]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/omapdrm/dss/dsi.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / omapdrm / dss / dsi.c
1 /*
2 * linux/drivers/video/omap2/dss/dsi.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #define DSS_SUBSYS_NAME "DSI"
21
22 #include <linux/kernel.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/device.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31 #include <linux/semaphore.h>
32 #include <linux/seq_file.h>
33 #include <linux/platform_device.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/wait.h>
36 #include <linux/workqueue.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/debugfs.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/of.h>
42 #include <linux/of_platform.h>
43 #include <linux/component.h>
44
45 #include <video/omapdss.h>
46 #include <video/mipi_display.h>
47
48 #include "dss.h"
49 #include "dss_features.h"
50
51 #define DSI_CATCH_MISSING_TE
52
53 struct dsi_reg { u16 module; u16 idx; };
54
55 #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
56
57 /* DSI Protocol Engine */
58
59 #define DSI_PROTO 0
60 #define DSI_PROTO_SZ 0x200
61
62 #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
63 #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
64 #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
65 #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
66 #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
67 #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
68 #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
69 #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
70 #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
71 #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
72 #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
73 #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
74 #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
75 #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
76 #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
77 #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
78 #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
79 #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
80 #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
81 #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
82 #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
83 #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
84 #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
85 #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
86 #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
87 #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
88 #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
89 #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
90 #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
91 #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
92 #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
93 #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
94 #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
95 #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
96
97 /* DSIPHY_SCP */
98
99 #define DSI_PHY 1
100 #define DSI_PHY_OFFSET 0x200
101 #define DSI_PHY_SZ 0x40
102
103 #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
104 #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
105 #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
106 #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
107 #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
108
109 /* DSI_PLL_CTRL_SCP */
110
111 #define DSI_PLL 2
112 #define DSI_PLL_OFFSET 0x300
113 #define DSI_PLL_SZ 0x20
114
115 #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
116 #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
117 #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
118 #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
119 #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
120
121 #define REG_GET(dsidev, idx, start, end) \
122 FLD_GET(dsi_read_reg(dsidev, idx), start, end)
123
124 #define REG_FLD_MOD(dsidev, idx, val, start, end) \
125 dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
126
127 /* Global interrupts */
128 #define DSI_IRQ_VC0 (1 << 0)
129 #define DSI_IRQ_VC1 (1 << 1)
130 #define DSI_IRQ_VC2 (1 << 2)
131 #define DSI_IRQ_VC3 (1 << 3)
132 #define DSI_IRQ_WAKEUP (1 << 4)
133 #define DSI_IRQ_RESYNC (1 << 5)
134 #define DSI_IRQ_PLL_LOCK (1 << 7)
135 #define DSI_IRQ_PLL_UNLOCK (1 << 8)
136 #define DSI_IRQ_PLL_RECALL (1 << 9)
137 #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
138 #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
139 #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
140 #define DSI_IRQ_TE_TRIGGER (1 << 16)
141 #define DSI_IRQ_ACK_TRIGGER (1 << 17)
142 #define DSI_IRQ_SYNC_LOST (1 << 18)
143 #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
144 #define DSI_IRQ_TA_TIMEOUT (1 << 20)
145 #define DSI_IRQ_ERROR_MASK \
146 (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
147 DSI_IRQ_TA_TIMEOUT)
148 #define DSI_IRQ_CHANNEL_MASK 0xf
149
150 /* Virtual channel interrupts */
151 #define DSI_VC_IRQ_CS (1 << 0)
152 #define DSI_VC_IRQ_ECC_CORR (1 << 1)
153 #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
154 #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
155 #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
156 #define DSI_VC_IRQ_BTA (1 << 5)
157 #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
158 #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
159 #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
160 #define DSI_VC_IRQ_ERROR_MASK \
161 (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
162 DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
163 DSI_VC_IRQ_FIFO_TX_UDF)
164
165 /* ComplexIO interrupts */
166 #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
167 #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
168 #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
169 #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
170 #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
171 #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
172 #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
173 #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
174 #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
175 #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
176 #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
177 #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
178 #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
179 #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
180 #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
181 #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
182 #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
183 #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
184 #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
185 #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
186 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
187 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
188 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
189 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
190 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
191 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
192 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
193 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
194 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
195 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
196 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
197 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
198 #define DSI_CIO_IRQ_ERROR_MASK \
199 (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
200 DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
201 DSI_CIO_IRQ_ERRSYNCESC5 | \
202 DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
203 DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
204 DSI_CIO_IRQ_ERRESC5 | \
205 DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
206 DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
207 DSI_CIO_IRQ_ERRCONTROL5 | \
208 DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
209 DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
210 DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
211 DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
212 DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
213
214 typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
215
216 static int dsi_display_init_dispc(struct platform_device *dsidev,
217 enum omap_channel channel);
218 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
219 enum omap_channel channel);
220
221 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
222
223 /* DSI PLL HSDIV indices */
224 #define HSDIV_DISPC 0
225 #define HSDIV_DSI 1
226
227 #define DSI_MAX_NR_ISRS 2
228 #define DSI_MAX_NR_LANES 5
229
230 enum dsi_lane_function {
231 DSI_LANE_UNUSED = 0,
232 DSI_LANE_CLK,
233 DSI_LANE_DATA1,
234 DSI_LANE_DATA2,
235 DSI_LANE_DATA3,
236 DSI_LANE_DATA4,
237 };
238
239 struct dsi_lane_config {
240 enum dsi_lane_function function;
241 u8 polarity;
242 };
243
244 struct dsi_isr_data {
245 omap_dsi_isr_t isr;
246 void *arg;
247 u32 mask;
248 };
249
250 enum fifo_size {
251 DSI_FIFO_SIZE_0 = 0,
252 DSI_FIFO_SIZE_32 = 1,
253 DSI_FIFO_SIZE_64 = 2,
254 DSI_FIFO_SIZE_96 = 3,
255 DSI_FIFO_SIZE_128 = 4,
256 };
257
258 enum dsi_vc_source {
259 DSI_VC_SOURCE_L4 = 0,
260 DSI_VC_SOURCE_VP,
261 };
262
263 struct dsi_irq_stats {
264 unsigned long last_reset;
265 unsigned irq_count;
266 unsigned dsi_irqs[32];
267 unsigned vc_irqs[4][32];
268 unsigned cio_irqs[32];
269 };
270
271 struct dsi_isr_tables {
272 struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
273 struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
274 struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
275 };
276
277 struct dsi_clk_calc_ctx {
278 struct platform_device *dsidev;
279 struct dss_pll *pll;
280
281 /* inputs */
282
283 const struct omap_dss_dsi_config *config;
284
285 unsigned long req_pck_min, req_pck_nom, req_pck_max;
286
287 /* outputs */
288
289 struct dss_pll_clock_info dsi_cinfo;
290 struct dispc_clock_info dispc_cinfo;
291
292 struct omap_video_timings dispc_vm;
293 struct omap_dss_dsi_videomode_timings dsi_vm;
294 };
295
296 struct dsi_lp_clock_info {
297 unsigned long lp_clk;
298 u16 lp_clk_div;
299 };
300
301 struct dsi_data {
302 struct platform_device *pdev;
303 void __iomem *proto_base;
304 void __iomem *phy_base;
305 void __iomem *pll_base;
306
307 int module_id;
308
309 int irq;
310
311 bool is_enabled;
312
313 struct clk *dss_clk;
314
315 struct dispc_clock_info user_dispc_cinfo;
316 struct dss_pll_clock_info user_dsi_cinfo;
317
318 struct dsi_lp_clock_info user_lp_cinfo;
319 struct dsi_lp_clock_info current_lp_cinfo;
320
321 struct dss_pll pll;
322
323 bool vdds_dsi_enabled;
324 struct regulator *vdds_dsi_reg;
325
326 struct {
327 enum dsi_vc_source source;
328 struct omap_dss_device *dssdev;
329 enum fifo_size tx_fifo_size;
330 enum fifo_size rx_fifo_size;
331 int vc_id;
332 } vc[4];
333
334 struct mutex lock;
335 struct semaphore bus_lock;
336
337 spinlock_t irq_lock;
338 struct dsi_isr_tables isr_tables;
339 /* space for a copy used by the interrupt handler */
340 struct dsi_isr_tables isr_tables_copy;
341
342 int update_channel;
343 #ifdef DSI_PERF_MEASURE
344 unsigned update_bytes;
345 #endif
346
347 bool te_enabled;
348 bool ulps_enabled;
349
350 void (*framedone_callback)(int, void *);
351 void *framedone_data;
352
353 struct delayed_work framedone_timeout_work;
354
355 #ifdef DSI_CATCH_MISSING_TE
356 struct timer_list te_timer;
357 #endif
358
359 unsigned long cache_req_pck;
360 unsigned long cache_clk_freq;
361 struct dss_pll_clock_info cache_cinfo;
362
363 u32 errors;
364 spinlock_t errors_lock;
365 #ifdef DSI_PERF_MEASURE
366 ktime_t perf_setup_time;
367 ktime_t perf_start_time;
368 #endif
369 int debug_read;
370 int debug_write;
371
372 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
373 spinlock_t irq_stats_lock;
374 struct dsi_irq_stats irq_stats;
375 #endif
376
377 unsigned num_lanes_supported;
378 unsigned line_buffer_size;
379
380 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
381 unsigned num_lanes_used;
382
383 unsigned scp_clk_refcount;
384
385 struct dss_lcd_mgr_config mgr_config;
386 struct omap_video_timings timings;
387 enum omap_dss_dsi_pixel_format pix_fmt;
388 enum omap_dss_dsi_mode mode;
389 struct omap_dss_dsi_videomode_timings vm_timings;
390
391 struct omap_dss_device output;
392 };
393
394 struct dsi_packet_sent_handler_data {
395 struct platform_device *dsidev;
396 struct completion *completion;
397 };
398
399 struct dsi_module_id_data {
400 u32 address;
401 int id;
402 };
403
404 static const struct of_device_id dsi_of_match[];
405
406 #ifdef DSI_PERF_MEASURE
407 static bool dsi_perf;
408 module_param(dsi_perf, bool, 0644);
409 #endif
410
411 static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
412 {
413 return dev_get_drvdata(&dsidev->dev);
414 }
415
416 static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
417 {
418 return to_platform_device(dssdev->dev);
419 }
420
421 static struct platform_device *dsi_get_dsidev_from_id(int module)
422 {
423 struct omap_dss_device *out;
424 enum omap_dss_output_id id;
425
426 switch (module) {
427 case 0:
428 id = OMAP_DSS_OUTPUT_DSI1;
429 break;
430 case 1:
431 id = OMAP_DSS_OUTPUT_DSI2;
432 break;
433 default:
434 return NULL;
435 }
436
437 out = omap_dss_get_output(id);
438
439 return out ? to_platform_device(out->dev) : NULL;
440 }
441
442 static inline void dsi_write_reg(struct platform_device *dsidev,
443 const struct dsi_reg idx, u32 val)
444 {
445 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
446 void __iomem *base;
447
448 switch(idx.module) {
449 case DSI_PROTO: base = dsi->proto_base; break;
450 case DSI_PHY: base = dsi->phy_base; break;
451 case DSI_PLL: base = dsi->pll_base; break;
452 default: return;
453 }
454
455 __raw_writel(val, base + idx.idx);
456 }
457
458 static inline u32 dsi_read_reg(struct platform_device *dsidev,
459 const struct dsi_reg idx)
460 {
461 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
462 void __iomem *base;
463
464 switch(idx.module) {
465 case DSI_PROTO: base = dsi->proto_base; break;
466 case DSI_PHY: base = dsi->phy_base; break;
467 case DSI_PLL: base = dsi->pll_base; break;
468 default: return 0;
469 }
470
471 return __raw_readl(base + idx.idx);
472 }
473
474 static void dsi_bus_lock(struct omap_dss_device *dssdev)
475 {
476 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
477 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
478
479 down(&dsi->bus_lock);
480 }
481
482 static void dsi_bus_unlock(struct omap_dss_device *dssdev)
483 {
484 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
486
487 up(&dsi->bus_lock);
488 }
489
490 static bool dsi_bus_is_locked(struct platform_device *dsidev)
491 {
492 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
493
494 return dsi->bus_lock.count == 0;
495 }
496
497 static void dsi_completion_handler(void *data, u32 mask)
498 {
499 complete((struct completion *)data);
500 }
501
502 static inline int wait_for_bit_change(struct platform_device *dsidev,
503 const struct dsi_reg idx, int bitnum, int value)
504 {
505 unsigned long timeout;
506 ktime_t wait;
507 int t;
508
509 /* first busyloop to see if the bit changes right away */
510 t = 100;
511 while (t-- > 0) {
512 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
513 return value;
514 }
515
516 /* then loop for 500ms, sleeping for 1ms in between */
517 timeout = jiffies + msecs_to_jiffies(500);
518 while (time_before(jiffies, timeout)) {
519 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
520 return value;
521
522 wait = ns_to_ktime(1000 * 1000);
523 set_current_state(TASK_UNINTERRUPTIBLE);
524 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
525 }
526
527 return !value;
528 }
529
530 u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
531 {
532 switch (fmt) {
533 case OMAP_DSS_DSI_FMT_RGB888:
534 case OMAP_DSS_DSI_FMT_RGB666:
535 return 24;
536 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
537 return 18;
538 case OMAP_DSS_DSI_FMT_RGB565:
539 return 16;
540 default:
541 BUG();
542 return 0;
543 }
544 }
545
546 #ifdef DSI_PERF_MEASURE
547 static void dsi_perf_mark_setup(struct platform_device *dsidev)
548 {
549 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
550 dsi->perf_setup_time = ktime_get();
551 }
552
553 static void dsi_perf_mark_start(struct platform_device *dsidev)
554 {
555 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
556 dsi->perf_start_time = ktime_get();
557 }
558
559 static void dsi_perf_show(struct platform_device *dsidev, const char *name)
560 {
561 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
562 ktime_t t, setup_time, trans_time;
563 u32 total_bytes;
564 u32 setup_us, trans_us, total_us;
565
566 if (!dsi_perf)
567 return;
568
569 t = ktime_get();
570
571 setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
572 setup_us = (u32)ktime_to_us(setup_time);
573 if (setup_us == 0)
574 setup_us = 1;
575
576 trans_time = ktime_sub(t, dsi->perf_start_time);
577 trans_us = (u32)ktime_to_us(trans_time);
578 if (trans_us == 0)
579 trans_us = 1;
580
581 total_us = setup_us + trans_us;
582
583 total_bytes = dsi->update_bytes;
584
585 printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
586 "%u bytes, %u kbytes/sec\n",
587 name,
588 setup_us,
589 trans_us,
590 total_us,
591 1000*1000 / total_us,
592 total_bytes,
593 total_bytes * 1000 / total_us);
594 }
595 #else
596 static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
597 {
598 }
599
600 static inline void dsi_perf_mark_start(struct platform_device *dsidev)
601 {
602 }
603
604 static inline void dsi_perf_show(struct platform_device *dsidev,
605 const char *name)
606 {
607 }
608 #endif
609
610 static int verbose_irq;
611
612 static void print_irq_status(u32 status)
613 {
614 if (status == 0)
615 return;
616
617 if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
618 return;
619
620 #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
621
622 pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
623 status,
624 verbose_irq ? PIS(VC0) : "",
625 verbose_irq ? PIS(VC1) : "",
626 verbose_irq ? PIS(VC2) : "",
627 verbose_irq ? PIS(VC3) : "",
628 PIS(WAKEUP),
629 PIS(RESYNC),
630 PIS(PLL_LOCK),
631 PIS(PLL_UNLOCK),
632 PIS(PLL_RECALL),
633 PIS(COMPLEXIO_ERR),
634 PIS(HS_TX_TIMEOUT),
635 PIS(LP_RX_TIMEOUT),
636 PIS(TE_TRIGGER),
637 PIS(ACK_TRIGGER),
638 PIS(SYNC_LOST),
639 PIS(LDO_POWER_GOOD),
640 PIS(TA_TIMEOUT));
641 #undef PIS
642 }
643
644 static void print_irq_status_vc(int channel, u32 status)
645 {
646 if (status == 0)
647 return;
648
649 if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
650 return;
651
652 #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
653
654 pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
655 channel,
656 status,
657 PIS(CS),
658 PIS(ECC_CORR),
659 PIS(ECC_NO_CORR),
660 verbose_irq ? PIS(PACKET_SENT) : "",
661 PIS(BTA),
662 PIS(FIFO_TX_OVF),
663 PIS(FIFO_RX_OVF),
664 PIS(FIFO_TX_UDF),
665 PIS(PP_BUSY_CHANGE));
666 #undef PIS
667 }
668
669 static void print_irq_status_cio(u32 status)
670 {
671 if (status == 0)
672 return;
673
674 #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
675
676 pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
677 status,
678 PIS(ERRSYNCESC1),
679 PIS(ERRSYNCESC2),
680 PIS(ERRSYNCESC3),
681 PIS(ERRESC1),
682 PIS(ERRESC2),
683 PIS(ERRESC3),
684 PIS(ERRCONTROL1),
685 PIS(ERRCONTROL2),
686 PIS(ERRCONTROL3),
687 PIS(STATEULPS1),
688 PIS(STATEULPS2),
689 PIS(STATEULPS3),
690 PIS(ERRCONTENTIONLP0_1),
691 PIS(ERRCONTENTIONLP1_1),
692 PIS(ERRCONTENTIONLP0_2),
693 PIS(ERRCONTENTIONLP1_2),
694 PIS(ERRCONTENTIONLP0_3),
695 PIS(ERRCONTENTIONLP1_3),
696 PIS(ULPSACTIVENOT_ALL0),
697 PIS(ULPSACTIVENOT_ALL1));
698 #undef PIS
699 }
700
701 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
702 static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
703 u32 *vcstatus, u32 ciostatus)
704 {
705 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
706 int i;
707
708 spin_lock(&dsi->irq_stats_lock);
709
710 dsi->irq_stats.irq_count++;
711 dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
712
713 for (i = 0; i < 4; ++i)
714 dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
715
716 dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
717
718 spin_unlock(&dsi->irq_stats_lock);
719 }
720 #else
721 #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
722 #endif
723
724 static int debug_irq;
725
726 static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
727 u32 *vcstatus, u32 ciostatus)
728 {
729 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
730 int i;
731
732 if (irqstatus & DSI_IRQ_ERROR_MASK) {
733 DSSERR("DSI error, irqstatus %x\n", irqstatus);
734 print_irq_status(irqstatus);
735 spin_lock(&dsi->errors_lock);
736 dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
737 spin_unlock(&dsi->errors_lock);
738 } else if (debug_irq) {
739 print_irq_status(irqstatus);
740 }
741
742 for (i = 0; i < 4; ++i) {
743 if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
