]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/rcar-du/rcar_du_crtc.c
Merge tag 'drm-misc-next-2017-03-06' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2 * rcar_du_crtc.c -- R-Car Display Unit CRTCs
3 *
4 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 *
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_crtc_helper.h>
22 #include <drm/drm_fb_cma_helper.h>
23 #include <drm/drm_gem_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_kms.h"
29 #include "rcar_du_plane.h"
30 #include "rcar_du_regs.h"
31 #include "rcar_du_vsp.h"
32
33 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
34 {
35 struct rcar_du_device *rcdu = rcrtc->group->dev;
36
37 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
38 }
39
40 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
41 {
42 struct rcar_du_device *rcdu = rcrtc->group->dev;
43
44 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
45 }
46
47 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
48 {
49 struct rcar_du_device *rcdu = rcrtc->group->dev;
50
51 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
52 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
53 }
54
55 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
56 {
57 struct rcar_du_device *rcdu = rcrtc->group->dev;
58
59 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
60 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
61 }
62
63 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
64 u32 clr, u32 set)
65 {
66 struct rcar_du_device *rcdu = rcrtc->group->dev;
67 u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
68
69 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
70 }
71
72 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
73 {
74 int ret;
75
76 ret = clk_prepare_enable(rcrtc->clock);
77 if (ret < 0)
78 return ret;
79
80 ret = clk_prepare_enable(rcrtc->extclock);
81 if (ret < 0)
82 goto error_clock;
83
84 ret = rcar_du_group_get(rcrtc->group);
85 if (ret < 0)
86 goto error_group;
87
88 return 0;
89
90 error_group:
91 clk_disable_unprepare(rcrtc->extclock);
92 error_clock:
93 clk_disable_unprepare(rcrtc->clock);
94 return ret;
95 }
96
97 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
98 {
99 rcar_du_group_put(rcrtc->group);
100
101 clk_disable_unprepare(rcrtc->extclock);
102 clk_disable_unprepare(rcrtc->clock);
103 }
104
105 /* -----------------------------------------------------------------------------
106 * Hardware Setup
107 */
108
109 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
110 {
111 const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
112 unsigned long mode_clock = mode->clock * 1000;
113 unsigned long clk;
114 u32 value;
115 u32 escr;
116 u32 div;
117
118 /* Compute the clock divisor and select the internal or external dot
119 * clock based on the requested frequency.
120 */
121 clk = clk_get_rate(rcrtc->clock);
122 div = DIV_ROUND_CLOSEST(clk, mode_clock);
123 div = clamp(div, 1U, 64U) - 1;
124 escr = div | ESCR_DCLKSEL_CLKS;
125
126 if (rcrtc->extclock) {
127 unsigned long extclk;
128 unsigned long extrate;
129 unsigned long rate;
130 u32 extdiv;
131
132 extclk = clk_get_rate(rcrtc->extclock);
133 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
134 extdiv = clamp(extdiv, 1U, 64U) - 1;
135
136 rate = clk / (div + 1);
137 extrate = extclk / (extdiv + 1);
138
139 if (abs((long)extrate - (long)mode_clock) <
140 abs((long)rate - (long)mode_clock)) {
141 dev_dbg(rcrtc->group->dev->dev,
142 "crtc%u: using external clock\n", rcrtc->index);
143 escr = extdiv | ESCR_DCLKSEL_DCLKIN;
144 }
145 }
146
147 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
148 escr);
149 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
150
151 /* Signal polarities */
152 value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
153 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
154 | DSMR_DIPM_DISP | DSMR_CSPM;
155 rcar_du_crtc_write(rcrtc, DSMR, value);
156
157 /* Display timings */
158 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
159 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
160 mode->hdisplay - 19);
161 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
162 mode->hsync_start - 1);
163 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
164
165 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
166 mode->crtc_vsync_end - 2);
167 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
168 mode->crtc_vsync_end +
169 mode->crtc_vdisplay - 2);
170 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
171 mode->crtc_vsync_end +
172 mode->crtc_vsync_start - 1);
173 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
174
175 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
176 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
177 }
178
179 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
180 enum rcar_du_output output)
181 {
182 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
183 struct rcar_du_device *rcdu = rcrtc->group->dev;
184
185 /* Store the route from the CRTC output to the DU output. The DU will be
186 * configured when starting the CRTC.
187 */
188 rcrtc->outputs |= BIT(output);
189
190 /* Store RGB routing to DPAD0, the hardware will be configured when
191 * starting the CRTC.
