]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/radeon/radeon_fence.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / radeon / radeon_fence.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <drm/drmP.h>
38 #include "radeon_reg.h"
39 #include "radeon.h"
40 #include "radeon_trace.h"
41
42 /*
43 * Fences
44 * Fences mark an event in the GPUs pipeline and are used
45 * for GPU/CPU synchronization. When the fence is written,
46 * it is expected that all buffers associated with that fence
47 * are no longer in use by the associated ring on the GPU and
48 * that the the relevant GPU caches have been flushed. Whether
49 * we use a scratch register or memory location depends on the asic
50 * and whether writeback is enabled.
51 */
52
53 /**
54 * radeon_fence_write - write a fence value
55 *
56 * @rdev: radeon_device pointer
57 * @seq: sequence number to write
58 * @ring: ring index the fence is associated with
59 *
60 * Writes a fence value to memory or a scratch register (all asics).
61 */
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63 {
64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66 if (drv->cpu_addr) {
67 *drv->cpu_addr = cpu_to_le32(seq);
68 }
69 } else {
70 WREG32(drv->scratch_reg, seq);
71 }
72 }
73
74 /**
75 * radeon_fence_read - read a fence value
76 *
77 * @rdev: radeon_device pointer
78 * @ring: ring index the fence is associated with
79 *
80 * Reads a fence value from memory or a scratch register (all asics).
81 * Returns the value of the fence read from memory or register.
82 */
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84 {
85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86 u32 seq = 0;
87
88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89 if (drv->cpu_addr) {
90 seq = le32_to_cpu(*drv->cpu_addr);
91 } else {
92 seq = lower_32_bits(atomic64_read(&drv->last_seq));
93 }
94 } else {
95 seq = RREG32(drv->scratch_reg);
96 }
97 return seq;
98 }
99
100 /**
101 * radeon_fence_schedule_check - schedule lockup check
102 *
103 * @rdev: radeon_device pointer
104 * @ring: ring index we should work with
105 *
106 * Queues a delayed work item to check for lockups.
107 */
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109 {
110 /*
111 * Do not reset the timer here with mod_delayed_work,
112 * this can livelock in an interaction with TTM delayed destroy.
113 */
114 queue_delayed_work(system_power_efficient_wq,
115 &rdev->fence_drv[ring].lockup_work,
116 RADEON_FENCE_JIFFIES_TIMEOUT);
117 }
118
119 /**
120 * radeon_fence_emit - emit a fence on the requested ring
121 *
122 * @rdev: radeon_device pointer
123 * @fence: radeon fence object
124 * @ring: ring index the fence is associated with
125 *
126 * Emits a fence command on the requested ring (all asics).
127 * Returns 0 on success, -ENOMEM on failure.
128 */
129 int radeon_fence_emit(struct radeon_device *rdev,
130 struct radeon_fence **fence,
131 int ring)
132 {
133 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
134
135 /* we are protected by the ring emission mutex */
136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 if ((*fence) == NULL) {
138 return -ENOMEM;
139 }
140 (*fence)->rdev = rdev;
141 (*fence)->seq = seq;
142 (*fence)->ring = ring;
143 (*fence)->is_vm_update = false;
144 fence_init(&(*fence)->base, &radeon_fence_ops,
145 &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
146 radeon_fence_ring_emit(rdev, ring, *fence);
147 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
148 radeon_fence_schedule_check(rdev, ring);
149 return 0;
150 }
151
152 /**
153 * radeon_fence_check_signaled - callback from fence_queue
154 *
155 * this function is called with fence_queue lock held, which is also used
156 * for the fence locking itself, so unlocked variants are used for
157 * fence_signal, and remove_wait_queue.
158 */
159 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
160 {
161 struct radeon_fence *fence;
162 u64 seq;
163
164 fence = container_of(wait, struct radeon_fence, fence_wake);
165
166 /*
167 * We cannot use radeon_fence_process here because we're already
168 * in the waitqueue, in a call from wake_up_all.