744 DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
745 i, vcstatus[i]);
746 print_irq_status_vc(i, vcstatus[i]);
747 } else if (debug_irq) {
748 print_irq_status_vc(i, vcstatus[i]);
749 }
750 }
751
752 if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
753 DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
754 print_irq_status_cio(ciostatus);
755 } else if (debug_irq) {
756 print_irq_status_cio(ciostatus);
757 }
758 }
759
760 static void dsi_call_isrs(struct dsi_isr_data *isr_array,
761 unsigned isr_array_size, u32 irqstatus)
762 {
763 struct dsi_isr_data *isr_data;
764 int i;
765
766 for (i = 0; i < isr_array_size; i++) {
767 isr_data = &isr_array[i];
768 if (isr_data->isr && isr_data->mask & irqstatus)
769 isr_data->isr(isr_data->arg, irqstatus);
770 }
771 }
772
773 static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
774 u32 irqstatus, u32 *vcstatus, u32 ciostatus)
775 {
776 int i;
777
778 dsi_call_isrs(isr_tables->isr_table,
779 ARRAY_SIZE(isr_tables->isr_table),
780 irqstatus);
781
782 for (i = 0; i < 4; ++i) {
783 if (vcstatus[i] == 0)
784 continue;
785 dsi_call_isrs(isr_tables->isr_table_vc[i],
786 ARRAY_SIZE(isr_tables->isr_table_vc[i]),
787 vcstatus[i]);
788 }
789
790 if (ciostatus != 0)
791 dsi_call_isrs(isr_tables->isr_table_cio,
792 ARRAY_SIZE(isr_tables->isr_table_cio),
793 ciostatus);
794 }
795
796 static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
797 {
798 struct platform_device *dsidev;
799 struct dsi_data *dsi;
800 u32 irqstatus, vcstatus[4], ciostatus;
801 int i;
802
803 dsidev = (struct platform_device *) arg;
804 dsi = dsi_get_dsidrv_data(dsidev);
805
806 if (!dsi->is_enabled)
807 return IRQ_NONE;
808
809 spin_lock(&dsi->irq_lock);
810
811 irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
812
813 /* IRQ is not for us */
814 if (!irqstatus) {
815 spin_unlock(&dsi->irq_lock);
816 return IRQ_NONE;
817 }
818
819 dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
820 /* flush posted write */
821 dsi_read_reg(dsidev, DSI_IRQSTATUS);
822
823 for (i = 0; i < 4; ++i) {
824 if ((irqstatus & (1 << i)) == 0) {
825 vcstatus[i] = 0;
826 continue;
827 }
828
829 vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
830
831 dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
832 /* flush posted write */
833 dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
834 }
835
836 if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
837 ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
838
839 dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
840 /* flush posted write */
841 dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
842 } else {
843 ciostatus = 0;
844 }
845
846 #ifdef DSI_CATCH_MISSING_TE
847 if (irqstatus & DSI_IRQ_TE_TRIGGER)
848 del_timer(&dsi->te_timer);
849 #endif
850
851 /* make a copy and unlock, so that isrs can unregister
852 * themselves */
853 memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
854 sizeof(dsi->isr_tables));
855
856 spin_unlock(&dsi->irq_lock);
857
858 dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
859
860 dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
861
862 dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
863
864 return IRQ_HANDLED;
865 }
866
867 /* dsi->irq_lock has to be locked by the caller */
868 static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
869 struct dsi_isr_data *isr_array,
870 unsigned isr_array_size, u32 default_mask,
871 const struct dsi_reg enable_reg,
872 const struct dsi_reg status_reg)
873 {
874 struct dsi_isr_data *isr_data;
875 u32 mask;
876 u32 old_mask;
877 int i;
878
879 mask = default_mask;
880
881 for (i = 0; i < isr_array_size; i++) {
882 isr_data = &isr_array[i];
883
884 if (isr_data->isr == NULL)
885 continue;
886
887 mask |= isr_data->mask;
888 }
889
890 old_mask = dsi_read_reg(dsidev, enable_reg);
891 /* clear the irqstatus for newly enabled irqs */
892 dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
893 dsi_write_reg(dsidev, enable_reg, mask);
894
895 /* flush posted writes */
896 dsi_read_reg(dsidev, enable_reg);
897 dsi_read_reg(dsidev, status_reg);
898 }
899
900 /* dsi->irq_lock has to be locked by the caller */
901 static void _omap_dsi_set_irqs(struct platform_device *dsidev)
902 {
903 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
904 u32 mask = DSI_IRQ_ERROR_MASK;
905 #ifdef DSI_CATCH_MISSING_TE
906 mask |= DSI_IRQ_TE_TRIGGER;
907 #endif
908 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
909 ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
910 DSI_IRQENABLE, DSI_IRQSTATUS);
911 }
912
913 /* dsi->irq_lock has to be locked by the caller */
914 static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
915 {
916 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
917
918 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
919 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
920 DSI_VC_IRQ_ERROR_MASK,
921 DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
922 }
923
924 /* dsi->irq_lock has to be locked by the caller */
925 static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
926 {
927 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
928
929 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
930 ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
931 DSI_CIO_IRQ_ERROR_MASK,
932 DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
933 }
934
935 static void _dsi_initialize_irq(struct platform_device *dsidev)
936 {
937 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
938 unsigned long flags;
939 int vc;
940
941 spin_lock_irqsave(&dsi->irq_lock, flags);
942
943 memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
944
945 _omap_dsi_set_irqs(dsidev);
946 for (vc = 0; vc < 4; ++vc)
947 _omap_dsi_set_irqs_vc(dsidev, vc);
948 _omap_dsi_set_irqs_cio(dsidev);
949
950 spin_unlock_irqrestore(&dsi->irq_lock, flags);
951 }
952
953 static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
954 struct dsi_isr_data *isr_array, unsigned isr_array_size)
955 {
956 struct dsi_isr_data *isr_data;
957 int free_idx;
958 int i;
959
960 BUG_ON(isr == NULL);
961
962 /* check for duplicate entry and find a free slot */
963 free_idx = -1;
964 for (i = 0; i < isr_array_size; i++) {
965 isr_data = &isr_array[i];
966
967 if (isr_data->isr == isr && isr_data->arg == arg &&
968 isr_data->mask == mask) {
969 return -EINVAL;
970 }
971
972 if (isr_data->isr == NULL && free_idx == -1)
973 free_idx = i;
974 }
975
976 if (free_idx == -1)
977 return -EBUSY;
978
979 isr_data = &isr_array[free_idx];
980 isr_data->isr = isr;
981 isr_data->arg = arg;
982 isr_data->mask = mask;
983
984 return 0;
985 }
986
987 static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
988 struct dsi_isr_data *isr_array, unsigned isr_array_size)
989 {
990 struct dsi_isr_data *isr_data;
991 int i;
992
993 for (i = 0; i < isr_array_size; i++) {
994 isr_data = &isr_array[i];
995 if (isr_data->isr != isr || isr_data->arg != arg ||
996 isr_data->mask != mask)
997 continue;
998
999 isr_data->isr = NULL;
1000 isr_data->arg = NULL;
1001 isr_data->mask = 0;
1002
1003 return 0;
1004 }
1005
1006 return -EINVAL;
1007 }
1008
1009 static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
1010 void *arg, u32 mask)
1011 {
1012 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1013 unsigned long flags;
1014 int r;
1015
1016 spin_lock_irqsave(&dsi->irq_lock, flags);
1017
1018 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1019 ARRAY_SIZE(dsi->isr_tables.isr_table));
1020
1021 if (r == 0)
1022 _omap_dsi_set_irqs(dsidev);
1023
1024 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1025
1026 return r;
1027 }
1028
1029 static int dsi_unregister_isr(struct platform_device *dsidev,
1030 omap_dsi_isr_t isr, void *arg, u32 mask)
1031 {
1032 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1033 unsigned long flags;
1034 int r;
1035
1036 spin_lock_irqsave(&dsi->irq_lock, flags);
1037
1038 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1039 ARRAY_SIZE(dsi->isr_tables.isr_table));
1040
1041 if (r == 0)
1042 _omap_dsi_set_irqs(dsidev);
1043
1044 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1045
1046 return r;
1047 }
1048
1049 static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
1050 omap_dsi_isr_t isr, void *arg, u32 mask)
1051 {
1052 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1053 unsigned long flags;
1054 int r;
1055
1056 spin_lock_irqsave(&dsi->irq_lock, flags);
1057
1058 r = _dsi_register_isr(isr, arg, mask,
1059 dsi->isr_tables.isr_table_vc[channel],
1060 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1061
1062 if (r == 0)
1063 _omap_dsi_set_irqs_vc(dsidev, channel);
1064
1065 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1066
1067 return r;
1068 }
1069
1070 static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
1071 omap_dsi_isr_t isr, void *arg, u32 mask)
1072 {
1073 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1074 unsigned long flags;
1075 int r;
1076
1077 spin_lock_irqsave(&dsi->irq_lock, flags);
1078
1079 r = _dsi_unregister_isr(isr, arg, mask,
1080 dsi->isr_tables.isr_table_vc[channel],
1081 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1082
1083 if (r == 0)
1084 _omap_dsi_set_irqs_vc(dsidev, channel);
1085
1086 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1087
1088 return r;
1089 }
1090
1091 static int dsi_register_isr_cio(struct platform_device *dsidev,
1092 omap_dsi_isr_t isr, void *arg, u32 mask)
1093 {
1094 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1095 unsigned long flags;
1096 int r;
1097
1098 spin_lock_irqsave(&dsi->irq_lock, flags);
1099
1100 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1101 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1102
1103 if (r == 0)
1104 _omap_dsi_set_irqs_cio(dsidev);
1105
1106 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1107
1108 return r;
1109 }
1110
1111 static int dsi_unregister_isr_cio(struct platform_device *dsidev,
1112 omap_dsi_isr_t isr, void *arg, u32 mask)
1113 {
1114 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1115 unsigned long flags;
1116 int r;
1117
1118 spin_lock_irqsave(&dsi->irq_lock, flags);
1119
1120 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1121 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1122
1123 if (r == 0)
1124 _omap_dsi_set_irqs_cio(dsidev);
1125
1126 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1127
1128 return r;
1129 }
1130
1131 static u32 dsi_get_errors(struct platform_device *dsidev)
1132 {
1133 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1134 unsigned long flags;
1135 u32 e;
1136 spin_lock_irqsave(&dsi->errors_lock, flags);
1137 e = dsi->errors;
1138 dsi->errors = 0;
1139 spin_unlock_irqrestore(&dsi->errors_lock, flags);
1140 return e;
1141 }
1142
1143 static int dsi_runtime_get(struct platform_device *dsidev)
1144 {
1145 int r;
1146 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1147
1148 DSSDBG("dsi_runtime_get\n");
1149
1150 r = pm_runtime_get_sync(&dsi->pdev->dev);
1151 WARN_ON(r < 0);
1152 return r < 0 ? r : 0;
1153 }
1154
1155 static void dsi_runtime_put(struct platform_device *dsidev)
1156 {
1157 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1158 int r;
1159
1160 DSSDBG("dsi_runtime_put\n");
1161
1162 r = pm_runtime_put_sync(&dsi->pdev->dev);
1163 WARN_ON(r < 0 && r != -ENOSYS);
1164 }
1165
1166 static int dsi_regulator_init(struct platform_device *dsidev)
1167 {
1168 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1169 struct regulator *vdds_dsi;
1170 int r;
1171
1172 if (dsi->vdds_dsi_reg != NULL)
1173 return 0;
1174
1175 vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
1176
1177 if (IS_ERR(vdds_dsi)) {
1178 if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
1179 DSSERR("can't get DSI VDD regulator\n");
1180 return PTR_ERR(vdds_dsi);
1181 }
1182
1183 if (regulator_can_change_voltage(vdds_dsi)) {
1184 r = regulator_set_voltage(vdds_dsi, 1800000, 1800000);
1185 if (r) {
1186 devm_regulator_put(vdds_dsi);
1187 DSSERR("can't set the DSI regulator voltage\n");
1188 return r;
1189 }
1190 }
1191
1192 dsi->vdds_dsi_reg = vdds_dsi;
1193
1194 return 0;
1195 }
1196
1197 static void _dsi_print_reset_status(struct platform_device *dsidev)
1198 {
1199 u32 l;
1200 int b0, b1, b2;
1201
1202 /* A dummy read using the SCP interface to any DSIPHY register is
1203 * required after DSIPHY reset to complete the reset of the DSI complex
1204 * I/O. */
1205 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
1206
1207 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
1208 b0 = 28;
1209 b1 = 27;
1210 b2 = 26;
1211 } else {
1212 b0 = 24;
1213 b1 = 25;
1214 b2 = 26;
1215 }
1216
1217 #define DSI_FLD_GET(fld, start, end)\
1218 FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
1219
1220 pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
1221 DSI_FLD_GET(PLL_STATUS, 0, 0),
1222 DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
1223 DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
1224 DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
1225 DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
1226 DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
1227 DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
1228 DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
1229
1230 #undef DSI_FLD_GET
1231 }
1232
1233 static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
1234 {
1235 DSSDBG("dsi_if_enable(%d)\n", enable);
1236
1237 enable = enable ? 1 : 0;
1238 REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
1239
1240 if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
1241 DSSERR("Failed to set dsi_if_enable to %d\n", enable);
1242 return -EIO;
1243 }
1244
1245 return 0;
1246 }
1247
1248 static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
1249 {
1250 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1251
1252 return dsi->pll.cinfo.clkout[HSDIV_DISPC];
1253 }
1254
1255 static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
1256 {
1257 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1258
1259 return dsi->pll.cinfo.clkout[HSDIV_DSI];
1260 }
1261
1262 static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
1263 {
1264 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1265
1266 return dsi->pll.cinfo.clkdco / 16;
1267 }
1268
1269 static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
1270 {
1271 unsigned long r;
1272 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1273
1274 if (dss_get_dsi_clk_source(dsi->module_id) == OMAP_DSS_CLK_SRC_FCK) {
1275 /* DSI FCLK source is DSS_CLK_FCK */
1276 r = clk_get_rate(dsi->dss_clk);
1277 } else {
1278 /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
1279 r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
1280 }
1281
1282 return r;
1283 }
1284
1285 static int dsi_lp_clock_calc(unsigned long dsi_fclk,
1286 unsigned long lp_clk_min, unsigned long lp_clk_max,
1287 struct dsi_lp_clock_info *lp_cinfo)
1288 {
1289 unsigned lp_clk_div;
1290 unsigned long lp_clk;
1291
1292 lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
1293 lp_clk = dsi_fclk / 2 / lp_clk_div;
1294
1295 if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
1296 return -EINVAL;
1297
1298 lp_cinfo->lp_clk_div = lp_clk_div;
1299 lp_cinfo->lp_clk = lp_clk;
1300
1301 return 0;
1302 }
1303
1304 static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
1305 {
1306 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1307 unsigned long dsi_fclk;
1308 unsigned lp_clk_div;
1309 unsigned long lp_clk;
1310 unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
1311
1312
1313 lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
1314
1315 if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
1316 return -EINVAL;
1317
1318 dsi_fclk = dsi_fclk_rate(dsidev);
1319
1320 lp_clk = dsi_fclk / 2 / lp_clk_div;
1321
1322 DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
1323 dsi->current_lp_cinfo.lp_clk = lp_clk;
1324 dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
1325
1326 /* LP_CLK_DIVISOR */
1327 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
1328
1329 /* LP_RX_SYNCHRO_ENABLE */
1330 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
1331
1332 return 0;
1333 }
1334
1335 static void dsi_enable_scp_clk(struct platform_device *dsidev)
1336 {
1337 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1338
1339 if (dsi->scp_clk_refcount++ == 0)
1340 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
1341 }
1342
1343 static void dsi_disable_scp_clk(struct platform_device *dsidev)
1344 {
1345 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1346
1347 WARN_ON(dsi->scp_clk_refcount == 0);
1348 if (--dsi->scp_clk_refcount == 0)
1349 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
1350 }
1351
1352 enum dsi_pll_power_state {
1353 DSI_PLL_POWER_OFF = 0x0,
1354 DSI_PLL_POWER_ON_HSCLK = 0x1,
1355 DSI_PLL_POWER_ON_ALL = 0x2,
1356 DSI_PLL_POWER_ON_DIV = 0x3,
1357 };
1358
1359 static int dsi_pll_power(struct platform_device *dsidev,
1360 enum dsi_pll_power_state state)
1361 {
1362 int t = 0;
1363
1364 /* DSI-PLL power command 0x3 is not working */
1365 if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
1366 state == DSI_PLL_POWER_ON_DIV)
1367 state = DSI_PLL_POWER_ON_ALL;
1368
1369 /* PLL_PWR_CMD */
1370 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
1371
1372 /* PLL_PWR_STATUS */
1373 while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
1374 if (++t > 1000) {
1375 DSSERR("Failed to set DSI PLL power mode to %d\n",
1376 state);
1377 return -ENODEV;
1378 }
1379 udelay(1);
1380 }
1381
1382 return 0;
1383 }
1384
1385
1386 static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
1387 {
1388 unsigned long max_dsi_fck;
1389
1390 max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
1391
1392 cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
1393 cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
1394 }
1395
1396 static int dsi_pll_enable(struct dss_pll *pll)
1397 {
1398 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1399 struct platform_device *dsidev = dsi->pdev;
1400 int r = 0;
1401
1402 DSSDBG("PLL init\n");
1403
1404 r = dsi_regulator_init(dsidev);
1405 if (r)
1406 return r;
1407
1408 r = dsi_runtime_get(dsidev);
1409 if (r)
1410 return r;
1411
1412 /*
1413 * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
1414 */
1415 dsi_enable_scp_clk(dsidev);
1416
1417 if (!dsi->vdds_dsi_enabled) {
1418 r = regulator_enable(dsi->vdds_dsi_reg);
1419 if (r)
1420 goto err0;
1421 dsi->vdds_dsi_enabled = true;
1422 }
1423
1424 /* XXX PLL does not come out of reset without this... */
1425 dispc_pck_free_enable(1);
1426
1427 if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
1428 DSSERR("PLL not coming out of reset.\n");
1429 r = -ENODEV;
1430 dispc_pck_free_enable(0);
1431 goto err1;
1432 }
1433
1434 /* XXX ... but if left on, we get problems when planes do not
1435 * fill the whole display. No idea about this */
1436 dispc_pck_free_enable(0);
1437
1438 r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
1439
1440 if (r)
1441 goto err1;
1442
1443 DSSDBG("PLL init done\n");
1444
1445 return 0;
1446 err1:
1447 if (dsi->vdds_dsi_enabled) {
1448 regulator_disable(dsi->vdds_dsi_reg);
1449 dsi->vdds_dsi_enabled = false;
1450 }
1451 err0:
1452 dsi_disable_scp_clk(dsidev);
1453 dsi_runtime_put(dsidev);
1454 return r;
1455 }
1456
1457 static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
1458 {
1459 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1460
1461 dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
1462 if (disconnect_lanes) {
1463 WARN_ON(!dsi->vdds_dsi_enabled);
1464 regulator_disable(dsi->vdds_dsi_reg);
1465 dsi->vdds_dsi_enabled = false;
1466 }
1467
1468 dsi_disable_scp_clk(dsidev);
1469 dsi_runtime_put(dsidev);
1470
1471 DSSDBG("PLL uninit done\n");
1472 }
1473
1474 static void dsi_pll_disable(struct dss_pll *pll)
1475 {
1476 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1477 struct platform_device *dsidev = dsi->pdev;
1478
1479 dsi_pll_uninit(dsidev, true);
1480 }
1481
1482 static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
1483 struct seq_file *s)
1484 {
1485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1486 struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
1487 enum omap_dss_clk_source dispc_clk_src, dsi_clk_src;
1488 int dsi_module = dsi->module_id;
1489 struct dss_pll *pll = &dsi->pll;
1490
1491 dispc_clk_src = dss_get_dispc_clk_source();
1492 dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
1493
1494 if (dsi_runtime_get(dsidev))
1495 return;
1496
1497 seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
1498
1499 seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
1500
1501 seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
1502
1503 seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
1504 cinfo->clkdco, cinfo->m);
1505
1506 seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
1507 dss_feat_get_clk_source_name(dsi_module == 0 ?
1508 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
1509 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC),
1510 cinfo->clkout[HSDIV_DISPC],
1511 cinfo->mX[HSDIV_DISPC],
1512 dispc_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1513 "off" : "on");
1514
1515 seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
1516 dss_feat_get_clk_source_name(dsi_module == 0 ?
