]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/radeon/radeon_fence.c
Merge remote-tracking branches 'spi/topic/loopback', 'spi/topic/omap2-mcspi', 'spi...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / radeon / radeon_fence.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <drm/drmP.h>
38 #include "radeon_reg.h"
39 #include "radeon.h"
40 #include "radeon_trace.h"
41
42 /*
43 * Fences
44 * Fences mark an event in the GPUs pipeline and are used
45 * for GPU/CPU synchronization. When the fence is written,
46 * it is expected that all buffers associated with that fence
47 * are no longer in use by the associated ring on the GPU and
48 * that the the relevant GPU caches have been flushed. Whether
49 * we use a scratch register or memory location depends on the asic
50 * and whether writeback is enabled.
51 */
52
53 /**
54 * radeon_fence_write - write a fence value
55 *
56 * @rdev: radeon_device pointer
57 * @seq: sequence number to write
58 * @ring: ring index the fence is associated with
59 *
60 * Writes a fence value to memory or a scratch register (all asics).
61 */
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63 {
64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66 if (drv->cpu_addr) {
67 *drv->cpu_addr = cpu_to_le32(seq);
68 }
69 } else {
70 WREG32(drv->scratch_reg, seq);
71 }
72 }
73
74 /**
75 * radeon_fence_read - read a fence value
76 *
77 * @rdev: radeon_device pointer
78 * @ring: ring index the fence is associated with
79 *
80 * Reads a fence value from memory or a scratch register (all asics).
81 * Returns the value of the fence read from memory or register.
82 */
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84 {
85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86 u32 seq = 0;
87
88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89 if (drv->cpu_addr) {
90 seq = le32_to_cpu(*drv->cpu_addr);
91 } else {
92 seq = lower_32_bits(atomic64_read(&drv->last_seq));
93 }
94 } else {
95 seq = RREG32(drv->scratch_reg);
96 }
97 return seq;
98 }
99
100 /**
101 * radeon_fence_schedule_check - schedule lockup check
102 *
103 * @rdev: radeon_device pointer
104 * @ring: ring index we should work with
105 *
106 * Queues a delayed work item to check for lockups.
107 */
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109 {
110 /*
111 * Do not reset the timer here with mod_delayed_work,
112 * this can livelock in an interaction with TTM delayed destroy.
113 */
114 queue_delayed_work(system_power_efficient_wq,
115 &rdev->fence_drv[ring].lockup_work,
116 RADEON_FENCE_JIFFIES_TIMEOUT);
117 }
118
119 /**
120 * radeon_fence_emit - emit a fence on the requested ring
121 *
122 * @rdev: radeon_device pointer
123 * @fence: radeon fence object
124 * @ring: ring index the fence is associated with
125 *
126 * Emits a fence command on the requested ring (all asics).
127 * Returns 0 on success, -ENOMEM on failure.
128 */
129 int radeon_fence_emit(struct radeon_device *rdev,
130 struct radeon_fence **fence,
131 int ring)
132 {
133 u64 seq;
134
135 /* we are protected by the ring emission mutex */
136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 if ((*fence) == NULL) {
138 return -ENOMEM;
139 }
140 (*fence)->rdev = rdev;
141 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
142 (*fence)->ring = ring;
143 (*fence)->is_vm_update = false;
144 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
145 &rdev->fence_queue.lock,
146 rdev->fence_context + ring,
147 seq);
148 radeon_fence_ring_emit(rdev, ring, *fence);
149 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
150 radeon_fence_schedule_check(rdev, ring);
151 return 0;
152 }
153
154 /**
155 * radeon_fence_check_signaled - callback from fence_queue
156 *
157 * this function is called with fence_queue lock held, which is also used
158 * for the fence locking itself, so unlocked variants are used for
159 * fence_signal, and remove_wait_queue.
160 */
161 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
162 {
163 struct radeon_fence *fence;
164 u64 seq;
165
166 fence = container_of(wait, struct radeon_fence, fence_wake);
167
168 /*
169 * We cannot use radeon_fence_process here because we're already
170 * in the waitqueue, in a call from wake_up_all.