169 */
170 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
171 if (seq >= fence->seq) {
172 int ret = fence_signal_locked(&fence->base);
173
174 if (!ret)
175 FENCE_TRACE(&fence->base, "signaled from irq context\n");
176 else
177 FENCE_TRACE(&fence->base, "was already signaled\n");
178
179 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181 fence_put(&fence->base);
182 } else
183 FENCE_TRACE(&fence->base, "pending\n");
184 return 0;
185 }
186
187 /**
188 * radeon_fence_activity - check for fence activity
189 *
190 * @rdev: radeon_device pointer
191 * @ring: ring index the fence is associated with
192 *
193 * Checks the current fence value and calculates the last
194 * signalled fence value. Returns true if activity occured
195 * on the ring, and the fence_queue should be waken up.
196 */
197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 uint64_t seq, last_seq, last_emitted;
200 unsigned count_loop = 0;
201 bool wake = false;
202
203 /* Note there is a scenario here for an infinite loop but it's
204 * very unlikely to happen. For it to happen, the current polling
205 * process need to be interrupted by another process and another
206 * process needs to update the last_seq btw the atomic read and
207 * xchg of the current process.
208 *
209 * More over for this to go in infinite loop there need to be
210 * continuously new fence signaled ie radeon_fence_read needs
211 * to return a different value each time for both the currently
212 * polling process and the other process that xchg the last_seq
213 * btw atomic read and xchg of the current process. And the
214 * value the other process set as last seq must be higher than
215 * the seq value we just read. Which means that current process
216 * need to be interrupted after radeon_fence_read and before
217 * atomic xchg.
218 *
219 * To be even more safe we count the number of time we loop and
220 * we bail after 10 loop just accepting the fact that we might
221 * have temporarly set the last_seq not to the true real last
222 * seq but to an older one.
223 */
224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 do {
226 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 seq = radeon_fence_read(rdev, ring);
228 seq |= last_seq & 0xffffffff00000000LL;
229 if (seq < last_seq) {
230 seq &= 0xffffffff;
231 seq |= last_emitted & 0xffffffff00000000LL;
232 }
233
234 if (seq <= last_seq || seq > last_emitted) {
235 break;
236 }
237 /* If we loop over we don't want to return without
238 * checking if a fence is signaled as it means that the
239 * seq we just read is different from the previous on.
240 */
241 wake = true;
242 last_seq = seq;
243 if ((count_loop++) > 10) {
244 /* We looped over too many time leave with the
245 * fact that we might have set an older fence
246 * seq then the current real last seq as signaled
247 * by the hw.
248 */
249 break;
250 }
251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252
253 if (seq < last_emitted)
254 radeon_fence_schedule_check(rdev, ring);
255
256 return wake;
257 }
258
259 /**
260 * radeon_fence_check_lockup - check for hardware lockup
261 *
262 * @work: delayed work item
263 *
264 * Checks for fence activity and if there is none probe
265 * the hardware if a lockup occured.
266 */
267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 struct radeon_fence_driver *fence_drv;
270 struct radeon_device *rdev;
271 int ring;
272
273 fence_drv = container_of(work, struct radeon_fence_driver,
274 lockup_work.work);
275 rdev = fence_drv->rdev;
276 ring = fence_drv - &rdev->fence_drv[0];
277
278 if (!down_read_trylock(&rdev->exclusive_lock)) {
279 /* just reschedule the check if a reset is going on */
280 radeon_fence_schedule_check(rdev, ring);
281 return;
282 }
283
284 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
285 unsigned long irqflags;
286
287 fence_drv->delayed_irq = false;
288 spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 radeon_irq_set(rdev);
290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 }
292
293 if (radeon_fence_activity(rdev, ring))
294 wake_up_all(&rdev->fence_queue);
295
296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297
298 /* good news we believe it's a lockup */
299 dev_warn(rdev->dev, "GPU lockup (current fence id "
300 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301 (uint64_t)atomic64_read(&fence_drv->last_seq),
302 fence_drv->sync_seq[ring], ring);
303
304 /* remember that we need an reset */
305 rdev->needs_reset = true;
306 wake_up_all(&rdev->fence_queue);
307 }
308 up_read(&rdev->exclusive_lock);
309 }
310
311 /**
312 * radeon_fence_process - process a fence
313 *
314 * @rdev: radeon_device pointer
315 * @ring: ring index the fence is associated with
316 *
317 * Checks the current fence value and wakes the fence queue
318 * if the sequence number has increased (all asics).