192 */
193 if (output == RCAR_DU_OUTPUT_DPAD0)
194 rcdu->dpad0_source = rcrtc->index;
195 }
196
197 static unsigned int plane_zpos(struct rcar_du_plane *plane)
198 {
199 return plane->plane.state->normalized_zpos;
200 }
201
202 static const struct rcar_du_format_info *
203 plane_format(struct rcar_du_plane *plane)
204 {
205 return to_rcar_plane_state(plane->plane.state)->format;
206 }
207
208 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
209 {
210 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
211 struct rcar_du_device *rcdu = rcrtc->group->dev;
212 unsigned int num_planes = 0;
213 unsigned int dptsr_planes;
214 unsigned int hwplanes = 0;
215 unsigned int prio = 0;
216 unsigned int i;
217 u32 dspr = 0;
218
219 for (i = 0; i < rcrtc->group->num_planes; ++i) {
220 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
221 unsigned int j;
222
223 if (plane->plane.state->crtc != &rcrtc->crtc)
224 continue;
225
226 /* Insert the plane in the sorted planes array. */
227 for (j = num_planes++; j > 0; --j) {
228 if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
229 break;
230 planes[j] = planes[j-1];
231 }
232
233 planes[j] = plane;
234 prio += plane_format(plane)->planes * 4;
235 }
236
237 for (i = 0; i < num_planes; ++i) {
238 struct rcar_du_plane *plane = planes[i];
239 struct drm_plane_state *state = plane->plane.state;
240 unsigned int index = to_rcar_plane_state(state)->hwindex;
241
242 prio -= 4;
243 dspr |= (index + 1) << prio;
244 hwplanes |= 1 << index;
245
246 if (plane_format(plane)->planes == 2) {
247 index = (index + 1) % 8;
248
249 prio -= 4;
250 dspr |= (index + 1) << prio;
251 hwplanes |= 1 << index;
252 }
253 }
254
255 /* If VSP+DU integration is enabled the plane assignment is fixed. */
256 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
257 if (rcdu->info->gen < 3) {
258 dspr = (rcrtc->index % 2) + 1;
259 hwplanes = 1 << (rcrtc->index % 2);
260 } else {
261 dspr = (rcrtc->index % 2) ? 3 : 1;
262 hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
263 }
264 }
265
266 /* Update the planes to display timing and dot clock generator
267 * associations.
268 *
269 * Updating the DPTSR register requires restarting the CRTC group,
270 * resulting in visible flicker. To mitigate the issue only update the
271 * association if needed by enabled planes. Planes being disabled will
272 * keep their current association.
273 */
274 mutex_lock(&rcrtc->group->lock);
275
276 dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
277 : rcrtc->group->dptsr_planes & ~hwplanes;
278
279 if (dptsr_planes != rcrtc->group->dptsr_planes) {
280 rcar_du_group_write(rcrtc->group, DPTSR,
281 (dptsr_planes << 16) | dptsr_planes);
282 rcrtc->group->dptsr_planes = dptsr_planes;
283
284 if (rcrtc->group->used_crtcs)
285 rcar_du_group_restart(rcrtc->group);
286 }
287
288 /* Restart the group if plane sources have changed. */
289 if (rcrtc->group->need_restart)
290 rcar_du_group_restart(rcrtc->group);
291
292 mutex_unlock(&rcrtc->group->lock);
293
294 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
295 dspr);
296 }
297
298 /* -----------------------------------------------------------------------------
299 * Page Flip
300 */
301
302 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
303 {
304 struct drm_pending_vblank_event *event;
305 struct drm_device *dev = rcrtc->crtc.dev;
306 unsigned long flags;
307
308 spin_lock_irqsave(&dev->event_lock, flags);
309 event = rcrtc->event;
310 rcrtc->event = NULL;
311 spin_unlock_irqrestore(&dev->event_lock, flags);
312
313 if (event == NULL)
314 return;
315
316 spin_lock_irqsave(&dev->event_lock, flags);
317 drm_crtc_send_vblank_event(&rcrtc->crtc, event);
318 wake_up(&rcrtc->flip_wait);
319 spin_unlock_irqrestore(&dev->event_lock, flags);
320
321 drm_crtc_vblank_put(&rcrtc->crtc);
322 }
323
324 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
325 {
326 struct drm_device *dev = rcrtc->crtc.dev;
327 unsigned long flags;
328 bool pending;
329
330 spin_lock_irqsave(&dev->event_lock, flags);
331 pending = rcrtc->event != NULL;
332 spin_unlock_irqrestore(&dev->event_lock, flags);
333
334 return pending;
335 }
336
337 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
338 {
339 struct rcar_du_device *rcdu = rcrtc->group->dev;
340
341 if (wait_event_timeout(rcrtc->flip_wait,
342 !rcar_du_crtc_page_flip_pending(rcrtc),
343 msecs_to_jiffies(50)))
344 return;
345
346 dev_warn(rcdu->dev, "page flip timeout\n");
347
348 rcar_du_crtc_finish_page_flip(rcrtc);
349 }
350
351 /* -----------------------------------------------------------------------------
352 * Start/Stop and Suspend/Resume
353 */
354
355 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
356 {
357 struct drm_crtc *crtc = &rcrtc->crtc;
358 bool interlaced;
359
360 if (rcrtc->started)
361 return;
362
363 /* Set display off and background to black */
364 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
365 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
366
367 /* Configure display timings and output routing */
368 rcar_du_crtc_set_display_timing(rcrtc);
369 rcar_du_group_set_routing(rcrtc->group);
370
371 /* Start with all planes disabled. */
372 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
373
374 /* Select master sync mode. This enables display operation in master
375 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
376 * actively driven).