171 */
172 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
173 if (seq >= fence->seq) {
174 int ret = dma_fence_signal_locked(&fence->base);
175
176 if (!ret)
177 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
178 else
179 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
180
181 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
182 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
183 dma_fence_put(&fence->base);
184 } else
185 DMA_FENCE_TRACE(&fence->base, "pending\n");
186 return 0;
187 }
188
189 /**
190 * radeon_fence_activity - check for fence activity
191 *
192 * @rdev: radeon_device pointer
193 * @ring: ring index the fence is associated with
194 *
195 * Checks the current fence value and calculates the last
196 * signalled fence value. Returns true if activity occured
197 * on the ring, and the fence_queue should be waken up.
198 */
199 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
200 {
201 uint64_t seq, last_seq, last_emitted;
202 unsigned count_loop = 0;
203 bool wake = false;
204
205 /* Note there is a scenario here for an infinite loop but it's
206 * very unlikely to happen. For it to happen, the current polling
207 * process need to be interrupted by another process and another
208 * process needs to update the last_seq btw the atomic read and
209 * xchg of the current process.
210 *
211 * More over for this to go in infinite loop there need to be
212 * continuously new fence signaled ie radeon_fence_read needs
213 * to return a different value each time for both the currently
214 * polling process and the other process that xchg the last_seq
215 * btw atomic read and xchg of the current process. And the
216 * value the other process set as last seq must be higher than
217 * the seq value we just read. Which means that current process
218 * need to be interrupted after radeon_fence_read and before
219 * atomic xchg.
220 *
221 * To be even more safe we count the number of time we loop and
222 * we bail after 10 loop just accepting the fact that we might
223 * have temporarly set the last_seq not to the true real last
224 * seq but to an older one.
225 */
226 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
227 do {
228 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
229 seq = radeon_fence_read(rdev, ring);
230 seq |= last_seq & 0xffffffff00000000LL;
231 if (seq < last_seq) {
232 seq &= 0xffffffff;
233 seq |= last_emitted & 0xffffffff00000000LL;
234 }
235
236 if (seq <= last_seq || seq > last_emitted) {
237 break;
238 }
239 /* If we loop over we don't want to return without
240 * checking if a fence is signaled as it means that the
241 * seq we just read is different from the previous on.
242 */
243 wake = true;
244 last_seq = seq;
245 if ((count_loop++) > 10) {
246 /* We looped over too many time leave with the
247 * fact that we might have set an older fence
248 * seq then the current real last seq as signaled
249 * by the hw.
250 */
251 break;
252 }
253 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
254
255 if (seq < last_emitted)
256 radeon_fence_schedule_check(rdev, ring);
257
258 return wake;
259 }
260
261 /**
262 * radeon_fence_check_lockup - check for hardware lockup
263 *
264 * @work: delayed work item
265 *
266 * Checks for fence activity and if there is none probe
267 * the hardware if a lockup occured.
268 */
269 static void radeon_fence_check_lockup(struct work_struct *work)
270 {
271 struct radeon_fence_driver *fence_drv;
272 struct radeon_device *rdev;
273 int ring;
274
275 fence_drv = container_of(work, struct radeon_fence_driver,
276 lockup_work.work);
277 rdev = fence_drv->rdev;
278 ring = fence_drv - &rdev->fence_drv[0];
279
280 if (!down_read_trylock(&rdev->exclusive_lock)) {
281 /* just reschedule the check if a reset is going on */
282 radeon_fence_schedule_check(rdev, ring);
283 return;
284 }
285
286 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
287 unsigned long irqflags;
288
289 fence_drv->delayed_irq = false;
290 spin_lock_irqsave(&rdev->irq.lock, irqflags);
291 radeon_irq_set(rdev);
292 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
293 }
294
295 if (radeon_fence_activity(rdev, ring))
296 wake_up_all(&rdev->fence_queue);
297
298 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
299
300 /* good news we believe it's a lockup */
301 dev_warn(rdev->dev, "GPU lockup (current fence id "
302 "0x%016llx last fence id 0x%016llx on ring %d)\n",
303 (uint64_t)atomic64_read(&fence_drv->last_seq),
304 fence_drv->sync_seq[ring], ring);
305
306 /* remember that we need an reset */
307 rdev->needs_reset = true;
308 wake_up_all(&rdev->fence_queue);
309 }
310 up_read(&rdev->exclusive_lock);
311 }
312
313 /**
314 * radeon_fence_process - process a fence
315 *
316 * @rdev: radeon_device pointer
317 * @ring: ring index the fence is associated with
318 *
319 * Checks the current fence value and wakes the fence queue
320 * if the sequence number has increased (all asics).