1517 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
1518 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI),
1519 cinfo->clkout[HSDIV_DSI],
1520 cinfo->mX[HSDIV_DSI],
1521 dsi_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1522 "off" : "on");
1523
1524 seq_printf(s, "- DSI%d -\n", dsi_module + 1);
1525
1526 seq_printf(s, "dsi fclk source = %s (%s)\n",
1527 dss_get_generic_clk_source_name(dsi_clk_src),
1528 dss_feat_get_clk_source_name(dsi_clk_src));
1529
1530 seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
1531
1532 seq_printf(s, "DDR_CLK\t\t%lu\n",
1533 cinfo->clkdco / 4);
1534
1535 seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
1536
1537 seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
1538
1539 dsi_runtime_put(dsidev);
1540 }
1541
1542 void dsi_dump_clocks(struct seq_file *s)
1543 {
1544 struct platform_device *dsidev;
1545 int i;
1546
1547 for (i = 0; i < MAX_NUM_DSI; i++) {
1548 dsidev = dsi_get_dsidev_from_id(i);
1549 if (dsidev)
1550 dsi_dump_dsidev_clocks(dsidev, s);
1551 }
1552 }
1553
1554 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
1555 static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
1556 struct seq_file *s)
1557 {
1558 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1559 unsigned long flags;
1560 struct dsi_irq_stats stats;
1561
1562 spin_lock_irqsave(&dsi->irq_stats_lock, flags);
1563
1564 stats = dsi->irq_stats;
1565 memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
1566 dsi->irq_stats.last_reset = jiffies;
1567
1568 spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
1569
1570 seq_printf(s, "period %u ms\n",
1571 jiffies_to_msecs(jiffies - stats.last_reset));
1572
1573 seq_printf(s, "irqs %d\n", stats.irq_count);
1574 #define PIS(x) \
1575 seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
1576
1577 seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
1578 PIS(VC0);
1579 PIS(VC1);
1580 PIS(VC2);
1581 PIS(VC3);
1582 PIS(WAKEUP);
1583 PIS(RESYNC);
1584 PIS(PLL_LOCK);
1585 PIS(PLL_UNLOCK);
1586 PIS(PLL_RECALL);
1587 PIS(COMPLEXIO_ERR);
1588 PIS(HS_TX_TIMEOUT);
1589 PIS(LP_RX_TIMEOUT);
1590 PIS(TE_TRIGGER);
1591 PIS(ACK_TRIGGER);
1592 PIS(SYNC_LOST);
1593 PIS(LDO_POWER_GOOD);
1594 PIS(TA_TIMEOUT);
1595 #undef PIS
1596
1597 #define PIS(x) \
1598 seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
1599 stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
1600 stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
1601 stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
1602 stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
1603
1604 seq_printf(s, "-- VC interrupts --\n");
1605 PIS(CS);
1606 PIS(ECC_CORR);
1607 PIS(PACKET_SENT);
1608 PIS(FIFO_TX_OVF);
1609 PIS(FIFO_RX_OVF);
1610 PIS(BTA);
1611 PIS(ECC_NO_CORR);
1612 PIS(FIFO_TX_UDF);
1613 PIS(PP_BUSY_CHANGE);
1614 #undef PIS
1615
1616 #define PIS(x) \
1617 seq_printf(s, "%-20s %10d\n", #x, \
1618 stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
1619
1620 seq_printf(s, "-- CIO interrupts --\n");
1621 PIS(ERRSYNCESC1);
1622 PIS(ERRSYNCESC2);
1623 PIS(ERRSYNCESC3);
1624 PIS(ERRESC1);
1625 PIS(ERRESC2);
1626 PIS(ERRESC3);
1627 PIS(ERRCONTROL1);
1628 PIS(ERRCONTROL2);
1629 PIS(ERRCONTROL3);
1630 PIS(STATEULPS1);
1631 PIS(STATEULPS2);
1632 PIS(STATEULPS3);
1633 PIS(ERRCONTENTIONLP0_1);
1634 PIS(ERRCONTENTIONLP1_1);
1635 PIS(ERRCONTENTIONLP0_2);
1636 PIS(ERRCONTENTIONLP1_2);
1637 PIS(ERRCONTENTIONLP0_3);
1638 PIS(ERRCONTENTIONLP1_3);
1639 PIS(ULPSACTIVENOT_ALL0);
1640 PIS(ULPSACTIVENOT_ALL1);
1641 #undef PIS
1642 }
1643
1644 static void dsi1_dump_irqs(struct seq_file *s)
1645 {
1646 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1647
1648 dsi_dump_dsidev_irqs(dsidev, s);
1649 }
1650
1651 static void dsi2_dump_irqs(struct seq_file *s)
1652 {
1653 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1654
1655 dsi_dump_dsidev_irqs(dsidev, s);
1656 }
1657 #endif
1658
1659 static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
1660 struct seq_file *s)
1661 {
1662 #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
1663
1664 if (dsi_runtime_get(dsidev))
1665 return;
1666 dsi_enable_scp_clk(dsidev);
1667
1668 DUMPREG(DSI_REVISION);
1669 DUMPREG(DSI_SYSCONFIG);
1670 DUMPREG(DSI_SYSSTATUS);
1671 DUMPREG(DSI_IRQSTATUS);
1672 DUMPREG(DSI_IRQENABLE);
1673 DUMPREG(DSI_CTRL);
1674 DUMPREG(DSI_COMPLEXIO_CFG1);
1675 DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
1676 DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
1677 DUMPREG(DSI_CLK_CTRL);
1678 DUMPREG(DSI_TIMING1);
1679 DUMPREG(DSI_TIMING2);
1680 DUMPREG(DSI_VM_TIMING1);
1681 DUMPREG(DSI_VM_TIMING2);
1682 DUMPREG(DSI_VM_TIMING3);
1683 DUMPREG(DSI_CLK_TIMING);
1684 DUMPREG(DSI_TX_FIFO_VC_SIZE);
1685 DUMPREG(DSI_RX_FIFO_VC_SIZE);
1686 DUMPREG(DSI_COMPLEXIO_CFG2);
1687 DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
1688 DUMPREG(DSI_VM_TIMING4);
1689 DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
1690 DUMPREG(DSI_VM_TIMING5);
1691 DUMPREG(DSI_VM_TIMING6);
1692 DUMPREG(DSI_VM_TIMING7);
1693 DUMPREG(DSI_STOPCLK_TIMING);
1694
1695 DUMPREG(DSI_VC_CTRL(0));
1696 DUMPREG(DSI_VC_TE(0));
1697 DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
1698 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
1699 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
1700 DUMPREG(DSI_VC_IRQSTATUS(0));
1701 DUMPREG(DSI_VC_IRQENABLE(0));
1702
1703 DUMPREG(DSI_VC_CTRL(1));
1704 DUMPREG(DSI_VC_TE(1));
1705 DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
1706 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
1707 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
1708 DUMPREG(DSI_VC_IRQSTATUS(1));
1709 DUMPREG(DSI_VC_IRQENABLE(1));
1710
1711 DUMPREG(DSI_VC_CTRL(2));
1712 DUMPREG(DSI_VC_TE(2));
1713 DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
1714 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
1715 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
1716 DUMPREG(DSI_VC_IRQSTATUS(2));
1717 DUMPREG(DSI_VC_IRQENABLE(2));
1718
1719 DUMPREG(DSI_VC_CTRL(3));
1720 DUMPREG(DSI_VC_TE(3));
1721 DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
1722 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
1723 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
1724 DUMPREG(DSI_VC_IRQSTATUS(3));
1725 DUMPREG(DSI_VC_IRQENABLE(3));
1726
1727 DUMPREG(DSI_DSIPHY_CFG0);
1728 DUMPREG(DSI_DSIPHY_CFG1);
1729 DUMPREG(DSI_DSIPHY_CFG2);
1730 DUMPREG(DSI_DSIPHY_CFG5);
1731
1732 DUMPREG(DSI_PLL_CONTROL);
1733 DUMPREG(DSI_PLL_STATUS);
1734 DUMPREG(DSI_PLL_GO);
1735 DUMPREG(DSI_PLL_CONFIGURATION1);
1736 DUMPREG(DSI_PLL_CONFIGURATION2);
1737
1738 dsi_disable_scp_clk(dsidev);
1739 dsi_runtime_put(dsidev);
1740 #undef DUMPREG
1741 }
1742
1743 static void dsi1_dump_regs(struct seq_file *s)
1744 {
1745 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1746
1747 dsi_dump_dsidev_regs(dsidev, s);
1748 }
1749
1750 static void dsi2_dump_regs(struct seq_file *s)
1751 {
1752 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1753
1754 dsi_dump_dsidev_regs(dsidev, s);
1755 }
1756
1757 enum dsi_cio_power_state {
1758 DSI_COMPLEXIO_POWER_OFF = 0x0,
1759 DSI_COMPLEXIO_POWER_ON = 0x1,
1760 DSI_COMPLEXIO_POWER_ULPS = 0x2,
1761 };
1762
1763 static int dsi_cio_power(struct platform_device *dsidev,
1764 enum dsi_cio_power_state state)
1765 {
1766 int t = 0;
1767
1768 /* PWR_CMD */
1769 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
1770
1771 /* PWR_STATUS */
1772 while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
1773 26, 25) != state) {
1774 if (++t > 1000) {
1775 DSSERR("failed to set complexio power state to "
1776 "%d\n", state);
1777 return -ENODEV;
1778 }
1779 udelay(1);
1780 }
1781
1782 return 0;
1783 }
1784
1785 static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
1786 {
1787 int val;
1788
1789 /* line buffer on OMAP3 is 1024 x 24bits */
1790 /* XXX: for some reason using full buffer size causes
1791 * considerable TX slowdown with update sizes that fill the
1792 * whole buffer */
1793 if (!dss_has_feature(FEAT_DSI_GNQ))
1794 return 1023 * 3;
1795
1796 val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
1797
1798 switch (val) {
1799 case 1:
1800 return 512 * 3; /* 512x24 bits */
1801 case 2:
1802 return 682 * 3; /* 682x24 bits */
1803 case 3:
1804 return 853 * 3; /* 853x24 bits */
1805 case 4:
1806 return 1024 * 3; /* 1024x24 bits */
1807 case 5:
1808 return 1194 * 3; /* 1194x24 bits */
1809 case 6:
1810 return 1365 * 3; /* 1365x24 bits */
1811 case 7:
1812 return 1920 * 3; /* 1920x24 bits */
1813 default:
1814 BUG();
1815 return 0;
1816 }
1817 }
1818
1819 static int dsi_set_lane_config(struct platform_device *dsidev)
1820 {
1821 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1822 static const u8 offsets[] = { 0, 4, 8, 12, 16 };
1823 static const enum dsi_lane_function functions[] = {
1824 DSI_LANE_CLK,
1825 DSI_LANE_DATA1,
1826 DSI_LANE_DATA2,
1827 DSI_LANE_DATA3,
1828 DSI_LANE_DATA4,
1829 };
1830 u32 r;
1831 int i;
1832
1833 r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
1834
1835 for (i = 0; i < dsi->num_lanes_used; ++i) {
1836 unsigned offset = offsets[i];
1837 unsigned polarity, lane_number;
1838 unsigned t;
1839
1840 for (t = 0; t < dsi->num_lanes_supported; ++t)
1841 if (dsi->lanes[t].function == functions[i])
1842 break;
1843
1844 if (t == dsi->num_lanes_supported)
1845 return -EINVAL;
1846
1847 lane_number = t;
1848 polarity = dsi->lanes[t].polarity;
1849
1850 r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
1851 r = FLD_MOD(r, polarity, offset + 3, offset + 3);
1852 }
1853
1854 /* clear the unused lanes */
1855 for (; i < dsi->num_lanes_supported; ++i) {
1856 unsigned offset = offsets[i];
1857
1858 r = FLD_MOD(r, 0, offset + 2, offset);
1859 r = FLD_MOD(r, 0, offset + 3, offset + 3);
1860 }
1861
1862 dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
1863
1864 return 0;
1865 }
1866
1867 static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
1868 {
1869 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1870
1871 /* convert time in ns to ddr ticks, rounding up */
1872 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1873 return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
1874 }
1875
1876 static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
1877 {
1878 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1879
1880 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1881 return ddr * 1000 * 1000 / (ddr_clk / 1000);
1882 }
1883
1884 static void dsi_cio_timings(struct platform_device *dsidev)
1885 {
1886 u32 r;
1887 u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
1888 u32 tlpx_half, tclk_trail, tclk_zero;
1889 u32 tclk_prepare;
1890
1891 /* calculate timings */
1892
1893 /* 1 * DDR_CLK = 2 * UI */
1894
1895 /* min 40ns + 4*UI max 85ns + 6*UI */
1896 ths_prepare = ns2ddr(dsidev, 70) + 2;
1897
1898 /* min 145ns + 10*UI */
1899 ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
1900
1901 /* min max(8*UI, 60ns+4*UI) */
1902 ths_trail = ns2ddr(dsidev, 60) + 5;
1903
1904 /* min 100ns */
1905 ths_exit = ns2ddr(dsidev, 145);
1906
1907 /* tlpx min 50n */
1908 tlpx_half = ns2ddr(dsidev, 25);
1909
1910 /* min 60ns */
1911 tclk_trail = ns2ddr(dsidev, 60) + 2;
1912
1913 /* min 38ns, max 95ns */
1914 tclk_prepare = ns2ddr(dsidev, 65);
1915
1916 /* min tclk-prepare + tclk-zero = 300ns */
1917 tclk_zero = ns2ddr(dsidev, 260);
1918
1919 DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
1920 ths_prepare, ddr2ns(dsidev, ths_prepare),
1921 ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
1922 DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
1923 ths_trail, ddr2ns(dsidev, ths_trail),
1924 ths_exit, ddr2ns(dsidev, ths_exit));
1925
1926 DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
1927 "tclk_zero %u (%uns)\n",
1928 tlpx_half, ddr2ns(dsidev, tlpx_half),
1929 tclk_trail, ddr2ns(dsidev, tclk_trail),
1930 tclk_zero, ddr2ns(dsidev, tclk_zero));
1931 DSSDBG("tclk_prepare %u (%uns)\n",
1932 tclk_prepare, ddr2ns(dsidev, tclk_prepare));
1933
1934 /* program timings */
1935
1936 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
1937 r = FLD_MOD(r, ths_prepare, 31, 24);
1938 r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
1939 r = FLD_MOD(r, ths_trail, 15, 8);
1940 r = FLD_MOD(r, ths_exit, 7, 0);
1941 dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
1942
1943 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
1944 r = FLD_MOD(r, tlpx_half, 20, 16);
1945 r = FLD_MOD(r, tclk_trail, 15, 8);
1946 r = FLD_MOD(r, tclk_zero, 7, 0);
1947
1948 if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
1949 r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
1950 r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
1951 r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
1952 }
1953
1954 dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
1955
1956 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
1957 r = FLD_MOD(r, tclk_prepare, 7, 0);
1958 dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
1959 }
1960
1961 /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
1962 static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
1963 unsigned mask_p, unsigned mask_n)
1964 {
1965 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1966 int i;
1967 u32 l;
1968 u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
1969
1970 l = 0;
1971
1972 for (i = 0; i < dsi->num_lanes_supported; ++i) {
1973 unsigned p = dsi->lanes[i].polarity;
1974
1975 if (mask_p & (1 << i))
1976 l |= 1 << (i * 2 + (p ? 0 : 1));
1977
1978 if (mask_n & (1 << i))
1979 l |= 1 << (i * 2 + (p ? 1 : 0));
1980 }
1981
1982 /*
1983 * Bits in REGLPTXSCPDAT4TO0DXDY:
1984 * 17: DY0 18: DX0
1985 * 19: DY1 20: DX1
1986 * 21: DY2 22: DX2
1987 * 23: DY3 24: DX3
1988 * 25: DY4 26: DX4
1989 */
1990
1991 /* Set the lane override configuration */
1992
1993 /* REGLPTXSCPDAT4TO0DXDY */
1994 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
1995
1996 /* Enable lane override */
1997
1998 /* ENLPTXSCPDAT */
1999 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
2000 }
2001
2002 static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
2003 {
2004 /* Disable lane override */
2005 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
2006 /* Reset the lane override configuration */
2007 /* REGLPTXSCPDAT4TO0DXDY */
2008 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
2009 }
2010
2011 static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
2012 {
2013 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2014 int t, i;
2015 bool in_use[DSI_MAX_NR_LANES];
2016 static const u8 offsets_old[] = { 28, 27, 26 };
2017 static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
2018 const u8 *offsets;
2019
2020 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
2021 offsets = offsets_old;
2022 else
2023 offsets = offsets_new;
2024
2025 for (i = 0; i < dsi->num_lanes_supported; ++i)
2026 in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
2027
2028 t = 100000;
2029 while (true) {
2030 u32 l;
2031 int ok;
2032
2033 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2034
2035 ok = 0;
2036 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2037 if (!in_use[i] || (l & (1 << offsets[i])))
2038 ok++;
2039 }
2040
2041 if (ok == dsi->num_lanes_supported)
2042 break;
2043
2044 if (--t == 0) {
2045 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2046 if (!in_use[i] || (l & (1 << offsets[i])))
2047 continue;
2048
2049 DSSERR("CIO TXCLKESC%d domain not coming " \
2050 "out of reset\n", i);
2051 }
2052 return -EIO;
2053 }
2054 }
2055
2056 return 0;
2057 }
2058
2059 /* return bitmask of enabled lanes, lane0 being the lsb */
2060 static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
2061 {
2062 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2063 unsigned mask = 0;
2064 int i;
2065
2066 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2067 if (dsi->lanes[i].function != DSI_LANE_UNUSED)
2068 mask |= 1 << i;
2069 }
2070
2071 return mask;
2072 }
2073
2074 static int dsi_cio_init(struct platform_device *dsidev)
2075 {
2076 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2077 int r;
2078 u32 l;
2079
2080 DSSDBG("DSI CIO init starts");
2081
2082 r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2083 if (r)
2084 return r;
2085
2086 dsi_enable_scp_clk(dsidev);
2087
2088 /* A dummy read using the SCP interface to any DSIPHY register is
2089 * required after DSIPHY reset to complete the reset of the DSI complex
2090 * I/O. */
2091 dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2092
2093 if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
2094 DSSERR("CIO SCP Clock domain not coming out of reset.\n");
2095 r = -EIO;
2096 goto err_scp_clk_dom;
2097 }
2098
2099 r = dsi_set_lane_config(dsidev);
2100 if (r)
2101 goto err_scp_clk_dom;
2102
2103 /* set TX STOP MODE timer to maximum for this operation */
2104 l = dsi_read_reg(dsidev, DSI_TIMING1);
2105 l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2106 l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
2107 l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
2108 l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
2109 dsi_write_reg(dsidev, DSI_TIMING1, l);
2110
2111 if (dsi->ulps_enabled) {
2112 unsigned mask_p;
2113 int i;
2114
2115 DSSDBG("manual ulps exit\n");
2116
2117 /* ULPS is exited by Mark-1 state for 1ms, followed by
2118 * stop state. DSS HW cannot do this via the normal
2119 * ULPS exit sequence, as after reset the DSS HW thinks
2120 * that we are not in ULPS mode, and refuses to send the
2121 * sequence. So we need to send the ULPS exit sequence
2122 * manually by setting positive lines high and negative lines
2123 * low for 1ms.
