]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/tegra/dc.c
Merge drm/drm-next into drm-misc-next
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 struct drm_crtc_state *state);
33
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 stats->frames = 0;
37 stats->vblank = 0;
38 stats->underflow = 0;
39 stats->overflow = 0;
40 }
41
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 u32 value;
46
47 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 value = tegra_dc_readl(dc, offset);
49 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51 return value;
52 }
53
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 unsigned int offset)
56 {
57 if (offset >= 0x500 && offset <= 0x638) {
58 offset = 0x000 + (offset - 0x500);
59 return plane->offset + offset;
60 }
61
62 if (offset >= 0x700 && offset <= 0x719) {
63 offset = 0x180 + (offset - 0x700);
64 return plane->offset + offset;
65 }
66
67 if (offset >= 0x800 && offset <= 0x839) {
68 offset = 0x1c0 + (offset - 0x800);
69 return plane->offset + offset;
70 }
71
72 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74 return plane->offset + offset;
75 }
76
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 unsigned int offset)
79 {
80 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 unsigned int offset)
85 {
86 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 struct device_node *np = dc->dev->of_node;
92 struct of_phandle_iterator it;
93 int err;
94
95 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 if (it.node == dev->of_node)
97 return true;
98
99 return false;
100 }
101
102 /*
103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105 * Latching happens mmediately if the display controller is in STOP mode or
106 * on the next frame boundary otherwise.
107 *
108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111 * into the ACTIVE copy, either immediately if the display controller is in
112 * STOP mode, or at the next frame boundary otherwise.
113 */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 unsigned int bpp)
122 {
123 fixed20_12 outf = dfixed_init(out);
124 fixed20_12 inf = dfixed_init(in);
125 u32 dda_inc;
126 int max;
127
128 if (v)
129 max = 15;
130 else {
131 switch (bpp) {
132 case 2:
133 max = 8;
134 break;
135
136 default:
137 WARN_ON_ONCE(1);
138 fallthrough;
139 case 4:
140 max = 4;
141 break;
142 }
143 }
144
145 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 inf.full -= dfixed_const(1);
147
148 dda_inc = dfixed_div(inf, outf);
149 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151 return dda_inc;
152 }
153
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 fixed20_12 inf = dfixed_init(in);
157 return dfixed_frac(inf);
158 }
159
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 u32 background[3] = {
163 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 };
167 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 BLEND_COLOR_KEY_NONE;
169 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 struct tegra_plane_state *state;
171 u32 blending[2];
172 unsigned int i;
173
174 /* disable blending for non-overlapping case */
175 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178 state = to_tegra_plane_state(plane->base.state);
179
180 if (state->opaque) {
181 /*
182 * Since custom fix-weight blending isn't utilized and weight
183 * of top window is set to max, we can enforce dependent
184 * blending which in this case results in transparent bottom
185 * window if top window is opaque and if top window enables
186 * alpha blending, then bottom window is getting alpha value
187 * of 1 minus the sum of alpha components of the overlapping
188 * plane.
189 */
190 background[0] |= BLEND_CONTROL_DEPENDENT;
191 background[1] |= BLEND_CONTROL_DEPENDENT;
192
193 /*
194 * The region where three windows overlap is the intersection
195 * of the two regions where two windows overlap. It contributes
196 * to the area if all of the windows on top of it have an alpha
197 * component.
198 */
199 switch (state->base.normalized_zpos) {
200 case 0:
201 if (state->blending[0].alpha &&
202 state->blending[1].alpha)
203 background[2] |= BLEND_CONTROL_DEPENDENT;
204 break;
205
206 case 1:
207 background[2] |= BLEND_CONTROL_DEPENDENT;
208 break;
209 }
210 } else {
211 /*
212 * Enable alpha blending if pixel format has an alpha
213 * component.
214 */
215 foreground |= BLEND_CONTROL_ALPHA;
216
217 /*
218 * If any of the windows on top of this window is opaque, it
219 * will completely conceal this window within that area. If
220 * top window has an alpha component, it is blended over the
221 * bottom window.
222 */
223 for (i = 0; i < 2; i++) {
224 if (state->blending[i].alpha &&
225 state->blending[i].top)
226 background[i] |= BLEND_CONTROL_DEPENDENT;
227 }
228
229 switch (state->base.normalized_zpos) {
230 case 0:
231 if (state->blending[0].alpha &&
232 state->blending[1].alpha)
233 background[2] |= BLEND_CONTROL_DEPENDENT;
234 break;
235
236 case 1:
237 /*
238 * When both middle and topmost windows have an alpha,
239 * these windows a mixed together and then the result
240 * is blended over the bottom window.
241 */
242 if (state->blending[0].alpha &&
243 state->blending[0].top)
244 background[2] |= BLEND_CONTROL_ALPHA;
245
246 if (state->blending[1].alpha &&
247 state->blending[1].top)
248 background[2] |= BLEND_CONTROL_ALPHA;
249 break;
250 }
251 }
252
253 switch (state->base.normalized_zpos) {
254 case 0:
255 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 break;
259
260 case 1:
261 /*
262 * If window B / C is topmost, then X / Y registers are
263 * matching the order of blending[...] state indices,
264 * otherwise a swap is required.
265 */
266 if (!state->blending[0].top && state->blending[1].top) {
267 blending[0] = foreground;
268 blending[1] = background[1];
269 } else {
270 blending[0] = background[0];
271 blending[1] = foreground;
272 }
273
274 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 break;
278
279 case 2:
280 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 break;
284 }
285 }
286
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 const struct tegra_dc_window *window)
289 {
290 u32 value;
291
292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 const struct tegra_dc_window *window)
309 {
310 struct tegra_dc *dc = plane->dc;
311
312 if (window->src.w == window->dst.w)
313 return false;
314
315 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 return false;
317
318 return true;
319 }
320
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 const struct tegra_dc_window *window)
324 {
325 struct tegra_dc *dc = plane->dc;
326
327 if (window->src.h == window->dst.h)
328 return false;
329
330 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 return false;
332
333 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 return false;
335
336 return true;
337 }
338
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 const struct tegra_dc_window *window)
341 {
342 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 struct tegra_dc *dc = plane->dc;
344 bool yuv, planar;
345 u32 value;
346
347 /*
348 * For YUV planar modes, the number of bytes per pixel takes into
349 * account only the luma component and therefore is 1.
350 */
351 yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 if (!yuv)
353 bpp = window->bits_per_pixel / 8;
354 else
355 bpp = planar ? 1 : 2;
356
357 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366 h_offset = window->src.x * bpp;
367 v_offset = window->src.y;
368 h_size = window->src.w * bpp;
369 v_size = window->src.h;
370
371 if (window->reflect_x)
372 h_offset += (window->src.w - 1) * bpp;
373
374 if (window->reflect_y)
375 v_offset += window->src.h - 1;
376
377 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379
380 /*
381 * For DDA computations the number of bytes per pixel for YUV planar
382 * modes needs to take into account all Y, U and V components.
383 */
384 if (yuv && planar)
385 bpp = 2;
386
387 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389
390 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392
393 h_dda = compute_initial_dda(window->src.x);
394 v_dda = compute_initial_dda(window->src.y);
395
396 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398
399 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401
402 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403
404 if (yuv && planar) {
405 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407 value = window->stride[1] << 16 | window->stride[0];
408 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409 } else {
410 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411 }
412
413 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415
416 if (dc->soc->supports_block_linear) {
417 unsigned long height = window->tiling.value;
418
419 switch (window->tiling.mode) {
420 case TEGRA_BO_TILING_MODE_PITCH:
421 value = DC_WINBUF_SURFACE_KIND_PITCH;
422 break;
423
424 case TEGRA_BO_TILING_MODE_TILED:
425 value = DC_WINBUF_SURFACE_KIND_TILED;
426 break;
427
428 case TEGRA_BO_TILING_MODE_BLOCK:
429 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430 DC_WINBUF_SURFACE_KIND_BLOCK;
431 break;
432 }
433
434 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435 } else {
436 switch (window->tiling.mode) {
437 case TEGRA_BO_TILING_MODE_PITCH:
438 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440 break;
441
442 case TEGRA_BO_TILING_MODE_TILED:
443 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444 DC_WIN_BUFFER_ADDR_MODE_TILE;
445 break;
446
447 case TEGRA_BO_TILING_MODE_BLOCK:
448 /*
449 * No need to handle this here because ->atomic_check
450 * will already have filtered it out.
451 */
452 break;
453 }
454
455 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456 }
457
458 value = WIN_ENABLE;
459
460 if (yuv) {
461 /* setup default colorspace conversion coefficients */
462 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470
471 value |= CSC_ENABLE;
472 } else if (window->bits_per_pixel < 24) {
473 value |= COLOR_EXPAND;
474 }
475
476 if (window->reflect_x)
477 value |= H_DIRECTION;
478
479 if (window->reflect_y)
480 value |= V_DIRECTION;
481
482 if (tegra_plane_use_horizontal_filtering(plane, window)) {
483 /*
484 * Enable horizontal 6-tap filter and set filtering
485 * coefficients to the default values defined in TRM.
