 return r;
3217 }
3218
3219 static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
3220 unsigned ticks, bool x4, bool x16)
3221 {
3222 unsigned long fck;
3223 unsigned long total_ticks;
3224 u32 r;
3225
3226 BUG_ON(ticks > 0x1fff);
3227
3228 /* ticks in DSI_FCK */
3229 fck = dsi_fclk_rate(dsidev);
3230
3231 r = dsi_read_reg(dsidev, DSI_TIMING2);
3232 r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
3233 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
3234 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
3235 r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
3236 dsi_write_reg(dsidev, DSI_TIMING2, r);
3237
3238 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3239
3240 DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3241 total_ticks,
3242 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3243 (total_ticks * 1000) / (fck / 1000 / 1000));
3244 }
3245
3246 static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
3247 bool x8, bool x16)
3248 {
3249 unsigned long fck;
3250 unsigned long total_ticks;
3251 u32 r;
3252
3253 BUG_ON(ticks > 0x1fff);
3254
3255 /* ticks in DSI_FCK */
3256 fck = dsi_fclk_rate(dsidev);
3257
3258 r = dsi_read_reg(dsidev, DSI_TIMING1);
3259 r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
3260 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
3261 r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
3262 r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
3263 dsi_write_reg(dsidev, DSI_TIMING1, r);
3264
3265 total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
3266
3267 DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
3268 total_ticks,
3269 ticks, x8 ? " x8" : "", x16 ? " x16" : "",
3270 (total_ticks * 1000) / (fck / 1000 / 1000));
3271 }
3272
3273 static void dsi_set_stop_state_counter(struct platform_device *dsidev,
3274 unsigned ticks, bool x4, bool x16)
3275 {
3276 unsigned long fck;
3277 unsigned long total_ticks;
3278 u32 r;
3279
3280 BUG_ON(ticks > 0x1fff);
3281
3282 /* ticks in DSI_FCK */
3283 fck = dsi_fclk_rate(dsidev);
3284
3285 r = dsi_read_reg(dsidev, DSI_TIMING1);
3286 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
3287 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
3288 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
3289 r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
3290 dsi_write_reg(dsidev, DSI_TIMING1, r);
3291
3292 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3293
3294 DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
3295 total_ticks,
3296 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3297 (total_ticks * 1000) / (fck / 1000 / 1000));
3298 }
3299
3300 static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
3301 unsigned ticks, bool x4, bool x16)
3302 {
3303 unsigned long fck;
3304 unsigned long total_ticks;
3305 u32 r;
3306
3307 BUG_ON(ticks > 0x1fff);
3308
3309 /* ticks in TxByteClkHS */
3310 fck = dsi_get_txbyteclkhs(dsidev);
3311
3312 r = dsi_read_reg(dsidev, DSI_TIMING2);
3313 r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
3314 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
3315 r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
3316 r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
3317 dsi_write_reg(dsidev, DSI_TIMING2, r);
3318
3319 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3320
3321 DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3322 total_ticks,
3323 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3324 (total_ticks * 1000) / (fck / 1000 / 1000));
3325 }
3326
3327 static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
3328 {
3329 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3330 int num_line_buffers;
3331
3332 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3333 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3334 struct omap_video_timings *timings = &dsi->timings;
3335 /*
3336 * Don't use line buffers if width is greater than the video
3337 * port's line buffer size
3338 */
3339 if (dsi->line_buffer_size <= timings->x_res * bpp / 8)
3340 num_line_buffers = 0;
3341 else
3342 num_line_buffers = 2;
3343 } else {
3344 /* Use maximum number of line buffers in command mode */
3345 num_line_buffers = 2;
3346 }
3347
3348 /* LINE_BUFFER */
3349 REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
3350 }
3351
3352 static void dsi_config_vp_sync_events(struct platform_device *dsidev)
3353 {
3354 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3355 bool sync_end;
3356 u32 r;
3357
3358 if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
3359 sync_end = true;
3360 else
3361 sync_end = false;
3362
3363 r = dsi_read_reg(dsidev, DSI_CTRL);
3364 r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
3365 r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
3366 r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
3367 r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
3368 r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
3369 r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
3370 r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
3371 dsi_write_reg(dsidev, DSI_CTRL, r);
3372 }
3373
3374 static void dsi_config_blanking_modes(struct platform_device *dsidev)
3375 {
3376 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3377 int blanking_mode = dsi->vm_timings.blanking_mode;
3378 int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
3379 int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
3380 int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
3381 u32 r;
3382
3383 /*
3384 * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
3385 * 1 = Long blanking packets are sent in corresponding blanking periods
3386 */
3387 r = dsi_read_reg(dsidev, DSI_CTRL);
3388 r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
3389 r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
3390 r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
3391 r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
3392 dsi_write_reg(dsidev, DSI_CTRL, r);
3393 }
3394
3395 /*
3396 * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
3397 * results in maximum transition time for data and clock lanes to enter and
3398 * exit HS mode. Hence, this is the scenario where the least amount of command
3399 * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
3400 * clock cycles that can be used to interleave command mode data in HS so that
3401 * all scenarios are satisfied.
3402 */
3403 static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
3404 int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
3405 {
3406 int transition;
3407
3408 /*
3409 * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
3410 * time of data lanes only, if it isn't set, we need to consider HS
3411 * transition time of both data and clock lanes. HS transition time
3412 * of Scenario 3 is considered.
3413 */
3414 if (ddr_alwon) {
3415 transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
3416 } else {
3417 int trans1, trans2;
3418 trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
3419 trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
3420 enter_hs + 1;
3421 transition = max(trans1, trans2);
3422 }
3423
3424 return blank > transition ? blank - transition : 0;
3425 }
3426
3427 /*
3428 * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
3429 * results in maximum transition time for data lanes to enter and exit LP mode.
3430 * Hence, this is the scenario where the least amount of command mode data can
3431 * be interleaved. We program the minimum amount of bytes that can be
3432 * interleaved in LP so that all scenarios are satisfied.
3433 */
3434 static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
3435 int lp_clk_div, int tdsi_fclk)
3436 {
3437 int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
3438 int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
3439 int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
3440 int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
3441 int lp_inter; /* cmd mode data that can be interleaved, in bytes */
3442
3443 /* maximum LP transition time according to Scenario 1 */
3444 trans_lp = exit_hs + max(enter_hs, 2) + 1;
3445
3446 /* CLKIN4DDR = 16 * TXBYTECLKHS */
3447 tlp_avail = thsbyte_clk * (blank - trans_lp);
3448
3449 ttxclkesc = tdsi_fclk * lp_clk_div;
3450
3451 lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
3452 26) / 16;
3453
3454 return max(lp_inter, 0);
3455 }
3456
3457 static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
3458 {
3459 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3460 int blanking_mode;
3461 int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
3462 int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
3463 int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
3464 int tclk_trail, ths_exit, exiths_clk;
3465 bool ddr_alwon;
3466 struct omap_video_timings *timings = &dsi->timings;
3467 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3468 int ndl = dsi->num_lanes_used - 1;
3469 int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
3470 int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
3471 int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
3472 int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
3473 int bl_interleave_hs = 0, bl_interleave_lp = 0;
3474 u32 r;
3475
3476 r = dsi_read_reg(dsidev, DSI_CTRL);
3477 blanking_mode = FLD_GET(r, 20, 20);
3478 hfp_blanking_mode = FLD_GET(r, 21, 21);
3479 hbp_blanking_mode = FLD_GET(r, 22, 22);
3480 hsa_blanking_mode = FLD_GET(r, 23, 23);
3481
3482 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3483 hbp = FLD_GET(r, 11, 0);
3484 hfp = FLD_GET(r, 23, 12);
3485 hsa = FLD_GET(r, 31, 24);
3486
3487 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3488 ddr_clk_post = FLD_GET(r, 7, 0);
3489 ddr_clk_pre = FLD_GET(r, 15, 8);
3490
3491 r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
3492 exit_hs_mode_lat = FLD_GET(r, 15, 0);
