]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/ttm/ttm_bo.c
Merge branches 'pm-sleep' and 'pm-cpufreq'
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 #include <linux/reservation.h>
44
45 #define TTM_ASSERT_LOCKED(param)
46 #define TTM_DEBUG(fmt, arg...)
47 #define TTM_BO_HASH_ORDER 13
48
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
58 uint32_t *mem_type)
59 {
60 int pos;
61
62 pos = ffs(place->flags & TTM_PL_MASK_MEM);
63 if (unlikely(!pos))
64 return -EINVAL;
65
66 *mem_type = pos - 1;
67 return 0;
68 }
69
70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
71 {
72 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
73
74 pr_err(" has_type: %d\n", man->has_type);
75 pr_err(" use_type: %d\n", man->use_type);
76 pr_err(" flags: 0x%08X\n", man->flags);
77 pr_err(" gpu_offset: 0x%08llX\n", man->gpu_offset);
78 pr_err(" size: %llu\n", man->size);
79 pr_err(" available_caching: 0x%08X\n", man->available_caching);
80 pr_err(" default_caching: 0x%08X\n", man->default_caching);
81 if (mem_type != TTM_PL_SYSTEM)
82 (*man->func->debug)(man, TTM_PFX);
83 }
84
85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
86 struct ttm_placement *placement)
87 {
88 int i, ret, mem_type;
89
90 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
91 bo, bo->mem.num_pages, bo->mem.size >> 10,
92 bo->mem.size >> 20);
93 for (i = 0; i < placement->num_placement; i++) {
94 ret = ttm_mem_type_from_place(&placement->placement[i],
95 &mem_type);
96 if (ret)
97 return;
98 pr_err(" placement[%d]=0x%08X (%d)\n",
99 i, placement->placement[i].flags, mem_type);
100 ttm_mem_type_debug(bo->bdev, mem_type);
101 }
102 }
103
104 static ssize_t ttm_bo_global_show(struct kobject *kobj,
105 struct attribute *attr,
106 char *buffer)
107 {
108 struct ttm_bo_global *glob =
109 container_of(kobj, struct ttm_bo_global, kobj);
110
111 return snprintf(buffer, PAGE_SIZE, "%lu\n",
112 (unsigned long) atomic_read(&glob->bo_count));
113 }
114
115 static struct attribute *ttm_bo_global_attrs[] = {
116 &ttm_bo_count,
117 NULL
118 };
119
120 static const struct sysfs_ops ttm_bo_global_ops = {
121 .show = &ttm_bo_global_show
122 };
123
124 static struct kobj_type ttm_bo_glob_kobj_type = {
125 .release = &ttm_bo_global_kobj_release,
126 .sysfs_ops = &ttm_bo_global_ops,
127 .default_attrs = ttm_bo_global_attrs
128 };
129
130
131 static inline uint32_t ttm_bo_type_flags(unsigned type)
132 {
133 return 1 << (type);
134 }
135
136 static void ttm_bo_release_list(struct kref *list_kref)
137 {
138 struct ttm_buffer_object *bo =
139 container_of(list_kref, struct ttm_buffer_object, list_kref);
140 struct ttm_bo_device *bdev = bo->bdev;
141 size_t acc_size = bo->acc_size;
142
143 BUG_ON(atomic_read(&bo->list_kref.refcount));
144 BUG_ON(atomic_read(&bo->kref.refcount));
145 BUG_ON(atomic_read(&bo->cpu_writers));
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149 ttm_tt_destroy(bo->ttm);
150 atomic_dec(&bo->glob->bo_count);
151 dma_fence_put(bo->moving);
152 if (bo->resv == &bo->ttm_resv)
153 reservation_object_fini(&bo->ttm_resv);
154 mutex_destroy(&bo->wu_mutex);
155 if (bo->destroy)
156 bo->destroy(bo);
157 else {
158 kfree(bo);
159 }
160 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161 }
162
163 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
164 {
165 struct ttm_bo_device *bdev = bo->bdev;
166
167 lockdep_assert_held(&bo->resv->lock.base);
168
169 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
170
171 BUG_ON(!list_empty(&bo->lru));
172
173 list_add(&bo->lru, bdev->driver->lru_tail(bo));
174 kref_get(&bo->list_kref);
175
176 if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
177 list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