486 */
487 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503
504 value |= H_FILTER;
505 }
506
507 if (tegra_plane_use_vertical_filtering(plane, window)) {
508 unsigned int i, k;
509
510 /*
511 * Enable vertical 2-tap filter and set filtering
512 * coefficients to the default values defined in TRM.
513 */
514 for (i = 0, k = 128; i < 16; i++, k -= 8)
515 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516
517 value |= V_FILTER;
518 }
519
520 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521
522 if (dc->soc->has_legacy_blending)
523 tegra_plane_setup_blending_legacy(plane);
524 else
525 tegra_plane_setup_blending(plane, window);
526 }
527
528 static const u32 tegra20_primary_formats[] = {
529 DRM_FORMAT_ARGB4444,
530 DRM_FORMAT_ARGB1555,
531 DRM_FORMAT_RGB565,
532 DRM_FORMAT_RGBA5551,
533 DRM_FORMAT_ABGR8888,
534 DRM_FORMAT_ARGB8888,
535 /* non-native formats */
536 DRM_FORMAT_XRGB1555,
537 DRM_FORMAT_RGBX5551,
538 DRM_FORMAT_XBGR8888,
539 DRM_FORMAT_XRGB8888,
540 };
541
542 static const u64 tegra20_modifiers[] = {
543 DRM_FORMAT_MOD_LINEAR,
544 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545 DRM_FORMAT_MOD_INVALID
546 };
547
548 static const u32 tegra114_primary_formats[] = {
549 DRM_FORMAT_ARGB4444,
550 DRM_FORMAT_ARGB1555,
551 DRM_FORMAT_RGB565,
552 DRM_FORMAT_RGBA5551,
553 DRM_FORMAT_ABGR8888,
554 DRM_FORMAT_ARGB8888,
555 /* new on Tegra114 */
556 DRM_FORMAT_ABGR4444,
557 DRM_FORMAT_ABGR1555,
558 DRM_FORMAT_BGRA5551,
559 DRM_FORMAT_XRGB1555,
560 DRM_FORMAT_RGBX5551,
561 DRM_FORMAT_XBGR1555,
562 DRM_FORMAT_BGRX5551,
563 DRM_FORMAT_BGR565,
564 DRM_FORMAT_BGRA8888,
565 DRM_FORMAT_RGBA8888,
566 DRM_FORMAT_XRGB8888,
567 DRM_FORMAT_XBGR8888,
568 };
569
570 static const u32 tegra124_primary_formats[] = {
571 DRM_FORMAT_ARGB4444,
572 DRM_FORMAT_ARGB1555,
573 DRM_FORMAT_RGB565,
574 DRM_FORMAT_RGBA5551,
575 DRM_FORMAT_ABGR8888,
576 DRM_FORMAT_ARGB8888,
577 /* new on Tegra114 */
578 DRM_FORMAT_ABGR4444,
579 DRM_FORMAT_ABGR1555,
580 DRM_FORMAT_BGRA5551,
581 DRM_FORMAT_XRGB1555,
582 DRM_FORMAT_RGBX5551,
583 DRM_FORMAT_XBGR1555,
584 DRM_FORMAT_BGRX5551,
585 DRM_FORMAT_BGR565,
586 DRM_FORMAT_BGRA8888,
587 DRM_FORMAT_RGBA8888,
588 DRM_FORMAT_XRGB8888,
589 DRM_FORMAT_XBGR8888,
590 /* new on Tegra124 */
591 DRM_FORMAT_RGBX8888,
592 DRM_FORMAT_BGRX8888,
593 };
594
595 static const u64 tegra124_modifiers[] = {
596 DRM_FORMAT_MOD_LINEAR,
597 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603 DRM_FORMAT_MOD_INVALID
604 };
605
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607 struct drm_atomic_state *state)
608 {
609 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
610 plane);
611 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
613 DRM_MODE_REFLECT_X |
614 DRM_MODE_REFLECT_Y;
615 unsigned int rotation = new_plane_state->rotation;
616 struct tegra_bo_tiling *tiling = &plane_state->tiling;
617 struct tegra_plane *tegra = to_tegra_plane(plane);
618 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
619 int err;
620
621 /* no need for further checks if the plane is being disabled */
622 if (!new_plane_state->crtc)
623 return 0;
624
625 err = tegra_plane_format(new_plane_state->fb->format->format,
626 &plane_state->format,
627 &plane_state->swap);
628 if (err < 0)
629 return err;
630
631 /*
632 * Tegra20 and Tegra30 are special cases here because they support
633 * only variants of specific formats with an alpha component, but not
634 * the corresponding opaque formats. However, the opaque formats can
635 * be emulated by disabling alpha blending for the plane.
636 */
637 if (dc->soc->has_legacy_blending) {
638 err = tegra_plane_setup_legacy_state(tegra, plane_state);
639 if (err < 0)
640 return err;
641 }
642
643 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
644 if (err < 0)
645 return err;
646
647 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648 !dc->soc->supports_block_linear) {
649 DRM_ERROR("hardware doesn't support block linear mode\n");
650 return -EINVAL;
651 }
652
653 /*
654 * Older userspace used custom BO flag in order to specify the Y
655 * reflection, while modern userspace uses the generic DRM rotation
656 * property in order to achieve the same result. The legacy BO flag
657 * duplicates the DRM rotation property when both are set.
658 */
659 if (tegra_fb_is_bottom_up(new_plane_state->fb))
660 rotation |= DRM_MODE_REFLECT_Y;
661
662 rotation = drm_rotation_simplify(rotation, supported_rotation);
663
664 if (rotation & DRM_MODE_REFLECT_X)
665 plane_state->reflect_x = true;
666 else
667 plane_state->reflect_x = false;
668
669 if (rotation & DRM_MODE_REFLECT_Y)
670 plane_state->reflect_y = true;
671 else
672 plane_state->reflect_y = false;
673
674 /*
675 * Tegra doesn't support different strides for U and V planes so we
676 * error out if the user tries to display a framebuffer with such a
677 * configuration.
678 */
679 if (new_plane_state->fb->format->num_planes > 2) {
680 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681 DRM_ERROR("unsupported UV-plane configuration\n");
682 return -EINVAL;
683 }
684 }
685
686 err = tegra_plane_state_add(tegra, new_plane_state);
687 if (err < 0)
688 return err;
689
690 return 0;
691 }
692
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694 struct drm_atomic_state *state)
695 {
696 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
697 plane);
698 struct tegra_plane *p = to_tegra_plane(plane);
699 u32 value;
700
701 /* rien ne va plus */
702 if (!old_state || !old_state->crtc)
703 return;
704
705 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706 value &= ~WIN_ENABLE;
707 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
708 }
709
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711 struct drm_atomic_state *state)
712 {
713 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
714 plane);
715 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716 struct drm_framebuffer *fb = new_state->fb;
717 struct tegra_plane *p = to_tegra_plane(plane);
718 struct tegra_dc_window window;
719 unsigned int i;
720
721 /* rien ne va plus */
722 if (!new_state->crtc || !new_state->fb)
723 return;
724
725 if (!new_state->visible)
726 return tegra_plane_atomic_disable(plane, state);
727
728 memset(&window, 0, sizeof(window));
729 window.src.x = new_state->src.x1 >> 16;
730 window.src.y = new_state->src.y1 >> 16;
731 window.src.w = drm_rect_width(&new_state->src) >> 16;
732 window.src.h = drm_rect_height(&new_state->src) >> 16;
733 window.dst.x = new_state->dst.x1;
734 window.dst.y = new_state->dst.y1;
735 window.dst.w = drm_rect_width(&new_state->dst);
736 window.dst.h = drm_rect_height(&new_state->dst);
737 window.bits_per_pixel = fb->format->cpp[0] * 8;
738 window.reflect_x = tegra_plane_state->reflect_x;
739 window.reflect_y = tegra_plane_state->reflect_y;
740
741 /* copy from state */
742 window.zpos = new_state->normalized_zpos;
743 window.tiling = tegra_plane_state->tiling;
744 window.format = tegra_plane_state->format;
745 window.swap = tegra_plane_state->swap;
746
747 for (i = 0; i < fb->format->num_planes; i++) {
748 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
749
750 /*
751 * Tegra uses a shared stride for UV planes. Framebuffers are
752 * already checked for this in the tegra_plane_atomic_check()
753 * function, so it's safe to ignore the V-plane pitch here.