3493 enter_hs_mode_lat = FLD_GET(r, 31, 16);
3494
3495 r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
3496 lp_clk_div = FLD_GET(r, 12, 0);
3497 ddr_alwon = FLD_GET(r, 13, 13);
3498
3499 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3500 ths_exit = FLD_GET(r, 7, 0);
3501
3502 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3503 tclk_trail = FLD_GET(r, 15, 8);
3504
3505 exiths_clk = ths_exit + tclk_trail;
3506
3507 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3508 bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
3509
3510 if (!hsa_blanking_mode) {
3511 hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
3512 enter_hs_mode_lat, exit_hs_mode_lat,
3513 exiths_clk, ddr_clk_pre, ddr_clk_post);
3514 hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
3515 enter_hs_mode_lat, exit_hs_mode_lat,
3516 lp_clk_div, dsi_fclk_hsdiv);
3517 }
3518
3519 if (!hfp_blanking_mode) {
3520 hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
3521 enter_hs_mode_lat, exit_hs_mode_lat,
3522 exiths_clk, ddr_clk_pre, ddr_clk_post);
3523 hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
3524 enter_hs_mode_lat, exit_hs_mode_lat,
3525 lp_clk_div, dsi_fclk_hsdiv);
3526 }
3527
3528 if (!hbp_blanking_mode) {
3529 hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
3530 enter_hs_mode_lat, exit_hs_mode_lat,
3531 exiths_clk, ddr_clk_pre, ddr_clk_post);
3532
3533 hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
3534 enter_hs_mode_lat, exit_hs_mode_lat,
3535 lp_clk_div, dsi_fclk_hsdiv);
3536 }
3537
3538 if (!blanking_mode) {
3539 bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
3540 enter_hs_mode_lat, exit_hs_mode_lat,
3541 exiths_clk, ddr_clk_pre, ddr_clk_post);
3542
3543 bl_interleave_lp = dsi_compute_interleave_lp(bllp,
3544 enter_hs_mode_lat, exit_hs_mode_lat,
3545 lp_clk_div, dsi_fclk_hsdiv);
3546 }
3547
3548 DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3549 hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
3550 bl_interleave_hs);
3551
3552 DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3553 hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
3554 bl_interleave_lp);
3555
3556 r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
3557 r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
3558 r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
3559 r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
3560 dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
3561
3562 r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
3563 r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
3564 r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
3565 r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
3566 dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
3567
3568 r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
3569 r = FLD_MOD(r, bl_interleave_hs, 31, 15);
3570 r = FLD_MOD(r, bl_interleave_lp, 16, 0);
3571 dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
3572 }
3573
3574 static int dsi_proto_config(struct platform_device *dsidev)
3575 {
3576 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3577 u32 r;
3578 int buswidth = 0;
3579
3580 dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
3581 DSI_FIFO_SIZE_32,
3582 DSI_FIFO_SIZE_32,
3583 DSI_FIFO_SIZE_32);
3584
3585 dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
3586 DSI_FIFO_SIZE_32,
3587 DSI_FIFO_SIZE_32,
3588 DSI_FIFO_SIZE_32);
3589
3590 /* XXX what values for the timeouts? */
3591 dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
3592 dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
3593 dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
3594 dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
3595
3596 switch (dsi_get_pixel_size(dsi->pix_fmt)) {
3597 case 16:
3598 buswidth = 0;
3599 break;
3600 case 18:
3601 buswidth = 1;
3602 break;
3603 case 24:
3604 buswidth = 2;
3605 break;
3606 default:
3607 BUG();
3608 return -EINVAL;
3609 }
3610
3611 r = dsi_read_reg(dsidev, DSI_CTRL);
3612 r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
3613 r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
3614 r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
3615 r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
3616 r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
3617 r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
3618 r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
3619 r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
3620 if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
3621 r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
3622 /* DCS_CMD_CODE, 1=start, 0=continue */
3623 r = FLD_MOD(r, 0, 25, 25);
3624 }
3625
3626 dsi_write_reg(dsidev, DSI_CTRL, r);
3627
3628 dsi_config_vp_num_line_buffers(dsidev);
3629
3630 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3631 dsi_config_vp_sync_events(dsidev);
3632 dsi_config_blanking_modes(dsidev);
3633 dsi_config_cmd_mode_interleaving(dsidev);
3634 }
3635
3636 dsi_vc_initial_config(dsidev, 0);
3637 dsi_vc_initial_config(dsidev, 1);
3638 dsi_vc_initial_config(dsidev, 2);
3639 dsi_vc_initial_config(dsidev, 3);
3640
3641 return 0;
3642 }
3643
3644 static void dsi_proto_timings(struct platform_device *dsidev)
3645 {
3646 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3647 unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
3648 unsigned tclk_pre, tclk_post;
3649 unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
3650 unsigned ths_trail, ths_exit;
3651 unsigned ddr_clk_pre, ddr_clk_post;
3652 unsigned enter_hs_mode_lat, exit_hs_mode_lat;
3653 unsigned ths_eot;
3654 int ndl = dsi->num_lanes_used - 1;
3655 u32 r;
3656
3657 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3658 ths_prepare = FLD_GET(r, 31, 24);
3659 ths_prepare_ths_zero = FLD_GET(r, 23, 16);
3660 ths_zero = ths_prepare_ths_zero - ths_prepare;
3661 ths_trail = FLD_GET(r, 15, 8);
3662 ths_exit = FLD_GET(r, 7, 0);
3663
3664 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3665 tlpx = FLD_GET(r, 20, 16) * 2;
3666 tclk_trail = FLD_GET(r, 15, 8);
3667 tclk_zero = FLD_GET(r, 7, 0);
3668
3669 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
3670 tclk_prepare = FLD_GET(r, 7, 0);
3671
3672 /* min 8*UI */
3673 tclk_pre = 20;
3674 /* min 60ns + 52*UI */
3675 tclk_post = ns2ddr(dsidev, 60) + 26;
3676
3677 ths_eot = DIV_ROUND_UP(4, ndl);
3678
3679 ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
3680 4);
3681 ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
3682
3683 BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
3684 BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
3685
3686 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3687 r = FLD_MOD(r, ddr_clk_pre, 15, 8);
3688 r = FLD_MOD(r, ddr_clk_post, 7, 0);
3689 dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
3690
3691 DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
3692 ddr_clk_pre,
3693 ddr_clk_post);
3694
3695 enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
3696 DIV_ROUND_UP(ths_prepare, 4) +
3697 DIV_ROUND_UP(ths_zero + 3, 4);
3698
3699 exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
3700
3701 r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
3702 FLD_VAL(exit_hs_mode_lat, 15, 0);
3703 dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
3704
3705 DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
3706 enter_hs_mode_lat, exit_hs_mode_lat);
3707
3708 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3709 /* TODO: Implement a video mode check_timings function */
3710 int hsa = dsi->vm_timings.hsa;
3711 int hfp = dsi->vm_timings.hfp;
3712 int hbp = dsi->vm_timings.hbp;
3713 int vsa = dsi->vm_timings.vsa;
3714 int vfp = dsi->vm_timings.vfp;
3715 int vbp = dsi->vm_timings.vbp;
3716 int window_sync = dsi->vm_timings.window_sync;
3717 bool hsync_end;
3718 struct omap_video_timings *timings = &dsi->timings;
3719 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3720 int tl, t_he, width_bytes;
3721
3722 hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
3723 t_he = hsync_end ?
3724 ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
3725
3726 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3727
3728 /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
3729 tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
3730 DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
3731
3732 DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
3733 hfp, hsync_end ? hsa : 0, tl);
3734 DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
3735 vsa, timings->y_res);
3736
3737 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3738 r = FLD_MOD(r, hbp, 11, 0); /* HBP */
3739 r = FLD_MOD(r, hfp, 23, 12); /* HFP */
3740 r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
3741 dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
3742
3743 r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
3744 r = FLD_MOD(r, vbp, 7, 0); /* VBP */
3745 r = FLD_MOD(r, vfp, 15, 8); /* VFP */
3746 r = FLD_MOD(r, vsa, 23, 16); /* VSA */
3747 r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
3748 dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
3749
3750 r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
3751 r = FLD_MOD(r, timings->y_res, 14, 0); /* VACT */
3752 r = FLD_MOD(r, tl, 31, 16); /* TL */
3753 dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
3754 }
3755 }
3756
3757 static int dsi_configure_pins(struct omap_dss_device *dssdev,
3758 const struct omap_dsi_pin_config *pin_cfg)
3759 {
3760 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3761 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3762 int num_pins;
3763 const int *pins;
3764 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
3765 int num_lanes;
3766 int i;
3767
3768 static const enum dsi_lane_function functions[] = {
3769 DSI_LANE_CLK,
3770 DSI_LANE_DATA1,
3771 DSI_LANE_DATA2,
3772 DSI_LANE_DATA3,
3773 DSI_LANE_DATA4,
3774 };
3775