178 kref_get(&bo->list_kref);
179 }
180 }
181 }
182 EXPORT_SYMBOL(ttm_bo_add_to_lru);
183
184 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
185 {
186 struct ttm_bo_device *bdev = bo->bdev;
187 int put_count = 0;
188
189 if (bdev->driver->lru_removal)
190 bdev->driver->lru_removal(bo);
191
192 if (!list_empty(&bo->swap)) {
193 list_del_init(&bo->swap);
194 ++put_count;
195 }
196 if (!list_empty(&bo->lru)) {
197 list_del_init(&bo->lru);
198 ++put_count;
199 }
200
201 return put_count;
202 }
203
204 static void ttm_bo_ref_bug(struct kref *list_kref)
205 {
206 BUG();
207 }
208
209 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
210 bool never_free)
211 {
212 kref_sub(&bo->list_kref, count,
213 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
214 }
215
216 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
217 {
218 int put_count;
219
220 spin_lock(&bo->glob->lru_lock);
221 put_count = ttm_bo_del_from_lru(bo);
222 spin_unlock(&bo->glob->lru_lock);
223 ttm_bo_list_ref_sub(bo, put_count, true);
224 }
225 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
226
227 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
228 {
229 struct ttm_bo_device *bdev = bo->bdev;
230 int put_count = 0;
231
232 lockdep_assert_held(&bo->resv->lock.base);
233
234 if (bdev->driver->lru_removal)
235 bdev->driver->lru_removal(bo);
236
237 put_count = ttm_bo_del_from_lru(bo);
238 ttm_bo_list_ref_sub(bo, put_count, true);
239 ttm_bo_add_to_lru(bo);
240 }
241 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
242
243 struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
244 {
245 return bo->bdev->man[bo->mem.mem_type].lru.prev;
246 }
247 EXPORT_SYMBOL(ttm_bo_default_lru_tail);
248
249 struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
250 {
251 return bo->glob->swap_lru.prev;
252 }
253 EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
254
255 /*
256 * Call bo->mutex locked.
257 */
258 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
259 {
260 struct ttm_bo_device *bdev = bo->bdev;
261 struct ttm_bo_global *glob = bo->glob;
262 int ret = 0;
263 uint32_t page_flags = 0;
264
265 TTM_ASSERT_LOCKED(&bo->mutex);
266 bo->ttm = NULL;
267
268 if (bdev->need_dma32)
269 page_flags |= TTM_PAGE_FLAG_DMA32;
270
271 switch (bo->type) {
272 case ttm_bo_type_device:
273 if (zero_alloc)
274 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
275 case ttm_bo_type_kernel:
276 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
277 page_flags, glob->dummy_read_page);
278 if (unlikely(bo->ttm == NULL))
279 ret = -ENOMEM;
280 break;
281 case ttm_bo_type_sg:
282 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
283 page_flags | TTM_PAGE_FLAG_SG,
284 glob->dummy_read_page);
285 if (unlikely(bo->ttm == NULL)) {
286 ret = -ENOMEM;
287 break;
288 }
289 bo->ttm->sg = bo->sg;
290 break;
291 default:
292 pr_err("Illegal buffer object type\n");
293 ret = -EINVAL;
294 break;
295 }
296
297 return ret;
298 }
299
300 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
301 struct ttm_mem_reg *mem,
302 bool evict, bool interruptible,
303 bool no_wait_gpu)
304 {
305 struct ttm_bo_device *bdev = bo->bdev;
306 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
307 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
308 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
309 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
310 int ret = 0;
311
312 if (old_is_pci || new_is_pci ||
313 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
314 ret = ttm_mem_io_lock(old_man, true);
315 if (unlikely(ret != 0))
316 goto out_err;
317 ttm_bo_unmap_virtual_locked(bo);
318 ttm_mem_io_unlock(old_man);
319 }
320
321 /*
322 * Create and bind a ttm if required.