321 */
322 void radeon_fence_process(struct radeon_device *rdev, int ring)
323 {
324 if (radeon_fence_activity(rdev, ring))
325 wake_up_all(&rdev->fence_queue);
326 }
327
328 /**
329 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
330 *
331 * @rdev: radeon device pointer
332 * @seq: sequence number
333 * @ring: ring index the fence is associated with
334 *
335 * Check if the last signaled fence sequnce number is >= the requested
336 * sequence number (all asics).
337 * Returns true if the fence has signaled (current fence value
338 * is >= requested value) or false if it has not (current fence
339 * value is < the requested value. Helper function for
340 * radeon_fence_signaled().
341 */
342 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
343 u64 seq, unsigned ring)
344 {
345 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
346 return true;
347 }
348 /* poll new last sequence at least once */
349 radeon_fence_process(rdev, ring);
350 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
351 return true;
352 }
353 return false;
354 }
355
356 static bool radeon_fence_is_signaled(struct dma_fence *f)
357 {
358 struct radeon_fence *fence = to_radeon_fence(f);
359 struct radeon_device *rdev = fence->rdev;
360 unsigned ring = fence->ring;
361 u64 seq = fence->seq;
362
363 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
364 return true;
365 }
366
367 if (down_read_trylock(&rdev->exclusive_lock)) {
368 radeon_fence_process(rdev, ring);
369 up_read(&rdev->exclusive_lock);
370
371 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
372 return true;
373 }
374 }
375 return false;
376 }
377
378 /**
379 * radeon_fence_enable_signaling - enable signalling on fence
380 * @fence: fence
381 *
382 * This function is called with fence_queue lock held, and adds a callback
383 * to fence_queue that checks if this fence is signaled, and if so it
384 * signals the fence and removes itself.
385 */
386 static bool radeon_fence_enable_signaling(struct dma_fence *f)
387 {
388 struct radeon_fence *fence = to_radeon_fence(f);
389 struct radeon_device *rdev = fence->rdev;
390
391 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
392 return false;
393
394 if (down_read_trylock(&rdev->exclusive_lock)) {
395 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
396
397 if (radeon_fence_activity(rdev, fence->ring))
398 wake_up_all_locked(&rdev->fence_queue);
399
400 /* did fence get signaled after we enabled the sw irq? */
401 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
402 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
403 up_read(&rdev->exclusive_lock);
404 return false;
405 }
406
407 up_read(&rdev->exclusive_lock);
408 } else {
409 /* we're probably in a lockup, lets not fiddle too much */
410 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
411 rdev->fence_drv[fence->ring].delayed_irq = true;
412 radeon_fence_schedule_check(rdev, fence->ring);
413 }
414
415 fence->fence_wake.flags = 0;
416 fence->fence_wake.private = NULL;
417 fence->fence_wake.func = radeon_fence_check_signaled;
418 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
419 dma_fence_get(f);
420
421 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
422 return true;
423 }
424
425 /**
426 * radeon_fence_signaled - check if a fence has signaled
427 *
428 * @fence: radeon fence object
429 *
430 * Check if the requested fence has signaled (all asics).
431 * Returns true if the fence has signaled or false if it has not.
432 */
433 bool radeon_fence_signaled(struct radeon_fence *fence)
434 {
435 if (!fence)
436 return true;
437
438 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
439 int ret;
440
441 ret = dma_fence_signal(&fence->base);
442 if (!ret)
443 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
444 return true;
445 }
446 return false;
447 }
448
449 /**
450 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
451 *
452 * @rdev: radeon device pointer
453 * @seq: sequence numbers
454 *
455 * Check if the last signaled fence sequnce number is >= the requested
456 * sequence number (all asics).
457 * Returns true if any has signaled (current value is >= requested value)
458 * or false if it has not. Helper function for radeon_fence_wait_seq.
459 */
460 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
461 {
462 unsigned i;
463
464 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
465 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
466 return true;
467 }
468 return false;
469 }
470
471 /**
472 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
473 *
474 * @rdev: radeon device pointer
475 * @target_seq: sequence number(s) we want to wait for
476 * @intr: use interruptable sleep
477 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
478 *
479 * Wait for the requested sequence number(s) to be written by any ring
480 * (all asics). Sequnce number array is indexed by ring id.