3776 num_pins = pin_cfg->num_pins;
3777 pins = pin_cfg->pins;
3778
3779 if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
3780 || num_pins % 2 != 0)
3781 return -EINVAL;
3782
3783 for (i = 0; i < DSI_MAX_NR_LANES; ++i)
3784 lanes[i].function = DSI_LANE_UNUSED;
3785
3786 num_lanes = 0;
3787
3788 for (i = 0; i < num_pins; i += 2) {
3789 u8 lane, pol;
3790 int dx, dy;
3791
3792 dx = pins[i];
3793 dy = pins[i + 1];
3794
3795 if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
3796 return -EINVAL;
3797
3798 if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
3799 return -EINVAL;
3800
3801 if (dx & 1) {
3802 if (dy != dx - 1)
3803 return -EINVAL;
3804 pol = 1;
3805 } else {
3806 if (dy != dx + 1)
3807 return -EINVAL;
3808 pol = 0;
3809 }
3810
3811 lane = dx / 2;
3812
3813 lanes[lane].function = functions[i / 2];
3814 lanes[lane].polarity = pol;
3815 num_lanes++;
3816 }
3817
3818 memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
3819 dsi->num_lanes_used = num_lanes;
3820
3821 return 0;
3822 }
3823
3824 static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
3825 {
3826 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3827 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3828 enum omap_channel dispc_channel = dssdev->dispc_channel;
3829 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3830 struct omap_dss_device *out = &dsi->output;
3831 u8 data_type;
3832 u16 word_count;
3833 int r;
3834
3835 if (!out->dispc_channel_connected) {
3836 DSSERR("failed to enable display: no output/manager\n");
3837 return -ENODEV;
3838 }
3839
3840 r = dsi_display_init_dispc(dsidev, dispc_channel);
3841 if (r)
3842 goto err_init_dispc;
3843
3844 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3845 switch (dsi->pix_fmt) {
3846 case OMAP_DSS_DSI_FMT_RGB888:
3847 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
3848 break;
3849 case OMAP_DSS_DSI_FMT_RGB666:
3850 data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
3851 break;
3852 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
3853 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
3854 break;
3855 case OMAP_DSS_DSI_FMT_RGB565:
3856 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
3857 break;
3858 default:
3859 r = -EINVAL;
3860 goto err_pix_fmt;
3861 }
3862
3863 dsi_if_enable(dsidev, false);
3864 dsi_vc_enable(dsidev, channel, false);
3865
3866 /* MODE, 1 = video mode */
3867 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
3868
3869 word_count = DIV_ROUND_UP(dsi->timings.x_res * bpp, 8);
3870
3871 dsi_vc_write_long_header(dsidev, channel, data_type,
3872 word_count, 0);
3873
3874 dsi_vc_enable(dsidev, channel, true);
3875 dsi_if_enable(dsidev, true);
3876 }
3877
3878 r = dss_mgr_enable(dispc_channel);
3879 if (r)
3880 goto err_mgr_enable;
3881
3882 return 0;
3883
3884 err_mgr_enable:
3885 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3886 dsi_if_enable(dsidev, false);
3887 dsi_vc_enable(dsidev, channel, false);
3888 }
3889 err_pix_fmt:
3890 dsi_display_uninit_dispc(dsidev, dispc_channel);
3891 err_init_dispc:
3892 return r;
3893 }
3894
3895 static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
3896 {
3897 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3898 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3899 enum omap_channel dispc_channel = dssdev->dispc_channel;
3900
3901 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3902 dsi_if_enable(dsidev, false);
3903 dsi_vc_enable(dsidev, channel, false);
3904
3905 /* MODE, 0 = command mode */
3906 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
3907
3908 dsi_vc_enable(dsidev, channel, true);
3909 dsi_if_enable(dsidev, true);
3910 }
3911
3912 dss_mgr_disable(dispc_channel);
3913
3914 dsi_display_uninit_dispc(dsidev, dispc_channel);
3915 }
3916
3917 static void dsi_update_screen_dispc(struct platform_device *dsidev)
3918 {
3919 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3920 enum omap_channel dispc_channel = dsi->output.dispc_channel;
3921 unsigned bytespp;
3922 unsigned bytespl;
3923 unsigned bytespf;
3924 unsigned total_len;
3925 unsigned packet_payload;
3926 unsigned packet_len;
3927 u32 l;
3928 int r;
3929 const unsigned channel = dsi->update_channel;
3930 const unsigned line_buf_size = dsi->line_buffer_size;
3931 u16 w = dsi->timings.x_res;
3932 u16 h = dsi->timings.y_res;
3933
3934 DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
3935
3936 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
3937
3938 bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
3939 bytespl = w * bytespp;
3940 bytespf = bytespl * h;
3941
3942 /* NOTE: packet_payload has to be equal to N * bytespl, where N is
3943 * number of lines in a packet. See errata about VP_CLK_RATIO */
3944
3945 if (bytespf < line_buf_size)
3946 packet_payload = bytespf;
3947 else
3948 packet_payload = (line_buf_size) / bytespl * bytespl;
3949
3950 packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
3951 total_len = (bytespf / packet_payload) * packet_len;
3952
3953 if (bytespf % packet_payload)
3954 total_len += (bytespf % packet_payload) + 1;
3955
3956 l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
3957 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3958
3959 dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
3960 packet_len, 0);
3961
3962 if (dsi->te_enabled)
3963 l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
3964 else
3965 l = FLD_MOD(l, 1, 31, 31); /* TE_START */
3966 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3967
3968 /* We put SIDLEMODE to no-idle for the duration of the transfer,
3969 * because DSS interrupts are not capable of waking up the CPU and the
3970 * framedone interrupt could be delayed for quite a long time. I think
3971 * the same goes for any DSS interrupts, but for some reason I have not
3972 * seen the problem anywhere else than here.
3973 */
3974 dispc_disable_sidle();
3975
3976 dsi_perf_mark_start(dsidev);
3977
3978 r = schedule_delayed_work(&dsi->framedone_timeout_work,
3979 msecs_to_jiffies(250));
3980 BUG_ON(r == 0);
3981
3982 dss_mgr_set_timings(dispc_channel, &dsi->timings);
3983
3984 dss_mgr_start_update(dispc_channel);
3985
3986 if (dsi->te_enabled) {
3987 /* disable LP_RX_TO, so that we can receive TE. Time to wait
3988 * for TE is longer than the timer allows */
3989 REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
3990
3991 dsi_vc_send_bta(dsidev, channel);
3992
3993 #ifdef DSI_CATCH_MISSING_TE
3994 mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
3995 #endif
3996 }
3997 }
3998
3999 #ifdef DSI_CATCH_MISSING_TE
4000 static void dsi_te_timeout(unsigned long arg)
4001 {
4002 DSSERR("TE not received for 250ms!\n");
4003 }
4004 #endif
4005
4006 static void dsi_handle_framedone(struct platform_device *dsidev, int error)
4007 {
4008 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4009
4010 /* SIDLEMODE back to smart-idle */
4011 dispc_enable_sidle();
4012
4013 if (dsi->te_enabled) {
4014 /* enable LP_RX_TO again after the TE */
4015 REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
4016 }
4017
4018 dsi->framedone_callback(error, dsi->framedone_data);
4019
4020 if (!error)
4021 dsi_perf_show(dsidev, "DISPC");
4022 }
4023
4024 static void dsi_framedone_timeout_work_callback(struct work_struct *work)
4025 {
4026 struct dsi_data *dsi = container_of(work, struct dsi_data,
4027 framedone_timeout_work.work);
4028 /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
4029 * 250ms which would conflict with this timeout work. What should be
4030 * done is first cancel the transfer on the HW, and then cancel the
4031 * possibly scheduled framedone work. However, cancelling the transfer
4032 * on the HW is buggy, and would probably require resetting the whole
4033 * DSI */
4034
4035 DSSERR("Framedone not received for 250ms!\n");
4036
4037 dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
4038 }
4039
4040 static void dsi_framedone_irq_callback(void *data)
4041 {
4042 struct platform_device *dsidev = (struct platform_device *) data;
4043 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4044
4045 /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
4046 * turns itself off. However, DSI still has the pixels in its buffers,
4047 * and is sending the data.
4048 */
4049
4050 cancel_delayed_work(&dsi->framedone_timeout_work);
4051
4052 dsi_handle_framedone(dsidev, 0);
4053 }
4054
4055 static int dsi_update(struct omap_dss_device *dssdev, int channel,
4056 void (*callback)(int, void *), void *data)
4057 {
4058 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4059 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4060 u16 dw, dh;
4061
4062 dsi_perf_mark_setup(dsidev);
4063
4064 dsi->update_channel = channel;
4065
4066 dsi->framedone_callback = callback;
4067 dsi->framedone_data = data;
4068
4069 dw = dsi->timings.x_res;
4070 dh = dsi->timings.y_res;
4071
4072 #ifdef DSI_PERF_MEASURE
4073 dsi->update_bytes = dw * dh *
4074 dsi_get_pixel_size(dsi->pix_fmt) / 8;
4075 #endif
4076 dsi_update_screen_dispc(dsidev);
4077
4078 return 0;
4079 }
4080
4081 /* Display funcs */
4082
4083 static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
4084 {
4085 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4086 struct dispc_clock_info dispc_cinfo;
4087 int r;
4088 unsigned long fck;
4089
4090 fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
4091
4092 dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
4093 dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
4094
4095 r = dispc_calc_clock_rates(fck, &dispc_cinfo);
4096 if (r) {
4097 DSSERR("Failed to calc dispc clocks\n");
4098 return r;
4099 }
4100
4101 dsi->mgr_config.clock_info = dispc_cinfo;
4102
4103 return 0;
4104 }
4105
4106 static int dsi_display_init_dispc(struct platform_device *dsidev,
4107 enum omap_channel channel)
4108 {
4109 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4110 int r;
4111
4112 dss_select_lcd_clk_source(channel, dsi->module_id == 0 ?