377 */
378 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
379 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
380 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
381 DSYSR_TVM_MASTER);
382
383 rcar_du_group_start_stop(rcrtc->group, true);
384
385 /* Enable the VSP compositor. */
386 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
387 rcar_du_vsp_enable(rcrtc);
388
389 /* Turn vertical blanking interrupt reporting back on. */
390 drm_crtc_vblank_on(crtc);
391
392 rcrtc->started = true;
393 }
394
395 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
396 {
397 struct drm_crtc *crtc = &rcrtc->crtc;
398
399 if (!rcrtc->started)
400 return;
401
402 /* Disable all planes and wait for the change to take effect. This is
403 * required as the DSnPR registers are updated on vblank, and no vblank
404 * will occur once the CRTC is stopped. Disabling planes when starting
405 * the CRTC thus wouldn't be enough as it would start scanning out
406 * immediately from old frame buffers until the next vblank.
407 *
408 * This increases the CRTC stop delay, especially when multiple CRTCs
409 * are stopped in one operation as we now wait for one vblank per CRTC.
410 * Whether this can be improved needs to be researched.
411 */
412 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
413 drm_crtc_wait_one_vblank(crtc);
414
415 /* Disable vertical blanking interrupt reporting. We first need to wait
416 * for page flip completion before stopping the CRTC as userspace
417 * expects page flips to eventually complete.
418 */
419 rcar_du_crtc_wait_page_flip(rcrtc);
420 drm_crtc_vblank_off(crtc);
421
422 /* Disable the VSP compositor. */
423 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
424 rcar_du_vsp_disable(rcrtc);
425
426 /* Select switch sync mode. This stops display operation and configures
427 * the HSYNC and VSYNC signals as inputs.
428 */
429 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
430
431 rcar_du_group_start_stop(rcrtc->group, false);
432
433 rcrtc->started = false;
434 }
435
436 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
437 {
438 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
439 rcar_du_vsp_disable(rcrtc);
440
441 rcar_du_crtc_stop(rcrtc);
442 rcar_du_crtc_put(rcrtc);
443 }
444
445 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
446 {
447 unsigned int i;
448
449 if (!rcrtc->crtc.state->active)
450 return;
451
452 rcar_du_crtc_get(rcrtc);
453 rcar_du_crtc_start(rcrtc);
454
455 /* Commit the planes state. */
456 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) {
457 rcar_du_vsp_enable(rcrtc);
458 } else {
459 for (i = 0; i < rcrtc->group->num_planes; ++i) {
460 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
461
462 if (plane->plane.state->crtc != &rcrtc->crtc)
463 continue;
464
465 rcar_du_plane_setup(plane);
466 }
467 }
468
469 rcar_du_crtc_update_planes(rcrtc);
470 }
471
472 /* -----------------------------------------------------------------------------
473 * CRTC Functions
474 */
475
476 static void rcar_du_crtc_enable(struct drm_crtc *crtc)
477 {
478 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
479
480 rcar_du_crtc_get(rcrtc);
481 rcar_du_crtc_start(rcrtc);
482 }
483
484 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
485 {
486 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
487
488 rcar_du_crtc_stop(rcrtc);
489 rcar_du_crtc_put(rcrtc);
490
491 rcrtc->outputs = 0;
492 }
493
494 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
495 struct drm_crtc_state *old_crtc_state)
496 {
497 struct drm_pending_vblank_event *event = crtc->state->event;
498 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
499 struct drm_device *dev = rcrtc->crtc.dev;
500 unsigned long flags;
501
502 if (event) {
503 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
504
505 spin_lock_irqsave(&dev->event_lock, flags);
506 rcrtc->event = event;
507 spin_unlock_irqrestore(&dev->event_lock, flags);
508 }
509
510 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
511 rcar_du_vsp_atomic_begin(rcrtc);
512 }
513
514 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
515 struct drm_crtc_state *old_crtc_state)
516 {
517 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
518
519 rcar_du_crtc_update_planes(rcrtc);
520
521 if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