481 * @intr selects whether to use interruptable (true) or non-interruptable
482 * (false) sleep when waiting for the sequence number. Helper function
483 * for radeon_fence_wait_*().
484 * Returns remaining time if the sequence number has passed, 0 when
485 * the wait timeout, or an error for all other cases.
486 * -EDEADLK is returned when a GPU lockup has been detected.
487 */
488 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
489 u64 *target_seq, bool intr,
490 long timeout)
491 {
492 long r;
493 int i;
494
495 if (radeon_fence_any_seq_signaled(rdev, target_seq))
496 return timeout;
497
498 /* enable IRQs and tracing */
499 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
500 if (!target_seq[i])
501 continue;
502
503 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
504 radeon_irq_kms_sw_irq_get(rdev, i);
505 }
506
507 if (intr) {
508 r = wait_event_interruptible_timeout(rdev->fence_queue, (
509 radeon_fence_any_seq_signaled(rdev, target_seq)
510 || rdev->needs_reset), timeout);
511 } else {
512 r = wait_event_timeout(rdev->fence_queue, (
513 radeon_fence_any_seq_signaled(rdev, target_seq)
514 || rdev->needs_reset), timeout);
515 }
516
517 if (rdev->needs_reset)
518 r = -EDEADLK;
519
520 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
521 if (!target_seq[i])
522 continue;
523
524 radeon_irq_kms_sw_irq_put(rdev, i);
525 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
526 }
527
528 return r;
529 }
530
531 /**
532 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
533 *
534 * @fence: radeon fence object
535 * @intr: use interruptible sleep
536 *
537 * Wait for the requested fence to signal (all asics).
538 * @intr selects whether to use interruptable (true) or non-interruptable
539 * (false) sleep when waiting for the fence.
540 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
541 * Returns remaining time if the sequence number has passed, 0 when
542 * the wait timeout, or an error for all other cases.
543 */
544 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
545 {
546 uint64_t seq[RADEON_NUM_RINGS] = {};
547 long r;
548 int r_sig;
549
550 /*
551 * This function should not be called on !radeon fences.
552 * If this is the case, it would mean this function can
553 * also be called on radeon fences belonging to another card.
554 * exclusive_lock is not held in that case.
555 */
556 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
557 return dma_fence_wait(&fence->base, intr);
558
559 seq[fence->ring] = fence->seq;
560 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
561 if (r <= 0) {
562 return r;
563 }
564
565 r_sig = dma_fence_signal(&fence->base);
566 if (!r_sig)
567 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
568 return r;
569 }
570
571 /**
572 * radeon_fence_wait - wait for a fence to signal
573 *
574 * @fence: radeon fence object
575 * @intr: use interruptible sleep
576 *
577 * Wait for the requested fence to signal (all asics).
578 * @intr selects whether to use interruptable (true) or non-interruptable
579 * (false) sleep when waiting for the fence.
580 * Returns 0 if the fence has passed, error for all other cases.
581 */
582 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
583 {
584 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
585 if (r > 0) {
586 return 0;
587 } else {
588 return r;
589 }
590 }
591
592 /**
593 * radeon_fence_wait_any - wait for a fence to signal on any ring
594 *
595 * @rdev: radeon device pointer
596 * @fences: radeon fence object(s)
597 * @intr: use interruptable sleep
598 *
599 * Wait for any requested fence to signal (all asics). Fence
600 * array is indexed by ring id. @intr selects whether to use
601 * interruptable (true) or non-interruptable (false) sleep when
602 * waiting for the fences. Used by the suballocator.
603 * Returns 0 if any fence has passed, error for all other cases.
604 */
605 int radeon_fence_wait_any(struct radeon_device *rdev,
606 struct radeon_fence **fences,
607 bool intr)
608 {
609 uint64_t seq[RADEON_NUM_RINGS];
610 unsigned i, num_rings = 0;
611 long r;
612
613 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
614 seq[i] = 0;
615
616 if (!fences[i]) {
617 continue;
618 }
619
620 seq[i] = fences[i]->seq;
621 ++num_rings;
622 }
623
624 /* nothing to wait for ? */
625 if (num_rings == 0)
626 return -ENOENT;
627
628 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
629 if (r < 0) {
630 return r;
631 }
632 return 0;
633 }
634
635 /**
636 * radeon_fence_wait_next - wait for the next fence to signal
637 *
638 * @rdev: radeon device pointer
639 * @ring: ring index the fence is associated with
640 *
641 * Wait for the next fence on the requested ring to signal (all asics).