4113 DSS_CLK_SRC_PLL1_1 :
4114 DSS_CLK_SRC_PLL2_1);
4115
4116 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
4117 r = dss_mgr_register_framedone_handler(channel,
4118 dsi_framedone_irq_callback, dsidev);
4119 if (r) {
4120 DSSERR("can't register FRAMEDONE handler\n");
4121 goto err;
4122 }
4123
4124 dsi->mgr_config.stallmode = true;
4125 dsi->mgr_config.fifohandcheck = true;
4126 } else {
4127 dsi->mgr_config.stallmode = false;
4128 dsi->mgr_config.fifohandcheck = false;
4129 }
4130
4131 /*
4132 * override interlace, logic level and edge related parameters in
4133 * omap_video_timings with default values
4134 */
4135 dsi->timings.interlace = false;
4136 dsi->timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4137 dsi->timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4138 dsi->timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
4139 dsi->timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
4140 dsi->timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE;
4141
4142 dss_mgr_set_timings(channel, &dsi->timings);
4143
4144 r = dsi_configure_dispc_clocks(dsidev);
4145 if (r)
4146 goto err1;
4147
4148 dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
4149 dsi->mgr_config.video_port_width =
4150 dsi_get_pixel_size(dsi->pix_fmt);
4151 dsi->mgr_config.lcden_sig_polarity = 0;
4152
4153 dss_mgr_set_lcd_config(channel, &dsi->mgr_config);
4154
4155 return 0;
4156 err1:
4157 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4158 dss_mgr_unregister_framedone_handler(channel,
4159 dsi_framedone_irq_callback, dsidev);
4160 err:
4161 dss_select_lcd_clk_source(channel, DSS_CLK_SRC_FCK);
4162 return r;
4163 }
4164
4165 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
4166 enum omap_channel channel)
4167 {
4168 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4169
4170 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4171 dss_mgr_unregister_framedone_handler(channel,
4172 dsi_framedone_irq_callback, dsidev);
4173
4174 dss_select_lcd_clk_source(channel, DSS_CLK_SRC_FCK);
4175 }
4176
4177 static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
4178 {
4179 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4180 struct dss_pll_clock_info cinfo;
4181 int r;
4182
4183 cinfo = dsi->user_dsi_cinfo;
4184
4185 r = dss_pll_set_config(&dsi->pll, &cinfo);
4186 if (r) {
4187 DSSERR("Failed to set dsi clocks\n");
4188 return r;
4189 }
4190
4191 return 0;
4192 }
4193
4194 static int dsi_display_init_dsi(struct platform_device *dsidev)
4195 {
4196 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4197 int r;
4198
4199 r = dss_pll_enable(&dsi->pll);
4200 if (r)
4201 goto err0;
4202
4203 r = dsi_configure_dsi_clocks(dsidev);
4204 if (r)
4205 goto err1;
4206
4207 dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
4208 DSS_CLK_SRC_PLL1_2 :
4209 DSS_CLK_SRC_PLL2_2);
4210
4211 DSSDBG("PLL OK\n");
4212
4213 r = dsi_cio_init(dsidev);
4214 if (r)
4215 goto err2;
4216
4217 _dsi_print_reset_status(dsidev);
4218
4219 dsi_proto_timings(dsidev);
4220 dsi_set_lp_clk_divisor(dsidev);
4221
4222 if (1)
4223 _dsi_print_reset_status(dsidev);
4224
4225 r = dsi_proto_config(dsidev);
4226 if (r)
4227 goto err3;
4228
4229 /* enable interface */
4230 dsi_vc_enable(dsidev, 0, 1);
4231 dsi_vc_enable(dsidev, 1, 1);
4232 dsi_vc_enable(dsidev, 2, 1);
4233 dsi_vc_enable(dsidev, 3, 1);
4234 dsi_if_enable(dsidev, 1);
4235 dsi_force_tx_stop_mode_io(dsidev);
4236
4237 return 0;
4238 err3:
4239 dsi_cio_uninit(dsidev);
4240 err2:
4241 dss_select_dsi_clk_source(dsi->module_id, DSS_CLK_SRC_FCK);
4242 err1:
4243 dss_pll_disable(&dsi->pll);
4244 err0:
4245 return r;
4246 }
4247
4248 static void dsi_display_uninit_dsi(struct platform_device *dsidev,
4249 bool disconnect_lanes, bool enter_ulps)
4250 {
4251 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4252
4253 if (enter_ulps && !dsi->ulps_enabled)
4254 dsi_enter_ulps(dsidev);
4255
4256 /* disable interface */
4257 dsi_if_enable(dsidev, 0);
4258 dsi_vc_enable(dsidev, 0, 0);
4259 dsi_vc_enable(dsidev, 1, 0);
4260 dsi_vc_enable(dsidev, 2, 0);
4261 dsi_vc_enable(dsidev, 3, 0);
4262
4263 dss_select_dsi_clk_source(dsi->module_id, DSS_CLK_SRC_FCK);
4264 dsi_cio_uninit(dsidev);
4265 dsi_pll_uninit(dsidev, disconnect_lanes);
4266 }
4267
4268 static int dsi_display_enable(struct omap_dss_device *dssdev)
4269 {
4270 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4271 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4272 int r = 0;
4273
4274 DSSDBG("dsi_display_enable\n");
4275
4276 WARN_ON(!dsi_bus_is_locked(dsidev));
4277
4278 mutex_lock(&dsi->lock);
4279
4280 r = dsi_runtime_get(dsidev);
4281 if (r)
4282 goto err_get_dsi;
4283
4284 _dsi_initialize_irq(dsidev);
4285
4286 r = dsi_display_init_dsi(dsidev);
4287 if (r)
4288 goto err_init_dsi;
4289
4290 mutex_unlock(&dsi->lock);
4291
4292 return 0;
4293
4294 err_init_dsi:
4295 dsi_runtime_put(dsidev);
4296 err_get_dsi:
4297 mutex_unlock(&dsi->lock);
4298 DSSDBG("dsi_display_enable FAILED\n");
4299 return r;
4300 }
4301
4302 static void dsi_display_disable(struct omap_dss_device *dssdev,
4303 bool disconnect_lanes, bool enter_ulps)
4304 {
4305 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4306 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4307
4308 DSSDBG("dsi_display_disable\n");
4309
4310 WARN_ON(!dsi_bus_is_locked(dsidev));
4311
4312 mutex_lock(&dsi->lock);
4313
4314 dsi_sync_vc(dsidev, 0);
4315 dsi_sync_vc(dsidev, 1);
4316 dsi_sync_vc(dsidev, 2);
4317 dsi_sync_vc(dsidev, 3);
4318
4319 dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
4320
4321 dsi_runtime_put(dsidev);
4322
4323 mutex_unlock(&dsi->lock);
4324 }
4325
4326 static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
4327 {
4328 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4329 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4330
4331 dsi->te_enabled = enable;
4332 return 0;
4333 }
4334
4335 #ifdef PRINT_VERBOSE_VM_TIMINGS
4336 static void print_dsi_vm(const char *str,
4337 const struct omap_dss_dsi_videomode_timings *t)
4338 {
4339 unsigned long byteclk = t->hsclk / 4;
4340 int bl, wc, pps, tot;
4341
4342 wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
4343 pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
4344 bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
4345 tot = bl + pps;
4346
4347 #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
4348
4349 pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
4350 "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
4351 str,
4352 byteclk,
4353 t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
4354 bl, pps, tot,
4355 TO_DSI_T(t->hss),
4356 TO_DSI_T(t->hsa),
4357 TO_DSI_T(t->hse),
4358 TO_DSI_T(t->hbp),
4359 TO_DSI_T(pps),
4360 TO_DSI_T(t->hfp),
4361
4362 TO_DSI_T(bl),
4363 TO_DSI_T(pps),
4364
4365 TO_DSI_T(tot));
4366 #undef TO_DSI_T
4367 }
4368
4369 static void print_dispc_vm(const char *str, const struct omap_video_timings *t)
4370 {
4371 unsigned long pck = t->pixelclock;
4372 int hact, bl, tot;
4373
4374 hact = t->x_res;
4375 bl = t->hsw + t->hbp + t->hfp;
4376 tot = hact + bl;
4377
4378 #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
4379
4380 pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
4381 "%u/%u/%u/%u = %u + %u = %u\n",
4382 str,
4383 pck,
4384 t->hsw, t->hbp, hact, t->hfp,
4385 bl, hact, tot,
4386 TO_DISPC_T(t->hsw),
4387 TO_DISPC_T(t->hbp),
4388 TO_DISPC_T(hact),
4389 TO_DISPC_T(t->hfp),
4390 TO_DISPC_T(bl),
4391 TO_DISPC_T(hact),
4392 TO_DISPC_T(tot));
4393 #undef TO_DISPC_T
4394 }
4395
4396 /* note: this is not quite accurate */
4397 static void print_dsi_dispc_vm(const char *str,
4398 const struct omap_dss_dsi_videomode_timings *t)
4399 {
4400 struct omap_video_timings vm = { 0 };
4401 unsigned long byteclk = t->hsclk / 4;
4402 unsigned long pck;
4403 u64 dsi_tput;
4404 int dsi_hact, dsi_htot;
4405
4406 dsi_tput = (u64)byteclk * t->ndl * 8;
4407 pck = (u32)div64_u64(dsi_tput, t->bitspp);
4408 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
4409 dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
4410
4411 vm.pixelclock = pck;
4412 vm.hsw = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
4413 vm.hbp = div64_u64((u64)t->hbp * pck, byteclk);
4414 vm.hfp = div64_u64((u64)t->hfp * pck, byteclk);
4415 vm.x_res = t->hact;
4416
4417 print_dispc_vm(str, &vm);
4418 }
4419 #endif /* PRINT_VERBOSE_VM_TIMINGS */
4420
4421 static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4422 unsigned long pck, void *data)
4423 {
4424 struct dsi_clk_calc_ctx *ctx = data;
4425 struct omap_video_timings *t = &ctx->dispc_vm;
4426
4427 ctx->dispc_cinfo.lck_div = lckd;
4428 ctx->dispc_cinfo.pck_div = pckd;
4429 ctx->dispc_cinfo.lck = lck;
4430 ctx->dispc_cinfo.pck = pck;
4431
4432 *t = *ctx->config->timings;
4433 t->pixelclock = pck;
4434 t->x_res = ctx->config->timings->x_res;
4435 t->y_res = ctx->config->timings->y_res;
4436 t->hsw = t->hfp = t->hbp = t->vsw = 1;
4437 t->vfp = t->vbp = 0;
4438
4439 return true;
4440 }
4441
4442 static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4443 void *data)
4444 {
4445 struct dsi_clk_calc_ctx *ctx = data;
4446
4447 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4448 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4449
4450 return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
4451 dsi_cm_calc_dispc_cb, ctx);
4452 }
4453
4454 static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
4455 unsigned long clkdco, void *data)
4456 {
4457 struct dsi_clk_calc_ctx *ctx = data;
4458
4459 ctx->dsi_cinfo.n = n;
4460 ctx->dsi_cinfo.m = m;
4461 ctx->dsi_cinfo.fint = fint;
4462 ctx->dsi_cinfo.clkdco = clkdco;
4463
4464 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4465 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4466 dsi_cm_calc_hsdiv_cb, ctx);
4467 }
4468
4469 static bool dsi_cm_calc(struct dsi_data *dsi,
4470 const struct omap_dss_dsi_config *cfg,
4471 struct dsi_clk_calc_ctx *ctx)
4472 {
4473 unsigned long clkin;
4474 int bitspp, ndl;
4475 unsigned long pll_min, pll_max;
4476 unsigned long pck, txbyteclk;
4477
4478 clkin = clk_get_rate(dsi->pll.clkin);
4479 bitspp = dsi_get_pixel_size(cfg->pixel_format);
4480 ndl = dsi->num_lanes_used - 1;
4481
4482 /*
4483 * Here we should calculate minimum txbyteclk to be able to send the
4484 * frame in time, and also to handle TE. That's not very simple, though,
4485 * especially as we go to LP between each pixel packet due to HW
4486 * "feature". So let's just estimate very roughly and multiply by 1.5.