319 */
320 void radeon_fence_process(struct radeon_device *rdev, int ring)
321 {
322 if (radeon_fence_activity(rdev, ring))
323 wake_up_all(&rdev->fence_queue);
324 }
325
326 /**
327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328 *
329 * @rdev: radeon device pointer
330 * @seq: sequence number
331 * @ring: ring index the fence is associated with
332 *
333 * Check if the last signaled fence sequnce number is >= the requested
334 * sequence number (all asics).
335 * Returns true if the fence has signaled (current fence value
336 * is >= requested value) or false if it has not (current fence
337 * value is < the requested value. Helper function for
338 * radeon_fence_signaled().
339 */
340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341 u64 seq, unsigned ring)
342 {
343 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344 return true;
345 }
346 /* poll new last sequence at least once */
347 radeon_fence_process(rdev, ring);
348 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349 return true;
350 }
351 return false;
352 }
353
354 static bool radeon_fence_is_signaled(struct fence *f)
355 {
356 struct radeon_fence *fence = to_radeon_fence(f);
357 struct radeon_device *rdev = fence->rdev;
358 unsigned ring = fence->ring;
359 u64 seq = fence->seq;
360
361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362 return true;
363 }
364
365 if (down_read_trylock(&rdev->exclusive_lock)) {
366 radeon_fence_process(rdev, ring);
367 up_read(&rdev->exclusive_lock);
368
369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370 return true;
371 }
372 }
373 return false;
374 }
375
376 /**
377 * radeon_fence_enable_signaling - enable signalling on fence
378 * @fence: fence
379 *
380 * This function is called with fence_queue lock held, and adds a callback
381 * to fence_queue that checks if this fence is signaled, and if so it
382 * signals the fence and removes itself.
383 */
384 static bool radeon_fence_enable_signaling(struct fence *f)
385 {
386 struct radeon_fence *fence = to_radeon_fence(f);
387 struct radeon_device *rdev = fence->rdev;
388
389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390 return false;
391
392 if (down_read_trylock(&rdev->exclusive_lock)) {
393 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394
395 if (radeon_fence_activity(rdev, fence->ring))
396 wake_up_all_locked(&rdev->fence_queue);
397
398 /* did fence get signaled after we enabled the sw irq? */
399 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401 up_read(&rdev->exclusive_lock);
402 return false;
403 }
404
405 up_read(&rdev->exclusive_lock);
406 } else {
407 /* we're probably in a lockup, lets not fiddle too much */
408 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409 rdev->fence_drv[fence->ring].delayed_irq = true;
410 radeon_fence_schedule_check(rdev, fence->ring);
411 }
412
413 fence->fence_wake.flags = 0;
414 fence->fence_wake.private = NULL;
415 fence->fence_wake.func = radeon_fence_check_signaled;
416 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417 fence_get(f);
418
419 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
420 return true;
421 }
422
423 /**
424 * radeon_fence_signaled - check if a fence has signaled
425 *
426 * @fence: radeon fence object
427 *
428 * Check if the requested fence has signaled (all asics).
429 * Returns true if the fence has signaled or false if it has not.
430 */
431 bool radeon_fence_signaled(struct radeon_fence *fence)
432 {
433 if (!fence)
434 return true;
435
436 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
437 int ret;
438
439 ret = fence_signal(&fence->base);
440 if (!ret)
441 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
442 return true;
443 }
444 return false;
445 }
446
447 /**
448 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
449 *
450 * @rdev: radeon device pointer
451 * @seq: sequence numbers
452 *
453 * Check if the last signaled fence sequnce number is >= the requested
454 * sequence number (all asics).
455 * Returns true if any has signaled (current value is >= requested value)
456 * or false if it has not. Helper function for radeon_fence_wait_seq.
457 */
458 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
459 {
460 unsigned i;
461
462 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
463 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
464 return true;
465 }
466 return false;
467 }
468
469 /**
470 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
471 *
472 * @rdev: radeon device pointer
473 * @target_seq: sequence number(s) we want to wait for
474 * @intr: use interruptable sleep
475 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
476 *
477 * Wait for the requested sequence number(s) to be written by any ring
478 * (all asics). Sequnce number array is indexed by ring id.