754 */
755 if (i < 2)
756 window.stride[i] = fb->pitches[i];
757 }
758
759 tegra_dc_setup_window(p, &window);
760 }
761
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763 .prepare_fb = tegra_plane_prepare_fb,
764 .cleanup_fb = tegra_plane_cleanup_fb,
765 .atomic_check = tegra_plane_atomic_check,
766 .atomic_disable = tegra_plane_atomic_disable,
767 .atomic_update = tegra_plane_atomic_update,
768 };
769
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
771 {
772 /*
773 * Ideally this would use drm_crtc_mask(), but that would require the
774 * CRTC to already be in the mode_config's list of CRTCs. However, it
775 * will only be added to that list in the drm_crtc_init_with_planes()
776 * (in tegra_dc_init()), which in turn requires registration of these
777 * planes. So we have ourselves a nice little chicken and egg problem
778 * here.
779 *
780 * We work around this by manually creating the mask from the number
781 * of CRTCs that have been registered, and should therefore always be
782 * the same as drm_crtc_index() after registration.
783 */
784 return 1 << drm->mode_config.num_crtc;
785 }
786
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
788 struct tegra_dc *dc)
789 {
790 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792 struct tegra_plane *plane;
793 unsigned int num_formats;
794 const u64 *modifiers;
795 const u32 *formats;
796 int err;
797
798 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
799 if (!plane)
800 return ERR_PTR(-ENOMEM);
801
802 /* Always use window A as primary window */
803 plane->offset = 0xa00;
804 plane->index = 0;
805 plane->dc = dc;
806
807 num_formats = dc->soc->num_primary_formats;
808 formats = dc->soc->primary_formats;
809 modifiers = dc->soc->modifiers;
810
811 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812 &tegra_plane_funcs, formats,
813 num_formats, modifiers, type, NULL);
814 if (err < 0) {
815 kfree(plane);
816 return ERR_PTR(err);
817 }
818
819 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
821
822 err = drm_plane_create_rotation_property(&plane->base,
823 DRM_MODE_ROTATE_0,
824 DRM_MODE_ROTATE_0 |
825 DRM_MODE_ROTATE_180 |
826 DRM_MODE_REFLECT_X |
827 DRM_MODE_REFLECT_Y);
828 if (err < 0)
829 dev_err(dc->dev, "failed to create rotation property: %d\n",
830 err);
831
832 return &plane->base;
833 }
834
835 static const u32 tegra_legacy_cursor_plane_formats[] = {
836 DRM_FORMAT_RGBA8888,
837 };
838
839 static const u32 tegra_cursor_plane_formats[] = {
840 DRM_FORMAT_ARGB8888,
841 };
842
843 static int tegra_cursor_atomic_check(struct drm_plane *plane,
844 struct drm_atomic_state *state)
845 {
846 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
847 plane);
848 struct tegra_plane *tegra = to_tegra_plane(plane);
849 int err;
850
851 /* no need for further checks if the plane is being disabled */
852 if (!new_plane_state->crtc)
853 return 0;
854
855 /* scaling not supported for cursor */
856 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
857 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
858 return -EINVAL;
859
860 /* only square cursors supported */
861 if (new_plane_state->src_w != new_plane_state->src_h)
862 return -EINVAL;
863
864 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
865 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
866 return -EINVAL;
867
868 err = tegra_plane_state_add(tegra, new_plane_state);
869 if (err < 0)
870 return err;
871
872 return 0;
873 }
874
875 static void tegra_cursor_atomic_update(struct drm_plane *plane,
876 struct drm_atomic_state *state)
877 {
878 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
879 plane);
880 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
881 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
882 struct tegra_drm *tegra = plane->dev->dev_private;
883 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
884 u64 dma_mask = *dc->dev->dma_mask;
885 #endif
886 unsigned int x, y;
887 u32 value = 0;
888
889 /* rien ne va plus */
890 if (!new_state->crtc || !new_state->fb)
891 return;
892
893 /*
894 * Legacy display supports hardware clipping of the cursor, but
895 * nvdisplay relies on software to clip the cursor to the screen.
896 */
897 if (!dc->soc->has_nvdisplay)
898 value |= CURSOR_CLIP_DISPLAY;
899
900 switch (new_state->crtc_w) {
901 case 32:
902 value |= CURSOR_SIZE_32x32;
903 break;
904
905 case 64:
906 value |= CURSOR_SIZE_64x64;
907 break;
908
909 case 128:
910 value |= CURSOR_SIZE_128x128;
911 break;
912
913 case 256:
914 value |= CURSOR_SIZE_256x256;
915 break;
916
917 default:
918 WARN(1, "cursor size %ux%u not supported\n",
919 new_state->crtc_w, new_state->crtc_h);
920 return;
921 }
922
923 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
924 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
925
926 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
927 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
928 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
929 #endif
930
931 /* enable cursor and set blend mode */
932 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
933 value |= CURSOR_ENABLE;
934 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
935
936 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
937 value &= ~CURSOR_DST_BLEND_MASK;
938 value &= ~CURSOR_SRC_BLEND_MASK;
939
940 if (dc->soc->has_nvdisplay)
941 value &= ~CURSOR_COMPOSITION_MODE_XOR;
942 else
943 value |= CURSOR_MODE_NORMAL;
944
945 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
946 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
947 value |= CURSOR_ALPHA;
948 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
949
950 /* nvdisplay relies on software for clipping */
951 if (dc->soc->has_nvdisplay) {
952 struct drm_rect src;
953
954 x = new_state->dst.x1;
955 y = new_state->dst.y1;
956
957 drm_rect_fp_to_int(&src, &new_state->src);
958
959 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
960 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
961
962 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
963 (drm_rect_width(&src) & tegra->hmask);
964 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
965 } else {
966 x = new_state->crtc_x;
967 y = new_state->crtc_y;
968 }
969
970 /* position the cursor */
971 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
972 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
973 }
974
975 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
976 struct drm_atomic_state *state)
977 {
978 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
979 plane);
980 struct tegra_dc *dc;
981 u32 value;
982
983 /* rien ne va plus */
984 if (!old_state || !old_state->crtc)
985 return;
986
987 dc = to_tegra_dc(old_state->crtc);
988
989 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
990 value &= ~CURSOR_ENABLE;
991 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
992 }
993
994 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
995 .prepare_fb = tegra_plane_prepare_fb,
996 .cleanup_fb = tegra_plane_cleanup_fb,
997 .atomic_check = tegra_cursor_atomic_check,
998 .atomic_update = tegra_cursor_atomic_update,
999 .atomic_disable = tegra_cursor_atomic_disable,
1000 };
1001
1002 static const uint64_t linear_modifiers[] = {
1003 DRM_FORMAT_MOD_LINEAR,
1004 DRM_FORMAT_MOD_INVALID
1005 };
1006
1007 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1008 struct tegra_dc *dc)
1009 {
1010 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1011 struct tegra_plane *plane;
1012 unsigned int num_formats;
1013 const u32 *formats;
1014 int err;
1015
1016 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1017 if (!plane)
1018 return ERR_PTR(-ENOMEM);
1019
1020 /*
1021 * This index is kind of fake. The cursor isn't a regular plane, but
1022 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1023 * use the same programming. Setting this fake index here allows the
1024 * code in tegra_add_plane_state() to do the right thing without the
1025 * need to special-casing the cursor plane.