4487 */
4488 pck = cfg->timings->pixelclock;
4489 pck = pck * 3 / 2;
4490 txbyteclk = pck * bitspp / 8 / ndl;
4491
4492 memset(ctx, 0, sizeof(*ctx));
4493 ctx->dsidev = dsi->pdev;
4494 ctx->pll = &dsi->pll;
4495 ctx->config = cfg;
4496 ctx->req_pck_min = pck;
4497 ctx->req_pck_nom = pck;
4498 ctx->req_pck_max = pck * 3 / 2;
4499
4500 pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
4501 pll_max = cfg->hs_clk_max * 4;
4502
4503 return dss_pll_calc(ctx->pll, clkin,
4504 pll_min, pll_max,
4505 dsi_cm_calc_pll_cb, ctx);
4506 }
4507
4508 static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
4509 {
4510 struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
4511 const struct omap_dss_dsi_config *cfg = ctx->config;
4512 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4513 int ndl = dsi->num_lanes_used - 1;
4514 unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
4515 unsigned long byteclk = hsclk / 4;
4516
4517 unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
4518 int xres;
4519 int panel_htot, panel_hbl; /* pixels */
4520 int dispc_htot, dispc_hbl; /* pixels */
4521 int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
4522 int hfp, hsa, hbp;
4523 const struct omap_video_timings *req_vm;
4524 struct omap_video_timings *dispc_vm;
4525 struct omap_dss_dsi_videomode_timings *dsi_vm;
4526 u64 dsi_tput, dispc_tput;
4527
4528 dsi_tput = (u64)byteclk * ndl * 8;
4529
4530 req_vm = cfg->timings;
4531 req_pck_min = ctx->req_pck_min;
4532 req_pck_max = ctx->req_pck_max;
4533 req_pck_nom = ctx->req_pck_nom;
4534
4535 dispc_pck = ctx->dispc_cinfo.pck;
4536 dispc_tput = (u64)dispc_pck * bitspp;
4537
4538 xres = req_vm->x_res;
4539
4540 panel_hbl = req_vm->hfp + req_vm->hbp + req_vm->hsw;
4541 panel_htot = xres + panel_hbl;
4542
4543 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
4544
4545 /*
4546 * When there are no line buffers, DISPC and DSI must have the
4547 * same tput. Otherwise DISPC tput needs to be higher than DSI's.
4548 */
4549 if (dsi->line_buffer_size < xres * bitspp / 8) {
4550 if (dispc_tput != dsi_tput)
4551 return false;
4552 } else {
4553 if (dispc_tput < dsi_tput)
4554 return false;
4555 }
4556
4557 /* DSI tput must be over the min requirement */
4558 if (dsi_tput < (u64)bitspp * req_pck_min)
4559 return false;
4560
4561 /* When non-burst mode, DSI tput must be below max requirement. */
4562 if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
4563 if (dsi_tput > (u64)bitspp * req_pck_max)
4564 return false;
4565 }
4566
4567 hss = DIV_ROUND_UP(4, ndl);
4568
4569 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4570 if (ndl == 3 && req_vm->hsw == 0)
4571 hse = 1;
4572 else
4573 hse = DIV_ROUND_UP(4, ndl);
4574 } else {
4575 hse = 0;
4576 }
4577
4578 /* DSI htot to match the panel's nominal pck */
4579 dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
4580
4581 /* fail if there would be no time for blanking */
4582 if (dsi_htot < hss + hse + dsi_hact)
4583 return false;
4584
4585 /* total DSI blanking needed to achieve panel's TL */
4586 dsi_hbl = dsi_htot - dsi_hact;
4587
4588 /* DISPC htot to match the DSI TL */
4589 dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
4590
4591 /* verify that the DSI and DISPC TLs are the same */
4592 if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
4593 return false;
4594
4595 dispc_hbl = dispc_htot - xres;
4596
4597 /* setup DSI videomode */
4598
4599 dsi_vm = &ctx->dsi_vm;
4600 memset(dsi_vm, 0, sizeof(*dsi_vm));
4601
4602 dsi_vm->hsclk = hsclk;
4603
4604 dsi_vm->ndl = ndl;
4605 dsi_vm->bitspp = bitspp;
4606
4607 if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
4608 hsa = 0;
4609 } else if (ndl == 3 && req_vm->hsw == 0) {
4610 hsa = 0;
4611 } else {
4612 hsa = div64_u64((u64)req_vm->hsw * byteclk, req_pck_nom);
4613 hsa = max(hsa - hse, 1);
4614 }
4615
4616 hbp = div64_u64((u64)req_vm->hbp * byteclk, req_pck_nom);
4617 hbp = max(hbp, 1);
4618
4619 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4620 if (hfp < 1) {
4621 int t;
4622 /* we need to take cycles from hbp */
4623
4624 t = 1 - hfp;
4625 hbp = max(hbp - t, 1);
4626 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4627
4628 if (hfp < 1 && hsa > 0) {
4629 /* we need to take cycles from hsa */
4630 t = 1 - hfp;
4631 hsa = max(hsa - t, 1);
4632 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4633 }
4634 }
4635
4636 if (hfp < 1)
4637 return false;
4638
4639 dsi_vm->hss = hss;
4640 dsi_vm->hsa = hsa;
4641 dsi_vm->hse = hse;
4642 dsi_vm->hbp = hbp;
4643 dsi_vm->hact = xres;
4644 dsi_vm->hfp = hfp;
4645
4646 dsi_vm->vsa = req_vm->vsw;
4647 dsi_vm->vbp = req_vm->vbp;
4648 dsi_vm->vact = req_vm->y_res;
4649 dsi_vm->vfp = req_vm->vfp;
4650
4651 dsi_vm->trans_mode = cfg->trans_mode;
4652
4653 dsi_vm->blanking_mode = 0;
4654 dsi_vm->hsa_blanking_mode = 1;
4655 dsi_vm->hfp_blanking_mode = 1;
4656 dsi_vm->hbp_blanking_mode = 1;
4657
4658 dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
4659 dsi_vm->window_sync = 4;
4660
4661 /* setup DISPC videomode */
4662
4663 dispc_vm = &ctx->dispc_vm;
4664 *dispc_vm = *req_vm;
4665 dispc_vm->pixelclock = dispc_pck;
4666
4667 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4668 hsa = div64_u64((u64)req_vm->hsw * dispc_pck,
4669 req_pck_nom);
4670 hsa = max(hsa, 1);
4671 } else {
4672 hsa = 1;
4673 }
4674
4675 hbp = div64_u64((u64)req_vm->hbp * dispc_pck, req_pck_nom);
4676 hbp = max(hbp, 1);
4677
4678 hfp = dispc_hbl - hsa - hbp;
4679 if (hfp < 1) {
4680 int t;
4681 /* we need to take cycles from hbp */
4682
4683 t = 1 - hfp;
4684 hbp = max(hbp - t, 1);
4685 hfp = dispc_hbl - hsa - hbp;
4686
4687 if (hfp < 1) {
4688 /* we need to take cycles from hsa */
4689 t = 1 - hfp;
4690 hsa = max(hsa - t, 1);
4691 hfp = dispc_hbl - hsa - hbp;
4692 }
4693 }
4694
4695 if (hfp < 1)
4696 return false;
4697
4698 dispc_vm->hfp = hfp;
4699 dispc_vm->hsw = hsa;
4700 dispc_vm->hbp = hbp;
4701
4702 return true;
4703 }
4704
4705
4706 static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4707 unsigned long pck, void *data)
4708 {
4709 struct dsi_clk_calc_ctx *ctx = data;
4710
4711 ctx->dispc_cinfo.lck_div = lckd;
4712 ctx->dispc_cinfo.pck_div = pckd;
4713 ctx->dispc_cinfo.lck = lck;
4714 ctx->dispc_cinfo.pck = pck;
4715
4716 if (dsi_vm_calc_blanking(ctx) == false)
4717 return false;
4718
4719 #ifdef PRINT_VERBOSE_VM_TIMINGS
4720 print_dispc_vm("dispc", &ctx->dispc_vm);
4721 print_dsi_vm("dsi ", &ctx->dsi_vm);
4722 print_dispc_vm("req ", ctx->config->timings);
4723 print_dsi_dispc_vm("act ", &ctx->dsi_vm);
4724 #endif
4725
4726 return true;
4727 }
4728
4729 static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4730 void *data)
4731 {
4732 struct dsi_clk_calc_ctx *ctx = data;
4733 unsigned long pck_max;
4734
4735 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4736 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4737
4738 /*
4739 * In burst mode we can let the dispc pck be arbitrarily high, but it
4740 * limits our scaling abilities. So for now, don't aim too high.