2124 */
2125
2126 mask_p = 0;
2127
2128 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2129 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
2130 continue;
2131 mask_p |= 1 << i;
2132 }
2133
2134 dsi_cio_enable_lane_override(dsidev, mask_p, 0);
2135 }
2136
2137 r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
2138 if (r)
2139 goto err_cio_pwr;
2140
2141 if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
2142 DSSERR("CIO PWR clock domain not coming out of reset.\n");
2143 r = -ENODEV;
2144 goto err_cio_pwr_dom;
2145 }
2146
2147 dsi_if_enable(dsidev, true);
2148 dsi_if_enable(dsidev, false);
2149 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
2150
2151 r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
2152 if (r)
2153 goto err_tx_clk_esc_rst;
2154
2155 if (dsi->ulps_enabled) {
2156 /* Keep Mark-1 state for 1ms (as per DSI spec) */
2157 ktime_t wait = ns_to_ktime(1000 * 1000);
2158 set_current_state(TASK_UNINTERRUPTIBLE);
2159 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
2160
2161 /* Disable the override. The lanes should be set to Mark-11
2162 * state by the HW */
2163 dsi_cio_disable_lane_override(dsidev);
2164 }
2165
2166 /* FORCE_TX_STOP_MODE_IO */
2167 REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
2168
2169 dsi_cio_timings(dsidev);
2170
2171 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
2172 /* DDR_CLK_ALWAYS_ON */
2173 REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
2174 dsi->vm_timings.ddr_clk_always_on, 13, 13);
2175 }
2176
2177 dsi->ulps_enabled = false;
2178
2179 DSSDBG("CIO init done\n");
2180
2181 return 0;
2182
2183 err_tx_clk_esc_rst:
2184 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
2185 err_cio_pwr_dom:
2186 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2187 err_cio_pwr:
2188 if (dsi->ulps_enabled)
2189 dsi_cio_disable_lane_override(dsidev);
2190 err_scp_clk_dom:
2191 dsi_disable_scp_clk(dsidev);
2192 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2193 return r;
2194 }
2195
2196 static void dsi_cio_uninit(struct platform_device *dsidev)
2197 {
2198 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2199
2200 /* DDR_CLK_ALWAYS_ON */
2201 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
2202
2203 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2204 dsi_disable_scp_clk(dsidev);
2205 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2206 }
2207
2208 static void dsi_config_tx_fifo(struct platform_device *dsidev,
2209 enum fifo_size size1, enum fifo_size size2,
2210 enum fifo_size size3, enum fifo_size size4)
2211 {
2212 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2213 u32 r = 0;
2214 int add = 0;
2215 int i;
2216
2217 dsi->vc[0].tx_fifo_size = size1;
2218 dsi->vc[1].tx_fifo_size = size2;
2219 dsi->vc[2].tx_fifo_size = size3;
2220 dsi->vc[3].tx_fifo_size = size4;
2221
2222 for (i = 0; i < 4; i++) {
2223 u8 v;
2224 int size = dsi->vc[i].tx_fifo_size;
2225
2226 if (add + size > 4) {
2227 DSSERR("Illegal FIFO configuration\n");
2228 BUG();
2229 return;
2230 }
2231
2232 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2233 r |= v << (8 * i);
2234 /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
2235 add += size;
2236 }
2237
2238 dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
2239 }
2240
2241 static void dsi_config_rx_fifo(struct platform_device *dsidev,
2242 enum fifo_size size1, enum fifo_size size2,
2243 enum fifo_size size3, enum fifo_size size4)
2244 {
2245 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2246 u32 r = 0;
2247 int add = 0;
2248 int i;
2249
2250 dsi->vc[0].rx_fifo_size = size1;
2251 dsi->vc[1].rx_fifo_size = size2;
2252 dsi->vc[2].rx_fifo_size = size3;
2253 dsi->vc[3].rx_fifo_size = size4;
2254
2255 for (i = 0; i < 4; i++) {
2256 u8 v;
2257 int size = dsi->vc[i].rx_fifo_size;
2258
2259 if (add + size > 4) {
2260 DSSERR("Illegal FIFO configuration\n");
2261 BUG();
2262 return;
2263 }
2264
2265 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2266 r |= v << (8 * i);
2267 /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
2268 add += size;
2269 }
2270
2271 dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
2272 }
2273
2274 static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
2275 {
2276 u32 r;
2277
2278 r = dsi_read_reg(dsidev, DSI_TIMING1);
2279 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2280 dsi_write_reg(dsidev, DSI_TIMING1, r);
2281
2282 if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
2283 DSSERR("TX_STOP bit not going down\n");
2284 return -EIO;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
2291 {
2292 return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
2293 }
2294
2295 static void dsi_packet_sent_handler_vp(void *data, u32 mask)
2296 {
2297 struct dsi_packet_sent_handler_data *vp_data =
2298 (struct dsi_packet_sent_handler_data *) data;
2299 struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
2300 const int channel = dsi->update_channel;
2301 u8 bit = dsi->te_enabled ? 30 : 31;
2302
2303 if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
2304 complete(vp_data->completion);
2305 }
2306
2307 static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
2308 {
2309 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2310 DECLARE_COMPLETION_ONSTACK(completion);
2311 struct dsi_packet_sent_handler_data vp_data = {
2312 .dsidev = dsidev,
2313 .completion = &completion
2314 };
2315 int r = 0;
2316 u8 bit;
2317
2318 bit = dsi->te_enabled ? 30 : 31;
2319
2320 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2321 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2322 if (r)
2323 goto err0;
2324
2325 /* Wait for completion only if TE_EN/TE_START is still set */
2326 if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
2327 if (wait_for_completion_timeout(&completion,
2328 msecs_to_jiffies(10)) == 0) {
2329 DSSERR("Failed to complete previous frame transfer\n");
2330 r = -EIO;
2331 goto err1;
2332 }
2333 }
2334
2335 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2336 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2337
2338 return 0;
2339 err1:
2340 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2341 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2342 err0:
2343 return r;
2344 }
2345
2346 static void dsi_packet_sent_handler_l4(void *data, u32 mask)
2347 {
2348 struct dsi_packet_sent_handler_data *l4_data =
2349 (struct dsi_packet_sent_handler_data *) data;
2350 struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
2351 const int channel = dsi->update_channel;
2352
2353 if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
2354 complete(l4_data->completion);
2355 }
2356
2357 static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
2358 {
2359 DECLARE_COMPLETION_ONSTACK(completion);
2360 struct dsi_packet_sent_handler_data l4_data = {
2361 .dsidev = dsidev,
2362 .completion = &completion
2363 };
2364 int r = 0;
2365
2366 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2367 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2368 if (r)
2369 goto err0;
2370
2371 /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
2372 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
2373 if (wait_for_completion_timeout(&completion,
2374 msecs_to_jiffies(10)) == 0) {
2375 DSSERR("Failed to complete previous l4 transfer\n");
2376 r = -EIO;
2377 goto err1;
2378 }
2379 }
2380
2381 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2382 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2383
2384 return 0;
2385 err1:
2386 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2387 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2388 err0:
2389 return r;
2390 }
2391
2392 static int dsi_sync_vc(struct platform_device *dsidev, int channel)
2393 {
2394 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2395
2396 WARN_ON(!dsi_bus_is_locked(dsidev));
2397
2398 WARN_ON(in_interrupt());
2399
2400 if (!dsi_vc_is_enabled(dsidev, channel))
2401 return 0;
2402
2403 switch (dsi->vc[channel].source) {
2404 case DSI_VC_SOURCE_VP:
2405 return dsi_sync_vc_vp(dsidev, channel);
2406 case DSI_VC_SOURCE_L4:
2407 return dsi_sync_vc_l4(dsidev, channel);
2408 default:
2409 BUG();
2410 return -EINVAL;
2411 }
2412 }
2413
2414 static int dsi_vc_enable(struct platform_device *dsidev, int channel,
2415 bool enable)
2416 {
2417 DSSDBG("dsi_vc_enable channel %d, enable %d\n",
2418 channel, enable);
2419
2420 enable = enable ? 1 : 0;
2421
2422 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
2423
2424 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
2425 0, enable) != enable) {
2426 DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
2427 return -EIO;
2428 }
2429
2430 return 0;
2431 }
2432
2433 static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
2434 {
2435 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2436 u32 r;
2437
2438 DSSDBG("Initial config of virtual channel %d", channel);
2439
2440 r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2441
2442 if (FLD_GET(r, 15, 15)) /* VC_BUSY */
2443 DSSERR("VC(%d) busy when trying to configure it!\n",
2444 channel);
2445
2446 r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
2447 r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
2448 r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
2449 r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
2450 r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
2451 r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
2452 r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
2453 if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
2454 r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
2455
2456 r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
2457 r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
2458
2459 dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
2460
2461 dsi->vc[channel].source = DSI_VC_SOURCE_L4;
2462 }
2463
2464 static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
2465 enum dsi_vc_source source)
2466 {
2467 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2468
2469 if (dsi->vc[channel].source == source)
2470 return 0;
2471
2472 DSSDBG("Source config of virtual channel %d", channel);
2473
2474 dsi_sync_vc(dsidev, channel);
2475
2476 dsi_vc_enable(dsidev, channel, 0);
2477
2478 /* VC_BUSY */
2479 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
2480 DSSERR("vc(%d) busy when trying to config for VP\n", channel);
2481 return -EIO;
2482 }
2483
2484 /* SOURCE, 0 = L4, 1 = video port */
2485 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
2486
2487 /* DCS_CMD_ENABLE */
2488 if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
2489 bool enable = source == DSI_VC_SOURCE_VP;
2490 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
2491 }
2492
2493 dsi_vc_enable(dsidev, channel, 1);
2494
2495 dsi->vc[channel].source = source;
2496
2497 return 0;
2498 }
2499
2500 static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
2501 bool enable)
2502 {
2503 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2504 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2505
2506 DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
2507
2508 WARN_ON(!dsi_bus_is_locked(dsidev));
2509
2510 dsi_vc_enable(dsidev, channel, 0);
2511 dsi_if_enable(dsidev, 0);
2512
2513 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
2514
2515 dsi_vc_enable(dsidev, channel, 1);
2516 dsi_if_enable(dsidev, 1);
2517
2518 dsi_force_tx_stop_mode_io(dsidev);
2519
2520 /* start the DDR clock by sending a NULL packet */
2521 if (dsi->vm_timings.ddr_clk_always_on && enable)
2522 dsi_vc_send_null(dssdev, channel);
2523 }
2524
2525 static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
2526 {
2527 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2528 u32 val;
2529 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2530 DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
2531 (val >> 0) & 0xff,
2532 (val >> 8) & 0xff,
2533 (val >> 16) & 0xff,
2534 (val >> 24) & 0xff);
2535 }
2536 }
2537
2538 static void dsi_show_rx_ack_with_err(u16 err)
2539 {
2540 DSSERR("\tACK with ERROR (%#x):\n", err);
2541 if (err & (1 << 0))
2542 DSSERR("\t\tSoT Error\n");
2543 if (err & (1 << 1))
2544 DSSERR("\t\tSoT Sync Error\n");
2545 if (err & (1 << 2))
2546 DSSERR("\t\tEoT Sync Error\n");
2547 if (err & (1 << 3))
2548 DSSERR("\t\tEscape Mode Entry Command Error\n");
2549 if (err & (1 << 4))
2550 DSSERR("\t\tLP Transmit Sync Error\n");
2551 if (err & (1 << 5))
2552 DSSERR("\t\tHS Receive Timeout Error\n");
2553 if (err & (1 << 6))
2554 DSSERR("\t\tFalse Control Error\n");
2555 if (err & (1 << 7))
2556 DSSERR("\t\t(reserved7)\n");
2557 if (err & (1 << 8))
2558 DSSERR("\t\tECC Error, single-bit (corrected)\n");
2559 if (err & (1 << 9))
2560 DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
2561 if (err & (1 << 10))
2562 DSSERR("\t\tChecksum Error\n");
2563 if (err & (1 << 11))
2564 DSSERR("\t\tData type not recognized\n");
2565 if (err & (1 << 12))
2566 DSSERR("\t\tInvalid VC ID\n");
2567 if (err & (1 << 13))
2568 DSSERR("\t\tInvalid Transmission Length\n");
2569 if (err & (1 << 14))
2570 DSSERR("\t\t(reserved14)\n");
2571 if (err & (1 << 15))
2572 DSSERR("\t\tDSI Protocol Violation\n");
2573 }
2574
2575 static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
2576 int channel)
2577 {
2578 /* RX_FIFO_NOT_EMPTY */
2579 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2580 u32 val;
2581 u8 dt;
2582 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2583 DSSERR("\trawval %#08x\n", val);
2584 dt = FLD_GET(val, 5, 0);
2585 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2586 u16 err = FLD_GET(val, 23, 8);
2587 dsi_show_rx_ack_with_err(err);
2588 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
2589 DSSERR("\tDCS short response, 1 byte: %#x\n",
2590 FLD_GET(val, 23, 8));
2591 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
2592 DSSERR("\tDCS short response, 2 byte: %#x\n",
2593 FLD_GET(val, 23, 8));
2594 } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
2595 DSSERR("\tDCS long response, len %d\n",
2596 FLD_GET(val, 23, 8));
2597 dsi_vc_flush_long_data(dsidev, channel);
2598 } else {
2599 DSSERR("\tunknown datatype 0x%02x\n", dt);
2600 }
2601 }
2602 return 0;
2603 }
2604
2605 static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
2606 {
2607 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2608
2609 if (dsi->debug_write || dsi->debug_read)
2610 DSSDBG("dsi_vc_send_bta %d\n", channel);
2611
2612 WARN_ON(!dsi_bus_is_locked(dsidev));
2613
2614 /* RX_FIFO_NOT_EMPTY */
2615 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2616 DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
2617 dsi_vc_flush_receive_data(dsidev, channel);
2618 }
2619
2620 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
2621
2622 /* flush posted write */
2623 dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2624
2625 return 0;
2626 }
2627
2628 static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
2629 {
2630 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2631 DECLARE_COMPLETION_ONSTACK(completion);
2632 int r = 0;
2633 u32 err;
2634
2635 r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
2636 &completion, DSI_VC_IRQ_BTA);
2637 if (r)
2638 goto err0;
2639
2640 r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
2641 DSI_IRQ_ERROR_MASK);
2642 if (r)
2643 goto err1;
2644
2645 r = dsi_vc_send_bta(dsidev, channel);
2646 if (r)
2647 goto err2;
2648
2649 if (wait_for_completion_timeout(&completion,
2650 msecs_to_jiffies(500)) == 0) {
2651 DSSERR("Failed to receive BTA\n");
2652 r = -EIO;
2653 goto err2;
2654 }
2655
2656 err = dsi_get_errors(dsidev);
2657 if (err) {
2658 DSSERR("Error while sending BTA: %x\n", err);
2659 r = -EIO;
2660 goto err2;
2661 }
2662 err2:
2663 dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
2664 DSI_IRQ_ERROR_MASK);
2665 err1:
2666 dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
2667 &completion, DSI_VC_IRQ_BTA);
2668 err0:
2669 return r;
2670 }
2671
2672 static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
2673 int channel, u8 data_type, u16 len, u8 ecc)
2674 {
2675 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2676 u32 val;
2677 u8 data_id;
2678
2679 WARN_ON(!dsi_bus_is_locked(dsidev));
2680
2681 data_id = data_type | dsi->vc[channel].vc_id << 6;
2682
2683 val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
2684 FLD_VAL(ecc, 31, 24);
2685
2686 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
2687 }
2688
2689 static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
2690 int channel, u8 b1, u8 b2, u8 b3, u8 b4)
2691 {
2692 u32 val;
2693
2694 val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
2695
2696 /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
2697 b1, b2, b3, b4, val); */
2698
2699 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
2700 }
2701
2702 static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
2703 u8 data_type, u8 *data, u16 len, u8 ecc)
2704 {
2705 /*u32 val; */
2706 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2707 int i;
2708 u8 *p;
2709 int r = 0;
2710 u8 b1, b2, b3, b4;
2711
2712 if (dsi->debug_write)
2713 DSSDBG("dsi_vc_send_long, %d bytes\n", len);
2714
2715 /* len + header */
2716 if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
2717 DSSERR("unable to send long packet: packet too long.\n");
2718 return -EINVAL;
2719 }
2720
2721 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2722
2723 dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
2724
2725 p = data;
2726 for (i = 0; i < len >> 2; i++) {
2727 if (dsi->debug_write)
2728 DSSDBG("\tsending full packet %d\n", i);
2729
2730 b1 = *p++;
2731 b2 = *p++;
2732 b3 = *p++;
2733 b4 = *p++;
2734
2735 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
2736 }
2737
2738 i = len % 4;
2739 if (i) {
2740 b1 = 0; b2 = 0; b3 = 0;
2741
2742 if (dsi->debug_write)
2743 DSSDBG("\tsending remainder bytes %d\n", i);
2744
2745 switch (i) {
2746 case 3:
2747 b1 = *p++;
2748 b2 = *p++;
2749 b3 = *p++;
2750 break;
2751 case 2:
2752 b1 = *p++;
2753 b2 = *p++;
2754 break;
2755 case 1:
2756 b1 = *p++;
2757 break;
2758 }
2759
2760 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
2761 }
2762
2763 return r;
2764 }
2765
2766 static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
2767 u8 data_type, u16 data, u8 ecc)
2768 {
2769 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2770 u32 r;
2771 u8 data_id;
2772
2773 WARN_ON(!dsi_bus_is_locked(dsidev));
2774
2775 if (dsi->debug_write)
2776 DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
2777 channel,
2778 data_type, data & 0xff, (data >> 8) & 0xff);
2779
2780 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2781
2782 if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
2783 DSSERR("ERROR FIFO FULL, aborting transfer\n");
2784 return -EINVAL;
2785 }
2786
2787 data_id = data_type | dsi->vc[channel].vc_id << 6;
2788
2789 r = (data_id << 0) | (data << 8) | (ecc << 24);
2790
2791 dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
2792
2793 return 0;
2794 }
2795
2796 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
2797 {
2798 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2799
2800 return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
2801 0, 0);
2802 }
2803
2804 static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
2805 int channel, u8 *data, int len, enum dss_dsi_content_type type)
2806 {
2807 int r;
2808
2809 if (len == 0) {
2810 BUG_ON(type == DSS_DSI_CONTENT_DCS);
2811 r = dsi_vc_send_short(dsidev, channel,
2812 MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
2813 } else if (len == 1) {
2814 r = dsi_vc_send_short(dsidev, channel,
2815 type == DSS_DSI_CONTENT_GENERIC ?
2816 MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
2817 MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
2818 } else if (len == 2) {
2819 r = dsi_vc_send_short(dsidev, channel,
2820 type == DSS_DSI_CONTENT_GENERIC ?
2821 MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
2822 MIPI_DSI_DCS_SHORT_WRITE_PARAM,
2823 data[0] | (data[1] << 8), 0);
2824 } else {
2825 r = dsi_vc_send_long(dsidev, channel,
2826 type == DSS_DSI_CONTENT_GENERIC ?