1026 */
1027 plane->index = 6;
1028 plane->dc = dc;
1029
1030 if (!dc->soc->has_nvdisplay) {
1031 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1032 formats = tegra_legacy_cursor_plane_formats;
1033 } else {
1034 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1035 formats = tegra_cursor_plane_formats;
1036 }
1037
1038 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1039 &tegra_plane_funcs, formats,
1040 num_formats, linear_modifiers,
1041 DRM_PLANE_TYPE_CURSOR, NULL);
1042 if (err < 0) {
1043 kfree(plane);
1044 return ERR_PTR(err);
1045 }
1046
1047 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1048 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1049
1050 return &plane->base;
1051 }
1052
1053 static const u32 tegra20_overlay_formats[] = {
1054 DRM_FORMAT_ARGB4444,
1055 DRM_FORMAT_ARGB1555,
1056 DRM_FORMAT_RGB565,
1057 DRM_FORMAT_RGBA5551,
1058 DRM_FORMAT_ABGR8888,
1059 DRM_FORMAT_ARGB8888,
1060 /* non-native formats */
1061 DRM_FORMAT_XRGB1555,
1062 DRM_FORMAT_RGBX5551,
1063 DRM_FORMAT_XBGR8888,
1064 DRM_FORMAT_XRGB8888,
1065 /* planar formats */
1066 DRM_FORMAT_UYVY,
1067 DRM_FORMAT_YUYV,
1068 DRM_FORMAT_YUV420,
1069 DRM_FORMAT_YUV422,
1070 };
1071
1072 static const u32 tegra114_overlay_formats[] = {
1073 DRM_FORMAT_ARGB4444,
1074 DRM_FORMAT_ARGB1555,
1075 DRM_FORMAT_RGB565,
1076 DRM_FORMAT_RGBA5551,
1077 DRM_FORMAT_ABGR8888,
1078 DRM_FORMAT_ARGB8888,
1079 /* new on Tegra114 */
1080 DRM_FORMAT_ABGR4444,
1081 DRM_FORMAT_ABGR1555,
1082 DRM_FORMAT_BGRA5551,
1083 DRM_FORMAT_XRGB1555,
1084 DRM_FORMAT_RGBX5551,
1085 DRM_FORMAT_XBGR1555,
1086 DRM_FORMAT_BGRX5551,
1087 DRM_FORMAT_BGR565,
1088 DRM_FORMAT_BGRA8888,
1089 DRM_FORMAT_RGBA8888,
1090 DRM_FORMAT_XRGB8888,
1091 DRM_FORMAT_XBGR8888,
1092 /* planar formats */
1093 DRM_FORMAT_UYVY,
1094 DRM_FORMAT_YUYV,
1095 DRM_FORMAT_YUV420,
1096 DRM_FORMAT_YUV422,
1097 };
1098
1099 static const u32 tegra124_overlay_formats[] = {
1100 DRM_FORMAT_ARGB4444,
1101 DRM_FORMAT_ARGB1555,
1102 DRM_FORMAT_RGB565,
1103 DRM_FORMAT_RGBA5551,
1104 DRM_FORMAT_ABGR8888,
1105 DRM_FORMAT_ARGB8888,
1106 /* new on Tegra114 */
1107 DRM_FORMAT_ABGR4444,
1108 DRM_FORMAT_ABGR1555,
1109 DRM_FORMAT_BGRA5551,
1110 DRM_FORMAT_XRGB1555,
1111 DRM_FORMAT_RGBX5551,
1112 DRM_FORMAT_XBGR1555,
1113 DRM_FORMAT_BGRX5551,
1114 DRM_FORMAT_BGR565,
1115 DRM_FORMAT_BGRA8888,
1116 DRM_FORMAT_RGBA8888,
1117 DRM_FORMAT_XRGB8888,
1118 DRM_FORMAT_XBGR8888,
1119 /* new on Tegra124 */
1120 DRM_FORMAT_RGBX8888,
1121 DRM_FORMAT_BGRX8888,
1122 /* planar formats */
1123 DRM_FORMAT_UYVY,
1124 DRM_FORMAT_YUYV,
1125 DRM_FORMAT_YUV420,
1126 DRM_FORMAT_YUV422,
1127 };
1128
1129 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1130 struct tegra_dc *dc,
1131 unsigned int index,
1132 bool cursor)
1133 {
1134 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1135 struct tegra_plane *plane;
1136 unsigned int num_formats;
1137 enum drm_plane_type type;
1138 const u32 *formats;
1139 int err;
1140
1141 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1142 if (!plane)
1143 return ERR_PTR(-ENOMEM);
1144
1145 plane->offset = 0xa00 + 0x200 * index;
1146 plane->index = index;
1147 plane->dc = dc;
1148
1149 num_formats = dc->soc->num_overlay_formats;
1150 formats = dc->soc->overlay_formats;
1151
1152 if (!cursor)
1153 type = DRM_PLANE_TYPE_OVERLAY;
1154 else
1155 type = DRM_PLANE_TYPE_CURSOR;
1156
1157 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1158 &tegra_plane_funcs, formats,
1159 num_formats, linear_modifiers,
1160 type, NULL);
1161 if (err < 0) {
1162 kfree(plane);
1163 return ERR_PTR(err);
1164 }
1165
1166 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1167 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1168
1169 err = drm_plane_create_rotation_property(&plane->base,
1170 DRM_MODE_ROTATE_0,
1171 DRM_MODE_ROTATE_0 |
1172 DRM_MODE_ROTATE_180 |
1173 DRM_MODE_REFLECT_X |
1174 DRM_MODE_REFLECT_Y);
1175 if (err < 0)
1176 dev_err(dc->dev, "failed to create rotation property: %d\n",
1177 err);
1178
1179 return &plane->base;
1180 }
1181
1182 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1183 struct tegra_dc *dc)
1184 {
1185 struct drm_plane *plane, *primary = NULL;
1186 unsigned int i, j;
1187
1188 for (i = 0; i < dc->soc->num_wgrps; i++) {
1189 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1190
1191 if (wgrp->dc == dc->pipe) {
1192 for (j = 0; j < wgrp->num_windows; j++) {
1193 unsigned int index = wgrp->windows[j];
1194
1195 plane = tegra_shared_plane_create(drm, dc,
1196 wgrp->index,
1197 index);
1198 if (IS_ERR(plane))
1199 return plane;
1200
1201 /*
1202 * Choose the first shared plane owned by this
1203 * head as the primary plane.
1204 */
1205 if (!primary) {
1206 plane->type = DRM_PLANE_TYPE_PRIMARY;
1207 primary = plane;
1208 }
1209 }
1210 }
1211 }
1212
1213 return primary;
1214 }
1215
1216 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1217 struct tegra_dc *dc)
1218 {
1219 struct drm_plane *planes[2], *primary;
1220 unsigned int planes_num;
1221 unsigned int i;
1222 int err;
1223
1224 primary = tegra_primary_plane_create(drm, dc);
1225 if (IS_ERR(primary))
1226 return primary;
1227
1228 if (dc->soc->supports_cursor)
1229 planes_num = 2;
1230 else
1231 planes_num = 1;
1232
1233 for (i = 0; i < planes_num; i++) {
1234 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1235 false);
1236 if (IS_ERR(planes[i])) {
1237 err = PTR_ERR(planes[i]);
1238
1239 while (i--)
1240 tegra_plane_funcs.destroy(planes[i]);
1241
1242 tegra_plane_funcs.destroy(primary);
1243 return ERR_PTR(err);
1244 }
1245 }
1246
1247 return primary;
1248 }
1249
1250 static void tegra_dc_destroy(struct drm_crtc *crtc)
1251 {
1252 drm_crtc_cleanup(crtc);
1253 }
1254
1255 static void tegra_crtc_reset(struct drm_crtc *crtc)
1256 {
1257 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1258
1259 if (crtc->state)
1260 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1261
1262 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1263 }
1264
1265 static struct drm_crtc_state *
1266 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1267 {
1268 struct tegra_dc_state *state = to_dc_state(crtc->state);
1269 struct tegra_dc_state *copy;
1270
1271 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1272 if (!copy)
1273 return NULL;
1274
1275 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1276 copy->clk = state->clk;
1277 copy->pclk = state->pclk;
1278 copy->div = state->div;
1279 copy->planes = state->planes;
1280
1281 return &copy->base;
1282 }
1283
1284 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1285 struct drm_crtc_state *state)
1286 {
1287 __drm_atomic_helper_crtc_destroy_state(state);
1288 kfree(state);
1289 }
1290
1291 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1292
1293 static const struct debugfs_reg32 tegra_dc_regs[] = {
1294 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1295 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1296 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1297 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1298 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1299 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1300 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1301 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1302 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1303 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1304 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1305 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1306 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1307 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1308 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1309 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1310 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1311 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1312 DEBUGFS_REG32(DC_CMD_INT_MASK),
1313 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1314 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1315 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1316 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1317 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1318 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1319 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1320 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1321 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1322 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1323 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1324 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1325 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1326 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1327 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1328 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1329 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1330 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1331 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1332 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1333 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1334 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1335 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1336 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1337 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1338 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1339 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1340 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1341 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1342 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1343 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1344 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1345 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1346 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1347 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1348 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1349 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1350 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1351 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1352 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1353 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1354 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1355 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1356 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1357 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1358 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1359 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1360 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1361 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1362 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1363 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1364 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1365 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1366 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1367 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1368 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1369 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1370 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1371 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1372 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1373 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1374 DEBUGFS_REG32(DC_DISP_ACTIVE),
1375 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1376 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1377 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1378 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1379 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1380 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1381 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1382 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1383 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1384 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1385 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1386 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1387 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1388 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1389 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1390 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1391 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1392 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1393 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1394 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1395 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1396 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1397 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1398 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1399 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1400 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1401 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1402 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1403 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1404 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1405 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1406 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1407 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1408 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1409 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1410 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1411 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1412 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1413 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1414 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1415 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1416 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1417 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1418 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1419 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1420 