]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/rockchip/rockchip_drm_vop.c
drm/rockchip: vop: add rk3399 vop support
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / rockchip / rockchip_drm_vop.c
1 /*
2 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3 * Author:Mark Yao <mark.yao@rock-chips.com>
4 *
5 * This software is licensed under the terms of the GNU General Public
6 * License version 2, as published by the Free Software Foundation, and
7 * may be copied, distributed, and modified under those terms.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_plane_helper.h>
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/component.h>
30
31 #include <linux/reset.h>
32 #include <linux/delay.h>
33
34 #include "rockchip_drm_drv.h"
35 #include "rockchip_drm_gem.h"
36 #include "rockchip_drm_fb.h"
37 #include "rockchip_drm_vop.h"
38
39 #define __REG_SET_RELAXED(x, off, mask, shift, v, write_mask) \
40 vop_mask_write(x, off, mask, shift, v, write_mask, true)
41
42 #define __REG_SET_NORMAL(x, off, mask, shift, v, write_mask) \
43 vop_mask_write(x, off, mask, shift, v, write_mask, false)
44
45 #define REG_SET(x, base, reg, v, mode) \
46 __REG_SET_##mode(x, base + reg.offset, \
47 reg.mask, reg.shift, v, reg.write_mask)
48 #define REG_SET_MASK(x, base, reg, mask, v, mode) \
49 __REG_SET_##mode(x, base + reg.offset, \
50 mask, reg.shift, v, reg.write_mask)
51
52 #define VOP_WIN_SET(x, win, name, v) \
53 REG_SET(x, win->base, win->phy->name, v, RELAXED)
54 #define VOP_SCL_SET(x, win, name, v) \
55 REG_SET(x, win->base, win->phy->scl->name, v, RELAXED)
56 #define VOP_SCL_SET_EXT(x, win, name, v) \
57 REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED)
58 #define VOP_CTRL_SET(x, name, v) \
59 REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL)
60
61 #define VOP_INTR_GET(vop, name) \
62 vop_read_reg(vop, 0, &vop->data->ctrl->name)
63
64 #define VOP_INTR_SET(vop, name, mask, v) \
65 REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL)
66 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
67 do { \
68 int i, reg = 0, mask = 0; \
69 for (i = 0; i < vop->data->intr->nintrs; i++) { \
70 if (vop->data->intr->intrs[i] & type) { \
71 reg |= (v) << i; \
72 mask |= 1 << i; \
73 } \
74 } \
75 VOP_INTR_SET(vop, name, mask, reg); \
76 } while (0)
77 #define VOP_INTR_GET_TYPE(vop, name, type) \
78 vop_get_intr_type(vop, &vop->data->intr->name, type)
79
80 #define VOP_WIN_GET(x, win, name) \
81 vop_read_reg(x, win->base, &win->phy->name)
82
83 #define VOP_WIN_GET_YRGBADDR(vop, win) \
84 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
85
86 #define to_vop(x) container_of(x, struct vop, crtc)
87 #define to_vop_win(x) container_of(x, struct vop_win, base)
88 #define to_vop_plane_state(x) container_of(x, struct vop_plane_state, base)
89
90 struct vop_plane_state {
91 struct drm_plane_state base;
92 int format;
93 dma_addr_t yrgb_mst;
94 bool enable;
95 };
96
97 struct vop_win {
98 struct drm_plane base;
99 const struct vop_win_data *data;
100 struct vop *vop;
101
102 /* protected by dev->event_lock */
103 bool enable;
104 dma_addr_t yrgb_mst;
105 };
106
107 struct vop {
108 struct drm_crtc crtc;
109 struct device *dev;
110 struct drm_device *drm_dev;
111 bool is_enabled;
112
113 /* mutex vsync_ work */
114 struct mutex vsync_mutex;
115 bool vsync_work_pending;
116 struct completion dsp_hold_completion;
117 struct completion wait_update_complete;
118
119 /* protected by dev->event_lock */
120 struct drm_pending_vblank_event *event;
121
122 const struct vop_data *data;
123
124 uint32_t *regsbak;
125 void __iomem *regs;
126
127 /* physical map length of vop register */
128 uint32_t len;
129
130 /* one time only one process allowed to config the register */
131 spinlock_t reg_lock;
132 /* lock vop irq reg */
133 spinlock_t irq_lock;
134
135 unsigned int irq;
136
137 /* vop AHP clk */
138 struct clk *hclk;
139 /* vop dclk */
140 struct clk *dclk;
141 /* vop share memory frequency */
142 struct clk *aclk;
143
144 /* vop dclk reset */
145 struct reset_control *dclk_rst;
146
147 struct vop_win win[];
148 };
149
150 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
151 {
152 writel(v, vop->regs + offset);
153 vop->regsbak[offset >> 2] = v;
154 }
155
156 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
157 {
158 return readl(vop->regs + offset);
159 }
160
161 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
162 const struct vop_reg *reg)
163 {
164 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
165 }
166
167 static inline void vop_mask_write(struct vop *vop, uint32_t offset,
168 uint32_t mask, uint32_t shift, uint32_t v,
169 bool write_mask, bool relaxed)
170 {
171 if (!mask)
172 return;
173
174 if (write_mask) {
175 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
176 } else {
177 uint32_t cached_val = vop->regsbak[offset >> 2];
178
179 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
180 vop->regsbak[offset >> 2] = v;
181 }
182
183 if (relaxed)
184 writel_relaxed(v, vop->regs + offset);
185 else
186 writel(v, vop->regs + offset);
187 }
188
189 static inline uint32_t vop_get_intr_type(struct vop *vop,
190 const struct vop_reg *reg, int type)
191 {
192 uint32_t i, ret = 0;
193 uint32_t regs = vop_read_reg(vop, 0, reg);
194
195 for (i = 0; i < vop->data->intr->nintrs; i++) {
196 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
197 ret |= vop->data->intr->intrs[i];
198 }
199
200 return ret;
201 }
202
203 static inline void vop_cfg_done(struct vop *vop)
204 {
205 VOP_CTRL_SET(vop, cfg_done, 1);
206 }
207
208 static bool has_rb_swapped(uint32_t format)
209 {
210 switch (format) {
211 case DRM_FORMAT_XBGR8888:
212 case DRM_FORMAT_ABGR8888:
213 case DRM_FORMAT_BGR888:
214 case DRM_FORMAT_BGR565:
215 return true;
216 default:
217 return false;
218 }
219 }
220
221 static enum vop_data_format vop_convert_format(uint32_t format)
222 {
223 switch (format) {
224 case DRM_FORMAT_XRGB8888:
225 case DRM_FORMAT_ARGB8888:
226 case DRM_FORMAT_XBGR8888:
227 case DRM_FORMAT_ABGR8888:
228 return VOP_FMT_ARGB8888;
229 case DRM_FORMAT_RGB888:
230 case DRM_FORMAT_BGR888:
231 return VOP_FMT_RGB888;
232 case DRM_FORMAT_RGB565:
233 case DRM_FORMAT_BGR565:
234 return VOP_FMT_RGB565;
235 case DRM_FORMAT_NV12:
236 return VOP_FMT_YUV420SP;
237 case DRM_FORMAT_NV16:
238 return VOP_FMT_YUV422SP;
239 case DRM_FORMAT_NV24:
240 return VOP_FMT_YUV444SP;
241 default:
242 DRM_ERROR("unsupport format[%08x]\n", format);