642 * Returns 0 if the next fence has passed, error for all other cases.
643 * Caller must hold ring lock.
644 */
645 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
646 {
647 uint64_t seq[RADEON_NUM_RINGS] = {};
648 long r;
649
650 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
651 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
652 /* nothing to wait for, last_seq is
653 already the last emited fence */
654 return -ENOENT;
655 }
656 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
657 if (r < 0)
658 return r;
659 return 0;
660 }
661
662 /**
663 * radeon_fence_wait_empty - wait for all fences to signal
664 *
665 * @rdev: radeon device pointer
666 * @ring: ring index the fence is associated with
667 *
668 * Wait for all fences on the requested ring to signal (all asics).
669 * Returns 0 if the fences have passed, error for all other cases.
670 * Caller must hold ring lock.
671 */
672 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
673 {
674 uint64_t seq[RADEON_NUM_RINGS] = {};
675 long r;
676
677 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
678 if (!seq[ring])
679 return 0;
680
681 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
682 if (r < 0) {
683 if (r == -EDEADLK)
684 return -EDEADLK;
685
686 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
687 ring, r);
688 }
689 return 0;
690 }
691
692 /**
693 * radeon_fence_ref - take a ref on a fence
694 *
695 * @fence: radeon fence object
696 *
697 * Take a reference on a fence (all asics).
698 * Returns the fence.
699 */
700 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
701 {
702 dma_fence_get(&fence->base);
703 return fence;
704 }
705
706 /**
707 * radeon_fence_unref - remove a ref on a fence
708 *
709 * @fence: radeon fence object
710 *
711 * Remove a reference on a fence (all asics).
712 */
713 void radeon_fence_unref(struct radeon_fence **fence)
714 {
715 struct radeon_fence *tmp = *fence;
716
717 *fence = NULL;
718 if (tmp) {
719 dma_fence_put(&tmp->base);
720 }
721 }
722
723 /**
724 * radeon_fence_count_emitted - get the count of emitted fences
725 *
726 * @rdev: radeon device pointer
727 * @ring: ring index the fence is associated with
728 *
729 * Get the number of fences emitted on the requested ring (all asics).
730 * Returns the number of emitted fences on the ring. Used by the
731 * dynpm code to ring track activity.
732 */
733 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
734 {
735 uint64_t emitted;
736
737 /* We are not protected by ring lock when reading the last sequence
738 * but it's ok to report slightly wrong fence count here.
739 */
740 radeon_fence_process(rdev, ring);
741 emitted = rdev->fence_drv[ring].sync_seq[ring]
742 - atomic64_read(&rdev->fence_drv[ring].last_seq);
743 /* to avoid 32bits warp around */
744 if (emitted > 0x10000000) {
745 emitted = 0x10000000;
746 }
747 return (unsigned)emitted;
748 }
749
750 /**
751 * radeon_fence_need_sync - do we need a semaphore
752 *
753 * @fence: radeon fence object
754 * @dst_ring: which ring to check against
755 *
756 * Check if the fence needs to be synced against another ring
757 * (all asics). If so, we need to emit a semaphore.
758 * Returns true if we need to sync with another ring, false if
759 * not.
760 */
761 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
762 {
763 struct radeon_fence_driver *fdrv;
764
765 if (!fence) {
766 return false;
767 }
768
769 if (fence->ring == dst_ring) {
770 return false;
771 }
772
773 /* we are protected by the ring mutex */
774 fdrv = &fence->rdev->fence_drv[dst_ring];
775 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
776 return false;
777 }
778
779 return true;
780 }
781
782 /**
783 * radeon_fence_note_sync - record the sync point
784 *
785 * @fence: radeon fence object
786 * @dst_ring: which ring to check against
787 *
788 * Note the sequence number at which point the fence will
789 * be synced with the requested ring (all asics).
790 */
791 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
792 {
793 struct radeon_fence_driver *dst, *src;
794 unsigned i;
795
796 if (!fence) {
797 return;
798 }
799
800 if (fence->ring == dst_ring) {
801 return;
802 }
803
804 /* we are protected by the ring mutex */
805 src = &fence->rdev->fence_drv[fence->ring];
806 dst = &fence->rdev->fence_drv[dst_ring];
807 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
808 if (i == dst_ring) {
809 continue;
810 }
811 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
812 }
813 }
814
815 /**
816 * radeon_fence_driver_start_ring - make the fence driver
817 * ready for use on the requested ring.