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1421 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1422 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1423 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1424 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1425 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1426 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1427 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1428 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1429 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1430 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1431 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1432 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1433 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1434 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1435 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1436 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1437 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1438 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1439 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1440 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1441 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1442 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1443 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1444 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1445 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1446 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1447 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1448 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1449 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1450 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1451 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1452 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1453 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1454 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1455 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1456 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1457 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1458 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1459 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1460 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1461 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1462 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1463 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1464 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1465 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1466 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1467 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1468 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1469 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1470 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1471 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1472 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1473 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1474 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1475 DEBUGFS_REG32(DC_WIN_POSITION),
1476 DEBUGFS_REG32(DC_WIN_SIZE),
1477 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1478 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1479 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1480 DEBUGFS_REG32(DC_WIN_DDA_INC),
1481 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1482 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1483 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1484 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1485 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1486 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1487 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1488 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1489 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1490 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1491 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1492 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1493 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1494 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1495 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1496 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1497 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1498 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1499 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1500 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1501 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1502 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1503 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1504 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1505 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1506 };
1507
1508 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1509 {
1510 struct drm_info_node *node = s->private;
1511 struct tegra_dc *dc = node->info_ent->data;
1512 unsigned int i;
1513 int err = 0;
1514
1515 drm_modeset_lock(&dc->base.mutex, NULL);
1516
1517 if (!dc->base.state->active) {
1518 err = -EBUSY;
1519 goto unlock;
1520 }
1521
1522 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1523 unsigned int offset = tegra_dc_regs[i].offset;
1524
1525 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1526 offset, tegra_dc_readl(dc, offset));
1527 }
1528
1529 unlock:
1530 drm_modeset_unlock(&dc->base.mutex);
1531 return err;
1532 }
1533
1534 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1535 {
1536 struct drm_info_node *node = s->private;
1537 struct tegra_dc *dc = node->info_ent->data;
1538 int err = 0;
1539 u32 value;
1540
1541 drm_modeset_lock(&dc->base.mutex, NULL);
1542
1543 if (!dc->base.state->active) {
1544 err = -EBUSY;
1545 goto unlock;
1546 }
1547
1548 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1549 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1550 tegra_dc_commit(dc);
1551
1552 drm_crtc_wait_one_vblank(&dc->base);
1553 drm_crtc_wait_one_vblank(&dc->base);
1554
1555 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1556 seq_printf(s, "%08x\n", value);
1557
1558 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1559
1560 unlock:
1561 drm_modeset_unlock(&dc->base.mutex);
1562 return err;
1563 }
1564
1565 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1566 {
1567 struct drm_info_node *node = s->private;
1568 struct tegra_dc *dc = node->info_ent->data;
1569
1570 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1571 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1572 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1573 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1574
1575 return 0;
1576 }
1577
1578 static struct drm_info_list debugfs_files[] = {
1579 { "regs", tegra_dc_show_regs, 0, NULL },
1580 { "crc", tegra_dc_show_crc, 0, NULL },
1581 { "stats", tegra_dc_show_stats, 0, NULL },
1582 };
1583
1584 static int tegra_dc_late_register(struct drm_crtc *crtc)
1585 {
1586 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1587 struct drm_minor *minor = crtc->dev->primary;
1588 struct dentry *root;
1589 struct tegra_dc *dc = to_tegra_dc(crtc);
1590
1591 #ifdef CONFIG_DEBUG_FS
1592 root = crtc->debugfs_entry;
1593 #else
1594 root = NULL;
1595 #endif
1596
1597 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1598 GFP_KERNEL);
1599 if (!dc->debugfs_files)
1600 return -ENOMEM;
1601
1602 for (i = 0; i < count; i++)
1603 dc->debugfs_files[i].data = dc;
1604
1605 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1606
1607 return 0;
1608 }
1609
1610 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1611 {
1612 unsigned int count = ARRAY_SIZE(debugfs_files);
1613 struct drm_minor *minor = crtc->dev->primary;
1614 struct tegra_dc *dc = to_tegra_dc(crtc);
1615
1616 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1617 kfree(dc->debugfs_files);
1618 dc->debugfs_files = NULL;
1619 }
1620
1621 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1622 {
1623 struct tegra_dc *dc = to_tegra_dc(crtc);
1624
1625 /* XXX vblank syncpoints don't work with nvdisplay yet */
1626 if (dc->syncpt && !dc->soc->has_nvdisplay)
1627 return host1x_syncpt_read(dc->syncpt);
1628
1629 /* fallback to software emulated VBLANK counter */
1630 return (u32)drm_crtc_vblank_count(&dc->base);
1631 }
1632
1633 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1634 {
1635 struct tegra_dc *dc = to_tegra_dc(crtc);
1636 u32 value;
1637
1638 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1639 value |= VBLANK_INT;
1640 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1641
1642 return 0;
1643 }
1644
1645 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1646 {
1647 struct tegra_dc *dc = to_tegra_dc(crtc);
1648 u32 value;
1649
1650 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1651 value &= ~VBLANK_INT;
1652 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1653 }
1654
1655 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1656 .page_flip = drm_atomic_helper_page_flip,
1657 .set_config = drm_atomic_helper_set_config,
1658 .destroy = tegra_dc_destroy,
1659 .reset = tegra_crtc_reset,
1660 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1661 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1662 .late_register = tegra_dc_late_register,
1663 .early_unregister = tegra_dc_early_unregister,
1664 .get_vblank_counter = tegra_dc_get_vblank_counter,
1665 .enable_vblank = tegra_dc_enable_vblank,
1666 .disable_vblank = tegra_dc_disable_vblank,
1667 };
1668
1669 static int tegra_dc_set_timings(struct tegra_dc *dc,
1670 struct drm_display_mode *mode)
1671 {
1672 unsigned int h_ref_to_sync = 1;
1673 unsigned int v_ref_to_sync = 1;
1674 unsigned long value;
1675
1676 if (!dc->soc->has_nvdisplay) {
1677 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1678
1679 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1680 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1681 }
1682
1683 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1684 ((mode->hsync_end - mode->hsync_start) << 0);
1685 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1686
1687 value = ((mode->vtotal - mode->vsync_end) << 16) |
1688 ((mode->htotal - mode->hsync_end) << 0);
1689 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1690
1691 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1692 ((mode->hsync_start - mode->hdisplay) << 0);
1693 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1694
1695 value = (mode->vdisplay << 16) | mode->hdisplay;
1696 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1697
1698 return 0;
1699 }
1700
1701 /**
1702 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1703 * state
1704 * @dc: display controller
1705 * @crtc_state: CRTC atomic state
1706 * @clk: parent clock for display controller
1707 * @pclk: pixel clock
1708 * @div: shift clock divider
1709 *
1710 * Returns:
1711 * 0 on success or a negative error-code on failure.
1712 */
1713 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1714 struct drm_crtc_state *crtc_state,
1715 struct clk *clk, unsigned long pclk,
1716 unsigned int div)
1717 {
1718 struct tegra_dc_state *state = to_dc_state(crtc_state);
1719
1720 if (!clk_has_parent(dc->clk, clk))
1721 return -EINVAL;
1722
1723 state->clk = clk;
1724 state->pclk = pclk;
1725 state->div = div;
1726
1727 return 0;
1728 }
1729
1730 static void tegra_dc_commit_state(struct tegra_dc *dc,
1731 struct tegra_dc_state *state)
1732 {
1733 u32 value;
1734 int err;
1735
1736 err = clk_set_parent(dc->clk, state->clk);
1737 if (err < 0)
1738 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1739
1740 /*
1741 * Outputs may not want to change the parent clock rate. This is only
1742 * relevant to Tegra20 where only a single display PLL is available.
1743 * Since that PLL would typically be used for HDMI, an internal LVDS
1744 * panel would need to be driven by some other clock such as PLL_P
1745 * which is shared with other peripherals. Changing the clock rate
1746 * should therefore be avoided.
1747 */
1748 if (state->pclk > 0) {
1749 err = clk_set_rate(state->clk, state->pclk);
1750 if (err < 0)
1751 dev_err(dc->dev,
1752 "failed to set clock rate to %lu Hz\n",
1753 state->pclk);
1754
1755 err = clk_set_rate(dc->clk, state->pclk);
1756 if (err < 0)
1757 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1758 dc->clk, state->pclk, err);
1759 }
1760
1761 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1762 state->div);
1763 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1764
1765 if (!dc->soc->has_nvdisplay) {
1766 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1767 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1768 }
1769 }
1770
1771 static void tegra_dc_stop(struct tegra_dc *dc)
1772 {
1773 u32 value;
1774
1775 /* stop the display controller */
1776 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1777 value &= ~DISP_CTRL_MODE_MASK;
1778 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1779
1780 tegra_dc_commit(dc);
1781 }
1782
1783 static bool tegra_dc_idle(struct tegra_dc *dc)
1784 {
1785 u32 value;
1786
1787 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1788
1789 return (value & DISP_CTRL_MODE_MASK) == 0;
1790 }
1791
1792 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1793 {
1794 timeout = jiffies + msecs_to_jiffies(timeout);
1795
1796 while (time_before(jiffies, timeout)) {
1797 if (tegra_dc_idle(dc))
1798 return 0;
1799
1800 usleep_range(1000, 2000);
1801 }
1802
1803 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1804 return -ETIMEDOUT;
1805 }
1806
1807 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1808 struct drm_atomic_state *state)
1809 {
1810 struct tegra_dc *dc = to_tegra_dc(crtc);
1811 u32 value;
1812 int err;
1813
1814 if (!tegra_dc_idle(dc)) {
1815 tegra_dc_stop(dc);
1816
1817 /*
1818 * Ignore the return value, there isn't anything useful to do
1819 * in case this fails.