243 return -EINVAL;
244 }
245 }
246
247 static bool is_yuv_support(uint32_t format)
248 {
249 switch (format) {
250 case DRM_FORMAT_NV12:
251 case DRM_FORMAT_NV16:
252 case DRM_FORMAT_NV24:
253 return true;
254 default:
255 return false;
256 }
257 }
258
259 static bool is_alpha_support(uint32_t format)
260 {
261 switch (format) {
262 case DRM_FORMAT_ARGB8888:
263 case DRM_FORMAT_ABGR8888:
264 return true;
265 default:
266 return false;
267 }
268 }
269
270 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
271 uint32_t dst, bool is_horizontal,
272 int vsu_mode, int *vskiplines)
273 {
274 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
275
276 if (is_horizontal) {
277 if (mode == SCALE_UP)
278 val = GET_SCL_FT_BIC(src, dst);
279 else if (mode == SCALE_DOWN)
280 val = GET_SCL_FT_BILI_DN(src, dst);
281 } else {
282 if (mode == SCALE_UP) {
283 if (vsu_mode == SCALE_UP_BIL)
284 val = GET_SCL_FT_BILI_UP(src, dst);
285 else
286 val = GET_SCL_FT_BIC(src, dst);
287 } else if (mode == SCALE_DOWN) {
288 if (vskiplines) {
289 *vskiplines = scl_get_vskiplines(src, dst);
290 val = scl_get_bili_dn_vskip(src, dst,
291 *vskiplines);
292 } else {
293 val = GET_SCL_FT_BILI_DN(src, dst);
294 }
295 }
296 }
297
298 return val;
299 }
300
301 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
302 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
303 uint32_t dst_h, uint32_t pixel_format)
304 {
305 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
306 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
307 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
308 int hsub = drm_format_horz_chroma_subsampling(pixel_format);
309 int vsub = drm_format_vert_chroma_subsampling(pixel_format);
310 bool is_yuv = is_yuv_support(pixel_format);
311 uint16_t cbcr_src_w = src_w / hsub;
312 uint16_t cbcr_src_h = src_h / vsub;
313 uint16_t vsu_mode;
314 uint16_t lb_mode;
315 uint32_t val;
316 int vskiplines = 0;
317
318 if (dst_w > 3840) {
319 DRM_ERROR("Maximum destination width (3840) exceeded\n");
320 return;
321 }
322
323 if (!win->phy->scl->ext) {
324 VOP_SCL_SET(vop, win, scale_yrgb_x,
325 scl_cal_scale2(src_w, dst_w));
326 VOP_SCL_SET(vop, win, scale_yrgb_y,
327 scl_cal_scale2(src_h, dst_h));
328 if (is_yuv) {
329 VOP_SCL_SET(vop, win, scale_cbcr_x,
330 scl_cal_scale2(cbcr_src_w, dst_w));
331 VOP_SCL_SET(vop, win, scale_cbcr_y,
332 scl_cal_scale2(cbcr_src_h, dst_h));
333 }
334 return;
335 }
336
337 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
338 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
339
340 if (is_yuv) {
341 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
342 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
343 if (cbcr_hor_scl_mode == SCALE_DOWN)
344 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
345 else
346 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
347 } else {
348 if (yrgb_hor_scl_mode == SCALE_DOWN)
349 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
350 else
351 lb_mode = scl_vop_cal_lb_mode(src_w, false);
352 }
353
354 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
355 if (lb_mode == LB_RGB_3840X2) {
356 if (yrgb_ver_scl_mode != SCALE_NONE) {
357 DRM_ERROR("ERROR : not allow yrgb ver scale\n");
358 return;
359 }
360 if (cbcr_ver_scl_mode != SCALE_NONE) {
361 DRM_ERROR("ERROR : not allow cbcr ver scale\n");
362 return;
363 }
364 vsu_mode = SCALE_UP_BIL;
365 } else if (lb_mode == LB_RGB_2560X4) {
366 vsu_mode = SCALE_UP_BIL;
367 } else {
368 vsu_mode = SCALE_UP_BIC;
369 }
370
371 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
372 true, 0, NULL);
373 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
374 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
375 false, vsu_mode, &vskiplines);
376 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
377
378 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
379 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
380
381 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
382 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
383 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
384 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
385 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
386 if (is_yuv) {
387 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
388 dst_w, true, 0, NULL);
389 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
390 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
391 dst_h, false, vsu_mode, &vskiplines);
392 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
393
394 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
395 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
396 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
397 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
398 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
399 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
400 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
401 }
402 }
403
404 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
405 {
406 unsigned long flags;
407
408 if (WARN_ON(!vop->is_enabled))
409 return;
410
411 spin_lock_irqsave(&vop->irq_lock, flags);
412
413 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
414
415 spin_unlock_irqrestore(&vop->irq_lock, flags);
416 }
417
418 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
419 {
420 unsigned long flags;
421
422 if (WARN_ON(!vop->is_enabled))
423 return;
424
425 spin_lock_irqsave(&vop->irq_lock, flags);
426
427 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
428
429 spin_unlock_irqrestore(&vop->irq_lock, flags);
430 }
431
432 static void vop_enable(struct drm_crtc *crtc)
433 {
434 struct vop *vop = to_vop(crtc);
435 int ret;
436
437 ret = pm_runtime_get_sync(vop->dev);
438 if (ret < 0) {
439 dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
440 return;
441 }
442
443 ret = clk_enable(vop->hclk);
444 if (ret < 0) {
445 dev_err(vop->dev, "failed to enable hclk - %d\n", ret);
446 return;
447 }
448
449 ret = clk_enable(vop->dclk);
450 if (ret < 0) {
451 dev_err(vop->dev, "failed to enable dclk - %d\n", ret);
452 goto err_disable_hclk;
453 }
454
455 ret = clk_enable(vop->aclk);
456 if (ret < 0) {
457 dev_err(vop->dev, "failed to enable aclk - %d\n", ret);
458 goto err_disable_dclk;
459 }
460
461 /*
462 * Slave iommu shares power, irq and clock with vop. It was associated
463 * automatically with this master device via common driver code.