4741 */
4742
4743 if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
4744 pck_max = ctx->req_pck_max + 10000000;
4745 else
4746 pck_max = ctx->req_pck_max;
4747
4748 return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
4749 dsi_vm_calc_dispc_cb, ctx);
4750 }
4751
4752 static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
4753 unsigned long clkdco, void *data)
4754 {
4755 struct dsi_clk_calc_ctx *ctx = data;
4756
4757 ctx->dsi_cinfo.n = n;
4758 ctx->dsi_cinfo.m = m;
4759 ctx->dsi_cinfo.fint = fint;
4760 ctx->dsi_cinfo.clkdco = clkdco;
4761
4762 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4763 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4764 dsi_vm_calc_hsdiv_cb, ctx);
4765 }
4766
4767 static bool dsi_vm_calc(struct dsi_data *dsi,
4768 const struct omap_dss_dsi_config *cfg,
4769 struct dsi_clk_calc_ctx *ctx)
4770 {
4771 const struct omap_video_timings *t = cfg->timings;
4772 unsigned long clkin;
4773 unsigned long pll_min;
4774 unsigned long pll_max;
4775 int ndl = dsi->num_lanes_used - 1;
4776 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4777 unsigned long byteclk_min;
4778
4779 clkin = clk_get_rate(dsi->pll.clkin);
4780
4781 memset(ctx, 0, sizeof(*ctx));
4782 ctx->dsidev = dsi->pdev;
4783 ctx->pll = &dsi->pll;
4784 ctx->config = cfg;
4785
4786 /* these limits should come from the panel driver */
4787 ctx->req_pck_min = t->pixelclock - 1000;
4788 ctx->req_pck_nom = t->pixelclock;
4789 ctx->req_pck_max = t->pixelclock + 1000;
4790
4791 byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
4792 pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
4793
4794 if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
4795 pll_max = cfg->hs_clk_max * 4;
4796 } else {
4797 unsigned long byteclk_max;
4798 byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
4799 ndl * 8);
4800
4801 pll_max = byteclk_max * 4 * 4;
4802 }
4803
4804 return dss_pll_calc(ctx->pll, clkin,
4805 pll_min, pll_max,
4806 dsi_vm_calc_pll_cb, ctx);
4807 }
4808
4809 static int dsi_set_config(struct omap_dss_device *dssdev,
4810 const struct omap_dss_dsi_config *config)
4811 {
4812 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4813 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4814 struct dsi_clk_calc_ctx ctx;
4815 bool ok;
4816 int r;
4817
4818 mutex_lock(&dsi->lock);
4819
4820 dsi->pix_fmt = config->pixel_format;
4821 dsi->mode = config->mode;
4822
4823 if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
4824 ok = dsi_vm_calc(dsi, config, &ctx);
4825 else
4826 ok = dsi_cm_calc(dsi, config, &ctx);
4827
4828 if (!ok) {
4829 DSSERR("failed to find suitable DSI clock settings\n");
4830 r = -EINVAL;
4831 goto err;
4832 }
4833
4834 dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
4835
4836 r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
4837 config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
4838 if (r) {
4839 DSSERR("failed to find suitable DSI LP clock settings\n");
4840 goto err;
4841 }
4842
4843 dsi->user_dsi_cinfo = ctx.dsi_cinfo;
4844 dsi->user_dispc_cinfo = ctx.dispc_cinfo;
4845
4846 dsi->timings = ctx.dispc_vm;
4847 dsi->vm_timings = ctx.dsi_vm;
4848
4849 mutex_unlock(&dsi->lock);
4850
4851 return 0;
4852 err:
4853 mutex_unlock(&dsi->lock);
4854
4855 return r;
4856 }
4857
4858 /*
4859 * Return a hardcoded channel for the DSI output. This should work for
4860 * current use cases, but this can be later expanded to either resolve
4861 * the channel in some more dynamic manner, or get the channel as a user
4862 * parameter.
4863 */
4864 static enum omap_channel dsi_get_channel(int module_id)
4865 {
4866 switch (omapdss_get_version()) {
4867 case OMAPDSS_VER_OMAP24xx:
4868 case OMAPDSS_VER_AM43xx:
4869 DSSWARN("DSI not supported\n");
4870 return OMAP_DSS_CHANNEL_LCD;
4871
4872 case OMAPDSS_VER_OMAP34xx_ES1:
4873 case OMAPDSS_VER_OMAP34xx_ES3:
4874 case OMAPDSS_VER_OMAP3630:
4875 case OMAPDSS_VER_AM35xx:
4876 return OMAP_DSS_CHANNEL_LCD;
4877
4878 case OMAPDSS_VER_OMAP4430_ES1:
4879 case OMAPDSS_VER_OMAP4430_ES2:
4880 case OMAPDSS_VER_OMAP4:
4881 switch (module_id) {
4882 case 0:
4883 return OMAP_DSS_CHANNEL_LCD;
4884 case 1:
4885 return OMAP_DSS_CHANNEL_LCD2;
4886 default:
4887 DSSWARN("unsupported module id\n");
4888 return OMAP_DSS_CHANNEL_LCD;
4889 }
4890
4891 case OMAPDSS_VER_OMAP5:
4892 switch (module_id) {
4893 case 0:
4894 return OMAP_DSS_CHANNEL_LCD;
4895 case 1:
4896 return OMAP_DSS_CHANNEL_LCD3;
4897 default:
4898 DSSWARN("unsupported module id\n");
4899 return OMAP_DSS_CHANNEL_LCD;
4900 }
4901
4902 default:
4903 DSSWARN("unsupported DSS version\n");
4904 return OMAP_DSS_CHANNEL_LCD;
4905 }
4906 }
4907
4908 static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
4909 {
4910 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4911 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4912 int i;
4913
4914 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
4915 if (!dsi->vc[i].dssdev) {
4916 dsi->vc[i].dssdev = dssdev;
4917 *channel = i;
4918 return 0;
4919 }
4920 }
4921
4922 DSSERR("cannot get VC for display %s", dssdev->name);
4923 return -ENOSPC;
4924 }
4925
4926 static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
4927 {
4928 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4929 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4930
4931 if (vc_id < 0 || vc_id > 3) {
4932 DSSERR("VC ID out of range\n");
4933 return -EINVAL;
4934 }
4935
4936 if (channel < 0 || channel > 3) {
4937 DSSERR("Virtual Channel out of range\n");
4938 return -EINVAL;
4939 }
4940
4941 if (dsi->vc[channel].dssdev != dssdev) {
4942 DSSERR("Virtual Channel not allocated to display %s\n",
4943 dssdev->name);
4944 return -EINVAL;
4945 }
4946
4947 dsi->vc[channel].vc_id = vc_id;
4948
4949 return 0;
4950 }
4951
4952 static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
4953 {
4954 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4955 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4956
4957 if ((channel >= 0 && channel <= 3) &&
4958 dsi->vc[channel].dssdev == dssdev) {
4959 dsi->vc[channel].dssdev = NULL;
4960 dsi->vc[channel].vc_id = 0;
4961 }
4962 }
4963
4964
4965 static int dsi_get_clocks(struct platform_device *dsidev)
4966 {
4967 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4968 struct clk *clk;
4969
4970 clk = devm_clk_get(&dsidev->dev, "fck");
4971 if (IS_ERR(clk)) {
4972 DSSERR("can't get fck\n");
4973 return PTR_ERR(clk);
4974 }
4975
4976 dsi->dss_clk = clk;
4977
4978 return 0;
4979 }
4980
4981 static int dsi_connect(struct omap_dss_device *dssdev,
4982 struct omap_dss_device *dst)
4983 {
4984 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4985 enum omap_channel dispc_channel = dssdev->dispc_channel;
4986 int r;
4987
4988 r = dsi_regulator_init(dsidev);
4989 if (r)
4990 return r;
4991
4992 r = dss_mgr_connect(dispc_channel, dssdev);
4993 if (r)
4994 return r;
4995
4996 r = omapdss_output_set_device(dssdev, dst);
4997 if (r) {
4998 DSSERR("failed to connect output to new device: %s\n",
4999 dssdev->name);
5000 dss_mgr_disconnect(dispc_channel, dssdev);
5001 return r;
5002 }
5003
5004 return 0;
5005 }
5006
5007 static void dsi_disconnect(struct omap_dss_device *dssdev,
5008 struct omap_dss_device *dst)
5009 {
5010 enum omap_channel dispc_channel = dssdev->dispc_channel;
5011
5012 WARN_ON(dst != dssdev->dst);
5013
5014 if (dst != dssdev->dst)
5015 return;
5016
5017 omapdss_output_unset_device(dssdev);
5018
5019 dss_mgr_disconnect(dispc_channel, dssdev);
5020 }
5021
5022 static const struct omapdss_dsi_ops dsi_ops = {
5023 .connect = dsi_connect,
5024 .disconnect = dsi_disconnect,
5025
5026 .bus_lock = dsi_bus_lock,
5027 .bus_unlock = dsi_bus_unlock,
5028
5029 .enable = dsi_display_enable,
5030 .disable = dsi_display_disable,
5031
5032 .enable_hs = dsi_vc_enable_hs,
5033
5034 .configure_pins = dsi_configure_pins,
5035 .set_config = dsi_set_config,
5036
5037 .enable_video_output = dsi_enable_video_output,
5038 .disable_video_output = dsi_disable_video_output,
5039
5040 .update = dsi_update,
5041
5042 .enable_te = dsi_enable_te,
5043
5044 .request_vc = dsi_request_vc,
5045 .set_vc_id = dsi_set_vc_id,
5046 .release_vc = dsi_release_vc,
5047
5048 .dcs_write = dsi_vc_dcs_write,
5049 .dcs_write_nosync = dsi_vc_dcs_write_nosync,
5050 .dcs_read = dsi_vc_dcs_read,
5051
5052 .gen_write = dsi_vc_generic_write,
5053 .gen_write_nosync = dsi_vc_generic_write_nosync,
5054 .gen_read = dsi_vc_generic_read,
5055
5056 .bta_sync = dsi_vc_send_bta_sync,
5057
5058 .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
5059 };
5060
5061 static void dsi_init_output(struct platform_device *dsidev)
5062 {
5063 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5064 struct omap_dss_device *out = &dsi->output;
5065
5066 out->dev = &dsidev->dev;
5067 out->id = dsi->module_id == 0 ?