479 * @intr selects whether to use interruptable (true) or non-interruptable
480 * (false) sleep when waiting for the sequence number. Helper function
481 * for radeon_fence_wait_*().
482 * Returns remaining time if the sequence number has passed, 0 when
483 * the wait timeout, or an error for all other cases.
484 * -EDEADLK is returned when a GPU lockup has been detected.
485 */
486 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
487 u64 *target_seq, bool intr,
488 long timeout)
489 {
490 long r;
491 int i;
492
493 if (radeon_fence_any_seq_signaled(rdev, target_seq))
494 return timeout;
495
496 /* enable IRQs and tracing */
497 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
498 if (!target_seq[i])
499 continue;
500
501 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
502 radeon_irq_kms_sw_irq_get(rdev, i);
503 }
504
505 if (intr) {
506 r = wait_event_interruptible_timeout(rdev->fence_queue, (
507 radeon_fence_any_seq_signaled(rdev, target_seq)
508 || rdev->needs_reset), timeout);
509 } else {
510 r = wait_event_timeout(rdev->fence_queue, (
511 radeon_fence_any_seq_signaled(rdev, target_seq)
512 || rdev->needs_reset), timeout);
513 }
514
515 if (rdev->needs_reset)
516 r = -EDEADLK;
517
518 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
519 if (!target_seq[i])
520 continue;
521
522 radeon_irq_kms_sw_irq_put(rdev, i);
523 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
524 }
525
526 return r;
527 }
528
529 /**
530 * radeon_fence_wait - wait for a fence to signal
531 *
532 * @fence: radeon fence object
533 * @intr: use interruptible sleep
534 *
535 * Wait for the requested fence to signal (all asics).
536 * @intr selects whether to use interruptable (true) or non-interruptable
537 * (false) sleep when waiting for the fence.
538 * Returns 0 if the fence has passed, error for all other cases.
539 */
540 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
541 {
542 uint64_t seq[RADEON_NUM_RINGS] = {};
543 long r;
544
545 /*
546 * This function should not be called on !radeon fences.
547 * If this is the case, it would mean this function can
548 * also be called on radeon fences belonging to another card.
549 * exclusive_lock is not held in that case.
550 */
551 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
552 return fence_wait(&fence->base, intr);
553
554 seq[fence->ring] = fence->seq;
555 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
556 if (r < 0) {
557 return r;
558 }
559
560 r = fence_signal(&fence->base);
561 if (!r)
562 FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
563 return 0;
564 }
565
566 /**
567 * radeon_fence_wait_any - wait for a fence to signal on any ring
568 *
569 * @rdev: radeon device pointer
570 * @fences: radeon fence object(s)
571 * @intr: use interruptable sleep
572 *
573 * Wait for any requested fence to signal (all asics). Fence
574 * array is indexed by ring id. @intr selects whether to use
575 * interruptable (true) or non-interruptable (false) sleep when
576 * waiting for the fences. Used by the suballocator.
577 * Returns 0 if any fence has passed, error for all other cases.
578 */
579 int radeon_fence_wait_any(struct radeon_device *rdev,
580 struct radeon_fence **fences,
581 bool intr)
582 {
583 uint64_t seq[RADEON_NUM_RINGS];
584 unsigned i, num_rings = 0;
585 long r;
586
587 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
588 seq[i] = 0;
589
590 if (!fences[i]) {
591 continue;
592 }
593
594 seq[i] = fences[i]->seq;
595 ++num_rings;
596 }
597
598 /* nothing to wait for ? */
599 if (num_rings == 0)
600 return -ENOENT;
601
602 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
603 if (r < 0) {
604 return r;
605 }
606 return 0;
607 }
608
609 /**
610 * radeon_fence_wait_next - wait for the next fence to signal
611 *
612 * @rdev: radeon device pointer
613 * @ring: ring index the fence is associated with
614 *
615 * Wait for the next fence on the requested ring to signal (all asics).
616 * Returns 0 if the next fence has passed, error for all other cases.
617 * Caller must hold ring lock.