464 * Now that we have enabled the clock we attach it to the shared drm
465 * mapping.
466 */
467 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
468 if (ret) {
469 dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret);
470 goto err_disable_aclk;
471 }
472
473 memcpy(vop->regs, vop->regsbak, vop->len);
474 /*
475 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
476 */
477 vop->is_enabled = true;
478
479 spin_lock(&vop->reg_lock);
480
481 VOP_CTRL_SET(vop, standby, 0);
482
483 spin_unlock(&vop->reg_lock);
484
485 enable_irq(vop->irq);
486
487 drm_crtc_vblank_on(crtc);
488
489 return;
490
491 err_disable_aclk:
492 clk_disable(vop->aclk);
493 err_disable_dclk:
494 clk_disable(vop->dclk);
495 err_disable_hclk:
496 clk_disable(vop->hclk);
497 }
498
499 static void vop_crtc_disable(struct drm_crtc *crtc)
500 {
501 struct vop *vop = to_vop(crtc);
502 int i;
503
504 WARN_ON(vop->event);
505
506 /*
507 * We need to make sure that all windows are disabled before we
508 * disable that crtc. Otherwise we might try to scan from a destroyed
509 * buffer later.
510 */
511 for (i = 0; i < vop->data->win_size; i++) {
512 struct vop_win *vop_win = &vop->win[i];
513 const struct vop_win_data *win = vop_win->data;
514
515 spin_lock(&vop->reg_lock);
516 VOP_WIN_SET(vop, win, enable, 0);
517 spin_unlock(&vop->reg_lock);
518 }
519
520 drm_crtc_vblank_off(crtc);
521
522 /*
523 * Vop standby will take effect at end of current frame,
524 * if dsp hold valid irq happen, it means standby complete.
525 *
526 * we must wait standby complete when we want to disable aclk,
527 * if not, memory bus maybe dead.
528 */
529 reinit_completion(&vop->dsp_hold_completion);
530 vop_dsp_hold_valid_irq_enable(vop);
531
532 spin_lock(&vop->reg_lock);
533
534 VOP_CTRL_SET(vop, standby, 1);
535
536 spin_unlock(&vop->reg_lock);
537
538 wait_for_completion(&vop->dsp_hold_completion);
539
540 vop_dsp_hold_valid_irq_disable(vop);
541
542 disable_irq(vop->irq);
543
544 vop->is_enabled = false;
545
546 /*
547 * vop standby complete, so iommu detach is safe.
548 */
549 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
550
551 clk_disable(vop->dclk);
552 clk_disable(vop->aclk);
553 clk_disable(vop->hclk);
554 pm_runtime_put(vop->dev);
555
556 if (crtc->state->event && !crtc->state->active) {
557 spin_lock_irq(&crtc->dev->event_lock);
558 drm_crtc_send_vblank_event(crtc, crtc->state->event);
559 spin_unlock_irq(&crtc->dev->event_lock);
560
561 crtc->state->event = NULL;
562 }
563 }
564
565 static void vop_plane_destroy(struct drm_plane *plane)
566 {
567 drm_plane_cleanup(plane);
568 }
569
570 static int vop_plane_prepare_fb(struct drm_plane *plane,
571 const struct drm_plane_state *new_state)
572 {
573 if (plane->state->fb)
574 drm_framebuffer_reference(plane->state->fb);
575
576 return 0;
577 }
578
579 static void vop_plane_cleanup_fb(struct drm_plane *plane,
580 const struct drm_plane_state *old_state)
581 {
582 if (old_state->fb)
583 drm_framebuffer_unreference(old_state->fb);
584 }
585
586 static int vop_plane_atomic_check(struct drm_plane *plane,
587 struct drm_plane_state *state)
588 {
589 struct drm_crtc *crtc = state->crtc;
590 struct drm_crtc_state *crtc_state;
591 struct drm_framebuffer *fb = state->fb;
592 struct vop_win *vop_win = to_vop_win(plane);
593 struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
594 const struct vop_win_data *win = vop_win->data;
595 int ret;
596 struct drm_rect clip;
597 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
598 DRM_PLANE_HELPER_NO_SCALING;
599 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
600 DRM_PLANE_HELPER_NO_SCALING;
601
602 if (!crtc || !fb)
603 goto out_disable;
604
605 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
606 if (WARN_ON(!crtc_state))
607 return -EINVAL;
608
609 clip.x1 = 0;
610 clip.y1 = 0;
611 clip.x2 = crtc_state->adjusted_mode.hdisplay;
612 clip.y2 = crtc_state->adjusted_mode.vdisplay;
613
614 ret = drm_plane_helper_check_state(state, &clip,
615 min_scale, max_scale,
616 true, true);
617 if (ret)
618 return ret;
619
620 if (!state->visible)
621 goto out_disable;
622
623 vop_plane_state->format = vop_convert_format(fb->pixel_format);
624 if (vop_plane_state->format < 0)
625 return vop_plane_state->format;
626
627 /*
628 * Src.x1 can be odd when do clip, but yuv plane start point
629 * need align with 2 pixel.