5068 OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
5069
5070 out->output_type = OMAP_DISPLAY_TYPE_DSI;
5071 out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
5072 out->dispc_channel = dsi_get_channel(dsi->module_id);
5073 out->ops.dsi = &dsi_ops;
5074 out->owner = THIS_MODULE;
5075
5076 omapdss_register_output(out);
5077 }
5078
5079 static void dsi_uninit_output(struct platform_device *dsidev)
5080 {
5081 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5082 struct omap_dss_device *out = &dsi->output;
5083
5084 omapdss_unregister_output(out);
5085 }
5086
5087 static int dsi_probe_of(struct platform_device *pdev)
5088 {
5089 struct device_node *node = pdev->dev.of_node;
5090 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5091 struct property *prop;
5092 u32 lane_arr[10];
5093 int len, num_pins;
5094 int r, i;
5095 struct device_node *ep;
5096 struct omap_dsi_pin_config pin_cfg;
5097
5098 ep = omapdss_of_get_first_endpoint(node);
5099 if (!ep)
5100 return 0;
5101
5102 prop = of_find_property(ep, "lanes", &len);
5103 if (prop == NULL) {
5104 dev_err(&pdev->dev, "failed to find lane data\n");
5105 r = -EINVAL;
5106 goto err;
5107 }
5108
5109 num_pins = len / sizeof(u32);
5110
5111 if (num_pins < 4 || num_pins % 2 != 0 ||
5112 num_pins > dsi->num_lanes_supported * 2) {
5113 dev_err(&pdev->dev, "bad number of lanes\n");
5114 r = -EINVAL;
5115 goto err;
5116 }
5117
5118 r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
5119 if (r) {
5120 dev_err(&pdev->dev, "failed to read lane data\n");
5121 goto err;
5122 }
5123
5124 pin_cfg.num_pins = num_pins;
5125 for (i = 0; i < num_pins; ++i)
5126 pin_cfg.pins[i] = (int)lane_arr[i];
5127
5128 r = dsi_configure_pins(&dsi->output, &pin_cfg);
5129 if (r) {
5130 dev_err(&pdev->dev, "failed to configure pins");
5131 goto err;
5132 }
5133
5134 of_node_put(ep);
5135
5136 return 0;
5137
5138 err:
5139 of_node_put(ep);
5140 return r;
5141 }
5142
5143 static const struct dss_pll_ops dsi_pll_ops = {
5144 .enable = dsi_pll_enable,
5145 .disable = dsi_pll_disable,
5146 .set_config = dss_pll_write_config_type_a,
5147 };
5148
5149 static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
5150 .type = DSS_PLL_TYPE_A,
5151
5152 .n_max = (1 << 7) - 1,
5153 .m_max = (1 << 11) - 1,
5154 .mX_max = (1 << 4) - 1,
5155 .fint_min = 750000,
5156 .fint_max = 2100000,
5157 .clkdco_low = 1000000000,
5158 .clkdco_max = 1800000000,
5159
5160 .n_msb = 7,
5161 .n_lsb = 1,
5162 .m_msb = 18,
5163 .m_lsb = 8,
5164
5165 .mX_msb[0] = 22,
5166 .mX_lsb[0] = 19,
5167 .mX_msb[1] = 26,
5168 .mX_lsb[1] = 23,
5169
5170 .has_stopmode = true,
5171 .has_freqsel = true,
5172 .has_selfreqdco = false,
5173 .has_refsel = false,
5174 };
5175
5176 static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
5177 .type = DSS_PLL_TYPE_A,
5178
5179 .n_max = (1 << 8) - 1,
5180 .m_max = (1 << 12) - 1,
5181 .mX_max = (1 << 5) - 1,
5182 .fint_min = 500000,
5183 .fint_max = 2500000,
5184 .clkdco_low = 1000000000,
5185 .clkdco_max = 1800000000,
5186
5187 .n_msb = 8,
5188 .n_lsb = 1,
5189 .m_msb = 20,
5190 .m_lsb = 9,
5191
5192 .mX_msb[0] = 25,
5193 .mX_lsb[0] = 21,
5194 .mX_msb[1] = 30,
5195 .mX_lsb[1] = 26,
5196
5197 .has_stopmode = true,
5198 .has_freqsel = false,
5199 .has_selfreqdco = false,
5200 .has_refsel = false,
5201 };
5202
5203 static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
5204 .type = DSS_PLL_TYPE_A,
5205
5206 .n_max = (1 << 8) - 1,
5207 .m_max = (1 << 12) - 1,
5208 .mX_max = (1 << 5) - 1,
5209 .fint_min = 150000,
5210 .fint_max = 52000000,
5211 .clkdco_low = 1000000000,
5212 .clkdco_max = 1800000000,
5213
5214 .n_msb = 8,
5215 .n_lsb = 1,
5216 .m_msb = 20,
5217 .m_lsb = 9,
5218
5219 .mX_msb[0] = 25,
5220 .mX_lsb[0] = 21,
5221 .mX_msb[1] = 30,
5222 .mX_lsb[1] = 26,
5223
5224 .has_stopmode = true,
5225 .has_freqsel = false,
5226 .has_selfreqdco = true,
5227 .has_refsel = true,
5228 };
5229
5230 static int dsi_init_pll_data(struct platform_device *dsidev)
5231 {
5232 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5233 struct dss_pll *pll = &dsi->pll;
5234 struct clk *clk;
5235 int r;
5236
5237 clk = devm_clk_get(&dsidev->dev, "sys_clk");
5238 if (IS_ERR(clk)) {
5239 DSSERR("can't get sys_clk\n");
5240 return PTR_ERR(clk);
5241 }
5242
5243 pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
5244 pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
5245 pll->clkin = clk;
5246 pll->base = dsi->pll_base;
5247
5248 switch (omapdss_get_version()) {
5249 case OMAPDSS_VER_OMAP34xx_ES1:
5250 case OMAPDSS_VER_OMAP34xx_ES3:
5251 case OMAPDSS_VER_OMAP3630:
5252 case OMAPDSS_VER_AM35xx:
5253 pll->hw = &dss_omap3_dsi_pll_hw;
5254 break;
5255
5256 case OMAPDSS_VER_OMAP4430_ES1:
5257 case OMAPDSS_VER_OMAP4430_ES2:
5258 case OMAPDSS_VER_OMAP4:
5259 pll->hw = &dss_omap4_dsi_pll_hw;
5260 break;
5261
5262 case OMAPDSS_VER_OMAP5:
5263 pll->hw = &dss_omap5_dsi_pll_hw;
5264 break;
5265
5266 default:
5267 return -ENODEV;
5268 }
5269
5270 pll->ops = &dsi_pll_ops;
5271
5272 r = dss_pll_register(pll);
5273 if (r)
5274 return r;
5275
5276 return 0;
5277 }
5278
5279 /* DSI1 HW IP initialisation */
5280 static int dsi_bind(struct device *dev, struct device *master, void *data)
5281 {
5282 struct platform_device *dsidev = to_platform_device(dev);
5283 u32 rev;
5284 int r, i;
5285 struct dsi_data *dsi;
5286 struct resource *dsi_mem;
5287 struct resource *res;
5288 struct resource temp_res;
5289
5290 dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
5291 if (!dsi)
5292 return -ENOMEM;
5293
5294 dsi->pdev = dsidev;
5295 dev_set_drvdata(&dsidev->dev, dsi);
5296
5297 spin_lock_init(&dsi->irq_lock);
5298 spin_lock_init(&dsi->errors_lock);
5299 dsi->errors = 0;
5300
5301 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5302 spin_lock_init(&dsi->irq_stats_lock);
5303 dsi->irq_stats.last_reset = jiffies;
5304 #endif
5305
5306 mutex_init(&dsi->lock);
5307 sema_init(&dsi->bus_lock, 1);
5308
5309 INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
5310 dsi_framedone_timeout_work_callback);
5311
5312 #ifdef DSI_CATCH_MISSING_TE
5313 init_timer(&dsi->te_timer);
5314 dsi->te_timer.function = dsi_te_timeout;
5315 dsi->te_timer.data = 0;
5316 #endif
5317
5318 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
5319 if (!res) {
5320 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5321 if (!res) {
5322 DSSERR("can't get IORESOURCE_MEM DSI\n");
5323 return -EINVAL;
5324 }
5325
5326 temp_res.start = res->start;
5327 temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
5328 res = &temp_res;
5329 }
5330
5331 dsi_mem = res;
5332
5333 dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
5334 resource_size(res));
5335 if (!dsi->proto_base) {
5336 DSSERR("can't ioremap DSI protocol engine\n");
5337 return -ENOMEM;
5338 }
5339
5340 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
5341 if (!res) {
5342 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5343 if (!res) {
5344 DSSERR("can't get IORESOURCE_MEM DSI\n");
5345 return -EINVAL;
5346 }
5347