2827 MIPI_DSI_GENERIC_LONG_WRITE :
2828 MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
2829 }
2830
2831 return r;
2832 }
2833
2834 static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
2835 u8 *data, int len)
2836 {
2837 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2838
2839 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2840 DSS_DSI_CONTENT_DCS);
2841 }
2842
2843 static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
2844 u8 *data, int len)
2845 {
2846 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2847
2848 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2849 DSS_DSI_CONTENT_GENERIC);
2850 }
2851
2852 static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
2853 u8 *data, int len, enum dss_dsi_content_type type)
2854 {
2855 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2856 int r;
2857
2858 r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
2859 if (r)
2860 goto err;
2861
2862 r = dsi_vc_send_bta_sync(dssdev, channel);
2863 if (r)
2864 goto err;
2865
2866 /* RX_FIFO_NOT_EMPTY */
2867 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2868 DSSERR("rx fifo not empty after write, dumping data:\n");
2869 dsi_vc_flush_receive_data(dsidev, channel);
2870 r = -EIO;
2871 goto err;
2872 }
2873
2874 return 0;
2875 err:
2876 DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
2877 channel, data[0], len);
2878 return r;
2879 }
2880
2881 static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2882 int len)
2883 {
2884 return dsi_vc_write_common(dssdev, channel, data, len,
2885 DSS_DSI_CONTENT_DCS);
2886 }
2887
2888 static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2889 int len)
2890 {
2891 return dsi_vc_write_common(dssdev, channel, data, len,
2892 DSS_DSI_CONTENT_GENERIC);
2893 }
2894
2895 static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
2896 int channel, u8 dcs_cmd)
2897 {
2898 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2899 int r;
2900
2901 if (dsi->debug_read)
2902 DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
2903 channel, dcs_cmd);
2904
2905 r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
2906 if (r) {
2907 DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
2908 " failed\n", channel, dcs_cmd);
2909 return r;
2910 }
2911
2912 return 0;
2913 }
2914
2915 static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
2916 int channel, u8 *reqdata, int reqlen)
2917 {
2918 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2919 u16 data;
2920 u8 data_type;
2921 int r;
2922
2923 if (dsi->debug_read)
2924 DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
2925 channel, reqlen);
2926
2927 if (reqlen == 0) {
2928 data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
2929 data = 0;
2930 } else if (reqlen == 1) {
2931 data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
2932 data = reqdata[0];
2933 } else if (reqlen == 2) {
2934 data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
2935 data = reqdata[0] | (reqdata[1] << 8);
2936 } else {
2937 BUG();
2938 return -EINVAL;
2939 }
2940
2941 r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
2942 if (r) {
2943 DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
2944 " failed\n", channel, reqlen);
2945 return r;
2946 }
2947
2948 return 0;
2949 }
2950
2951 static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
2952 u8 *buf, int buflen, enum dss_dsi_content_type type)
2953 {
2954 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2955 u32 val;
2956 u8 dt;
2957 int r;
2958
2959 /* RX_FIFO_NOT_EMPTY */
2960 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
2961 DSSERR("RX fifo empty when trying to read.\n");
2962 r = -EIO;
2963 goto err;
2964 }
2965
2966 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2967 if (dsi->debug_read)
2968 DSSDBG("\theader: %08x\n", val);
2969 dt = FLD_GET(val, 5, 0);
2970 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2971 u16 err = FLD_GET(val, 23, 8);
2972 dsi_show_rx_ack_with_err(err);
2973 r = -EIO;
2974 goto err;
2975
2976 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2977 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
2978 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
2979 u8 data = FLD_GET(val, 15, 8);
2980 if (dsi->debug_read)
2981 DSSDBG("\t%s short response, 1 byte: %02x\n",
2982 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2983 "DCS", data);
2984
2985 if (buflen < 1) {
2986 r = -EIO;
2987 goto err;
2988 }
2989
2990 buf[0] = data;
2991
2992 return 1;
2993 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2994 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
2995 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
2996 u16 data = FLD_GET(val, 23, 8);
2997 if (dsi->debug_read)
2998 DSSDBG("\t%s short response, 2 byte: %04x\n",
2999 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3000 "DCS", data);
3001
3002 if (buflen < 2) {
3003 r = -EIO;
3004 goto err;
3005 }
3006
3007 buf[0] = data & 0xff;
3008 buf[1] = (data >> 8) & 0xff;
3009
3010 return 2;
3011 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
3012 MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
3013 MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
3014 int w;
3015 int len = FLD_GET(val, 23, 8);
3016 if (dsi->debug_read)
3017 DSSDBG("\t%s long response, len %d\n",
3018 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3019 "DCS", len);
3020
3021 if (len > buflen) {
3022 r = -EIO;
3023 goto err;
3024 }
3025
3026 /* two byte checksum ends the packet, not included in len */
3027 for (w = 0; w < len + 2;) {
3028 int b;
3029 val = dsi_read_reg(dsidev,
3030 DSI_VC_SHORT_PACKET_HEADER(channel));
3031 if (dsi->debug_read)
3032 DSSDBG("\t\t%02x %02x %02x %02x\n",
3033 (val >> 0) & 0xff,
3034 (val >> 8) & 0xff,
3035 (val >> 16) & 0xff,
3036 (val >> 24) & 0xff);
3037
3038 for (b = 0; b < 4; ++b) {
3039 if (w < len)
3040 buf[w] = (val >> (b * 8)) & 0xff;
3041 /* we discard the 2 byte checksum */
3042 ++w;
3043 }
3044 }
3045
3046 return len;
3047 } else {
3048 DSSERR("\tunknown datatype 0x%02x\n", dt);
3049 r = -EIO;
3050 goto err;
3051 }
3052
3053 err:
3054 DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
3055 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
3056
3057 return r;
3058 }
3059
3060 static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
3061 u8 *buf, int buflen)
3062 {
3063 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3064 int r;
3065
3066 r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
3067 if (r)
3068 goto err;
3069
3070 r = dsi_vc_send_bta_sync(dssdev, channel);
3071 if (r)
3072 goto err;
3073
3074 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3075 DSS_DSI_CONTENT_DCS);
3076 if (r < 0)
3077 goto err;
3078
3079 if (r != buflen) {
3080 r = -EIO;
3081 goto err;
3082 }
3083
3084 return 0;
3085 err:
3086 DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
3087 return r;
3088 }
3089
3090 static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
3091 u8 *reqdata, int reqlen, u8 *buf, int buflen)
3092 {
3093 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3094 int r;
3095
3096 r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
3097 if (r)
3098 return r;
3099
3100 r = dsi_vc_send_bta_sync(dssdev, channel);
3101 if (r)
3102 return r;
3103
3104 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3105 DSS_DSI_CONTENT_GENERIC);
3106 if (r < 0)
3107 return r;
3108
3109 if (r != buflen) {
3110 r = -EIO;
3111 return r;
3112 }
3113
3114 return 0;
3115 }
3116
3117 static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
3118 u16 len)
3119 {
3120 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3121
3122 return dsi_vc_send_short(dsidev, channel,
3123 MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
3124 }
3125
3126 static int dsi_enter_ulps(struct platform_device *dsidev)
3127 {
3128 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3129 DECLARE_COMPLETION_ONSTACK(completion);
3130 int r, i;
3131 unsigned mask;
3132
3133 DSSDBG("Entering ULPS");
3134
3135 WARN_ON(!dsi_bus_is_locked(dsidev));
3136
3137 WARN_ON(dsi->ulps_enabled);
3138
3139 if (dsi->ulps_enabled)
3140 return 0;
3141
3142 /* DDR_CLK_ALWAYS_ON */
3143 if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
3144 dsi_if_enable(dsidev, 0);
3145 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
3146 dsi_if_enable(dsidev, 1);
3147 }
3148
3149 dsi_sync_vc(dsidev, 0);
3150 dsi_sync_vc(dsidev, 1);
3151 dsi_sync_vc(dsidev, 2);
3152 dsi_sync_vc(dsidev, 3);
3153
3154 dsi_force_tx_stop_mode_io(dsidev);
3155
3156 dsi_vc_enable(dsidev, 0, false);
3157 dsi_vc_enable(dsidev, 1, false);
3158 dsi_vc_enable(dsidev, 2, false);
3159 dsi_vc_enable(dsidev, 3, false);
3160
3161 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
3162 DSSERR("HS busy when enabling ULPS\n");
3163 return -EIO;
3164 }
3165
3166 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
3167 DSSERR("LP busy when enabling ULPS\n");
3168 return -EIO;
3169 }
3170
3171 r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
3172 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3173 if (r)
3174 return r;
3175
3176 mask = 0;
3177
3178 for (i = 0; i < dsi->num_lanes_supported; ++i) {
3179 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
3180 continue;
3181 mask |= 1 << i;
3182 }
3183 /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
3184 /* LANEx_ULPS_SIG2 */
3185 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
3186
3187 /* flush posted write and wait for SCP interface to finish the write */
3188 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3189
3190 if (wait_for_completion_timeout(&completion,
3191 msecs_to_jiffies(1000)) == 0) {
3192 DSSERR("ULPS enable timeout\n");
3193 r = -EIO;
3194 goto err;
3195 }
3196
3197 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3198 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3199
3200 /* Reset LANEx_ULPS_SIG2 */
3201 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
3202
3203 /* flush posted write and wait for SCP interface to finish the write */
3204 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3205
3206 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
3207
3208 dsi_if_enable(dsidev, false);
3209
3210 dsi->ulps_enabled = true;
3211
3212 return 0;
3213
3214 err:
3215 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3216 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3217 return r;
3218 }
3219
3220 static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
3221 unsigned ticks, bool x4, bool x16)
3222 {
3223 unsigned long fck;
3224 unsigned long total_ticks;
3225 u32 r;
3226
3227 BUG_ON(ticks > 0x1fff);
3228
3229 /* ticks in DSI_FCK */
3230 fck = dsi_fclk_rate(dsidev);
3231
3232 r = dsi_read_reg(dsidev, DSI_TIMING2);
3233 r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
3234 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
3235 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
3236 r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
3237 dsi_write_reg(dsidev, DSI_TIMING2, r);
3238
3239 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3240
3241 DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3242 total_ticks,
3243 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3244 (total_ticks * 1000) / (fck / 1000 / 1000));
3245 }
3246
3247 static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
3248 bool x8, bool x16)
3249 {
3250 unsigned long fck;
3251 unsigned long total_ticks;
3252 u32 r;
3253
3254 BUG_ON(ticks > 0x1fff);
3255
3256 /* ticks in DSI_FCK */
3257 fck = dsi_fclk_rate(dsidev);
3258
3259 r = dsi_read_reg(dsidev, DSI_TIMING1);
3260 r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
3261 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
3262 r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
3263 r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
3264 dsi_write_reg(dsidev, DSI_TIMING1, r);
3265
3266 total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
3267
3268 DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
3269 total_ticks,
3270 ticks, x8 ? " x8" : "", x16 ? " x16" : "",
3271 (total_ticks * 1000) / (fck / 1000 / 1000));
3272 }
3273
3274 static void dsi_set_stop_state_counter(struct platform_device *dsidev,
3275 unsigned ticks, bool x4, bool x16)
3276 {
3277 unsigned long fck;
3278 unsigned long total_ticks;
3279 u32 r;
3280
3281 BUG_ON(ticks > 0x1fff);
3282
3283 /* ticks in DSI_FCK */
3284 fck = dsi_fclk_rate(dsidev);
3285
3286 r = dsi_read_reg(dsidev, DSI_TIMING1);
3287 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
3288 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
3289 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
3290 r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
3291 dsi_write_reg(dsidev, DSI_TIMING1, r);
3292
3293 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3294
3295 DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
3296 total_ticks,
3297 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3298 (total_ticks * 1000) / (fck / 1000 / 1000));
3299 }
3300
3301 static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
3302 unsigned ticks, bool x4, bool x16)
3303 {
3304 unsigned long fck;
3305 unsigned long total_ticks;
3306 u32 r;
3307
3308 BUG_ON(ticks > 0x1fff);
3309
3310 /* ticks in TxByteClkHS */
3311 fck = dsi_get_txbyteclkhs(dsidev);
3312
3313 r = dsi_read_reg(dsidev, DSI_TIMING2);
3314 r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
3315 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
3316 r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
3317 r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
3318 dsi_write_reg(dsidev, DSI_TIMING2, r);
3319
3320 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3321
3322 DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3323 total_ticks,
3324 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3325 (total_ticks * 1000) / (fck / 1000 / 1000));
3326 }
3327
3328 static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
3329 {
3330 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3331 int num_line_buffers;
3332
3333 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3334 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3335 struct omap_video_timings *timings = &dsi->timings;
3336 /*
3337 * Don't use line buffers if width is greater than the video
3338 * port's line buffer size
3339 */
3340 if (dsi->line_buffer_size <= timings->x_res * bpp / 8)
3341 num_line_buffers = 0;
3342 else
3343 num_line_buffers = 2;
3344 } else {
3345 /* Use maximum number of line buffers in command mode */
3346 num_line_buffers = 2;
3347 }
3348
3349 /* LINE_BUFFER */
3350 REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
3351 }
3352
3353 static void dsi_config_vp_sync_events(struct platform_device *dsidev)
3354 {
3355 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3356 bool sync_end;
3357 u32 r;
3358
3359 if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
3360 sync_end = true;
3361 else
3362 sync_end = false;
3363
3364 r = dsi_read_reg(dsidev, DSI_CTRL);
3365 r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
3366 r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
3367 r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
3368 r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
3369 r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
3370 r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
3371 r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
3372 dsi_write_reg(dsidev, DSI_CTRL, r);
3373 }
3374
3375 static void dsi_config_blanking_modes(struct platform_device *dsidev)
3376 {
3377 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3378 int blanking_mode = dsi->vm_timings.blanking_mode;
3379 int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
3380 int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
3381 int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
3382 u32 r;
3383
3384 /*
3385 * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
3386 * 1 = Long blanking packets are sent in corresponding blanking periods
3387 */
3388 r = dsi_read_reg(dsidev, DSI_CTRL);
3389 r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
3390 r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
3391 r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
3392 r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
3393 dsi_write_reg(dsidev, DSI_CTRL, r);
3394 }
3395
3396 /*
3397 * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
3398 * results in maximum transition time for data and clock lanes to enter and
3399 * exit HS mode. Hence, this is the scenario where the least amount of command
3400 * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
3401 * clock cycles that can be used to interleave command mode data in HS so that
3402 * all scenarios are satisfied.
3403 */
3404 static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
3405 int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
3406 {
3407 int transition;
3408
3409 /*
3410 * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
3411 * time of data lanes only, if it isn't set, we need to consider HS
3412 * transition time of both data and clock lanes. HS transition time
3413 * of Scenario 3 is considered.
3414 */
3415 if (ddr_alwon) {
3416 transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
3417 } else {
3418 int trans1, trans2;
3419 trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
3420 trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
3421 enter_hs + 1;
3422 transition = max(trans1, trans2);
3423 }
3424
3425 return blank > transition ? blank - transition : 0;
3426 }
3427
3428 /*
3429 * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
3430 * results in maximum transition time for data lanes to enter and exit LP mode.
3431 * Hence, this is the scenario where the least amount of command mode data can
3432 * be interleaved. We program the minimum amount of bytes that can be
3433 * interleaved in LP so that all scenarios are satisfied.
3434 */
3435 static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
3436 int lp_clk_div, int tdsi_fclk)
3437 {
3438 int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
3439 int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
3440 int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
3441 int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
3442 int lp_inter; /* cmd mode data that can be interleaved, in bytes */
3443
3444 /* maximum LP transition time according to Scenario 1 */
3445 trans_lp = exit_hs + max(enter_hs, 2) + 1;
3446
3447 /* CLKIN4DDR = 16 * TXBYTECLKHS */
3448 tlp_avail = thsbyte_clk * (blank - trans_lp);
3449
3450 ttxclkesc = tdsi_fclk * lp_clk_div;
3451
3452 lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
3453 26) / 16;
3454
3455 return max(lp_inter, 0);
3456 }
3457
3458 static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
3459 {
3460 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3461 int blanking_mode;
3462 int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
3463 int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
3464 int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
3465 int tclk_trail, ths_exit, exiths_clk;
3466 bool ddr_alwon;
3467 struct omap_video_timings *timings = &dsi->timings;
3468 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3469 int ndl = dsi->num_lanes_used - 1;
3470 int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
3471 int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
3472 int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
3473 int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
3474 int bl_interleave_hs = 0, bl_interleave_lp = 0;
3475 u32 r;
3476
3477 r = dsi_read_reg(dsidev, DSI_CTRL);
3478 blanking_mode = FLD_GET(r, 20, 20);
3479 hfp_blanking_mode = FLD_GET(r, 21, 21);
3480 hbp_blanking_mode = FLD_GET(r, 22, 22);
3481 hsa_blanking_mode = FLD_GET(r, 23, 23);
3482
3483 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3484 hbp = FLD_GET(r, 11, 0);
3485 hfp = FLD_GET(r, 23, 12);
3486 hsa = FLD_GET(r, 31, 24);
3487
3488 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3489 ddr_clk_post = FLD_GET(r, 7, 0);
3490 ddr_clk_pre = FLD_GET(r, 15, 8);
3491
3492 r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
3493 exit_hs_mode_lat = FLD_GET(r, 15, 0);
3494 enter_hs_mode_lat = FLD_GET(r, 31, 16);
3495
3496 r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
3497 lp_clk_div = FLD_GET(r, 12, 0);
3498 ddr_alwon = FLD_GET(r, 13, 13);
3499
3500 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3501 ths_exit = FLD_GET(r, 7, 0);
3502
3503 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3504 tclk_trail = FLD_GET(r, 15, 8);
3505
3506 exiths_clk = ths_exit + tclk_trail;
3507
3508 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3509 bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
3510
3511 if (!hsa_blanking_mode) {
3512 hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
3513 enter_hs_mode_lat, exit_hs_mode_lat,
3514 exiths_clk, ddr_clk_pre, ddr_clk_post);
3515 hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
3516 enter_hs_mode_lat, exit_hs_mode_lat,
3517 lp_clk_div, dsi_fclk_hsdiv);
3518 }
3519
3520 if (!hfp_blanking_mode) {
3521 hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
3522 enter_hs_mode_lat, exit_hs_mode_lat,
3523 exiths_clk, ddr_clk_pre, ddr_clk_post);
3524 hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
3525 enter_hs_mode_lat, exit_hs_mode_lat,
3526 lp_clk_div, dsi_fclk_hsdiv);
3527 }
3528
3529 if (!hbp_blanking_mode) {
3530 hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
3531 enter_hs_mode_lat, exit_hs_mode_lat,
3532 exiths_clk, ddr_clk_pre, ddr_clk_post);
3533
3534 hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
3535 enter_hs_mode_lat, exit_hs_mode_lat,
3536 lp_clk_div, dsi_fclk_hsdiv);
3537 }
3538
3539 if (!blanking_mode) {
3540 bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
3541 enter_hs_mode_lat, exit_hs_mode_lat,
3542 exiths_clk, ddr_clk_pre, ddr_clk_post);
3543
3544 bl_interleave_lp = dsi_compute_interleave_lp(bllp,
3545 enter_hs_mode_lat, exit_hs_mode_lat,
3546 lp_clk_div, dsi_fclk_hsdiv);
3547 }
3548
3549 DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3550 hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
3551 bl_interleave_hs);
3552
3553 DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3554 hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
3555 bl_interleave_lp);
3556
3557 r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
3558 r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
3559 r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
3560 r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
3561 dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
3562
3563 r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
3564 r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
3565 r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
3566 r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
3567 dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
3568
3569 r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
3570 r = FLD_MOD(r, bl_interleave_hs, 31, 15);
3571 r = FLD_MOD(r, bl_interleave_lp, 16, 0);
3572 dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
3573 }
3574
3575 static int dsi_proto_config(struct platform_device *dsidev)
3576 {
3577 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3578 u32 r;
3579 int buswidth = 0;
3580
3581 dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
3582 DSI_FIFO_SIZE_32,
3583 DSI_FIFO_SIZE_32,
3584 DSI_FIFO_SIZE_32);
3585
3586 dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
3587 DSI_FIFO_SIZE_32,
3588 DSI_FIFO_SIZE_32,
3589 DSI_FIFO_SIZE_32);
3590
3591 /* XXX what values for the timeouts? */
3592 dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
3593 dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
3594 dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
3595 dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
3596
3597 switch (dsi_get_pixel_size(dsi->pix_fmt)) {
3598 case 16:
3599 buswidth = 0;
3600 break;
3601 case 18:
3602 buswidth = 1;
3603 break;
3604 case 24:
3605 buswidth = 2;
3606 break;
3607 default:
3608 BUG();
3609 return -EINVAL;
3610 }
3611
3612 r = dsi_read_reg(dsidev, DSI_CTRL);
3613 r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
3614 r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
3615 r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
3616 r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
3617 r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
3618 r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
3619 r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
3620 r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
3621 if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
3622 r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
3623 /* DCS_CMD_CODE, 1=start, 0=continue */
3624 r = FLD_MOD(r, 0, 25, 25);
3625 }
3626
3627 dsi_write_reg(dsidev, DSI_CTRL, r);
3628
3629 dsi_config_vp_num_line_buffers(dsidev);
3630
3631 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3632 dsi_config_vp_sync_events(dsidev);
3633 dsi_config_blanking_modes(dsidev);
3634 dsi_config_cmd_mode_interleaving(dsidev);
3635 }
3636
3637 dsi_vc_initial_config(dsidev, 0);
3638 dsi_vc_initial_config(dsidev, 1);
3639 dsi_vc_initial_config(dsidev, 2);
3640 dsi_vc_initial_config(dsidev, 3);
3641
3642 return 0;
3643 }
3644
3645 static void dsi_proto_timings(struct platform_device *dsidev)
3646 {
3647 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3648 unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
3649 unsigned tclk_pre, tclk_post;
3650 unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
3651 unsigned ths_trail, ths_exit;
3652 unsigned ddr_clk_pre, ddr_clk_post;
3653 unsigned enter_hs_mode_lat, exit_hs_mode_lat;
3654 unsigned ths_eot;
3655 int ndl = dsi->num_lanes_used - 1;
3656 u32 r;
3657
3658 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3659 ths_prepare = FLD_GET(r, 31, 24);
3660 ths_prepare_ths_zero = FLD_GET(r, 23, 16);
3661 ths_zero = ths_prepare_ths_zero - ths_prepare;
3662 ths_trail = FLD_GET(r, 15, 8);
3663 ths_exit = FLD_GET(r, 7, 0);
3664
3665 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3666 tlpx = FLD_GET(r, 20, 16) * 2;
3667 tclk_trail = FLD_GET(r, 15, 8);
3668 tclk_zero = FLD_GET(r, 7, 0);
3669
3670 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
3671 tclk_prepare = FLD_GET(r, 7, 0);
3672
3673 /* min 8*UI */
3674 tclk_pre = 20;
3675 /* min 60ns + 52*UI */
3676 tclk_post = ns2ddr(dsidev, 60) + 26;
3677
3678 ths_eot = DIV_ROUND_UP(4, ndl);
3679
3680 ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
3681 4);
3682 ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
3683
3684 BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
3685 BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
3686
3687 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3688 r = FLD_MOD(r, ddr_clk_pre, 15, 8);
3689 r = FLD_MOD(r, ddr_clk_post, 7, 0);
3690 dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
3691
3692 DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
3693 ddr_clk_pre,
3694 ddr_clk_post);
3695
3696 enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
3697 DIV_ROUND_UP(ths_prepare, 4) +
3698 DIV_ROUND_UP(ths_zero + 3, 4);
3699
3700 exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
3701
3702 r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
3703 FLD_VAL(exit_hs_mode_lat, 15, 0);
3704 dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
3705
3706 DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
3707 enter_hs_mode_lat, exit_hs_mode_lat);
3708
3709 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3710 /* TODO: Implement a video mode check_timings function */
3711 int hsa = dsi->vm_timings.hsa;
3712 int hfp = dsi->vm_timings.hfp;
3713 int hbp = dsi->vm_timings.hbp;
3714 int vsa = dsi->vm_timings.vsa;
3715 int vfp = dsi->vm_timings.vfp;
3716 int vbp = dsi->vm_timings.vbp;
3717 int window_sync = dsi->vm_timings.window_sync;
3718 bool hsync_end;
3719 struct omap_video_timings *timings = &dsi->timings;
3720 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3721 int tl, t_he, width_bytes;
3722
3723 hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
3724 t_he = hsync_end ?