1820 */
1821 tegra_dc_wait_idle(dc, 100);
1822 }
1823
1824 /*
1825 * This should really be part of the RGB encoder driver, but clearing
1826 * these bits has the side-effect of stopping the display controller.
1827 * When that happens no VBLANK interrupts will be raised. At the same
1828 * time the encoder is disabled before the display controller, so the
1829 * above code is always going to timeout waiting for the controller
1830 * to go idle.
1831 *
1832 * Given the close coupling between the RGB encoder and the display
1833 * controller doing it here is still kind of okay. None of the other
1834 * encoder drivers require these bits to be cleared.
1835 *
1836 * XXX: Perhaps given that the display controller is switched off at
1837 * this point anyway maybe clearing these bits isn't even useful for
1838 * the RGB encoder?
1839 */
1840 if (dc->rgb) {
1841 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1842 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1843 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1844 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1845 }
1846
1847 tegra_dc_stats_reset(&dc->stats);
1848 drm_crtc_vblank_off(crtc);
1849
1850 spin_lock_irq(&crtc->dev->event_lock);
1851
1852 if (crtc->state->event) {
1853 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1854 crtc->state->event = NULL;
1855 }
1856
1857 spin_unlock_irq(&crtc->dev->event_lock);
1858
1859 err = host1x_client_suspend(&dc->client);
1860 if (err < 0)
1861 dev_err(dc->dev, "failed to suspend: %d\n", err);
1862 }
1863
1864 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1865 struct drm_atomic_state *state)
1866 {
1867 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1868 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1869 struct tegra_dc *dc = to_tegra_dc(crtc);
1870 u32 value;
1871 int err;
1872
1873 err = host1x_client_resume(&dc->client);
1874 if (err < 0) {
1875 dev_err(dc->dev, "failed to resume: %d\n", err);
1876 return;
1877 }
1878
1879 /* initialize display controller */
1880 if (dc->syncpt) {
1881 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1882
1883 if (dc->soc->has_nvdisplay)
1884 enable = 1 << 31;
1885 else
1886 enable = 1 << 8;
1887
1888 value = SYNCPT_CNTRL_NO_STALL;
1889 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1890
1891 value = enable | syncpt;
1892 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1893 }
1894
1895 if (dc->soc->has_nvdisplay) {
1896 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1897 DSC_OBUF_UF_INT;
1898 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1899
1900 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1901 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1902 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1903 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1904 VBLANK_INT | FRAME_END_INT;
1905 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1906
1907 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1908 FRAME_END_INT;
1909 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1910
1911 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1912 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1913
1914 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1915 } else {
1916 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1917 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1918 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1919
1920 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1921 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1922 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1923
1924 /* initialize timer */
1925 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1926 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1927 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1928
1929 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1930 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1931 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1932
1933 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1934 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1935 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1936
1937 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1938 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1939 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1940 }
1941
1942 if (dc->soc->supports_background_color)
1943 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1944 else
1945 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1946
1947 /* apply PLL and pixel clock changes */
1948 tegra_dc_commit_state(dc, crtc_state);
1949
1950 /* program display mode */
1951 tegra_dc_set_timings(dc, mode);
1952
1953 /* interlacing isn't supported yet, so disable it */
1954 if (dc->soc->supports_interlacing) {
1955 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1956 value &= ~INTERLACE_ENABLE;
1957 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1958 }
1959
1960 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1961 value &= ~DISP_CTRL_MODE_MASK;
1962 value |= DISP_CTRL_MODE_C_DISPLAY;
1963 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1964
1965 if (!dc->soc->has_nvdisplay) {
1966 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1967 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1968 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1969 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1970 }
1971
1972 /* enable underflow reporting and display red for missing pixels */
1973 if (dc->soc->has_nvdisplay) {
1974 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1975 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1976 }
1977
1978 tegra_dc_commit(dc);
1979
1980 drm_crtc_vblank_on(crtc);
1981 }
1982
1983 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1984 struct drm_atomic_state *state)
1985 {
1986 unsigned long flags;
1987
1988 if (crtc->state->event) {
1989 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1990
1991 if (drm_crtc_vblank_get(crtc) != 0)
1992 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1993 else
1994 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1995
1996 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1997
1998 crtc->state->event = NULL;
1999 }
2000 }
2001
2002 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2003 struct drm_atomic_state *state)
2004 {
2005 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2006 crtc);
2007 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2008 struct tegra_dc *dc = to_tegra_dc(crtc);
2009 u32 value;
2010
2011 value = dc_state->planes << 8 | GENERAL_UPDATE;
2012 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2013 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2014
2015 value = dc_state->planes | GENERAL_ACT_REQ;
2016 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2017 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2018 }
2019
2020 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2021 .atomic_begin = tegra_crtc_atomic_begin,
2022 .atomic_flush = tegra_crtc_atomic_flush,
2023 .atomic_enable = tegra_crtc_atomic_enable,
2024 .atomic_disable = tegra_crtc_atomic_disable,
2025 };
2026
2027 static irqreturn_t tegra_dc_irq(int irq, void *data)
2028 {
2029 struct tegra_dc *dc = data;
2030 unsigned long status;
2031
2032 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2033 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2034
2035 if (status & FRAME_END_INT) {
2036 /*
2037 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2038 */
2039 dc->stats.frames++;
2040 }
2041
2042 if (status & VBLANK_INT) {
2043 /*
2044 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2045 */
2046 drm_crtc_handle_vblank(&dc->base);
2047 dc->stats.vblank++;
2048 }
2049
2050 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2051 /*
2052 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2053 */
2054 dc->stats.underflow++;
2055 }
2056
2057 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2058 /*
2059 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2060 */
2061 dc->stats.overflow++;
2062 }
2063
2064 if (status & HEAD_UF_INT) {
2065 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2066 dc->stats.underflow++;
2067 }
2068
2069 return IRQ_HANDLED;
2070 }
2071
2072 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2073 {
2074 unsigned int i;
2075
2076 if (!dc->soc->wgrps)
2077 return true;
2078
2079 for (i = 0; i < dc->soc->num_wgrps; i++) {
2080 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2081
2082 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2083 return true;
2084 }
2085
2086 return false;
2087 }
2088
2089 static int tegra_dc_early_init(struct host1x_client *client)
2090 {
2091 struct drm_device *drm = dev_get_drvdata(client->host);
2092 struct tegra_drm *tegra = drm->dev_private;
2093
2094 tegra->num_crtcs++;
2095
2096 return 0;
2097 }
2098
2099 static int tegra_dc_init(struct host1x_client *client)
2100 {
2101 struct drm_device *drm = dev_get_drvdata(client->host);
2102 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2103 struct tegra_dc *dc = host1x_client_to_dc(client);
2104 struct tegra_drm *tegra = drm->dev_private;
2105 struct drm_plane *primary = NULL;
2106 struct drm_plane *cursor = NULL;
2107 int err;
2108
2109 /*
2110 * DC has been reset by now, so VBLANK syncpoint can be released
2111 * for general use.
2112 */
2113 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2114
2115 /*
2116 * XXX do not register DCs with no window groups because we cannot
2117 * assign a primary plane to them, which in turn will cause KMS to
2118 * crash.
2119 */
2120 if (!tegra_dc_has_window_groups(dc))
2121 return 0;
2122
2123 /*
2124 * Set the display hub as the host1x client parent for the display
2125 * controller. This is needed for the runtime reference counting that
2126 * ensures the display hub is always powered when any of the display
2127 * controllers are.
2128 */
2129 if (dc->soc->has_nvdisplay)
2130 client->parent = &tegra->hub->client;
2131
2132 dc->syncpt = host1x_syncpt_request(client, flags);
2133 if (!dc->syncpt)
2134 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2135
2136 err = host1x_client_iommu_attach(client);
2137 if (err < 0 && err != -ENODEV) {
2138 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2139 return err;
2140 }
2141
2142 if (dc->soc->wgrps)
2143 primary = tegra_dc_add_shared_planes(drm, dc);
2144 else
2145 primary = tegra_dc_add_planes(drm, dc);
2146
2147 if (IS_ERR(primary)) {
2148 err = PTR_ERR(primary);
2149 goto cleanup;
2150 }
2151
2152 if (dc->soc->supports_cursor) {
2153 cursor = tegra_dc_cursor_plane_create(drm, dc);
2154 if (IS_ERR(cursor)) {
2155 err = PTR_ERR(cursor);
2156 goto cleanup;
2157 }
2158 } else {
2159 /* dedicate one overlay to mouse cursor */
2160 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2161 if (IS_ERR(cursor)) {
2162 err = PTR_ERR(cursor);
2163 goto cleanup;
2164 }
2165 }
2166
2167 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2168 &tegra_crtc_funcs, NULL);
2169 if (err < 0)
2170 goto cleanup;
2171
2172 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2173
2174 /*
2175 * Keep track of the minimum pitch alignment across all display
2176 * controllers.