323 */
324
325 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
326 if (bo->ttm == NULL) {
327 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
328 ret = ttm_bo_add_ttm(bo, zero);
329 if (ret)
330 goto out_err;
331 }
332
333 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
334 if (ret)
335 goto out_err;
336
337 if (mem->mem_type != TTM_PL_SYSTEM) {
338 ret = ttm_tt_bind(bo->ttm, mem);
339 if (ret)
340 goto out_err;
341 }
342
343 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
344 if (bdev->driver->move_notify)
345 bdev->driver->move_notify(bo, mem);
346 bo->mem = *mem;
347 mem->mm_node = NULL;
348 goto moved;
349 }
350 }
351
352 if (bdev->driver->move_notify)
353 bdev->driver->move_notify(bo, mem);
354
355 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
356 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
357 ret = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, mem);
358 else if (bdev->driver->move)
359 ret = bdev->driver->move(bo, evict, interruptible,
360 no_wait_gpu, mem);
361 else
362 ret = ttm_bo_move_memcpy(bo, interruptible, no_wait_gpu, mem);
363
364 if (ret) {
365 if (bdev->driver->move_notify) {
366 struct ttm_mem_reg tmp_mem = *mem;
367 *mem = bo->mem;
368 bo->mem = tmp_mem;
369 bdev->driver->move_notify(bo, mem);
370 bo->mem = *mem;
371 *mem = tmp_mem;
372 }
373
374 goto out_err;
375 }
376
377 moved:
378 if (bo->evicted) {
379 if (bdev->driver->invalidate_caches) {
380 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
381 if (ret)
382 pr_err("Can not flush read caches\n");
383 }
384 bo->evicted = false;
385 }
386
387 if (bo->mem.mm_node) {
388 bo->offset = (bo->mem.start << PAGE_SHIFT) +
389 bdev->man[bo->mem.mem_type].gpu_offset;
390 bo->cur_placement = bo->mem.placement;
391 } else
392 bo->offset = 0;
393
394 return 0;
395
396 out_err:
397 new_man = &bdev->man[bo->mem.mem_type];
398 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
399 ttm_tt_destroy(bo->ttm);
400 bo->ttm = NULL;
401 }
402
403 return ret;
404 }
405
406 /**
407 * Call bo::reserved.
408 * Will release GPU memory type usage on destruction.
409 * This is the place to put in driver specific hooks to release
410 * driver private resources.
411 * Will release the bo::reserved lock.
412 */
413
414 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
415 {
416 if (bo->bdev->driver->move_notify)
417 bo->bdev->driver->move_notify(bo, NULL);
418
419 ttm_tt_destroy(bo->ttm);
420 bo->ttm = NULL;
421 ttm_bo_mem_put(bo, &bo->mem);
422
423 ww_mutex_unlock (&bo->resv->lock);
424 }
425
426 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
427 {
428 struct reservation_object_list *fobj;
429 struct dma_fence *fence;
430 int i;
431
432 fobj = reservation_object_get_list(bo->resv);
433 fence = reservation_object_get_excl(bo->resv);
434 if (fence && !fence->ops->signaled)
435 dma_fence_enable_sw_signaling(fence);
436
437 for (i = 0; fobj && i < fobj->shared_count; ++i) {
438 fence = rcu_dereference_protected(fobj->shared[i],
439 reservation_object_held(bo->resv));
440
441 if (!fence->ops->signaled)
442 dma_fence_enable_sw_signaling(fence);
443 }
444 }
445
446 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
447 {
448 struct ttm_bo_device *bdev = bo->bdev;
449 struct ttm_bo_global *glob = bo->glob;
450 int put_count;
451 int ret;
452
453 spin_lock(&glob->lru_lock);
454 ret = __ttm_bo_reserve(bo, false, true, NULL);
455
456 if (!ret) {
457 if (!ttm_bo_wait(bo, false, true)) {
458 put_count = ttm_bo_del_from_lru(bo);
459
460 spin_unlock(&glob->lru_lock);
461 ttm_bo_cleanup_memtype_use(bo);
462
463 ttm_bo_list_ref_sub(bo, put_count, true);
464
465 return;
466 } else
467 ttm_bo_flush_all_fences(bo);
468
469 /*
470 * Make NO_EVICT bos immediately available to
471 * shrinkers, now that they are queued for
472 * destruction.