3725 ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
3726
3727 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3728
3729 /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
3730 tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
3731 DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
3732
3733 DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
3734 hfp, hsync_end ? hsa : 0, tl);
3735 DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
3736 vsa, timings->y_res);
3737
3738 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3739 r = FLD_MOD(r, hbp, 11, 0); /* HBP */
3740 r = FLD_MOD(r, hfp, 23, 12); /* HFP */
3741 r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
3742 dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
3743
3744 r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
3745 r = FLD_MOD(r, vbp, 7, 0); /* VBP */
3746 r = FLD_MOD(r, vfp, 15, 8); /* VFP */
3747 r = FLD_MOD(r, vsa, 23, 16); /* VSA */
3748 r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
3749 dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
3750
3751 r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
3752 r = FLD_MOD(r, timings->y_res, 14, 0); /* VACT */
3753 r = FLD_MOD(r, tl, 31, 16); /* TL */
3754 dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
3755 }
3756 }
3757
3758 static int dsi_configure_pins(struct omap_dss_device *dssdev,
3759 const struct omap_dsi_pin_config *pin_cfg)
3760 {
3761 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3762 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3763 int num_pins;
3764 const int *pins;
3765 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
3766 int num_lanes;
3767 int i;
3768
3769 static const enum dsi_lane_function functions[] = {
3770 DSI_LANE_CLK,
3771 DSI_LANE_DATA1,
3772 DSI_LANE_DATA2,
3773 DSI_LANE_DATA3,
3774 DSI_LANE_DATA4,
3775 };
3776
3777 num_pins = pin_cfg->num_pins;
3778 pins = pin_cfg->pins;
3779
3780 if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
3781 || num_pins % 2 != 0)
3782 return -EINVAL;
3783
3784 for (i = 0; i < DSI_MAX_NR_LANES; ++i)
3785 lanes[i].function = DSI_LANE_UNUSED;
3786
3787 num_lanes = 0;
3788
3789 for (i = 0; i < num_pins; i += 2) {
3790 u8 lane, pol;
3791 int dx, dy;
3792
3793 dx = pins[i];
3794 dy = pins[i + 1];
3795
3796 if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
3797 return -EINVAL;
3798
3799 if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
3800 return -EINVAL;
3801
3802 if (dx & 1) {
3803 if (dy != dx - 1)
3804 return -EINVAL;
3805 pol = 1;
3806 } else {
3807 if (dy != dx + 1)
3808 return -EINVAL;
3809 pol = 0;
3810 }
3811
3812 lane = dx / 2;
3813
3814 lanes[lane].function = functions[i / 2];
3815 lanes[lane].polarity = pol;
3816 num_lanes++;
3817 }
3818
3819 memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
3820 dsi->num_lanes_used = num_lanes;
3821
3822 return 0;
3823 }
3824
3825 static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
3826 {
3827 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3828 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3829 enum omap_channel dispc_channel = dssdev->dispc_channel;
3830 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3831 struct omap_dss_device *out = &dsi->output;
3832 u8 data_type;
3833 u16 word_count;
3834 int r;
3835
3836 if (!out->dispc_channel_connected) {
3837 DSSERR("failed to enable display: no output/manager\n");
3838 return -ENODEV;
3839 }
3840
3841 r = dsi_display_init_dispc(dsidev, dispc_channel);
3842 if (r)
3843 goto err_init_dispc;
3844
3845 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3846 switch (dsi->pix_fmt) {
3847 case OMAP_DSS_DSI_FMT_RGB888:
3848 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
3849 break;
3850 case OMAP_DSS_DSI_FMT_RGB666:
3851 data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
3852 break;
3853 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
3854 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
3855 break;
3856 case OMAP_DSS_DSI_FMT_RGB565:
3857 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
3858 break;
3859 default:
3860 r = -EINVAL;
3861 goto err_pix_fmt;
3862 }
3863
3864 dsi_if_enable(dsidev, false);
3865 dsi_vc_enable(dsidev, channel, false);
3866
3867 /* MODE, 1 = video mode */
3868 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
3869
3870 word_count = DIV_ROUND_UP(dsi->timings.x_res * bpp, 8);
3871
3872 dsi_vc_write_long_header(dsidev, channel, data_type,
3873 word_count, 0);
3874
3875 dsi_vc_enable(dsidev, channel, true);
3876 dsi_if_enable(dsidev, true);
3877 }
3878
3879 r = dss_mgr_enable(dispc_channel);
3880 if (r)
3881 goto err_mgr_enable;
3882
3883 return 0;
3884
3885 err_mgr_enable:
3886 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3887 dsi_if_enable(dsidev, false);
3888 dsi_vc_enable(dsidev, channel, false);
3889 }
3890 err_pix_fmt:
3891 dsi_display_uninit_dispc(dsidev, dispc_channel);
3892 err_init_dispc:
3893 return r;
3894 }
3895
3896 static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
3897 {
3898 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3899 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3900 enum omap_channel dispc_channel = dssdev->dispc_channel;
3901
3902 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3903 dsi_if_enable(dsidev, false);
3904 dsi_vc_enable(dsidev, channel, false);
3905
3906 /* MODE, 0 = command mode */
3907 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
3908
3909 dsi_vc_enable(dsidev, channel, true);
3910 dsi_if_enable(dsidev, true);
3911 }
3912
3913 dss_mgr_disable(dispc_channel);
3914
3915 dsi_display_uninit_dispc(dsidev, dispc_channel);
3916 }
3917
3918 static void dsi_update_screen_dispc(struct platform_device *dsidev)
3919 {
3920 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3921 enum omap_channel dispc_channel = dsi->output.dispc_channel;
3922 unsigned bytespp;
3923 unsigned bytespl;
3924 unsigned bytespf;
3925 unsigned total_len;
3926 unsigned packet_payload;
3927 unsigned packet_len;
3928 u32 l;
3929 int r;
3930 const unsigned channel = dsi->update_channel;
3931 const unsigned line_buf_size = dsi->line_buffer_size;
3932 u16 w = dsi->timings.x_res;
3933 u16 h = dsi->timings.y_res;
3934
3935 DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
3936
3937 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
3938
3939 bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
3940 bytespl = w * bytespp;
3941 bytespf = bytespl * h;
3942
3943 /* NOTE: packet_payload has to be equal to N * bytespl, where N is
3944 * number of lines in a packet. See errata about VP_CLK_RATIO */
3945
3946 if (bytespf < line_buf_size)
3947 packet_payload = bytespf;
3948 else
3949 packet_payload = (line_buf_size) / bytespl * bytespl;
3950
3951 packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
3952 total_len = (bytespf / packet_payload) * packet_len;
3953
3954 if (bytespf % packet_payload)
3955 total_len += (bytespf % packet_payload) + 1;
3956
3957 l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
3958 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3959
3960 dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
3961 packet_len, 0);
3962
3963 if (dsi->te_enabled)
3964 l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
3965 else
3966 l = FLD_MOD(l, 1, 31, 31); /* TE_START */
3967 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3968
3969 /* We put SIDLEMODE to no-idle for the duration of the transfer,
3970 * because DSS interrupts are not capable of waking up the CPU and the
3971 * framedone interrupt could be delayed for quite a long time. I think
3972 * the same goes for any DSS interrupts, but for some reason I have not
3973 * seen the problem anywhere else than here.
3974 */
3975 dispc_disable_sidle();
3976
3977 dsi_perf_mark_start(dsidev);
3978
3979 r = schedule_delayed_work(&dsi->framedone_timeout_work,
3980 msecs_to_jiffies(250));
3981 BUG_ON(r == 0);
3982
3983 dss_mgr_set_timings(dispc_channel, &dsi->timings);
3984
3985 dss_mgr_start_update(dispc_channel);
3986
3987 if (dsi->te_enabled) {
3988 /* disable LP_RX_TO, so that we can receive TE. Time to wait
3989 * for TE is longer than the timer allows */
3990 REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
3991
3992 dsi_vc_send_bta(dsidev, channel);
3993
3994 #ifdef DSI_CATCH_MISSING_TE
3995 mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
3996 #endif
3997 }
3998 }
3999
4000 #ifdef DSI_CATCH_MISSING_TE
4001 static void dsi_te_timeout(unsigned long arg)
4002 {
4003 DSSERR("TE not received for 250ms!\n");
4004 }
4005 #endif
4006
4007 static void dsi_handle_framedone(struct platform_device *dsidev, int error)
4008 {
4009 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4010
4011 /* SIDLEMODE back to smart-idle */
4012 dispc_enable_sidle();
4013
4014 if (dsi->te_enabled) {
4015 /* enable LP_RX_TO again after the TE */
4016 REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
4017 }
4018
4019 dsi->framedone_callback(error, dsi->framedone_data);
4020
4021 if (!error)
4022 dsi_perf_show(dsidev, "DISPC");
4023 }
4024
4025 static void dsi_framedone_timeout_work_callback(struct work_struct *work)
4026 {
4027 struct dsi_data *dsi = container_of(work, struct dsi_data,
4028 framedone_timeout_work.work);
4029 /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
4030 * 250ms which would conflict with this timeout work. What should be
4031 * done is first cancel the transfer on the HW, and then cancel the
4032 * possibly scheduled framedone work. However, cancelling the transfer
4033 * on the HW is buggy, and would probably require resetting the whole
4034 * DSI */
4035
4036 DSSERR("Framedone not received for 250ms!\n");
4037
4038 dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
4039 }
4040
4041 static void dsi_framedone_irq_callback(void *data)
4042 {
4043 struct platform_device *dsidev = (struct platform_device *) data;
4044 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4045
4046 /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
4047 * turns itself off. However, DSI still has the pixels in its buffers,
4048 * and is sending the data.
4049 */
4050
4051 cancel_delayed_work(&dsi->framedone_timeout_work);
4052
4053 dsi_handle_framedone(dsidev, 0);
4054 }
4055
4056 static int dsi_update(struct omap_dss_device *dssdev, int channel,
4057 void (*callback)(int, void *), void *data)
4058 {
4059 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4060 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4061 u16 dw, dh;
4062
4063 dsi_perf_mark_setup(dsidev);
4064
4065 dsi->update_channel = channel;
4066
4067 dsi->framedone_callback = callback;
4068 dsi->framedone_data = data;
4069
4070 dw = dsi->timings.x_res;
4071 dh = dsi->timings.y_res;
4072
4073 #ifdef DSI_PERF_MEASURE
4074 dsi->update_bytes = dw * dh *
4075 dsi_get_pixel_size(dsi->pix_fmt) / 8;
4076 #endif
4077 dsi_update_screen_dispc(dsidev);
4078
4079 return 0;
4080 }
4081
4082 /* Display funcs */
4083
4084 static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
4085 {
4086 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4087 struct dispc_clock_info dispc_cinfo;
4088 int r;
4089 unsigned long fck;
4090
4091 fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
4092
4093 dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
4094 dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
4095
4096 r = dispc_calc_clock_rates(fck, &dispc_cinfo);
4097 if (r) {
4098 DSSERR("Failed to calc dispc clocks\n");
4099 return r;
4100 }
4101
4102 dsi->mgr_config.clock_info = dispc_cinfo;
4103
4104 return 0;
4105 }
4106
4107 static int dsi_display_init_dispc(struct platform_device *dsidev,
4108 enum omap_channel channel)
4109 {
4110 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4111 int r;
4112
4113 dss_select_lcd_clk_source(channel, dsi->module_id == 0 ?
4114 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
4115 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC);
4116
4117 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
4118 r = dss_mgr_register_framedone_handler(channel,
4119 dsi_framedone_irq_callback, dsidev);
4120 if (r) {
4121 DSSERR("can't register FRAMEDONE handler\n");
4122 goto err;
4123 }
4124
4125 dsi->mgr_config.stallmode = true;
4126 dsi->mgr_config.fifohandcheck = true;
4127 } else {
4128 dsi->mgr_config.stallmode = false;
4129 dsi->mgr_config.fifohandcheck = false;
4130 }
4131
4132 /*
4133 * override interlace, logic level and edge related parameters in
4134 * omap_video_timings with default values
4135 */
4136 dsi->timings.interlace = false;
4137 dsi->timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4138 dsi->timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4139 dsi->timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
4140 dsi->timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
4141 dsi->timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE;
4142
4143 dss_mgr_set_timings(channel, &dsi->timings);
4144
4145 r = dsi_configure_dispc_clocks(dsidev);
4146 if (r)
4147 goto err1;
4148
4149 dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
4150 dsi->mgr_config.video_port_width =
4151 dsi_get_pixel_size(dsi->pix_fmt);
4152 dsi->mgr_config.lcden_sig_polarity = 0;
4153
4154 dss_mgr_set_lcd_config(channel, &dsi->mgr_config);
4155
4156 return 0;
4157 err1:
4158 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4159 dss_mgr_unregister_framedone_handler(channel,
4160 dsi_framedone_irq_callback, dsidev);
4161 err:
4162 dss_select_lcd_clk_source(channel, OMAP_DSS_CLK_SRC_FCK);
4163 return r;
4164 }
4165
4166 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
4167 enum omap_channel channel)
4168 {
4169 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4170
4171 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4172 dss_mgr_unregister_framedone_handler(channel,
4173 dsi_framedone_irq_callback, dsidev);
4174
4175 dss_select_lcd_clk_source(channel, OMAP_DSS_CLK_SRC_FCK);
4176 }
4177
4178 static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
4179 {
4180 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4181 struct dss_pll_clock_info cinfo;
4182 int r;
4183
4184 cinfo = dsi->user_dsi_cinfo;
4185
4186 r = dss_pll_set_config(&dsi->pll, &cinfo);
4187 if (r) {
4188 DSSERR("Failed to set dsi clocks\n");
4189 return r;
4190 }
4191
4192 return 0;
4193 }
4194
4195 static int dsi_display_init_dsi(struct platform_device *dsidev)
4196 {
4197 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4198 int r;
4199
4200 r = dss_pll_enable(&dsi->pll);
4201 if (r)
4202 goto err0;
4203
4204 r = dsi_configure_dsi_clocks(dsidev);
4205 if (r)
4206 goto err1;
4207
4208 dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
4209 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
4210 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI);
4211
4212 DSSDBG("PLL OK\n");
4213
4214 r = dsi_cio_init(dsidev);
4215 if (r)
4216 goto err2;
4217
4218 _dsi_print_reset_status(dsidev);
4219
4220 dsi_proto_timings(dsidev);
4221 dsi_set_lp_clk_divisor(dsidev);
4222
4223 if (1)
4224 _dsi_print_reset_status(dsidev);
4225
4226 r = dsi_proto_config(dsidev);
4227 if (r)
4228 goto err3;
4229
4230 /* enable interface */
4231 dsi_vc_enable(dsidev, 0, 1);
4232 dsi_vc_enable(dsidev, 1, 1);
4233 dsi_vc_enable(dsidev, 2, 1);
4234 dsi_vc_enable(dsidev, 3, 1);
4235 dsi_if_enable(dsidev, 1);
4236 dsi_force_tx_stop_mode_io(dsidev);
4237
4238 return 0;
4239 err3:
4240 dsi_cio_uninit(dsidev);
4241 err2:
4242 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4243 err1:
4244 dss_pll_disable(&dsi->pll);
4245 err0:
4246 return r;
4247 }
4248
4249 static void dsi_display_uninit_dsi(struct platform_device *dsidev,
4250 bool disconnect_lanes, bool enter_ulps)
4251 {
4252 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4253
4254 if (enter_ulps && !dsi->ulps_enabled)
4255 dsi_enter_ulps(dsidev);
4256
4257 /* disable interface */
4258 dsi_if_enable(dsidev, 0);
4259 dsi_vc_enable(dsidev, 0, 0);
4260 dsi_vc_enable(dsidev, 1, 0);
4261 dsi_vc_enable(dsidev, 2, 0);
4262 dsi_vc_enable(dsidev, 3, 0);
4263
4264 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4265 dsi_cio_uninit(dsidev);
4266 dsi_pll_uninit(dsidev, disconnect_lanes);
4267 }
4268
4269 static int dsi_display_enable(struct omap_dss_device *dssdev)
4270 {
4271 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4272 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4273 int r = 0;
4274
4275 DSSDBG("dsi_display_enable\n");
4276
4277 WARN_ON(!dsi_bus_is_locked(dsidev));
4278
4279 mutex_lock(&dsi->lock);
4280
4281 r = dsi_runtime_get(dsidev);
4282 if (r)
4283 goto err_get_dsi;
4284
4285 _dsi_initialize_irq(dsidev);
4286
4287 r = dsi_display_init_dsi(dsidev);
4288 if (r)
4289 goto err_init_dsi;
4290
4291 mutex_unlock(&dsi->lock);
4292
4293 return 0;
4294
4295 err_init_dsi:
4296 dsi_runtime_put(dsidev);
4297 err_get_dsi:
4298 mutex_unlock(&dsi->lock);
4299 DSSDBG("dsi_display_enable FAILED\n");
4300 return r;
4301 }
4302
4303 static void dsi_display_disable(struct omap_dss_device *dssdev,
4304 bool disconnect_lanes, bool enter_ulps)
4305 {
4306 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4307 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4308
4309 DSSDBG("dsi_display_disable\n");
4310
4311 WARN_ON(!dsi_bus_is_locked(dsidev));
4312
4313 mutex_lock(&dsi->lock);
4314
4315 dsi_sync_vc(dsidev, 0);
4316 dsi_sync_vc(dsidev, 1);
4317 dsi_sync_vc(dsidev, 2);
4318 dsi_sync_vc(dsidev, 3);
4319
4320 dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
4321
4322 dsi_runtime_put(dsidev);
4323
4324 mutex_unlock(&dsi->lock);
4325 }
4326
4327 static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
4328 {
4329 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4330 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4331
4332 dsi->te_enabled = enable;
4333 return 0;
4334 }
4335
4336 #ifdef PRINT_VERBOSE_VM_TIMINGS
4337 static void print_dsi_vm(const char *str,
4338 const struct omap_dss_dsi_videomode_timings *t)
4339 {
4340 unsigned long byteclk = t->hsclk / 4;
4341 int bl, wc, pps, tot;
4342
4343 wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
4344 pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
4345 bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
4346 tot = bl + pps;
4347
4348 #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
4349
4350 pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
4351 "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
4352 str,
4353 byteclk,
4354 t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
4355 bl, pps, tot,
4356 TO_DSI_T(t->hss),
4357 TO_DSI_T(t->hsa),
4358 TO_DSI_T(t->hse),
4359 TO_DSI_T(t->hbp),
4360 TO_DSI_T(pps),
4361 TO_DSI_T(t->hfp),
4362
4363 TO_DSI_T(bl),
4364 TO_DSI_T(pps),
4365
4366 TO_DSI_T(tot));
4367 #undef TO_DSI_T
4368 }
4369
4370 static void print_dispc_vm(const char *str, const struct omap_video_timings *t)
4371 {
4372 unsigned long pck = t->pixelclock;
4373 int hact, bl, tot;
4374
4375 hact = t->x_res;
4376 bl = t->hsw + t->hbp + t->hfp;
4377 tot = hact + bl;
4378
4379 #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
4380
4381 pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
4382 "%u/%u/%u/%u = %u + %u = %u\n",
4383 str,
4384 pck,
4385 t->hsw, t->hbp, hact, t->hfp,
4386 bl, hact, tot,
4387 TO_DISPC_T(t->hsw),
4388 TO_DISPC_T(t->hbp),
4389 TO_DISPC_T(hact),
4390 TO_DISPC_T(t->hfp),
4391 TO_DISPC_T(bl),
4392 TO_DISPC_T(hact),
4393 TO_DISPC_T(tot));
4394 #undef TO_DISPC_T
4395 }
4396
4397 /* note: this is not quite accurate */
4398 static void print_dsi_dispc_vm(const char *str,
4399 const struct omap_dss_dsi_videomode_timings *t)
4400 {
4401 struct omap_video_timings vm = { 0 };
4402 unsigned long byteclk = t->hsclk / 4;
4403 unsigned long pck;
4404 u64 dsi_tput;
4405 int dsi_hact, dsi_htot;
4406
4407 dsi_tput = (u64)byteclk * t->ndl * 8;
4408 pck = (u32)div64_u64(dsi_tput, t->bitspp);
4409 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
4410 dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
4411
4412 vm.pixelclock = pck;
4413 vm.hsw = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
4414 vm.hbp = div64_u64((u64)t->hbp * pck, byteclk);
4415 vm.hfp = div64_u64((u64)t->hfp * pck, byteclk);
4416 vm.x_res = t->hact;
4417
4418 print_dispc_vm(str, &vm);
4419 }
4420 #endif /* PRINT_VERBOSE_VM_TIMINGS */
4421
4422 static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4423 unsigned long pck, void *data)
4424 {
4425 struct dsi_clk_calc_ctx *ctx = data;
4426 struct omap_video_timings *t = &ctx->dispc_vm;
4427
4428 ctx->dispc_cinfo.lck_div = lckd;
4429 ctx->dispc_cinfo.pck_div = pckd;
4430 ctx->dispc_cinfo.lck = lck;
4431 ctx->dispc_cinfo.pck = pck;
4432
4433 *t = *ctx->config->timings;
4434 t->pixelclock = pck;
4435 t->x_res = ctx->config->timings->x_res;
4436 t->y_res = ctx->config->timings->y_res;
4437 t->hsw = t->hfp = t->hbp = t->vsw = 1;
4438 t->vfp = t->vbp = 0;
4439
4440 return true;
4441 }
4442
4443 static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4444 void *data)
4445 {
4446 struct dsi_clk_calc_ctx *ctx = data;
4447
4448 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4449 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4450
4451 return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
4452 dsi_cm_calc_dispc_cb, ctx);
4453 }
4454
4455 static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
4456 unsigned long clkdco, void *data)
4457 {
4458 struct dsi_clk_calc_ctx *ctx = data;
4459
4460 ctx->dsi_cinfo.n = n;
4461 ctx->dsi_cinfo.m = m;
4462 ctx->dsi_cinfo.fint = fint;
4463 ctx->dsi_cinfo.clkdco = clkdco;
4464
4465 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4466 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4467 dsi_cm_calc_hsdiv_cb, ctx);
4468 }
4469
4470 static bool dsi_cm_calc(struct dsi_data *dsi,
4471 const struct omap_dss_dsi_config *cfg,
4472 struct dsi_clk_calc_ctx *ctx)
4473 {
4474 unsigned long clkin;
4475 int bitspp, ndl;
4476 unsigned long pll_min, pll_max;
4477 unsigned long pck, txbyteclk;
4478
4479 clkin = clk_get_rate(dsi->pll.clkin);
4480 bitspp = dsi_get_pixel_size(cfg->pixel_format);
4481 ndl = dsi->num_lanes_used - 1;
4482
4483 /*
4484 * Here we should calculate minimum txbyteclk to be able to send the
4485 * frame in time, and also to handle TE. That's not very simple, though,
4486 * especially as we go to LP between each pixel packet due to HW
4487 * "feature". So let's just estimate very roughly and multiply by 1.5.