2177 */
2178 if (dc->soc->pitch_align > tegra->pitch_align)
2179 tegra->pitch_align = dc->soc->pitch_align;
2180
2181 /* track maximum resolution */
2182 if (dc->soc->has_nvdisplay)
2183 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2184 else
2185 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2186
2187 err = tegra_dc_rgb_init(drm, dc);
2188 if (err < 0 && err != -ENODEV) {
2189 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2190 goto cleanup;
2191 }
2192
2193 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2194 dev_name(dc->dev), dc);
2195 if (err < 0) {
2196 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2197 err);
2198 goto cleanup;
2199 }
2200
2201 /*
2202 * Inherit the DMA parameters (such as maximum segment size) from the
2203 * parent host1x device.
2204 */
2205 client->dev->dma_parms = client->host->dma_parms;
2206
2207 return 0;
2208
2209 cleanup:
2210 if (!IS_ERR_OR_NULL(cursor))
2211 drm_plane_cleanup(cursor);
2212
2213 if (!IS_ERR(primary))
2214 drm_plane_cleanup(primary);
2215
2216 host1x_client_iommu_detach(client);
2217 host1x_syncpt_put(dc->syncpt);
2218
2219 return err;
2220 }
2221
2222 static int tegra_dc_exit(struct host1x_client *client)
2223 {
2224 struct tegra_dc *dc = host1x_client_to_dc(client);
2225 int err;
2226
2227 if (!tegra_dc_has_window_groups(dc))
2228 return 0;
2229
2230 /* avoid a dangling pointer just in case this disappears */
2231 client->dev->dma_parms = NULL;
2232
2233 devm_free_irq(dc->dev, dc->irq, dc);
2234
2235 err = tegra_dc_rgb_exit(dc);
2236 if (err) {
2237 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2238 return err;
2239 }
2240
2241 host1x_client_iommu_detach(client);
2242 host1x_syncpt_put(dc->syncpt);
2243
2244 return 0;
2245 }
2246
2247 static int tegra_dc_late_exit(struct host1x_client *client)
2248 {
2249 struct drm_device *drm = dev_get_drvdata(client->host);
2250 struct tegra_drm *tegra = drm->dev_private;
2251
2252 tegra->num_crtcs--;
2253
2254 return 0;
2255 }
2256
2257 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2258 {
2259 struct tegra_dc *dc = host1x_client_to_dc(client);
2260 struct device *dev = client->dev;
2261 int err;
2262
2263 err = reset_control_assert(dc->rst);
2264 if (err < 0) {
2265 dev_err(dev, "failed to assert reset: %d\n", err);
2266 return err;
2267 }
2268
2269 if (dc->soc->has_powergate)
2270 tegra_powergate_power_off(dc->powergate);
2271
2272 clk_disable_unprepare(dc->clk);
2273 pm_runtime_put_sync(dev);
2274
2275 return 0;
2276 }
2277
2278 static int tegra_dc_runtime_resume(struct host1x_client *client)
2279 {
2280 struct tegra_dc *dc = host1x_client_to_dc(client);
2281 struct device *dev = client->dev;
2282 int err;
2283
2284 err = pm_runtime_resume_and_get(dev);
2285 if (err < 0) {
2286 dev_err(dev, "failed to get runtime PM: %d\n", err);
2287 return err;
2288 }
2289
2290 if (dc->soc->has_powergate) {
2291 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2292 dc->rst);
2293 if (err < 0) {
2294 dev_err(dev, "failed to power partition: %d\n", err);
2295 goto put_rpm;
2296 }
2297 } else {
2298 err = clk_prepare_enable(dc->clk);
2299 if (err < 0) {
2300 dev_err(dev, "failed to enable clock: %d\n", err);
2301 goto put_rpm;
2302 }
2303
2304 err = reset_control_deassert(dc->rst);
2305 if (err < 0) {
2306 dev_err(dev, "failed to deassert reset: %d\n", err);
2307 goto disable_clk;
2308 }
2309 }
2310
2311 return 0;
2312
2313 disable_clk:
2314 clk_disable_unprepare(dc->clk);
2315 put_rpm:
2316 pm_runtime_put_sync(dev);
2317 return err;
2318 }
2319
2320 static const struct host1x_client_ops dc_client_ops = {
2321 .early_init = tegra_dc_early_init,
2322 .init = tegra_dc_init,
2323 .exit = tegra_dc_exit,
2324 .late_exit = tegra_dc_late_exit,
2325 .suspend = tegra_dc_runtime_suspend,
2326 .resume = tegra_dc_runtime_resume,
2327 };
2328
2329 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2330 .supports_background_color = false,
2331 .supports_interlacing = false,
2332 .supports_cursor = false,
2333 .supports_block_linear = false,
2334 .supports_sector_layout = false,
2335 .has_legacy_blending = true,
2336 .pitch_align = 8,
2337 .has_powergate = false,
2338 .coupled_pm = true,
2339 .has_nvdisplay = false,
2340 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2341 .primary_formats = tegra20_primary_formats,
2342 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2343 .overlay_formats = tegra20_overlay_formats,
2344 .modifiers = tegra20_modifiers,
2345 .has_win_a_without_filters = true,
2346 .has_win_c_without_vert_filter = true,
2347 };
2348
2349 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2350 .supports_background_color = false,
2351 .supports_interlacing = false,
2352 .supports_cursor = false,
2353 .supports_block_linear = false,
2354 .supports_sector_layout = false,
2355 .has_legacy_blending = true,
2356 .pitch_align = 8,
2357 .has_powergate = false,
2358 .coupled_pm = false,
2359 .has_nvdisplay = false,
2360 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2361 .primary_formats = tegra20_primary_formats,
2362 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2363 .overlay_formats = tegra20_overlay_formats,
2364 .modifiers = tegra20_modifiers,
2365 .has_win_a_without_filters = false,
2366 .has_win_c_without_vert_filter = false,
2367 };
2368
2369 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2370 .supports_background_color = false,
2371 .supports_interlacing = false,
2372 .supports_cursor = false,
2373 .supports_block_linear = false,
2374 .supports_sector_layout = false,
2375 .has_legacy_blending = true,
2376 .pitch_align = 64,
2377 .has_powergate = true,
2378 .coupled_pm = false,
2379 .has_nvdisplay = false,
2380 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2381 .primary_formats = tegra114_primary_formats,
2382 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2383 .overlay_formats = tegra114_overlay_formats,
2384 .modifiers = tegra20_modifiers,
2385 .has_win_a_without_filters = false,
2386 .has_win_c_without_vert_filter = false,
2387 };
2388
2389 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2390 .supports_background_color = true,
2391 .supports_interlacing = true,
2392 .supports_cursor = true,
2393 .supports_block_linear = true,
2394 .supports_sector_layout = false,
2395 .has_legacy_blending = false,
2396 .pitch_align = 64,
2397 .has_powergate = true,
2398 .coupled_pm = false,
2399 .has_nvdisplay = false,
2400 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2401 .primary_formats = tegra124_primary_formats,
2402 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2403 .overlay_formats = tegra124_overlay_formats,
2404 .modifiers = tegra124_modifiers,
2405 .has_win_a_without_filters = false,
2406 .has_win_c_without_vert_filter = false,
2407 };
2408
2409 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2410 .supports_background_color = true,
2411 .supports_interlacing = true,
2412 .supports_cursor = true,
2413 .supports_block_linear = true,
2414 .supports_sector_layout = false,
2415 .has_legacy_blending = false,
2416 .pitch_align = 64,
2417 .has_powergate = true,
2418 .coupled_pm = false,
2419 .has_nvdisplay = false,
2420 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2421 .primary_formats = tegra114_primary_formats,
2422 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2423 .overlay_formats = tegra114_overlay_formats,
2424 .modifiers = tegra124_modifiers,
2425 .has_win_a_without_filters = false,
2426 .has_win_c_without_vert_filter = false,
2427 };
2428
2429 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2430 {
2431 .index = 0,
2432 .dc = 0,
2433 .windows = (const unsigned int[]) { 0 },
2434 .num_windows = 1,
2435 }, {
2436 .index = 1,
2437 .dc = 1,
2438 .windows = (const unsigned int[]) { 1 },
2439 .num_windows = 1,
2440 }, {
2441 .index = 2,
2442 .dc = 1,
2443 .windows = (const unsigned int[]) { 2 },
2444 .num_windows = 1,
2445 }, {
2446 .index = 3,
2447 .dc = 2,
2448 .windows = (const unsigned int[]) { 3 },
2449 .num_windows = 1,