522 rcar_du_vsp_atomic_flush(rcrtc);
523 }
524
525 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
526 .disable = rcar_du_crtc_disable,
527 .enable = rcar_du_crtc_enable,
528 .atomic_begin = rcar_du_crtc_atomic_begin,
529 .atomic_flush = rcar_du_crtc_atomic_flush,
530 };
531
532 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
533 {
534 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
535
536 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
537 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
538
539 return 0;
540 }
541
542 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
543 {
544 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
545
546 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
547 }
548
549 static const struct drm_crtc_funcs crtc_funcs = {
550 .reset = drm_atomic_helper_crtc_reset,
551 .destroy = drm_crtc_cleanup,
552 .set_config = drm_atomic_helper_set_config,
553 .page_flip = drm_atomic_helper_page_flip,
554 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
555 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
556 .enable_vblank = rcar_du_crtc_enable_vblank,
557 .disable_vblank = rcar_du_crtc_disable_vblank,
558 };
559
560 /* -----------------------------------------------------------------------------
561 * Interrupt Handling
562 */
563
564 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
565 {
566 struct rcar_du_crtc *rcrtc = arg;
567 irqreturn_t ret = IRQ_NONE;
568 u32 status;
569
570 status = rcar_du_crtc_read(rcrtc, DSSR);
571 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
572
573 if (status & DSSR_FRM) {
574 drm_crtc_handle_vblank(&rcrtc->crtc);
575 rcar_du_crtc_finish_page_flip(rcrtc);
576 ret = IRQ_HANDLED;
577 }
578
579 return ret;
580 }
581
582 /* -----------------------------------------------------------------------------
583 * Initialization
584 */
585
586 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
587 {
588 static const unsigned int mmio_offsets[] = {
589 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
590 };
591
592 struct rcar_du_device *rcdu = rgrp->dev;
593 struct platform_device *pdev = to_platform_device(rcdu->dev);
594 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
595 struct drm_crtc *crtc = &rcrtc->crtc;
596 struct drm_plane *primary;
597 unsigned int irqflags;
598 struct clk *clk;
599 char clk_name[9];
600 char *name;
601 int irq;
602 int ret;
603
604 /* Get the CRTC clock and the optional external clock. */
605 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
606 sprintf(clk_name, "du.%u", index);
607 name = clk_name;
608 } else {
609 name = NULL;
610 }
611
612 rcrtc->clock = devm_clk_get(rcdu->dev, name);
613 if (IS_ERR(rcrtc->clock)) {
614 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
615 return PTR_ERR(rcrtc->clock);
616 }
617
618 sprintf(clk_name, "dclkin.%u", index);
619 clk = devm_clk_get(rcdu->dev, clk_name);
620 if (!IS_ERR(clk)) {
621 rcrtc->extclock = clk;
622 } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
623 dev_info(rcdu->dev, "can't get external clock %u\n", index);
624 return -EPROBE_DEFER;
625 }
626
627 init_waitqueue_head(&rcrtc->flip_wait);
628
629 rcrtc->group = rgrp;
630 rcrtc->mmio_offset = mmio_offsets[index];
631 rcrtc->index = index;
632
633 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
634 primary = &rcrtc->vsp->planes[0].plane;
635 else
636 primary = &rgrp->planes[index % 2].plane;
637
638 ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary,
639 NULL, &crtc_funcs, NULL);
640 if (ret < 0)
641 return ret;
642
643 drm_crtc_helper_add(crtc, &crtc_helper_funcs);
644
645 /* Start with vertical blanking interrupt reporting disabled. */
646 drm_crtc_vblank_off(crtc);
647
648 /* Register the interrupt handler. */
649 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
650 irq = platform_get_irq(pdev, index);
651 irqflags = 0;
652 } else {
653 irq = platform_get_irq(pdev, 0);
654 irqflags = IRQF_SHARED;
655 }
656
657 if (irq < 0) {
658 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
659 return irq;
660 }
661
662 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
663 dev_name(rcdu->dev), rcrtc);
664 if (ret < 0) {
665 dev_err(rcdu->dev,
666 "failed to register IRQ for CRTC %u\n", index);
667 return ret;
668 }
669
670 return 0;
671 }