4488 */
4489 pck = cfg->timings->pixelclock;
4490 pck = pck * 3 / 2;
4491 txbyteclk = pck * bitspp / 8 / ndl;
4492
4493 memset(ctx, 0, sizeof(*ctx));
4494 ctx->dsidev = dsi->pdev;
4495 ctx->pll = &dsi->pll;
4496 ctx->config = cfg;
4497 ctx->req_pck_min = pck;
4498 ctx->req_pck_nom = pck;
4499 ctx->req_pck_max = pck * 3 / 2;
4500
4501 pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
4502 pll_max = cfg->hs_clk_max * 4;
4503
4504 return dss_pll_calc(ctx->pll, clkin,
4505 pll_min, pll_max,
4506 dsi_cm_calc_pll_cb, ctx);
4507 }
4508
4509 static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
4510 {
4511 struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
4512 const struct omap_dss_dsi_config *cfg = ctx->config;
4513 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4514 int ndl = dsi->num_lanes_used - 1;
4515 unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
4516 unsigned long byteclk = hsclk / 4;
4517
4518 unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
4519 int xres;
4520 int panel_htot, panel_hbl; /* pixels */
4521 int dispc_htot, dispc_hbl; /* pixels */
4522 int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
4523 int hfp, hsa, hbp;
4524 const struct omap_video_timings *req_vm;
4525 struct omap_video_timings *dispc_vm;
4526 struct omap_dss_dsi_videomode_timings *dsi_vm;
4527 u64 dsi_tput, dispc_tput;
4528
4529 dsi_tput = (u64)byteclk * ndl * 8;
4530
4531 req_vm = cfg->timings;
4532 req_pck_min = ctx->req_pck_min;
4533 req_pck_max = ctx->req_pck_max;
4534 req_pck_nom = ctx->req_pck_nom;
4535
4536 dispc_pck = ctx->dispc_cinfo.pck;
4537 dispc_tput = (u64)dispc_pck * bitspp;
4538
4539 xres = req_vm->x_res;
4540
4541 panel_hbl = req_vm->hfp + req_vm->hbp + req_vm->hsw;
4542 panel_htot = xres + panel_hbl;
4543
4544 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
4545
4546 /*
4547 * When there are no line buffers, DISPC and DSI must have the
4548 * same tput. Otherwise DISPC tput needs to be higher than DSI's.
4549 */
4550 if (dsi->line_buffer_size < xres * bitspp / 8) {
4551 if (dispc_tput != dsi_tput)
4552 return false;
4553 } else {
4554 if (dispc_tput < dsi_tput)
4555 return false;
4556 }
4557
4558 /* DSI tput must be over the min requirement */
4559 if (dsi_tput < (u64)bitspp * req_pck_min)
4560 return false;
4561
4562 /* When non-burst mode, DSI tput must be below max requirement. */
4563 if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
4564 if (dsi_tput > (u64)bitspp * req_pck_max)
4565 return false;
4566 }
4567
4568 hss = DIV_ROUND_UP(4, ndl);
4569
4570 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4571 if (ndl == 3 && req_vm->hsw == 0)
4572 hse = 1;
4573 else
4574 hse = DIV_ROUND_UP(4, ndl);
4575 } else {
4576 hse = 0;
4577 }
4578
4579 /* DSI htot to match the panel's nominal pck */
4580 dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
4581
4582 /* fail if there would be no time for blanking */
4583 if (dsi_htot < hss + hse + dsi_hact)
4584 return false;
4585
4586 /* total DSI blanking needed to achieve panel's TL */
4587 dsi_hbl = dsi_htot - dsi_hact;
4588
4589 /* DISPC htot to match the DSI TL */
4590 dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
4591
4592 /* verify that the DSI and DISPC TLs are the same */
4593 if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
4594 return false;
4595
4596 dispc_hbl = dispc_htot - xres;
4597
4598 /* setup DSI videomode */
4599
4600 dsi_vm = &ctx->dsi_vm;
4601 memset(dsi_vm, 0, sizeof(*dsi_vm));
4602
4603 dsi_vm->hsclk = hsclk;
4604
4605 dsi_vm->ndl = ndl;
4606 dsi_vm->bitspp = bitspp;
4607
4608 if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
4609 hsa = 0;
4610 } else if (ndl == 3 && req_vm->hsw == 0) {
4611 hsa = 0;
4612 } else {
4613 hsa = div64_u64((u64)req_vm->hsw * byteclk, req_pck_nom);
4614 hsa = max(hsa - hse, 1);
4615 }
4616
4617 hbp = div64_u64((u64)req_vm->hbp * byteclk, req_pck_nom);
4618 hbp = max(hbp, 1);
4619
4620 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4621 if (hfp < 1) {
4622 int t;
4623 /* we need to take cycles from hbp */
4624
4625 t = 1 - hfp;
4626 hbp = max(hbp - t, 1);
4627 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4628
4629 if (hfp < 1 && hsa > 0) {
4630 /* we need to take cycles from hsa */
4631 t = 1 - hfp;
4632 hsa = max(hsa - t, 1);
4633 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4634 }
4635 }
4636
4637 if (hfp < 1)
4638 return false;
4639
4640 dsi_vm->hss = hss;
4641 dsi_vm->hsa = hsa;
4642 dsi_vm->hse = hse;
4643 dsi_vm->hbp = hbp;
4644 dsi_vm->hact = xres;
4645 dsi_vm->hfp = hfp;
4646
4647 dsi_vm->vsa = req_vm->vsw;
4648 dsi_vm->vbp = req_vm->vbp;
4649 dsi_vm->vact = req_vm->y_res;
4650 dsi_vm->vfp = req_vm->vfp;
4651
4652 dsi_vm->trans_mode = cfg->trans_mode;
4653
4654 dsi_vm->blanking_mode = 0;
4655 dsi_vm->hsa_blanking_mode = 1;
4656 dsi_vm->hfp_blanking_mode = 1;
4657 dsi_vm->hbp_blanking_mode = 1;
4658
4659 dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
4660 dsi_vm->window_sync = 4;
4661
4662 /* setup DISPC videomode */
4663
4664 dispc_vm = &ctx->dispc_vm;
4665 *dispc_vm = *req_vm;
4666 dispc_vm->pixelclock = dispc_pck;
4667
4668 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4669 hsa = div64_u64((u64)req_vm->hsw * dispc_pck,
4670 req_pck_nom);
4671 hsa = max(hsa, 1);
4672 } else {
4673 hsa = 1;
4674 }
4675
4676 hbp = div64_u64((u64)req_vm->hbp * dispc_pck, req_pck_nom);
4677 hbp = max(hbp, 1);
4678
4679 hfp = dispc_hbl - hsa - hbp;
4680 if (hfp < 1) {
4681 int t;
4682 /* we need to take cycles from hbp */
4683
4684 t = 1 - hfp;
4685 hbp = max(hbp - t, 1);
4686 hfp = dispc_hbl - hsa - hbp;
4687
4688 if (hfp < 1) {
4689 /* we need to take cycles from hsa */
4690 t = 1 - hfp;
4691 hsa = max(hsa - t, 1);
4692 hfp = dispc_hbl - hsa - hbp;
4693 }
4694 }
4695
4696 if (hfp < 1)
4697 return false;
4698
4699 dispc_vm->hfp = hfp;
4700 dispc_vm->hsw = hsa;
4701 dispc_vm->hbp = hbp;
4702
4703 return true;
4704 }
4705
4706
4707 static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4708 unsigned long pck, void *data)
4709 {
4710 struct dsi_clk_calc_ctx *ctx = data;
4711
4712 ctx->dispc_cinfo.lck_div = lckd;
4713 ctx->dispc_cinfo.pck_div = pckd;
4714 ctx->dispc_cinfo.lck = lck;
4715 ctx->dispc_cinfo.pck = pck;
4716
4717 if (dsi_vm_calc_blanking(ctx) == false)
4718 return false;
4719
4720 #ifdef PRINT_VERBOSE_VM_TIMINGS
4721 print_dispc_vm("dispc", &ctx->dispc_vm);
4722 print_dsi_vm("dsi ", &ctx->dsi_vm);
4723 print_dispc_vm("req ", ctx->config->timings);
4724 print_dsi_dispc_vm("act ", &ctx->dsi_vm);
4725 #endif
4726
4727 return true;
4728 }
4729
4730 static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4731 void *data)
4732 {
4733 struct dsi_clk_calc_ctx *ctx = data;
4734 unsigned long pck_max;
4735
4736 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4737 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4738
4739 /*
4740 * In burst mode we can let the dispc pck be arbitrarily high, but it
4741 * limits our scaling abilities. So for now, don't aim too high.
4742 */
4743
4744 if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
4745 pck_max = ctx->req_pck_max + 10000000;
4746 else
4747 pck_max = ctx->req_pck_max;
4748
4749 return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
4750 dsi_vm_calc_dispc_cb, ctx);
4751 }
4752
4753 static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
4754 unsigned long clkdco, void *data)
4755 {
4756 struct dsi_clk_calc_ctx *ctx = data;
4757
4758 ctx->dsi_cinfo.n = n;
4759 ctx->dsi_cinfo.m = m;
4760 ctx->dsi_cinfo.fint = fint;
4761 ctx->dsi_cinfo.clkdco = clkdco;
4762
4763 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4764 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4765 dsi_vm_calc_hsdiv_cb, ctx);
4766 }
4767
4768 static bool dsi_vm_calc(struct dsi_data *dsi,
4769 const struct omap_dss_dsi_config *cfg,
4770 struct dsi_clk_calc_ctx *ctx)
4771 {
4772 const struct omap_video_timings *t = cfg->timings;
4773 unsigned long clkin;
4774 unsigned long pll_min;
4775 unsigned long pll_max;
4776 int ndl = dsi->num_lanes_used - 1;
4777 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4778 unsigned long byteclk_min;
4779
4780 clkin = clk_get_rate(dsi->pll.clkin);
4781
4782 memset(ctx, 0, sizeof(*ctx));
4783 ctx->dsidev = dsi->pdev;
4784 ctx->pll = &dsi->pll;
4785 ctx->config = cfg;
4786
4787 /* these limits should come from the panel driver */
4788 ctx->req_pck_min = t->pixelclock - 1000;
4789 ctx->req_pck_nom = t->pixelclock;
4790 ctx->req_pck_max = t->pixelclock + 1000;
4791
4792 byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
4793 pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
4794
4795 if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
4796 pll_max = cfg->hs_clk_max * 4;
4797 } else {
4798 unsigned long byteclk_max;
4799 byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
4800 ndl * 8);
4801
4802 pll_max = byteclk_max * 4 * 4;
4803 }
4804
4805 return dss_pll_calc(ctx->pll, clkin,
4806 pll_min, pll_max,
4807 dsi_vm_calc_pll_cb, ctx);
4808 }
4809
4810 static int dsi_set_config(struct omap_dss_device *dssdev,
4811 const struct omap_dss_dsi_config *config)
4812 {
4813 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4814 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4815 struct dsi_clk_calc_ctx ctx;
4816 bool ok;
4817 int r;
4818
4819 mutex_lock(&dsi->lock);
4820
4821 dsi->pix_fmt = config->pixel_format;
4822 dsi->mode = config->mode;
4823
4824 if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
4825 ok = dsi_vm_calc(dsi, config, &ctx);
4826 else
4827 ok = dsi_cm_calc(dsi, config, &ctx);
4828
4829 if (!ok) {
4830 DSSERR("failed to find suitable DSI clock settings\n");
4831 r = -EINVAL;
4832 goto err;
4833 }
4834
4835 dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
4836
4837 r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
4838 config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
4839 if (r) {
4840 DSSERR("failed to find suitable DSI LP clock settings\n");
4841 goto err;
4842 }
4843
4844 dsi->user_dsi_cinfo = ctx.dsi_cinfo;
4845 dsi->user_dispc_cinfo = ctx.dispc_cinfo;
4846
4847 dsi->timings = ctx.dispc_vm;
4848 dsi->vm_timings = ctx.dsi_vm;
4849
4850 mutex_unlock(&dsi->lock);
4851
4852 return 0;
4853 err:
4854 mutex_unlock(&dsi->lock);
4855
4856 return r;
4857 }
4858
4859 /*
4860 * Return a hardcoded channel for the DSI output. This should work for
4861 * current use cases, but this can be later expanded to either resolve
4862 * the channel in some more dynamic manner, or get the channel as a user
4863 * parameter.