630 */
631 if (is_yuv_support(fb->pixel_format) && ((state->src.x1 >> 16) % 2))
632 return -EINVAL;
633
634 vop_plane_state->enable = true;
635
636 return 0;
637
638 out_disable:
639 vop_plane_state->enable = false;
640 return 0;
641 }
642
643 static void vop_plane_atomic_disable(struct drm_plane *plane,
644 struct drm_plane_state *old_state)
645 {
646 struct vop_plane_state *vop_plane_state = to_vop_plane_state(old_state);
647 struct vop_win *vop_win = to_vop_win(plane);
648 const struct vop_win_data *win = vop_win->data;
649 struct vop *vop = to_vop(old_state->crtc);
650
651 if (!old_state->crtc)
652 return;
653
654 spin_lock_irq(&plane->dev->event_lock);
655 vop_win->enable = false;
656 vop_win->yrgb_mst = 0;
657 spin_unlock_irq(&plane->dev->event_lock);
658
659 spin_lock(&vop->reg_lock);
660
661 VOP_WIN_SET(vop, win, enable, 0);
662
663 spin_unlock(&vop->reg_lock);
664
665 vop_plane_state->enable = false;
666 }
667
668 static void vop_plane_atomic_update(struct drm_plane *plane,
669 struct drm_plane_state *old_state)
670 {
671 struct drm_plane_state *state = plane->state;
672 struct drm_crtc *crtc = state->crtc;
673 struct vop_win *vop_win = to_vop_win(plane);
674 struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
675 const struct vop_win_data *win = vop_win->data;
676 struct vop *vop = to_vop(state->crtc);
677 struct drm_framebuffer *fb = state->fb;
678 unsigned int actual_w, actual_h;
679 unsigned int dsp_stx, dsp_sty;
680 uint32_t act_info, dsp_info, dsp_st;
681 struct drm_rect *src = &state->src;
682 struct drm_rect *dest = &state->dst;
683 struct drm_gem_object *obj, *uv_obj;
684 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
685 unsigned long offset;
686 dma_addr_t dma_addr;
687 uint32_t val;
688 bool rb_swap;
689
690 /*
691 * can't update plane when vop is disabled.
692 */
693 if (WARN_ON(!crtc))
694 return;
695
696 if (WARN_ON(!vop->is_enabled))
697 return;
698
699 if (!vop_plane_state->enable) {
700 vop_plane_atomic_disable(plane, old_state);
701 return;
702 }
703
704 obj = rockchip_fb_get_gem_obj(fb, 0);
705 rk_obj = to_rockchip_obj(obj);
706
707 actual_w = drm_rect_width(src) >> 16;
708 actual_h = drm_rect_height(src) >> 16;
709 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
710
711 dsp_info = (drm_rect_height(dest) - 1) << 16;
712 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
713
714 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
715 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
716 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
717
718 offset = (src->x1 >> 16) * drm_format_plane_cpp(fb->pixel_format, 0);
719 offset += (src->y1 >> 16) * fb->pitches[0];
720 vop_plane_state->yrgb_mst = rk_obj->dma_addr + offset + fb->offsets[0];
721
722 spin_lock_irq(&plane->dev->event_lock);
723 vop_win->enable = true;
724 vop_win->yrgb_mst = vop_plane_state->yrgb_mst;
725 spin_unlock_irq(&plane->dev->event_lock);
726
727 spin_lock(&vop->reg_lock);
728
729 VOP_WIN_SET(vop, win, format, vop_plane_state->format);
730 VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2);
731 VOP_WIN_SET(vop, win, yrgb_mst, vop_plane_state->yrgb_mst);
732 if (is_yuv_support(fb->pixel_format)) {
733 int hsub = drm_format_horz_chroma_subsampling(fb->pixel_format);
734 int vsub = drm_format_vert_chroma_subsampling(fb->pixel_format);
735 int bpp = drm_format_plane_cpp(fb->pixel_format, 1);
736
737 uv_obj = rockchip_fb_get_gem_obj(fb, 1);
738 rk_uv_obj = to_rockchip_obj(uv_obj);
739
740 offset = (src->x1 >> 16) * bpp / hsub;
741 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
742
743 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
744 VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2);
745 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
746 }
747
748 if (win->phy->scl)
749 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
750 drm_rect_width(dest), drm_rect_height(dest),
751 fb->pixel_format);
752
753 VOP_WIN_SET(vop, win, act_info, act_info);
754 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
755 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
756
757 rb_swap = has_rb_swapped(fb->pixel_format);
758 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
759
760 if (is_alpha_support(fb->pixel_format)) {
761 VOP_WIN_SET(vop, win, dst_alpha_ctl,
762 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
763 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
764 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
765 SRC_BLEND_M0(ALPHA_PER_PIX) |
766 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
767 SRC_FACTOR_M0(ALPHA_ONE);
768 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
769 } else {
770 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
771 }
772
773 VOP_WIN_SET(vop, win, enable, 1);
774 spin_unlock(&vop->reg_lock);
775 }
776
777 static const struct drm_plane_helper_funcs plane_helper_funcs = {