818 *
819 * @rdev: radeon device pointer
820 * @ring: ring index to start the fence driver on
821 *
822 * Make the fence driver ready for processing (all asics).
823 * Not all asics have all rings, so each asic will only
824 * start the fence driver on the rings it has.
825 * Returns 0 for success, errors for failure.
826 */
827 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
828 {
829 uint64_t index;
830 int r;
831
832 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
833 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
834 rdev->fence_drv[ring].scratch_reg = 0;
835 if (ring != R600_RING_TYPE_UVD_INDEX) {
836 index = R600_WB_EVENT_OFFSET + ring * 4;
837 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
838 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
839 index;
840
841 } else {
842 /* put fence directly behind firmware */
843 index = ALIGN(rdev->uvd_fw->size, 8);
844 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
845 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
846 }
847
848 } else {
849 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
850 if (r) {
851 dev_err(rdev->dev, "fence failed to get scratch register\n");
852 return r;
853 }
854 index = RADEON_WB_SCRATCH_OFFSET +
855 rdev->fence_drv[ring].scratch_reg -
856 rdev->scratch.reg_base;
857 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
858 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
859 }
860 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
861 rdev->fence_drv[ring].initialized = true;
862 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
863 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
864 return 0;
865 }
866
867 /**
868 * radeon_fence_driver_init_ring - init the fence driver
869 * for the requested ring.
870 *
871 * @rdev: radeon device pointer
872 * @ring: ring index to start the fence driver on
873 *
874 * Init the fence driver for the requested ring (all asics).
875 * Helper function for radeon_fence_driver_init().
876 */
877 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
878 {
879 int i;
880
881 rdev->fence_drv[ring].scratch_reg = -1;
882 rdev->fence_drv[ring].cpu_addr = NULL;
883 rdev->fence_drv[ring].gpu_addr = 0;
884 for (i = 0; i < RADEON_NUM_RINGS; ++i)
885 rdev->fence_drv[ring].sync_seq[i] = 0;
886 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
887 rdev->fence_drv[ring].initialized = false;
888 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
889 radeon_fence_check_lockup);
890 rdev->fence_drv[ring].rdev = rdev;
891 }
892
893 /**
894 * radeon_fence_driver_init - init the fence driver
895 * for all possible rings.
896 *
897 * @rdev: radeon device pointer
898 *
899 * Init the fence driver for all possible rings (all asics).
900 * Not all asics have all rings, so each asic will only
901 * start the fence driver on the rings it has using
902 * radeon_fence_driver_start_ring().
903 * Returns 0 for success.
904 */
905 int radeon_fence_driver_init(struct radeon_device *rdev)
906 {
907 int ring;
908
909 init_waitqueue_head(&rdev->fence_queue);
910 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
911 radeon_fence_driver_init_ring(rdev, ring);
912 }
913 if (radeon_debugfs_fence_init(rdev)) {
914 dev_err(rdev->dev, "fence debugfs file creation failed\n");
915 }
916 return 0;
917 }
918
919 /**
920 * radeon_fence_driver_fini - tear down the fence driver
921 * for all possible rings.
922 *
923 * @rdev: radeon device pointer
924 *
925 * Tear down the fence driver for all possible rings (all asics).
926 */
927 void radeon_fence_driver_fini(struct radeon_device *rdev)
928 {
929 int ring, r;
930
931 mutex_lock(&rdev->ring_lock);
932 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
933 if (!rdev->fence_drv[ring].initialized)
934 continue;
935 r = radeon_fence_wait_empty(rdev, ring);
936 if (r) {
937 /* no need to trigger GPU reset as we are unloading */
938 radeon_fence_driver_force_completion(rdev, ring);
939 }
940 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
941 wake_up_all(&rdev->fence_queue);
942 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
943 rdev->fence_drv[ring].initialized = false;
944 }
945 mutex_unlock(&rdev->ring_lock);
946 }
947
948 /**
949 * radeon_fence_driver_force_completion - force all fence waiter to complete
950 *
951 * @rdev: radeon device pointer
952 * @ring: the ring to complete
953 *
954 * In case of GPU reset failure make sure no process keep waiting on fence
955 * that will never complete.