473 */
474 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
475 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
476 ttm_bo_add_to_lru(bo);
477 }
478
479 __ttm_bo_unreserve(bo);
480 }
481
482 kref_get(&bo->list_kref);
483 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
484 spin_unlock(&glob->lru_lock);
485
486 schedule_delayed_work(&bdev->wq,
487 ((HZ / 100) < 1) ? 1 : HZ / 100);
488 }
489
490 /**
491 * function ttm_bo_cleanup_refs_and_unlock
492 * If bo idle, remove from delayed- and lru lists, and unref.
493 * If not idle, do nothing.
494 *
495 * Must be called with lru_lock and reservation held, this function
496 * will drop both before returning.
497 *
498 * @interruptible Any sleeps should occur interruptibly.
499 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
500 */
501
502 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
503 bool interruptible,
504 bool no_wait_gpu)
505 {
506 struct ttm_bo_global *glob = bo->glob;
507 int put_count;
508 int ret;
509
510 ret = ttm_bo_wait(bo, false, true);
511
512 if (ret && !no_wait_gpu) {
513 long lret;
514 ww_mutex_unlock(&bo->resv->lock);
515 spin_unlock(&glob->lru_lock);
516
517 lret = reservation_object_wait_timeout_rcu(bo->resv,
518 true,
519 interruptible,
520 30 * HZ);
521
522 if (lret < 0)
523 return lret;
524 else if (lret == 0)
525 return -EBUSY;
526
527 spin_lock(&glob->lru_lock);
528 ret = __ttm_bo_reserve(bo, false, true, NULL);
529
530 /*
531 * We raced, and lost, someone else holds the reservation now,
532 * and is probably busy in ttm_bo_cleanup_memtype_use.
533 *
534 * Even if it's not the case, because we finished waiting any
535 * delayed destruction would succeed, so just return success
536 * here.
537 */
538 if (ret) {
539 spin_unlock(&glob->lru_lock);
540 return 0;
541 }
542
543 /*
544 * remove sync_obj with ttm_bo_wait, the wait should be
545 * finished, and no new wait object should have been added.
546 */
547 ret = ttm_bo_wait(bo, false, true);
548 WARN_ON(ret);
549 }
550
551 if (ret || unlikely(list_empty(&bo->ddestroy))) {
552 __ttm_bo_unreserve(bo);
553 spin_unlock(&glob->lru_lock);
554 return ret;
555 }
556
557 put_count = ttm_bo_del_from_lru(bo);
558 list_del_init(&bo->ddestroy);
559 ++put_count;
560
561 spin_unlock(&glob->lru_lock);
562 ttm_bo_cleanup_memtype_use(bo);
563
564 ttm_bo_list_ref_sub(bo, put_count, true);
565
566 return 0;
567 }
568
569 /**
570 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
571 * encountered buffers.