778 .prepare_fb = vop_plane_prepare_fb,
779 .cleanup_fb = vop_plane_cleanup_fb,
780 .atomic_check = vop_plane_atomic_check,
781 .atomic_update = vop_plane_atomic_update,
782 .atomic_disable = vop_plane_atomic_disable,
783 };
784
785 static void vop_atomic_plane_reset(struct drm_plane *plane)
786 {
787 struct vop_plane_state *vop_plane_state =
788 to_vop_plane_state(plane->state);
789
790 if (plane->state && plane->state->fb)
791 drm_framebuffer_unreference(plane->state->fb);
792
793 kfree(vop_plane_state);
794 vop_plane_state = kzalloc(sizeof(*vop_plane_state), GFP_KERNEL);
795 if (!vop_plane_state)
796 return;
797
798 plane->state = &vop_plane_state->base;
799 plane->state->plane = plane;
800 }
801
802 static struct drm_plane_state *
803 vop_atomic_plane_duplicate_state(struct drm_plane *plane)
804 {
805 struct vop_plane_state *old_vop_plane_state;
806 struct vop_plane_state *vop_plane_state;
807
808 if (WARN_ON(!plane->state))
809 return NULL;
810
811 old_vop_plane_state = to_vop_plane_state(plane->state);
812 vop_plane_state = kmemdup(old_vop_plane_state,
813 sizeof(*vop_plane_state), GFP_KERNEL);
814 if (!vop_plane_state)
815 return NULL;
816
817 __drm_atomic_helper_plane_duplicate_state(plane,
818 &vop_plane_state->base);
819
820 return &vop_plane_state->base;
821 }
822
823 static void vop_atomic_plane_destroy_state(struct drm_plane *plane,
824 struct drm_plane_state *state)
825 {
826 struct vop_plane_state *vop_state = to_vop_plane_state(state);
827
828 __drm_atomic_helper_plane_destroy_state(state);
829
830 kfree(vop_state);
831 }
832
833 static const struct drm_plane_funcs vop_plane_funcs = {
834 .update_plane = drm_atomic_helper_update_plane,
835 .disable_plane = drm_atomic_helper_disable_plane,
836 .destroy = vop_plane_destroy,
837 .reset = vop_atomic_plane_reset,
838 .atomic_duplicate_state = vop_atomic_plane_duplicate_state,
839 .atomic_destroy_state = vop_atomic_plane_destroy_state,
840 };
841
842 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
843 {
844 struct vop *vop = to_vop(crtc);
845 unsigned long flags;
846
847 if (WARN_ON(!vop->is_enabled))
848 return -EPERM;
849
850 spin_lock_irqsave(&vop->irq_lock, flags);
851
852 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
853
854 spin_unlock_irqrestore(&vop->irq_lock, flags);
855
856 return 0;
857 }
858
859 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
860 {
861 struct vop *vop = to_vop(crtc);
862 unsigned long flags;
863
864 if (WARN_ON(!vop->is_enabled))
865 return;
866
867 spin_lock_irqsave(&vop->irq_lock, flags);
868
869 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
870
871 spin_unlock_irqrestore(&vop->irq_lock, flags);
872 }
873
874 static void vop_crtc_wait_for_update(struct drm_crtc *crtc)
875 {
876 struct vop *vop = to_vop(crtc);
877
878 reinit_completion(&vop->wait_update_complete);
879 WARN_ON(!wait_for_completion_timeout(&vop->wait_update_complete, 100));
880 }
881
882 static const struct rockchip_crtc_funcs private_crtc_funcs = {
883 .enable_vblank = vop_crtc_enable_vblank,
884 .disable_vblank = vop_crtc_disable_vblank,
885 .wait_for_update = vop_crtc_wait_for_update,
886 };
887
888 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
889 const struct drm_display_mode *mode,
890 struct drm_display_mode *adjusted_mode)
891 {
892 struct vop *vop = to_vop(crtc);
893
894 adjusted_mode->clock =
895 clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
896
897 return true;
898 }
899
900 static void vop_crtc_enable(struct drm_crtc *crtc)
901 {
902 struct vop *vop = to_vop(crtc);
903 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
904 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
905 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
906 u16 hdisplay = adjusted_mode->hdisplay;
907 u16 htotal = adjusted_mode->htotal;
908 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
909 u16 hact_end = hact_st + hdisplay;
910 u16 vdisplay = adjusted_mode->vdisplay;
911 u16 vtotal = adjusted_mode->vtotal;
912 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
913 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
914 u16 vact_end = vact_st + vdisplay;
915 uint32_t pin_pol, val;
916
917 WARN_ON(vop->event);
918
919 vop_enable(crtc);
920 /*
921 * If dclk rate is zero, mean that scanout is stop,
922 * we don't need wait any more.
923 */
924 if (clk_get_rate(vop->dclk)) {
925 /*
926 * Rk3288 vop timing register is immediately, when configure
927 * display timing on display time, may cause tearing.
928 *
929 * Vop standby will take effect at end of current frame,
930 * if dsp hold valid irq happen, it means standby complete.
931 *
932 * mode set:
933 * standby and wait complete --> |----
934 * | display time
935 * |----
936 * |---> dsp hold irq
937 * configure display timing --> |
938 * standby exit |
939 * | new frame start.