2450 }, {
2451 .index = 4,
2452 .dc = 2,
2453 .windows = (const unsigned int[]) { 4 },
2454 .num_windows = 1,
2455 }, {
2456 .index = 5,
2457 .dc = 2,
2458 .windows = (const unsigned int[]) { 5 },
2459 .num_windows = 1,
2460 },
2461 };
2462
2463 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2464 .supports_background_color = true,
2465 .supports_interlacing = true,
2466 .supports_cursor = true,
2467 .supports_block_linear = true,
2468 .supports_sector_layout = false,
2469 .has_legacy_blending = false,
2470 .pitch_align = 64,
2471 .has_powergate = false,
2472 .coupled_pm = false,
2473 .has_nvdisplay = true,
2474 .wgrps = tegra186_dc_wgrps,
2475 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2476 };
2477
2478 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2479 {
2480 .index = 0,
2481 .dc = 0,
2482 .windows = (const unsigned int[]) { 0 },
2483 .num_windows = 1,
2484 }, {
2485 .index = 1,
2486 .dc = 1,
2487 .windows = (const unsigned int[]) { 1 },
2488 .num_windows = 1,
2489 }, {
2490 .index = 2,
2491 .dc = 1,
2492 .windows = (const unsigned int[]) { 2 },
2493 .num_windows = 1,
2494 }, {
2495 .index = 3,
2496 .dc = 2,
2497 .windows = (const unsigned int[]) { 3 },
2498 .num_windows = 1,
2499 }, {
2500 .index = 4,
2501 .dc = 2,
2502 .windows = (const unsigned int[]) { 4 },
2503 .num_windows = 1,
2504 }, {
2505 .index = 5,
2506 .dc = 2,
2507 .windows = (const unsigned int[]) { 5 },
2508 .num_windows = 1,
2509 },
2510 };
2511
2512 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2513 .supports_background_color = true,
2514 .supports_interlacing = true,
2515 .supports_cursor = true,
2516 .supports_block_linear = true,
2517 .supports_sector_layout = true,
2518 .has_legacy_blending = false,
2519 .pitch_align = 64,
2520 .has_powergate = false,
2521 .coupled_pm = false,
2522 .has_nvdisplay = true,
2523 .wgrps = tegra194_dc_wgrps,
2524 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2525 };
2526
2527 static const struct of_device_id tegra_dc_of_match[] = {
2528 {
2529 .compatible = "nvidia,tegra194-dc",
2530 .data = &tegra194_dc_soc_info,
2531 }, {
2532 .compatible = "nvidia,tegra186-dc",
2533 .data = &tegra186_dc_soc_info,
2534 }, {
2535 .compatible = "nvidia,tegra210-dc",
2536 .data = &tegra210_dc_soc_info,
2537 }, {
2538 .compatible = "nvidia,tegra124-dc",
2539 .data = &tegra124_dc_soc_info,
2540 }, {
2541 .compatible = "nvidia,tegra114-dc",
2542 .data = &tegra114_dc_soc_info,
2543 }, {
2544 .compatible = "nvidia,tegra30-dc",
2545 .data = &tegra30_dc_soc_info,
2546 }, {
2547 .compatible = "nvidia,tegra20-dc",
2548 .data = &tegra20_dc_soc_info,
2549 }, {
2550 /* sentinel */
2551 }
2552 };
2553 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2554
2555 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2556 {
2557 struct device_node *np;
2558 u32 value = 0;
2559 int err;
2560
2561 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2562 if (err < 0) {
2563 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2564
2565 /*
2566 * If the nvidia,head property isn't present, try to find the
2567 * correct head number by looking up the position of this
2568 * display controller's node within the device tree. Assuming
2569 * that the nodes are ordered properly in the DTS file and
2570 * that the translation into a flattened device tree blob
2571 * preserves that ordering this will actually yield the right
2572 * head number.
2573 *
2574 * If those assumptions don't hold, this will still work for
2575 * cases where only a single display controller is used.
2576 */
2577 for_each_matching_node(np, tegra_dc_of_match) {
2578 if (np == dc->dev->of_node) {
2579 of_node_put(np);
2580 break;
2581 }
2582
2583 value++;
2584 }
2585 }
2586
2587 dc->pipe = value;
2588
2589 return 0;
2590 }
2591
2592 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2593 {
2594 struct tegra_dc *dc = dev_get_drvdata(dev);
2595 unsigned int pipe = (unsigned long)(void *)data;
2596
2597 return dc->pipe == pipe;
2598 }
2599
2600 static int tegra_dc_couple(struct tegra_dc *dc)
2601 {
2602 /*
2603 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2604 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2605 * POWER_CONTROL registers during CRTC enabling.
2606 */
2607 if (dc->soc->coupled_pm && dc->pipe == 1) {
2608 struct device *companion;
2609 struct tegra_dc *parent;
2610
2611 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2612 tegra_dc_match_by_pipe);
2613 if (!companion)
2614 return -EPROBE_DEFER;
2615
2616 parent = dev_get_drvdata(companion);
2617 dc->client.parent = &parent->client;
2618
2619 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2620 }
2621
2622 return 0;
2623 }
2624
2625 static int tegra_dc_probe(struct platform_device *pdev)
2626 {
2627 u64 dma_mask = dma_get_mask(pdev->dev.parent);
2628 struct tegra_dc *dc;
2629 int err;
2630
2631 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2632 if (err < 0) {
2633 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2634 return err;
2635 }
2636
2637 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2638 if (!dc)
2639 return -ENOMEM;
2640
2641 dc->soc = of_device_get_match_data(&pdev->dev);
2642
2643 INIT_LIST_HEAD(&dc->list);
2644 dc->dev = &pdev->dev;
2645
2646 err = tegra_dc_parse_dt(dc);
2647 if (err < 0)
2648 return err;
2649
2650 err = tegra_dc_couple(dc);
2651 if (err < 0)
2652 return err;
2653
2654 dc->clk = devm_clk_get(&pdev->dev, NULL);
2655 if (IS_ERR(dc->clk)) {
2656 dev_err(&pdev->dev, "failed to get clock\n");
2657 return PTR_ERR(dc->clk);
2658 }
2659
2660 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2661 if (IS_ERR(dc->rst)) {
2662 dev_err(&pdev->dev, "failed to get reset\n");
2663 return PTR_ERR(dc->rst);
2664 }
2665
2666 /* assert reset and disable clock */
2667 err = clk_prepare_enable(dc->clk);
2668 if (err < 0)
2669 return err;
2670
2671 usleep_range(2000, 4000);
2672
2673 err = reset_control_assert(dc->rst);
2674 if (err < 0)
2675 return err;
2676
2677 usleep_range(2000, 4000);
2678
2679 clk_disable_unprepare(dc->clk);
2680
2681 if (dc->soc->has_powergate) {
2682 if (dc->pipe == 0)
2683 dc->powergate = TEGRA_POWERGATE_DIS;
2684 else
2685 dc->powergate = TEGRA_POWERGATE_DISB;
2686
2687 tegra_powergate_power_off(dc->powergate);
2688 }
2689
2690 dc->regs = devm_platform_ioremap_resource(pdev, 0);
2691 if (IS_ERR(dc->regs))
2692 return PTR_ERR(dc->regs);
2693
2694 dc->irq = platform_get_irq(pdev, 0);
2695 if (dc->irq < 0)
2696 return -ENXIO;
2697
2698 err = tegra_dc_rgb_probe(dc);
2699 if (err < 0 && err != -ENODEV) {
2700 const char *level = KERN_ERR;
2701
2702 if (err == -EPROBE_DEFER)
2703 level = KERN_DEBUG;
2704
2705 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2706 err);
2707 return err;
2708 }
2709
2710 platform_set_drvdata(pdev, dc);
2711 pm_runtime_enable(&pdev->dev);
2712
2713 INIT_LIST_HEAD(&dc->client.list);
2714 dc->client.ops = &dc_client_ops;
2715 dc->client.dev = &pdev->dev;
2716
2717 err = host1x_client_register(&dc->client);
2718 if (err < 0) {
2719 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2720 err);
2721 goto disable_pm;
2722 }
2723
2724 return 0;
2725
2726 disable_pm:
2727 pm_runtime_disable(&pdev->dev);
2728 tegra_dc_rgb_remove(dc);
2729
2730 return err;
2731 }
2732
2733 static int tegra_dc_remove(struct platform_device *pdev)
2734 {
2735 struct tegra_dc *dc = platform_get_drvdata(pdev);
2736 int err;
2737
2738 err = host1x_client_unregister(&dc->client);
2739 if (err < 0) {
2740 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2741 err);
2742 return err;
2743 }
2744
2745 err = tegra_dc_rgb_remove(dc);
2746 if (err < 0) {
2747 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2748 return err;
2749 }
2750
2751 pm_runtime_disable(&pdev->dev);
2752
2753 return 0;
2754 }
2755
2756 struct platform_driver tegra_dc_driver = {
2757 .driver = {
2758 .name = "tegra-dc",
2759 .of_match_table = tegra_dc_of_match,
2760 },
2761 .probe = tegra_dc_probe,
2762 .remove = tegra_dc_remove,
2763 };