618 */
619 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
620 {
621 uint64_t seq[RADEON_NUM_RINGS] = {};
622 long r;
623
624 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
625 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
626 /* nothing to wait for, last_seq is
627 already the last emited fence */
628 return -ENOENT;
629 }
630 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
631 if (r < 0)
632 return r;
633 return 0;
634 }
635
636 /**
637 * radeon_fence_wait_empty - wait for all fences to signal
638 *
639 * @rdev: radeon device pointer
640 * @ring: ring index the fence is associated with
641 *
642 * Wait for all fences on the requested ring to signal (all asics).
643 * Returns 0 if the fences have passed, error for all other cases.
644 * Caller must hold ring lock.
645 */
646 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
647 {
648 uint64_t seq[RADEON_NUM_RINGS] = {};
649 long r;
650
651 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
652 if (!seq[ring])
653 return 0;
654
655 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
656 if (r < 0) {
657 if (r == -EDEADLK)
658 return -EDEADLK;
659
660 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
661 ring, r);
662 }
663 return 0;
664 }
665
666 /**
667 * radeon_fence_ref - take a ref on a fence
668 *
669 * @fence: radeon fence object
670 *
671 * Take a reference on a fence (all asics).
672 * Returns the fence.
673 */
674 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
675 {
676 fence_get(&fence->base);
677 return fence;
678 }
679
680 /**
681 * radeon_fence_unref - remove a ref on a fence
682 *
683 * @fence: radeon fence object
684 *
685 * Remove a reference on a fence (all asics).
686 */
687 void radeon_fence_unref(struct radeon_fence **fence)
688 {
689 struct radeon_fence *tmp = *fence;
690
691 *fence = NULL;
692 if (tmp) {
693 fence_put(&tmp->base);
694 }
695 }
696
697 /**
698 * radeon_fence_count_emitted - get the count of emitted fences
699 *
700 * @rdev: radeon device pointer
701 * @ring: ring index the fence is associated with
702 *
703 * Get the number of fences emitted on the requested ring (all asics).
704 * Returns the number of emitted fences on the ring. Used by the
705 * dynpm code to ring track activity.
706 */
707 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
708 {
709 uint64_t emitted;
710
711 /* We are not protected by ring lock when reading the last sequence
712 * but it's ok to report slightly wrong fence count here.
713 */
714 radeon_fence_process(rdev, ring);
715 emitted = rdev->fence_drv[ring].sync_seq[ring]
716 - atomic64_read(&rdev->fence_drv[ring].last_seq);
717 /* to avoid 32bits warp around */
718 if (emitted > 0x10000000) {
719 emitted = 0x10000000;
720 }
721 return (unsigned)emitted;
722 }
723
724 /**
725 * radeon_fence_need_sync - do we need a semaphore
726 *
727 * @fence: radeon fence object
728 * @dst_ring: which ring to check against
729 *
730 * Check if the fence needs to be synced against another ring
731 * (all asics). If so, we need to emit a semaphore.
732 * Returns true if we need to sync with another ring, false if
733 * not.
734 */
735 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
736 {
737 struct radeon_fence_driver *fdrv;
738
739 if (!fence) {
740 return false;
741 }
742
743 if (fence->ring == dst_ring) {
744 return false;
745 }
746
747 /* we are protected by the ring mutex */
748 fdrv = &fence->rdev->fence_drv[dst_ring];
749 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
750 return false;
751 }
752
753 return true;
754 }
755
756 /**
757 * radeon_fence_note_sync - record the sync point
758 *
759 * @fence: radeon fence object
760 * @dst_ring: which ring to check against
761 *
762 * Note the sequence number at which point the fence will
763 * be synced with the requested ring (all asics).
764 */
765 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
766 {
767 struct radeon_fence_driver *dst, *src;
768 unsigned i;
769
770 if (!fence) {
771 return;
772 }
773
774 if (fence->ring == dst_ring) {
775 return;
776 }
777
778 /* we are protected by the ring mutex */
779 src = &fence->rdev->fence_drv[fence->ring];
780 dst = &fence->rdev->fence_drv[dst_ring];
781 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
782 if (i == dst_ring) {
783 continue;
784 }
785 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
786 }
787 }
788
789 /**
790 * radeon_fence_driver_start_ring - make the fence driver
791 * ready for use on the requested ring.
792 *
793 * @rdev: radeon device pointer
794 * @ring: ring index to start the fence driver on
795 *
796 * Make the fence driver ready for processing (all asics).