940 */
941
942 reinit_completion(&vop->dsp_hold_completion);
943 vop_dsp_hold_valid_irq_enable(vop);
944
945 spin_lock(&vop->reg_lock);
946
947 VOP_CTRL_SET(vop, standby, 1);
948
949 spin_unlock(&vop->reg_lock);
950
951 wait_for_completion(&vop->dsp_hold_completion);
952
953 vop_dsp_hold_valid_irq_disable(vop);
954 }
955
956 pin_pol = 0x8;
957 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) ? 0 : 1;
958 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) ? 0 : (1 << 1);
959 VOP_CTRL_SET(vop, pin_pol, pin_pol);
960
961 switch (s->output_type) {
962 case DRM_MODE_CONNECTOR_LVDS:
963 VOP_CTRL_SET(vop, rgb_en, 1);
964 VOP_CTRL_SET(vop, rgb_pin_pol, pin_pol);
965 break;
966 case DRM_MODE_CONNECTOR_eDP:
967 VOP_CTRL_SET(vop, edp_pin_pol, pin_pol);
968 VOP_CTRL_SET(vop, edp_en, 1);
969 break;
970 case DRM_MODE_CONNECTOR_HDMIA:
971 VOP_CTRL_SET(vop, hdmi_pin_pol, pin_pol);
972 VOP_CTRL_SET(vop, hdmi_en, 1);
973 break;
974 case DRM_MODE_CONNECTOR_DSI:
975 VOP_CTRL_SET(vop, mipi_pin_pol, pin_pol);
976 VOP_CTRL_SET(vop, mipi_en, 1);
977 break;
978 default:
979 DRM_ERROR("unsupport connector_type[%d]\n", s->output_type);
980 }
981 VOP_CTRL_SET(vop, out_mode, s->output_mode);
982
983 VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len);
984 val = hact_st << 16;
985 val |= hact_end;
986 VOP_CTRL_SET(vop, hact_st_end, val);
987 VOP_CTRL_SET(vop, hpost_st_end, val);
988
989 VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len);
990 val = vact_st << 16;
991 val |= vact_end;
992 VOP_CTRL_SET(vop, vact_st_end, val);
993 VOP_CTRL_SET(vop, vpost_st_end, val);
994
995 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
996
997 VOP_CTRL_SET(vop, standby, 0);
998 }
999
1000 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1001 struct drm_crtc_state *old_crtc_state)
1002 {
1003 struct vop *vop = to_vop(crtc);
1004
1005 if (WARN_ON(!vop->is_enabled))
1006 return;
1007
1008 spin_lock(&vop->reg_lock);
1009
1010 vop_cfg_done(vop);
1011
1012 spin_unlock(&vop->reg_lock);
1013 }
1014
1015 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1016 struct drm_crtc_state *old_crtc_state)
1017 {
1018 struct vop *vop = to_vop(crtc);
1019
1020 spin_lock_irq(&crtc->dev->event_lock);
1021 if (crtc->state->event) {
1022 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1023 WARN_ON(vop->event);
1024
1025 vop->event = crtc->state->event;
1026 crtc->state->event = NULL;
1027 }
1028 spin_unlock_irq(&crtc->dev->event_lock);
1029 }
1030
1031 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1032 .enable = vop_crtc_enable,
1033 .disable = vop_crtc_disable,
1034 .mode_fixup = vop_crtc_mode_fixup,
1035 .atomic_flush = vop_crtc_atomic_flush,
1036 .atomic_begin = vop_crtc_atomic_begin,
1037 };
1038
1039 static void vop_crtc_destroy(struct drm_crtc *crtc)
1040 {
1041 drm_crtc_cleanup(crtc);
1042 }
1043
1044 static void vop_crtc_reset(struct drm_crtc *crtc)
1045 {
1046 if (crtc->state)
1047 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1048 kfree(crtc->state);
1049
1050 crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL);
1051 if (crtc->state)
1052 crtc->state->crtc = crtc;
1053 }
1054
1055 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1056 {
1057 struct rockchip_crtc_state *rockchip_state;
1058
1059 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1060 if (!rockchip_state)
1061 return NULL;
1062
1063 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1064 return &rockchip_state->base;
1065 }
1066
1067 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1068 struct drm_crtc_state *state)
1069 {
1070 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1071
1072 __drm_atomic_helper_crtc_destroy_state(&s->base);
1073 kfree(s);
1074 }
1075
1076 static const struct drm_crtc_funcs vop_crtc_funcs = {
1077 .set_config = drm_atomic_helper_set_config,
1078 .page_flip = drm_atomic_helper_page_flip,
1079 .destroy = vop_crtc_destroy,
1080 .reset = vop_crtc_reset,
1081 .atomic_duplicate_state = vop_crtc_duplicate_state,
1082 .atomic_destroy_state = vop_crtc_destroy_state,
1083 };
1084
1085 static bool vop_win_pending_is_complete(struct vop_win *vop_win)
1086 {
1087 dma_addr_t yrgb_mst;
1088
1089 if (!vop_win->enable)
1090 return VOP_WIN_GET(vop_win->vop, vop_win->data, enable) == 0;
1091
1092 yrgb_mst = VOP_WIN_GET_YRGBADDR(vop_win->vop, vop_win->data);
1093
1094 return yrgb_mst == vop_win->yrgb_mst;
1095 }
1096
1097 static void vop_handle_vblank(struct vop *vop)
1098 {
1099 struct drm_device *drm = vop->drm_dev;
1100 struct drm_crtc *crtc = &vop->crtc;
1101 unsigned long flags;
1102 int i;
1103
1104 for (i = 0; i < vop->data->win_size; i++) {
1105 if (!vop_win_pending_is_complete(&vop->win[i]))
1106 return;
1107 }
1108
1109 spin_lock_irqsave(&drm->event_lock, flags);
1110 if (vop->event) {
1111
1112 drm_crtc_send_vblank_event(crtc, vop->event);
1113 drm_crtc_vblank_put(crtc);
1114 vop->event = NULL;
1115
1116 }
1117 spin_unlock_irqrestore(&drm->event_lock, flags);
1118
1119 if (!completion_done(&vop->wait_update_complete))
1120 complete(&vop->wait_update_complete);
1121 }
1122
1123 static irqreturn_t vop_isr(int irq, void *data)
1124 {
1125 struct vop *vop = data;
1126 struct drm_crtc *crtc = &vop->crtc;
1127 uint32_t active_irqs;
1128 unsigned long flags;
1129 int ret = IRQ_NONE;
1130
1131 /*
1132 * interrupt register has interrupt status, enable and clear bits, we
1133 * must hold irq_lock to avoid a race with enable/disable_vblank().