5348 temp_res.start = res->start + DSI_PHY_OFFSET;
5349 temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
5350 res = &temp_res;
5351 }
5352
5353 dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
5354 resource_size(res));
5355 if (!dsi->proto_base) {
5356 DSSERR("can't ioremap DSI PHY\n");
5357 return -ENOMEM;
5358 }
5359
5360 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
5361 if (!res) {
5362 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5363 if (!res) {
5364 DSSERR("can't get IORESOURCE_MEM DSI\n");
5365 return -EINVAL;
5366 }
5367
5368 temp_res.start = res->start + DSI_PLL_OFFSET;
5369 temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
5370 res = &temp_res;
5371 }
5372
5373 dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
5374 resource_size(res));
5375 if (!dsi->proto_base) {
5376 DSSERR("can't ioremap DSI PLL\n");
5377 return -ENOMEM;
5378 }
5379
5380 dsi->irq = platform_get_irq(dsi->pdev, 0);
5381 if (dsi->irq < 0) {
5382 DSSERR("platform_get_irq failed\n");
5383 return -ENODEV;
5384 }
5385
5386 r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
5387 IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
5388 if (r < 0) {
5389 DSSERR("request_irq failed\n");
5390 return r;
5391 }
5392
5393 if (dsidev->dev.of_node) {
5394 const struct of_device_id *match;
5395 const struct dsi_module_id_data *d;
5396
5397 match = of_match_node(dsi_of_match, dsidev->dev.of_node);
5398 if (!match) {
5399 DSSERR("unsupported DSI module\n");
5400 return -ENODEV;
5401 }
5402
5403 d = match->data;
5404
5405 while (d->address != 0 && d->address != dsi_mem->start)
5406 d++;
5407
5408 if (d->address == 0) {
5409 DSSERR("unsupported DSI module\n");
5410 return -ENODEV;
5411 }
5412
5413 dsi->module_id = d->id;
5414 } else {
5415 dsi->module_id = dsidev->id;
5416 }
5417
5418 /* DSI VCs initialization */
5419 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
5420 dsi->vc[i].source = DSI_VC_SOURCE_L4;
5421 dsi->vc[i].dssdev = NULL;
5422 dsi->vc[i].vc_id = 0;
5423 }
5424
5425 r = dsi_get_clocks(dsidev);
5426 if (r)
5427 return r;
5428
5429 dsi_init_pll_data(dsidev);
5430
5431 pm_runtime_enable(&dsidev->dev);
5432
5433 r = dsi_runtime_get(dsidev);
5434 if (r)
5435 goto err_runtime_get;
5436
5437 rev = dsi_read_reg(dsidev, DSI_REVISION);
5438 dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
5439 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
5440
5441 /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
5442 * of data to 3 by default */
5443 if (dss_has_feature(FEAT_DSI_GNQ))
5444 /* NB_DATA_LANES */
5445 dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
5446 else
5447 dsi->num_lanes_supported = 3;
5448
5449 dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
5450
5451 dsi_init_output(dsidev);
5452
5453 if (dsidev->dev.of_node) {
5454 r = dsi_probe_of(dsidev);
5455 if (r) {
5456 DSSERR("Invalid DSI DT data\n");
5457 goto err_probe_of;
5458 }
5459
5460 r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
5461 &dsidev->dev);
5462 if (r)
5463 DSSERR("Failed to populate DSI child devices: %d\n", r);
5464 }
5465
5466 dsi_runtime_put(dsidev);
5467
5468 if (dsi->module_id == 0)
5469 dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
5470 else if (dsi->module_id == 1)
5471 dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
5472
5473 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5474 if (dsi->module_id == 0)
5475 dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
5476 else if (dsi->module_id == 1)
5477 dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
5478 #endif
5479
5480 return 0;
5481
5482 err_probe_of:
5483 dsi_uninit_output(dsidev);
5484 dsi_runtime_put(dsidev);
5485
5486 err_runtime_get:
5487 pm_runtime_disable(&dsidev->dev);
5488 return r;
5489 }
5490
5491 static void dsi_unbind(struct device *dev, struct device *master, void *data)
5492 {
5493 struct platform_device *dsidev = to_platform_device(dev);
5494 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5495
5496 of_platform_depopulate(&dsidev->dev);
5497
5498 WARN_ON(dsi->scp_clk_refcount > 0);
5499
5500 dss_pll_unregister(&dsi->pll);
5501
5502 dsi_uninit_output(dsidev);
5503
5504 pm_runtime_disable(&dsidev->dev);
5505
5506 if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
5507 regulator_disable(dsi->vdds_dsi_reg);
5508 dsi->vdds_dsi_enabled = false;
5509 }
5510 }
5511
5512 static const struct component_ops dsi_component_ops = {
5513 .bind = dsi_bind,
5514 .unbind = dsi_unbind,
5515 };
5516
5517 static int dsi_probe(struct platform_device *pdev)
5518 {
5519 return component_add(&pdev->dev, &dsi_component_ops);
5520 }
5521
5522 static int dsi_remove(struct platform_device *pdev)
5523 {
5524 component_del(&pdev->dev, &dsi_component_ops);
5525 return 0;
5526 }
5527
5528 static int dsi_runtime_suspend(struct device *dev)
5529 {
5530 struct platform_device *pdev = to_platform_device(dev);
5531 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5532
5533 dsi->is_enabled = false;
5534 /* ensure the irq handler sees the is_enabled value */
5535 smp_wmb();
5536 /* wait for current handler to finish before turning the DSI off */
5537 synchronize_irq(dsi->irq);
5538
5539 dispc_runtime_put();
5540
5541 return 0;
5542 }
5543
5544 static int dsi_runtime_resume(struct device *dev)
5545 {
5546 struct platform_device *pdev = to_platform_device(dev);
5547 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5548 int r;
5549
5550 r = dispc_runtime_get();
5551 if (r)
5552 return r;
5553
5554 dsi->is_enabled = true;
5555 /* ensure the irq handler sees the is_enabled value */
5556 smp_wmb();
5557
5558 return 0;
5559 }
5560
5561 static const struct dev_pm_ops dsi_pm_ops = {
5562 .runtime_suspend = dsi_runtime_suspend,
5563 .runtime_resume = dsi_runtime_resume,
5564 };
5565
5566 static const struct dsi_module_id_data dsi_of_data_omap3[] = {
5567 { .address = 0x4804fc00, .id = 0, },
5568 { },
5569 };
5570
5571 static const struct dsi_module_id_data dsi_of_data_omap4[] = {
5572 { .address = 0x58004000, .id = 0, },
5573 { .address = 0x58005000, .id = 1, },
5574 { },
5575 };
5576
5577 static const struct dsi_module_id_data dsi_of_data_omap5[] = {
5578 { .address = 0x58004000, .id = 0, },
5579 { .address = 0x58009000, .id = 1, },
5580 { },
5581 };
5582
5583 static const struct of_device_id dsi_of_match[] = {
5584 { .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
5585 { .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
5586 { .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
5587 {},
5588 };
5589
5590 static struct platform_driver omap_dsihw_driver = {
5591 .probe = dsi_probe,
5592 .remove = dsi_remove,
5593 .driver = {
5594 .name = "omapdss_dsi",
5595 .pm = &dsi_pm_ops,
5596 .of_match_table = dsi_of_match,
5597 .suppress_bind_attrs = true,
5598 },
5599 };
5600
5601 int __init dsi_init_platform_driver(void)
5602 {
5603 return platform_driver_register(&omap_dsihw_driver);
5604 }
5605
5606 void dsi_uninit_platform_driver(void)
5607 {
5608 platform_driver_unregister(&omap_dsihw_driver);
5609 }