797 * Not all asics have all rings, so each asic will only
798 * start the fence driver on the rings it has.
799 * Returns 0 for success, errors for failure.
800 */
801 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
802 {
803 uint64_t index;
804 int r;
805
806 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
807 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
808 rdev->fence_drv[ring].scratch_reg = 0;
809 if (ring != R600_RING_TYPE_UVD_INDEX) {
810 index = R600_WB_EVENT_OFFSET + ring * 4;
811 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
812 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
813 index;
814
815 } else {
816 /* put fence directly behind firmware */
817 index = ALIGN(rdev->uvd_fw->size, 8);
818 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
819 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
820 }
821
822 } else {
823 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
824 if (r) {
825 dev_err(rdev->dev, "fence failed to get scratch register\n");
826 return r;
827 }
828 index = RADEON_WB_SCRATCH_OFFSET +
829 rdev->fence_drv[ring].scratch_reg -
830 rdev->scratch.reg_base;
831 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
832 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
833 }
834 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
835 rdev->fence_drv[ring].initialized = true;
836 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
837 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
838 return 0;
839 }
840
841 /**
842 * radeon_fence_driver_init_ring - init the fence driver
843 * for the requested ring.
844 *
845 * @rdev: radeon device pointer
846 * @ring: ring index to start the fence driver on
847 *
848 * Init the fence driver for the requested ring (all asics).
849 * Helper function for radeon_fence_driver_init().
850 */
851 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
852 {
853 int i;
854
855 rdev->fence_drv[ring].scratch_reg = -1;
856 rdev->fence_drv[ring].cpu_addr = NULL;
857 rdev->fence_drv[ring].gpu_addr = 0;
858 for (i = 0; i < RADEON_NUM_RINGS; ++i)
859 rdev->fence_drv[ring].sync_seq[i] = 0;
860 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
861 rdev->fence_drv[ring].initialized = false;
862 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
863 radeon_fence_check_lockup);
864 rdev->fence_drv[ring].rdev = rdev;
865 }
866
867 /**
868 * radeon_fence_driver_init - init the fence driver
869 * for all possible rings.
870 *
871 * @rdev: radeon device pointer
872 *
873 * Init the fence driver for all possible rings (all asics).
874 * Not all asics have all rings, so each asic will only
875 * start the fence driver on the rings it has using
876 * radeon_fence_driver_start_ring().
877 * Returns 0 for success.
878 */
879 int radeon_fence_driver_init(struct radeon_device *rdev)
880 {
881 int ring;
882
883 init_waitqueue_head(&rdev->fence_queue);
884 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
885 radeon_fence_driver_init_ring(rdev, ring);
886 }
887 if (radeon_debugfs_fence_init(rdev)) {
888 dev_err(rdev->dev, "fence debugfs file creation failed\n");
889 }
890 return 0;
891 }
892
893 /**
894 * radeon_fence_driver_fini - tear down the fence driver
895 * for all possible rings.
896 *
897 * @rdev: radeon device pointer
898 *
899 * Tear down the fence driver for all possible rings (all asics).
900 */
901 void radeon_fence_driver_fini(struct radeon_device *rdev)
902 {
903 int ring, r;
904
905 mutex_lock(&rdev->ring_lock);
906 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
907 if (!rdev->fence_drv[ring].initialized)
908 continue;
909 r = radeon_fence_wait_empty(rdev, ring);
910 if (r) {
911 /* no need to trigger GPU reset as we are unloading */
912 radeon_fence_driver_force_completion(rdev, ring);
913 }
914 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
915 wake_up_all(&rdev->fence_queue);
916 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
917 rdev->fence_drv[ring].initialized = false;
918 }
919 mutex_unlock(&rdev->ring_lock);
920 }
921
922 /**
923 * radeon_fence_driver_force_completion - force all fence waiter to complete
924 *
925 * @rdev: radeon device pointer
926 * @ring: the ring to complete
927 *
928 * In case of GPU reset failure make sure no process keep waiting on fence
929 * that will never complete.