1134 */
1135 spin_lock_irqsave(&vop->irq_lock, flags);
1136
1137 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1138 /* Clear all active interrupt sources */
1139 if (active_irqs)
1140 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1141
1142 spin_unlock_irqrestore(&vop->irq_lock, flags);
1143
1144 /* This is expected for vop iommu irqs, since the irq is shared */
1145 if (!active_irqs)
1146 return IRQ_NONE;
1147
1148 if (active_irqs & DSP_HOLD_VALID_INTR) {
1149 complete(&vop->dsp_hold_completion);
1150 active_irqs &= ~DSP_HOLD_VALID_INTR;
1151 ret = IRQ_HANDLED;
1152 }
1153
1154 if (active_irqs & FS_INTR) {
1155 drm_crtc_handle_vblank(crtc);
1156 vop_handle_vblank(vop);
1157 active_irqs &= ~FS_INTR;
1158 ret = IRQ_HANDLED;
1159 }
1160
1161 /* Unhandled irqs are spurious. */
1162 if (active_irqs)
1163 DRM_ERROR("Unknown VOP IRQs: %#02x\n", active_irqs);
1164
1165 return ret;
1166 }
1167
1168 static int vop_create_crtc(struct vop *vop)
1169 {
1170 const struct vop_data *vop_data = vop->data;
1171 struct device *dev = vop->dev;
1172 struct drm_device *drm_dev = vop->drm_dev;
1173 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1174 struct drm_crtc *crtc = &vop->crtc;
1175 struct device_node *port;
1176 int ret;
1177 int i;
1178
1179 /*
1180 * Create drm_plane for primary and cursor planes first, since we need
1181 * to pass them to drm_crtc_init_with_planes, which sets the
1182 * "possible_crtcs" to the newly initialized crtc.
1183 */
1184 for (i = 0; i < vop_data->win_size; i++) {
1185 struct vop_win *vop_win = &vop->win[i];
1186 const struct vop_win_data *win_data = vop_win->data;
1187
1188 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1189 win_data->type != DRM_PLANE_TYPE_CURSOR)
1190 continue;
1191
1192 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1193 0, &vop_plane_funcs,
1194 win_data->phy->data_formats,
1195 win_data->phy->nformats,
1196 win_data->type, NULL);
1197 if (ret) {
1198 DRM_ERROR("failed to initialize plane\n");
1199 goto err_cleanup_planes;
1200 }
1201
1202 plane = &vop_win->base;
1203 drm_plane_helper_add(plane, &plane_helper_funcs);
1204 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1205 primary = plane;
1206 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1207 cursor = plane;
1208 }
1209
1210 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1211 &vop_crtc_funcs, NULL);
1212 if (ret)
1213 goto err_cleanup_planes;
1214
1215 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1216
1217 /*
1218 * Create drm_planes for overlay windows with possible_crtcs restricted
1219 * to the newly created crtc.
1220 */
1221 for (i = 0; i < vop_data->win_size; i++) {
1222 struct vop_win *vop_win = &vop->win[i];
1223 const struct vop_win_data *win_data = vop_win->data;
1224 unsigned long possible_crtcs = 1 << drm_crtc_index(crtc);
1225
1226 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1227 continue;
1228
1229 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1230 possible_crtcs,
1231 &vop_plane_funcs,
1232 win_data->phy->data_formats,
1233 win_data->phy->nformats,
1234 win_data->type, NULL);
1235 if (ret) {
1236 DRM_ERROR("failed to initialize overlay plane\n");
1237 goto err_cleanup_crtc;
1238 }
1239 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1240 }
1241
1242 port = of_get_child_by_name(dev->of_node, "port");
1243 if (!port) {
1244 DRM_ERROR("no port node found in %s\n",
1245 dev->of_node->full_name);
1246 ret = -ENOENT;
1247 goto err_cleanup_crtc;
1248 }
1249
1250 init_completion(&vop->dsp_hold_completion);
1251 init_completion(&vop->wait_update_complete);
1252 crtc->port = port;
1253 rockchip_register_crtc_funcs(crtc, &private_crtc_funcs);
1254
1255 return 0;
1256
1257 err_cleanup_crtc:
1258 drm_crtc_cleanup(crtc);
1259 err_cleanup_planes:
1260 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1261 head)
1262 drm_plane_cleanup(plane);
1263 return ret;
1264 }
1265
1266 static void vop_destroy_crtc(struct vop *vop)
1267 {
1268 struct drm_crtc *crtc = &vop->crtc;
1269 struct drm_device *drm_dev = vop->drm_dev;
1270 struct drm_plane *plane, *tmp;
1271
1272 rockchip_unregister_crtc_funcs(crtc);
1273 of_node_put(crtc->port);
1274
1275 /*
1276 * We need to cleanup the planes now. Why?
1277 *
1278 * The planes are "&vop->win[i].base". That means the memory is
1279 * all part of the big "struct vop" chunk of memory. That memory
1280 * was devm allocated and associated with this component. We need to
1281 * free it ourselves before vop_unbind() finishes.
1282 */
1283 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1284 head)
1285 vop_plane_destroy(plane);
1286
1287 /*
1288 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1289 * references the CRTC.