572 */
573
574 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
575 {
576 struct ttm_bo_global *glob = bdev->glob;
577 struct ttm_buffer_object *entry = NULL;
578 int ret = 0;
579
580 spin_lock(&glob->lru_lock);
581 if (list_empty(&bdev->ddestroy))
582 goto out_unlock;
583
584 entry = list_first_entry(&bdev->ddestroy,
585 struct ttm_buffer_object, ddestroy);
586 kref_get(&entry->list_kref);
587
588 for (;;) {
589 struct ttm_buffer_object *nentry = NULL;
590
591 if (entry->ddestroy.next != &bdev->ddestroy) {
592 nentry = list_first_entry(&entry->ddestroy,
593 struct ttm_buffer_object, ddestroy);
594 kref_get(&nentry->list_kref);
595 }
596
597 ret = __ttm_bo_reserve(entry, false, true, NULL);
598 if (remove_all && ret) {
599 spin_unlock(&glob->lru_lock);
600 ret = __ttm_bo_reserve(entry, false, false, NULL);
601 spin_lock(&glob->lru_lock);
602 }
603
604 if (!ret)
605 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
606 !remove_all);
607 else
608 spin_unlock(&glob->lru_lock);
609
610 kref_put(&entry->list_kref, ttm_bo_release_list);
611 entry = nentry;
612
613 if (ret || !entry)
614 goto out;
615
616 spin_lock(&glob->lru_lock);
617 if (list_empty(&entry->ddestroy))
618 break;
619 }
620
621 out_unlock:
622 spin_unlock(&glob->lru_lock);
623 out:
624 if (entry)
625 kref_put(&entry->list_kref, ttm_bo_release_list);
626 return ret;
627 }
628
629 static void ttm_bo_delayed_workqueue(struct work_struct *work)
630 {
631 struct ttm_bo_device *bdev =
632 container_of(work, struct ttm_bo_device, wq.work);
633
634 if (ttm_bo_delayed_delete(bdev, false)) {
635 schedule_delayed_work(&bdev->wq,
636 ((HZ / 100) < 1) ? 1 : HZ / 100);
637 }
638 }
639
640 static void ttm_bo_release(struct kref *kref)
641 {
642 struct ttm_buffer_object *bo =
643 container_of(kref, struct ttm_buffer_object, kref);
644 struct ttm_bo_device *bdev = bo->bdev;
645 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
646
647 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
648 ttm_mem_io_lock(man, false);
649 ttm_mem_io_free_vm(bo);
650 ttm_mem_io_unlock(man);
651 ttm_bo_cleanup_refs_or_queue(bo);
652 kref_put(&bo->list_kref, ttm_bo_release_list);
653 }
654
655 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
656 {
657 struct ttm_buffer_object *bo = *p_bo;
658
659 *p_bo = NULL;
660 kref_put(&bo->kref, ttm_bo_release);
661 }
662 EXPORT_SYMBOL(ttm_bo_unref);
663
664 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
665 {
666 return cancel_delayed_work_sync(&bdev->wq);
667 }
668 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
669
670 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
671 {
672 if (resched)
673 schedule_delayed_work(&bdev->wq,
674 ((HZ / 100) < 1) ? 1 : HZ / 100);
675 }
676 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
677
678 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
679 bool no_wait_gpu)
680 {
681 struct ttm_bo_device *bdev = bo->bdev;
682 struct ttm_mem_reg evict_mem;
683 struct ttm_placement placement;
684 int ret = 0;
685
686 lockdep_assert_held(&bo->resv->lock.base);
687
688 evict_mem = bo->mem;
689 evict_mem.mm_node = NULL;
690 evict_mem.bus.io_reserved_vm = false;
691 evict_mem.bus.io_reserved_count = 0;
692
693 placement.num_placement = 0;
694 placement.num_busy_placement = 0;
695 bdev->driver->evict_flags(bo, &placement);
696 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
697 no_wait_gpu);
698 if (ret) {
699 if (ret != -ERESTARTSYS) {
700 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
701 bo);
702 ttm_bo_mem_space_debug(bo, &placement);
703 }
704 goto out;
705 }
706
707 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
708 no_wait_gpu);
709 if (unlikely(ret)) {
710 if (ret != -ERESTARTSYS)
711 pr_err("Buffer eviction failed\n");
712 ttm_bo_mem_put(bo, &evict_mem);