956 */
957 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
958 {
959 if (rdev->fence_drv[ring].initialized) {
960 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
961 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
962 }
963 }
964
965
966 /*
967 * Fence debugfs
968 */
969 #if defined(CONFIG_DEBUG_FS)
970 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
971 {
972 struct drm_info_node *node = (struct drm_info_node *)m->private;
973 struct drm_device *dev = node->minor->dev;
974 struct radeon_device *rdev = dev->dev_private;
975 int i, j;
976
977 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
978 if (!rdev->fence_drv[i].initialized)
979 continue;
980
981 radeon_fence_process(rdev, i);
982
983 seq_printf(m, "--- ring %d ---\n", i);
984 seq_printf(m, "Last signaled fence 0x%016llx\n",
985 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
986 seq_printf(m, "Last emitted 0x%016llx\n",
987 rdev->fence_drv[i].sync_seq[i]);
988
989 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
990 if (i != j && rdev->fence_drv[j].initialized)
991 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
992 j, rdev->fence_drv[i].sync_seq[j]);
993 }
994 }
995 return 0;
996 }
997
998 /**
999 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1000 *
1001 * Manually trigger a gpu reset at the next fence wait.
1002 */
1003 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1004 {
1005 struct drm_info_node *node = (struct drm_info_node *) m->private;
1006 struct drm_device *dev = node->minor->dev;
1007 struct radeon_device *rdev = dev->dev_private;
1008
1009 down_read(&rdev->exclusive_lock);
1010 seq_printf(m, "%d\n", rdev->needs_reset);
1011 rdev->needs_reset = true;
1012 wake_up_all(&rdev->fence_queue);
1013 up_read(&rdev->exclusive_lock);
1014
1015 return 0;
1016 }
1017
1018 static struct drm_info_list radeon_debugfs_fence_list[] = {
1019 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1020 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1021 };
1022 #endif
1023
1024 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1025 {
1026 #if defined(CONFIG_DEBUG_FS)
1027 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1028 #else
1029 return 0;
1030 #endif
1031 }
1032
1033 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1034 {
1035 return "radeon";
1036 }
1037
1038 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1039 {
1040 struct radeon_fence *fence = to_radeon_fence(f);
1041 switch (fence->ring) {
1042 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1043 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1044 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1045 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1046 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1047 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1048 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1049 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1050 default: WARN_ON_ONCE(1); return "radeon.unk";
1051 }
1052 }
1053
1054 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1055 {
1056 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1057 }
1058
1059 struct radeon_wait_cb {
1060 struct dma_fence_cb base;
1061 struct task_struct *task;
1062 };
1063
1064 static void
1065 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1066 {
1067 struct radeon_wait_cb *wait =
1068 container_of(cb, struct radeon_wait_cb, base);
1069
1070 wake_up_process(wait->task);
1071 }
1072
1073 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1074 signed long t)
1075 {
1076 struct radeon_fence *fence = to_radeon_fence(f);
1077 struct radeon_device *rdev = fence->rdev;
1078 struct radeon_wait_cb cb;
1079
1080 cb.task = current;
1081
1082 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1083 return t;
1084
1085 while (t > 0) {
1086 if (intr)
1087 set_current_state(TASK_INTERRUPTIBLE);
1088 else
1089 set_current_state(TASK_UNINTERRUPTIBLE);
1090
1091 /*
1092 * radeon_test_signaled must be called after
1093 * set_current_state to prevent a race with wake_up_process
1094 */
1095 if (radeon_test_signaled(fence))
1096 break;
1097
1098 if (rdev->needs_reset) {
1099 t = -EDEADLK;
1100 break;
1101 }
1102
1103 t = schedule_timeout(t);
1104
1105 if (t > 0 && intr && signal_pending(current))
1106 t = -ERESTARTSYS;
1107 }
1108
1109 __set_current_state(TASK_RUNNING);
1110 dma_fence_remove_callback(f, &cb.base);
1111
1112 return t;
1113 }
1114
1115 const struct dma_fence_ops radeon_fence_ops = {
1116 .get_driver_name = radeon_fence_get_driver_name,
1117 .get_timeline_name = radeon_fence_get_timeline_name,
1118 .enable_signaling = radeon_fence_enable_signaling,
1119 .signaled = radeon_fence_is_signaled,
1120 .wait = radeon_fence_default_wait,
1121 .release = NULL,
1122 };