4864 */
4865 static enum omap_channel dsi_get_channel(int module_id)
4866 {
4867 switch (omapdss_get_version()) {
4868 case OMAPDSS_VER_OMAP24xx:
4869 case OMAPDSS_VER_AM43xx:
4870 DSSWARN("DSI not supported\n");
4871 return OMAP_DSS_CHANNEL_LCD;
4872
4873 case OMAPDSS_VER_OMAP34xx_ES1:
4874 case OMAPDSS_VER_OMAP34xx_ES3:
4875 case OMAPDSS_VER_OMAP3630:
4876 case OMAPDSS_VER_AM35xx:
4877 return OMAP_DSS_CHANNEL_LCD;
4878
4879 case OMAPDSS_VER_OMAP4430_ES1:
4880 case OMAPDSS_VER_OMAP4430_ES2:
4881 case OMAPDSS_VER_OMAP4:
4882 switch (module_id) {
4883 case 0:
4884 return OMAP_DSS_CHANNEL_LCD;
4885 case 1:
4886 return OMAP_DSS_CHANNEL_LCD2;
4887 default:
4888 DSSWARN("unsupported module id\n");
4889 return OMAP_DSS_CHANNEL_LCD;
4890 }
4891
4892 case OMAPDSS_VER_OMAP5:
4893 switch (module_id) {
4894 case 0:
4895 return OMAP_DSS_CHANNEL_LCD;
4896 case 1:
4897 return OMAP_DSS_CHANNEL_LCD3;
4898 default:
4899 DSSWARN("unsupported module id\n");
4900 return OMAP_DSS_CHANNEL_LCD;
4901 }
4902
4903 default:
4904 DSSWARN("unsupported DSS version\n");
4905 return OMAP_DSS_CHANNEL_LCD;
4906 }
4907 }
4908
4909 static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
4910 {
4911 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4912 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4913 int i;
4914
4915 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
4916 if (!dsi->vc[i].dssdev) {
4917 dsi->vc[i].dssdev = dssdev;
4918 *channel = i;
4919 return 0;
4920 }
4921 }
4922
4923 DSSERR("cannot get VC for display %s", dssdev->name);
4924 return -ENOSPC;
4925 }
4926
4927 static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
4928 {
4929 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4930 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4931
4932 if (vc_id < 0 || vc_id > 3) {
4933 DSSERR("VC ID out of range\n");
4934 return -EINVAL;
4935 }
4936
4937 if (channel < 0 || channel > 3) {
4938 DSSERR("Virtual Channel out of range\n");
4939 return -EINVAL;
4940 }
4941
4942 if (dsi->vc[channel].dssdev != dssdev) {
4943 DSSERR("Virtual Channel not allocated to display %s\n",
4944 dssdev->name);
4945 return -EINVAL;
4946 }
4947
4948 dsi->vc[channel].vc_id = vc_id;
4949
4950 return 0;
4951 }
4952
4953 static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
4954 {
4955 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4956 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4957
4958 if ((channel >= 0 && channel <= 3) &&
4959 dsi->vc[channel].dssdev == dssdev) {
4960 dsi->vc[channel].dssdev = NULL;
4961 dsi->vc[channel].vc_id = 0;
4962 }
4963 }
4964
4965
4966 static int dsi_get_clocks(struct platform_device *dsidev)
4967 {
4968 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4969 struct clk *clk;
4970
4971 clk = devm_clk_get(&dsidev->dev, "fck");
4972 if (IS_ERR(clk)) {
4973 DSSERR("can't get fck\n");
4974 return PTR_ERR(clk);
4975 }
4976
4977 dsi->dss_clk = clk;
4978
4979 return 0;
4980 }
4981
4982 static int dsi_connect(struct omap_dss_device *dssdev,
4983 struct omap_dss_device *dst)
4984 {
4985 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4986 enum omap_channel dispc_channel = dssdev->dispc_channel;
4987 int r;
4988
4989 r = dsi_regulator_init(dsidev);
4990 if (r)
4991 return r;
4992
4993 r = dss_mgr_connect(dispc_channel, dssdev);
4994 if (r)
4995 return r;
4996
4997 r = omapdss_output_set_device(dssdev, dst);
4998 if (r) {
4999 DSSERR("failed to connect output to new device: %s\n",
5000 dssdev->name);
5001 dss_mgr_disconnect(dispc_channel, dssdev);
5002 return r;
5003 }
5004
5005 return 0;
5006 }
5007
5008 static void dsi_disconnect(struct omap_dss_device *dssdev,
5009 struct omap_dss_device *dst)
5010 {
5011 enum omap_channel dispc_channel = dssdev->dispc_channel;
5012
5013 WARN_ON(dst != dssdev->dst);
5014
5015 if (dst != dssdev->dst)
5016 return;
5017
5018 omapdss_output_unset_device(dssdev);
5019
5020 dss_mgr_disconnect(dispc_channel, dssdev);
5021 }
5022
5023 static const struct omapdss_dsi_ops dsi_ops = {
5024 .connect = dsi_connect,
5025 .disconnect = dsi_disconnect,
5026
5027 .bus_lock = dsi_bus_lock,
5028 .bus_unlock = dsi_bus_unlock,
5029
5030 .enable = dsi_display_enable,
5031 .disable = dsi_display_disable,
5032
5033 .enable_hs = dsi_vc_enable_hs,
5034
5035 .configure_pins = dsi_configure_pins,
5036 .set_config = dsi_set_config,
5037
5038 .enable_video_output = dsi_enable_video_output,
5039 .disable_video_output = dsi_disable_video_output,
5040
5041 .update = dsi_update,
5042
5043 .enable_te = dsi_enable_te,
5044
5045 .request_vc = dsi_request_vc,
5046 .set_vc_id = dsi_set_vc_id,
5047 .release_vc = dsi_release_vc,
5048
5049 .dcs_write = dsi_vc_dcs_write,
5050 .dcs_write_nosync = dsi_vc_dcs_write_nosync,
5051 .dcs_read = dsi_vc_dcs_read,
5052
5053 .gen_write = dsi_vc_generic_write,
5054 .gen_write_nosync = dsi_vc_generic_write_nosync,
5055 .gen_read = dsi_vc_generic_read,
5056
5057 .bta_sync = dsi_vc_send_bta_sync,
5058
5059 .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
5060 };
5061
5062 static void dsi_init_output(struct platform_device *dsidev)
5063 {
5064 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5065 struct omap_dss_device *out = &dsi->output;
5066
5067 out->dev = &dsidev->dev;
5068 out->id = dsi->module_id == 0 ?
5069 OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
5070
5071 out->output_type = OMAP_DISPLAY_TYPE_DSI;
5072 out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
5073 out->dispc_channel = dsi_get_channel(dsi->module_id);
5074 out->ops.dsi = &dsi_ops;
5075 out->owner = THIS_MODULE;
5076
5077 omapdss_register_output(out);
5078 }
5079
5080 static void dsi_uninit_output(struct platform_device *dsidev)
5081 {
5082 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5083 struct omap_dss_device *out = &dsi->output;
5084
5085 omapdss_unregister_output(out);
5086 }
5087
5088 static int dsi_probe_of(struct platform_device *pdev)
5089 {
5090 struct device_node *node = pdev->dev.of_node;
5091 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5092 struct property *prop;
5093 u32 lane_arr[10];
5094 int len, num_pins;
5095 int r, i;
5096 struct device_node *ep;
5097 struct omap_dsi_pin_config pin_cfg;
5098
5099 ep = omapdss_of_get_first_endpoint(node);
5100 if (!ep)
5101 return 0;
5102
5103 prop = of_find_property(ep, "lanes", &len);
5104 if (prop == NULL) {
5105 dev_err(&pdev->dev, "failed to find lane data\n");
5106 r = -EINVAL;
5107 goto err;
5108 }
5109
5110 num_pins = len / sizeof(u32);
5111
5112 if (num_pins < 4 || num_pins % 2 != 0 ||
5113 num_pins > dsi->num_lanes_supported * 2) {
5114 dev_err(&pdev->dev, "bad number of lanes\n");
5115 r = -EINVAL;
5116 goto err;
5117 }
5118
5119 r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
5120 if (r) {
5121 dev_err(&pdev->dev, "failed to read lane data\n");
5122 goto err;
5123 }
5124
5125 pin_cfg.num_pins = num_pins;
5126 for (i = 0; i < num_pins; ++i)
5127 pin_cfg.pins[i] = (int)lane_arr[i];
5128
5129 r = dsi_configure_pins(&dsi->output, &pin_cfg);
5130 if (r) {
5131 dev_err(&pdev->dev, "failed to configure pins");
5132 goto err;
5133 }
5134
5135 of_node_put(ep);
5136
5137 return 0;
5138
5139 err:
5140 of_node_put(ep);
5141 return r;
5142 }
5143
5144 static const struct dss_pll_ops dsi_pll_ops = {
5145 .enable = dsi_pll_enable,
5146 .disable = dsi_pll_disable,
5147 .set_config = dss_pll_write_config_type_a,
5148 };
5149
5150 static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
5151 .n_max = (1 << 7) - 1,
5152 .m_max = (1 << 11) - 1,
5153 .mX_max = (1 << 4) - 1,
5154 .fint_min = 750000,
5155 .fint_max = 2100000,
5156 .clkdco_low = 1000000000,
5157 .clkdco_max = 1800000000,
5158
5159 .n_msb = 7,
5160 .n_lsb = 1,
5161 .m_msb = 18,
5162 .m_lsb = 8,
5163
5164 .mX_msb[0] = 22,
5165 .mX_lsb[0] = 19,
5166 .mX_msb[1] = 26,
5167 .mX_lsb[1] = 23,
5168
5169 .has_stopmode = true,
5170 .has_freqsel = true,
5171 .has_selfreqdco = false,
5172 .has_refsel = false,
5173 };
5174
5175 static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
5176 .n_max = (1 << 8) - 1,
5177 .m_max = (1 << 12) - 1,
5178 .mX_max = (1 << 5) - 1,
5179 .fint_min = 500000,
5180 .fint_max = 2500000,
5181 .clkdco_low = 1000000000,
5182 .clkdco_max = 1800000000,
5183
5184 .n_msb = 8,
5185 .n_lsb = 1,
5186 .m_msb = 20,
5187 .m_lsb = 9,
5188
5189 .mX_msb[0] = 25,
5190 .mX_lsb[0] = 21,
5191 .mX_msb[1] = 30,
5192 .mX_lsb[1] = 26,
5193
5194 .has_stopmode = true,
5195 .has_freqsel = false,
5196 .has_selfreqdco = false,
5197 .has_refsel = false,
5198 };
5199
5200 static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
5201 .n_max = (1 << 8) - 1,
5202 .m_max = (1 << 12) - 1,
5203 .mX_max = (1 << 5) - 1,
5204 .fint_min = 150000,
5205 .fint_max = 52000000,
5206 .clkdco_low = 1000000000,
5207 .clkdco_max = 1800000000,
5208
5209 .n_msb = 8,
5210 .n_lsb = 1,
5211 .m_msb = 20,
5212 .m_lsb = 9,
5213
5214 .mX_msb[0] = 25,
5215 .mX_lsb[0] = 21,
5216 .mX_msb[1] = 30,
5217 .mX_lsb[1] = 26,
5218
5219 .has_stopmode = true,
5220 .has_freqsel = false,
5221 .has_selfreqdco = true,
5222 .has_refsel = true,
5223 };
5224
5225 static int dsi_init_pll_data(struct platform_device *dsidev)
5226 {
5227 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5228 struct dss_pll *pll = &dsi->pll;
5229 struct clk *clk;
5230 int r;
5231
5232 clk = devm_clk_get(&dsidev->dev, "sys_clk");
5233 if (IS_ERR(clk)) {
5234 DSSERR("can't get sys_clk\n");
5235 return PTR_ERR(clk);
5236 }
5237
5238 pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
5239 pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
5240 pll->clkin = clk;
5241 pll->base = dsi->pll_base;
5242
5243 switch (omapdss_get_version()) {
5244 case OMAPDSS_VER_OMAP34xx_ES1:
5245 case OMAPDSS_VER_OMAP34xx_ES3:
5246 case OMAPDSS_VER_OMAP3630:
5247 case OMAPDSS_VER_AM35xx:
5248 pll->hw = &dss_omap3_dsi_pll_hw;
5249 break;
5250
5251 case OMAPDSS_VER_OMAP4430_ES1:
5252 case OMAPDSS_VER_OMAP4430_ES2:
5253 case OMAPDSS_VER_OMAP4:
5254 pll->hw = &dss_omap4_dsi_pll_hw;
5255 break;
5256
5257 case OMAPDSS_VER_OMAP5:
5258 pll->hw = &dss_omap5_dsi_pll_hw;
5259 break;
5260
5261 default:
5262 return -ENODEV;
5263 }
5264
5265 pll->ops = &dsi_pll_ops;
5266
5267 r = dss_pll_register(pll);
5268 if (r)
5269 return r;
5270
5271 return 0;
5272 }
5273
5274 /* DSI1 HW IP initialisation */
5275 static int dsi_bind(struct device *dev, struct device *master, void *data)
5276 {
5277 struct platform_device *dsidev = to_platform_device(dev);
5278 u32 rev;
5279 int r, i;
5280 struct dsi_data *dsi;
5281 struct resource *dsi_mem;
5282 struct resource *res;
5283 struct resource temp_res;
5284
5285 dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
5286 if (!dsi)
5287 return -ENOMEM;
5288
5289 dsi->pdev = dsidev;
5290 dev_set_drvdata(&dsidev->dev, dsi);
5291
5292 spin_lock_init(&dsi->irq_lock);
5293 spin_lock_init(&dsi->errors_lock);
5294 dsi->errors = 0;
5295
5296 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5297 spin_lock_init(&dsi->irq_stats_lock);
5298 dsi->irq_stats.last_reset = jiffies;
5299 #endif
5300
5301 mutex_init(&dsi->lock);
5302 sema_init(&dsi->bus_lock, 1);
5303
5304 INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
5305 dsi_framedone_timeout_work_callback);
5306
5307 #ifdef DSI_CATCH_MISSING_TE
5308 init_timer(&dsi->te_timer);
5309 dsi->te_timer.function = dsi_te_timeout;
5310 dsi->te_timer.data = 0;
5311 #endif
5312
5313 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
5314 if (!res) {
5315 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5316 if (!res) {
5317 DSSERR("can't get IORESOURCE_MEM DSI\n");
5318 return -EINVAL;
5319 }
5320
5321 temp_res.start = res->start;
5322 temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
5323 res = &temp_res;
5324 }
5325
5326 dsi_mem = res;
5327
5328 dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
5329 resource_size(res));
5330 if (!dsi->proto_base) {
5331 DSSERR("can't ioremap DSI protocol engine\n");
5332 return -ENOMEM;
5333 }
5334
5335 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
5336 if (!res) {
5337 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5338 if (!res) {
5339 DSSERR("can't get IORESOURCE_MEM DSI\n");
5340 return -EINVAL;
5341 }
5342
5343 temp_res.start = res->start + DSI_PHY_OFFSET;
5344 temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
5345 res = &temp_res;
5346 }
5347
5348 dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
5349 resource_size(res));
5350 if (!dsi->proto_base) {
5351 DSSERR("can't ioremap DSI PHY\n");
5352 return -ENOMEM;
5353 }
5354
5355 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
5356 if (!res) {
5357 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5358 if (!res) {
5359 DSSERR("can't get IORESOURCE_MEM DSI\n");
5360 return -EINVAL;
5361 }
5362
5363 temp_res.start = res->start + DSI_PLL_OFFSET;
5364 temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
5365 res = &temp_res;
5366 }
5367
5368 dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
5369 resource_size(res));
5370 if (!dsi->proto_base) {
5371 DSSERR("can't ioremap DSI PLL\n");
5372 return -ENOMEM;
5373 }
5374
5375 dsi->irq = platform_get_irq(dsi->pdev, 0);
5376 if (dsi->irq < 0) {
5377 DSSERR("platform_get_irq failed\n");
5378 return -ENODEV;
5379 }
5380
5381 r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
5382 IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
5383 if (r < 0) {
5384 DSSERR("request_irq failed\n");
5385 return r;
5386 }
5387
5388 if (dsidev->dev.of_node) {
5389 const struct of_device_id *match;
5390 const struct dsi_module_id_data *d;
5391
5392 match = of_match_node(dsi_of_match, dsidev->dev.of_node);
5393 if (!match) {
5394 DSSERR("unsupported DSI module\n");
5395 return -ENODEV;
5396 }
5397
5398 d = match->data;
5399
5400 while (d->address != 0 && d->address != dsi_mem->start)
5401 d++;
5402
5403 if (d->address == 0) {
5404 DSSERR("unsupported DSI module\n");
5405 return -ENODEV;
5406 }
5407
5408 dsi->module_id = d->id;
5409 } else {
5410 dsi->module_id = dsidev->id;
5411 }
5412
5413 /* DSI VCs initialization */
5414 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
5415 dsi->vc[i].source = DSI_VC_SOURCE_L4;
5416 dsi->vc[i].dssdev = NULL;
5417 dsi->vc[i].vc_id = 0;
5418 }
5419
5420 r = dsi_get_clocks(dsidev);
5421 if (r)
5422 return r;
5423
5424 dsi_init_pll_data(dsidev);
5425
5426 pm_runtime_enable(&dsidev->dev);
5427
5428 r = dsi_runtime_get(dsidev);
5429 if (r)
5430 goto err_runtime_get;
5431
5432 rev = dsi_read_reg(dsidev, DSI_REVISION);
5433 dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
5434 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
5435
5436 /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
5437 * of data to 3 by default */
5438 if (dss_has_feature(FEAT_DSI_GNQ))
5439 /* NB_DATA_LANES */
5440 dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
5441 else
5442 dsi->num_lanes_supported = 3;
5443
5444 dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
5445
5446 dsi_init_output(dsidev);
5447
5448 if (dsidev->dev.of_node) {
5449 r = dsi_probe_of(dsidev);
5450 if (r) {
5451 DSSERR("Invalid DSI DT data\n");
5452 goto err_probe_of;
5453 }
5454
5455 r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
5456 &dsidev->dev);
5457 if (r)
5458 DSSERR("Failed to populate DSI child devices: %d\n", r);
5459 }
5460
5461 dsi_runtime_put(dsidev);
5462
5463 if (dsi->module_id == 0)
5464 dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
5465 else if (dsi->module_id == 1)
5466 dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
5467
5468 #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
5469 if (dsi->module_id == 0)
5470 dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
5471 else if (dsi->module_id == 1)
5472 dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
5473 #endif
5474
5475 return 0;
5476
5477 err_probe_of:
5478 dsi_uninit_output(dsidev);
5479 dsi_runtime_put(dsidev);
5480
5481 err_runtime_get:
5482 pm_runtime_disable(&dsidev->dev);
5483 return r;
5484 }
5485
5486 static void dsi_unbind(struct device *dev, struct device *master, void *data)
5487 {
5488 struct platform_device *dsidev = to_platform_device(dev);
5489 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5490
5491 of_platform_depopulate(&dsidev->dev);
5492
5493 WARN_ON(dsi->scp_clk_refcount > 0);
5494
5495 dss_pll_unregister(&dsi->pll);
5496
5497 dsi_uninit_output(dsidev);
5498
5499 pm_runtime_disable(&dsidev->dev);
5500
5501 if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
5502 regulator_disable(dsi->vdds_dsi_reg);
5503 dsi->vdds_dsi_enabled = false;
5504 }
5505 }
5506
5507 static const struct component_ops dsi_component_ops = {
5508 .bind = dsi_bind,
5509 .unbind = dsi_unbind,
5510 };
5511
5512 static int dsi_probe(struct platform_device *pdev)
5513 {
5514 return component_add(&pdev->dev, &dsi_component_ops);
5515 }
5516
5517 static int dsi_remove(struct platform_device *pdev)
5518 {
5519 component_del(&pdev->dev, &dsi_component_ops);
5520 return 0;
5521 }
5522
5523 static int dsi_runtime_suspend(struct device *dev)
5524 {
5525 struct platform_device *pdev = to_platform_device(dev);
5526 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5527
5528 dsi->is_enabled = false;
5529 /* ensure the irq handler sees the is_enabled value */
5530 smp_wmb();
5531 /* wait for current handler to finish before turning the DSI off */
5532 synchronize_irq(dsi->irq);
5533
5534 dispc_runtime_put();
5535
5536 return 0;
5537 }
5538
5539 static int dsi_runtime_resume(struct device *dev)
5540 {
5541 struct platform_device *pdev = to_platform_device(dev);
5542 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5543 int r;
5544
5545 r = dispc_runtime_get();
5546 if (r)
5547 return r;
5548
5549 dsi->is_enabled = true;
5550 /* ensure the irq handler sees the is_enabled value */
5551 smp_wmb();
5552
5553 return 0;
5554 }
5555
5556 static const struct dev_pm_ops dsi_pm_ops = {
5557 .runtime_suspend = dsi_runtime_suspend,
5558 .runtime_resume = dsi_runtime_resume,
5559 };
5560
5561 static const struct dsi_module_id_data dsi_of_data_omap3[] = {
5562 { .address = 0x4804fc00, .id = 0, },
5563 { },
5564 };
5565
5566 static const struct dsi_module_id_data dsi_of_data_omap4[] = {
5567 { .address = 0x58004000, .id = 0, },
5568 { .address = 0x58005000, .id = 1, },
5569 { },
5570 };
5571
5572 static const struct dsi_module_id_data dsi_of_data_omap5[] = {
5573 { .address = 0x58004000, .id = 0, },
5574 { .address = 0x58009000, .id = 1, },
5575 { },
5576 };
5577
5578 static const struct of_device_id dsi_of_match[] = {
5579 { .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
5580 { .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
5581 { .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
5582 {},
5583 };
5584
5585 static struct platform_driver omap_dsihw_driver = {
5586 .probe = dsi_probe,
5587 .remove = dsi_remove,
5588 .driver = {
5589 .name = "omapdss_dsi",
5590 .pm = &dsi_pm_ops,
5591 .of_match_table = dsi_of_match,
5592 .suppress_bind_attrs = true,
5593 },
5594 };
5595
5596 int __init dsi_init_platform_driver(void)
5597 {
5598 return platform_driver_register(&omap_dsihw_driver);
5599 }
5600
5601 void dsi_uninit_platform_driver(void)
5602 {
5603 platform_driver_unregister(&omap_dsihw_driver);
5604 }