713 goto out;
714 }
715 bo->evicted = true;
716 out:
717 return ret;
718 }
719
720 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
721 const struct ttm_place *place)
722 {
723 /* Don't evict this BO if it's outside of the
724 * requested placement range
725 */
726 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
727 (place->lpfn && place->lpfn <= bo->mem.start))
728 return false;
729
730 return true;
731 }
732 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
733
734 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
735 uint32_t mem_type,
736 const struct ttm_place *place,
737 bool interruptible,
738 bool no_wait_gpu)
739 {
740 struct ttm_bo_global *glob = bdev->glob;
741 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
742 struct ttm_buffer_object *bo;
743 int ret = -EBUSY, put_count;
744
745 spin_lock(&glob->lru_lock);
746 list_for_each_entry(bo, &man->lru, lru) {
747 ret = __ttm_bo_reserve(bo, false, true, NULL);
748 if (ret)
749 continue;
750
751 if (place && !bdev->driver->eviction_valuable(bo, place)) {
752 __ttm_bo_unreserve(bo);
753 ret = -EBUSY;
754 continue;
755 }
756
757 break;
758 }
759
760 if (ret) {
761 spin_unlock(&glob->lru_lock);
762 return ret;
763 }
764
765 kref_get(&bo->list_kref);
766
767 if (!list_empty(&bo->ddestroy)) {
768 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
769 no_wait_gpu);
770 kref_put(&bo->list_kref, ttm_bo_release_list);
771 return ret;
772 }
773
774 put_count = ttm_bo_del_from_lru(bo);
775 spin_unlock(&glob->lru_lock);
776
777 BUG_ON(ret != 0);
778
779 ttm_bo_list_ref_sub(bo, put_count, true);
780
781 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
782 ttm_bo_unreserve(bo);
783
784 kref_put(&bo->list_kref, ttm_bo_release_list);
785 return ret;
786 }
787
788 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
789 {
790 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
791
792 if (mem->mm_node)
793 (*man->func->put_node)(man, mem);
794 }
795 EXPORT_SYMBOL(ttm_bo_mem_put);
796
797 /**
798 * Add the last move fence to the BO and reserve a new shared slot.
799 */
800 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
801 struct ttm_mem_type_manager *man,
802 struct ttm_mem_reg *mem)
803 {
804 struct dma_fence *fence;
805 int ret;
806
807 spin_lock(&man->move_lock);
808 fence = dma_fence_get(man->move);
809 spin_unlock(&man->move_lock);
810
811 if (fence) {
812 reservation_object_add_shared_fence(bo->resv, fence);
813
814 ret = reservation_object_reserve_shared(bo->resv);
815 if (unlikely(ret))
816 return ret;
817
818 dma_fence_put(bo->moving);
819 bo->moving = fence;
820 }
821
822 return 0;
823 }
824
825 /**
826 * Repeatedly evict memory from the LRU for @mem_type until we create enough
827 * space, or we've evicted everything and there isn't enough space.
828 */
829 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
830 uint32_t mem_type,
831 const struct ttm_place *place,
832 struct ttm_mem_reg *mem,
833 bool interruptible,
834 bool no_wait_gpu)
835 {
836 struct ttm_bo_device *bdev = bo->bdev;
837 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
838 int ret;
839
840 do {
841 ret = (*man->func->get_node)(man, bo, place, mem);
842 if (unlikely(ret != 0))
843 return ret;
844 if (mem->mm_node)
845 break;
846 ret = ttm_mem_evict_first(bdev, mem_type, place,
847 interruptible, no_wait_gpu);
848 if (unlikely(ret != 0))
849 return ret;
850 } while (1);
851 mem->mem_type = mem_type;
852 return ttm_bo_add_move_fence(bo, man, mem);
853 }
854
855 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
856 uint32_t cur_placement,
857 uint32_t proposed_placement)
858 {
859 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
860 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
861
862 /**
863 * Keep current caching if possible.