930 */
931 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
932 {
933 if (rdev->fence_drv[ring].initialized) {
934 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
935 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
936 }
937 }
938
939
940 /*
941 * Fence debugfs
942 */
943 #if defined(CONFIG_DEBUG_FS)
944 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
945 {
946 struct drm_info_node *node = (struct drm_info_node *)m->private;
947 struct drm_device *dev = node->minor->dev;
948 struct radeon_device *rdev = dev->dev_private;
949 int i, j;
950
951 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
952 if (!rdev->fence_drv[i].initialized)
953 continue;
954
955 radeon_fence_process(rdev, i);
956
957 seq_printf(m, "--- ring %d ---\n", i);
958 seq_printf(m, "Last signaled fence 0x%016llx\n",
959 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
960 seq_printf(m, "Last emitted 0x%016llx\n",
961 rdev->fence_drv[i].sync_seq[i]);
962
963 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
964 if (i != j && rdev->fence_drv[j].initialized)
965 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
966 j, rdev->fence_drv[i].sync_seq[j]);
967 }
968 }
969 return 0;
970 }
971
972 /**
973 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
974 *
975 * Manually trigger a gpu reset at the next fence wait.
976 */
977 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
978 {
979 struct drm_info_node *node = (struct drm_info_node *) m->private;
980 struct drm_device *dev = node->minor->dev;
981 struct radeon_device *rdev = dev->dev_private;
982
983 down_read(&rdev->exclusive_lock);
984 seq_printf(m, "%d\n", rdev->needs_reset);
985 rdev->needs_reset = true;
986 wake_up_all(&rdev->fence_queue);
987 up_read(&rdev->exclusive_lock);
988
989 return 0;
990 }
991
992 static struct drm_info_list radeon_debugfs_fence_list[] = {
993 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
994 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
995 };
996 #endif
997
998 int radeon_debugfs_fence_init(struct radeon_device *rdev)
999 {
1000 #if defined(CONFIG_DEBUG_FS)
1001 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1002 #else
1003 return 0;
1004 #endif
1005 }
1006
1007 static const char *radeon_fence_get_driver_name(struct fence *fence)
1008 {
1009 return "radeon";
1010 }
1011
1012 static const char *radeon_fence_get_timeline_name(struct fence *f)
1013 {
1014 struct radeon_fence *fence = to_radeon_fence(f);
1015 switch (fence->ring) {
1016 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1017 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1018 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1019 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1020 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1021 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1022 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1023 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1024 default: WARN_ON_ONCE(1); return "radeon.unk";
1025 }
1026 }
1027
1028 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1029 {
1030 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1031 }
1032
1033 struct radeon_wait_cb {
1034 struct fence_cb base;
1035 struct task_struct *task;
1036 };
1037
1038 static void
1039 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1040 {
1041 struct radeon_wait_cb *wait =
1042 container_of(cb, struct radeon_wait_cb, base);
1043
1044 wake_up_process(wait->task);
1045 }
1046
1047 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1048 signed long t)
1049 {
1050 struct radeon_fence *fence = to_radeon_fence(f);
1051 struct radeon_device *rdev = fence->rdev;
1052 struct radeon_wait_cb cb;
1053
1054 cb.task = current;
1055
1056 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1057 return t;
1058
1059 while (t > 0) {
1060 if (intr)
1061 set_current_state(TASK_INTERRUPTIBLE);
1062 else
1063 set_current_state(TASK_UNINTERRUPTIBLE);
1064
1065 /*
1066 * radeon_test_signaled must be called after
1067 * set_current_state to prevent a race with wake_up_process
1068 */
1069 if (radeon_test_signaled(fence))
1070 break;
1071
1072 if (rdev->needs_reset) {
1073 t = -EDEADLK;
1074 break;
1075 }
1076
1077 t = schedule_timeout(t);
1078
1079 if (t > 0 && intr && signal_pending(current))
1080 t = -ERESTARTSYS;
1081 }
1082
1083 __set_current_state(TASK_RUNNING);
1084 fence_remove_callback(f, &cb.base);
1085
1086 return t;
1087 }
1088
1089 const struct fence_ops radeon_fence_ops = {
1090 .get_driver_name = radeon_fence_get_driver_name,
1091 .get_timeline_name = radeon_fence_get_timeline_name,
1092 .enable_signaling = radeon_fence_enable_signaling,
1093 .signaled = radeon_fence_is_signaled,
1094 .wait = radeon_fence_default_wait,
1095 .release = NULL,
1096 };