1290 */
1291 drm_crtc_cleanup(crtc);
1292 }
1293
1294 static int vop_initial(struct vop *vop)
1295 {
1296 const struct vop_data *vop_data = vop->data;
1297 const struct vop_reg_data *init_table = vop_data->init_table;
1298 struct reset_control *ahb_rst;
1299 int i, ret;
1300
1301 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1302 if (IS_ERR(vop->hclk)) {
1303 dev_err(vop->dev, "failed to get hclk source\n");
1304 return PTR_ERR(vop->hclk);
1305 }
1306 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1307 if (IS_ERR(vop->aclk)) {
1308 dev_err(vop->dev, "failed to get aclk source\n");
1309 return PTR_ERR(vop->aclk);
1310 }
1311 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1312 if (IS_ERR(vop->dclk)) {
1313 dev_err(vop->dev, "failed to get dclk source\n");
1314 return PTR_ERR(vop->dclk);
1315 }
1316
1317 ret = clk_prepare(vop->dclk);
1318 if (ret < 0) {
1319 dev_err(vop->dev, "failed to prepare dclk\n");
1320 return ret;
1321 }
1322
1323 /* Enable both the hclk and aclk to setup the vop */
1324 ret = clk_prepare_enable(vop->hclk);
1325 if (ret < 0) {
1326 dev_err(vop->dev, "failed to prepare/enable hclk\n");
1327 goto err_unprepare_dclk;
1328 }
1329
1330 ret = clk_prepare_enable(vop->aclk);
1331 if (ret < 0) {
1332 dev_err(vop->dev, "failed to prepare/enable aclk\n");
1333 goto err_disable_hclk;
1334 }
1335
1336 /*
1337 * do hclk_reset, reset all vop registers.
1338 */
1339 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1340 if (IS_ERR(ahb_rst)) {
1341 dev_err(vop->dev, "failed to get ahb reset\n");
1342 ret = PTR_ERR(ahb_rst);
1343 goto err_disable_aclk;
1344 }
1345 reset_control_assert(ahb_rst);
1346 usleep_range(10, 20);
1347 reset_control_deassert(ahb_rst);
1348
1349 memcpy(vop->regsbak, vop->regs, vop->len);
1350
1351 for (i = 0; i < vop_data->table_size; i++)
1352 vop_writel(vop, init_table[i].offset, init_table[i].value);
1353
1354 for (i = 0; i < vop_data->win_size; i++) {
1355 const struct vop_win_data *win = &vop_data->win[i];
1356
1357 VOP_WIN_SET(vop, win, enable, 0);
1358 }
1359
1360 vop_cfg_done(vop);
1361
1362 /*
1363 * do dclk_reset, let all config take affect.
1364 */
1365 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1366 if (IS_ERR(vop->dclk_rst)) {
1367 dev_err(vop->dev, "failed to get dclk reset\n");
1368 ret = PTR_ERR(vop->dclk_rst);
1369 goto err_disable_aclk;
1370 }
1371 reset_control_assert(vop->dclk_rst);
1372 usleep_range(10, 20);
1373 reset_control_deassert(vop->dclk_rst);
1374
1375 clk_disable(vop->hclk);
1376 clk_disable(vop->aclk);
1377
1378 vop->is_enabled = false;
1379
1380 return 0;
1381
1382 err_disable_aclk:
1383 clk_disable_unprepare(vop->aclk);
1384 err_disable_hclk:
1385 clk_disable_unprepare(vop->hclk);
1386 err_unprepare_dclk:
1387 clk_unprepare(vop->dclk);
1388 return ret;
1389 }
1390
1391 /*
1392 * Initialize the vop->win array elements.
1393 */
1394 static void vop_win_init(struct vop *vop)
1395 {
1396 const struct vop_data *vop_data = vop->data;
1397 unsigned int i;
1398
1399 for (i = 0; i < vop_data->win_size; i++) {
1400 struct vop_win *vop_win = &vop->win[i];
1401 const struct vop_win_data *win_data = &vop_data->win[i];
1402
1403 vop_win->data = win_data;
1404 vop_win->vop = vop;
1405 }
1406 }
1407
1408 static int vop_bind(struct device *dev, struct device *master, void *data)
1409 {
1410 struct platform_device *pdev = to_platform_device(dev);
1411 const struct vop_data *vop_data;
1412 struct drm_device *drm_dev = data;
1413 struct vop *vop;
1414 struct resource *res;
1415 size_t alloc_size;
1416 int ret, irq;
1417
1418 vop_data = of_device_get_match_data(dev);
1419 if (!vop_data)
1420 return -ENODEV;
1421
1422 /* Allocate vop struct and its vop_win array */
1423 alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size;
1424 vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
1425 if (!vop)
1426 return -ENOMEM;
1427
1428 vop->dev = dev;
1429 vop->data = vop_data;
1430 vop->drm_dev = drm_dev;
1431 dev_set_drvdata(dev, vop);
1432
1433 vop_win_init(vop);
1434
1435 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1436 vop->len = resource_size(res);
1437 vop->regs = devm_ioremap_resource(dev, res);
1438 if (IS_ERR(vop->regs))
1439 return PTR_ERR(vop->regs);
1440
1441 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1442 if (!vop->regsbak)
1443 return -ENOMEM;
1444
1445 ret = vop_initial(vop);
1446 if (ret < 0) {
1447 dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret);
1448 return ret;
1449 }
1450
1451 irq = platform_get_irq(pdev, 0);
1452 if (irq < 0) {
1453 dev_err(dev, "cannot find irq for vop\n");
1454 return irq;
1455 }
1456 vop->irq = (unsigned int)irq;
1457
1458 spin_lock_init(&vop->reg_lock);
1459 spin_lock_init(&vop->irq_lock);
1460
1461 mutex_init(&vop->vsync_mutex);
1462
1463 ret = devm_request_irq(dev, vop->irq, vop_isr,
1464 IRQF_SHARED, dev_name(dev), vop);
1465 if (ret)
1466 return ret;
1467
1468 /* IRQ is initially disabled; it gets enabled in power_on */
1469 disable_irq(vop->irq);
1470
1471 ret = vop_create_crtc(vop);
1472 if (ret)
1473 return ret;
1474
1475 pm_runtime_enable(&pdev->dev);
1476 return 0;
1477 }
1478
1479 static void vop_unbind(struct device *dev, struct device *master, void *data)
1480 {
1481 struct vop *vop = dev_get_drvdata(dev);
1482
1483 pm_runtime_disable(dev);
1484 vop_destroy_crtc(vop);
1485 }
1486
1487 const struct component_ops vop_component_ops = {
1488 .bind = vop_bind,
1489 .unbind = vop_unbind,
1490 };
1491 EXPORT_SYMBOL_GPL(vop_component_ops);