864 */
865
866 if ((cur_placement & caching) != 0)
867 result |= (cur_placement & caching);
868 else if ((man->default_caching & caching) != 0)
869 result |= man->default_caching;
870 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
871 result |= TTM_PL_FLAG_CACHED;
872 else if ((TTM_PL_FLAG_WC & caching) != 0)
873 result |= TTM_PL_FLAG_WC;
874 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
875 result |= TTM_PL_FLAG_UNCACHED;
876
877 return result;
878 }
879
880 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
881 uint32_t mem_type,
882 const struct ttm_place *place,
883 uint32_t *masked_placement)
884 {
885 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
886
887 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
888 return false;
889
890 if ((place->flags & man->available_caching) == 0)
891 return false;
892
893 cur_flags |= (place->flags & man->available_caching);
894
895 *masked_placement = cur_flags;
896 return true;
897 }
898
899 /**
900 * Creates space for memory region @mem according to its type.
901 *
902 * This function first searches for free space in compatible memory types in
903 * the priority order defined by the driver. If free space isn't found, then
904 * ttm_bo_mem_force_space is attempted in priority order to evict and find
905 * space.
906 */
907 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
908 struct ttm_placement *placement,
909 struct ttm_mem_reg *mem,
910 bool interruptible,
911 bool no_wait_gpu)
912 {
913 struct ttm_bo_device *bdev = bo->bdev;
914 struct ttm_mem_type_manager *man;
915 uint32_t mem_type = TTM_PL_SYSTEM;
916 uint32_t cur_flags = 0;
917 bool type_found = false;
918 bool type_ok = false;
919 bool has_erestartsys = false;
920 int i, ret;
921
922 ret = reservation_object_reserve_shared(bo->resv);
923 if (unlikely(ret))
924 return ret;
925
926 mem->mm_node = NULL;
927 for (i = 0; i < placement->num_placement; ++i) {
928 const struct ttm_place *place = &placement->placement[i];
929
930 ret = ttm_mem_type_from_place(place, &mem_type);
931 if (ret)
932 return ret;
933 man = &bdev->man[mem_type];
934 if (!man->has_type || !man->use_type)
935 continue;
936
937 type_ok = ttm_bo_mt_compatible(man, mem_type, place,
938 &cur_flags);
939
940 if (!type_ok)
941 continue;
942
943 type_found = true;
944 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
945 cur_flags);
946 /*
947 * Use the access and other non-mapping-related flag bits from
948 * the memory placement flags to the current flags
949 */
950 ttm_flag_masked(&cur_flags, place->flags,
951 ~TTM_PL_MASK_MEMTYPE);
952
953 if (mem_type == TTM_PL_SYSTEM)
954 break;
955
956 ret = (*man->func->get_node)(man, bo, place, mem);
957 if (unlikely(ret))
958 return ret;
959
960 if (mem->mm_node) {
961 ret = ttm_bo_add_move_fence(bo, man, mem);
962 if (unlikely(ret)) {
963 (*man->func->put_node)(man, mem);
964 return ret;
965 }
966 break;
967 }
968 }
969
970 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
971 mem->mem_type = mem_type;
972 mem->placement = cur_flags;
973 return 0;
974 }
975
976 for (i = 0; i < placement->num_busy_placement; ++i) {
977 const struct ttm_place *place = &placement->busy_placement[i];
978
979 ret = ttm_mem_type_from_place(place, &mem_type);
980 if (ret)
981 return ret;
982 man = &bdev->man[mem_type];
983 if (!man->has_type || !man->use_type)
984 continue;
985 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
986 continue;
987
988 type_found = true;
989 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
990 cur_flags);
991 /*
992 * Use the access and other non-mapping-related flag bits from
993 * the memory placement flags to the current flags
994 */
995 ttm_flag_masked(&cur_flags, place->flags,
996 ~TTM_PL_MASK_MEMTYPE);
997
998 if (mem_type == TTM_PL_SYSTEM) {
999 mem->mem_type = mem_type;
1000 mem->placement = cur_flags;
1001 mem->mm_node = NULL;
1002 return 0;
1003 }
1004
1005 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
1006 interruptible, no_wait_gpu);
1007 if (ret == 0 && mem->mm_node) {
1008 mem->placement = cur_flags;
1009 return 0;
1010 }
1011 if (ret == -ERESTARTSYS)
1012 has_erestartsys = true;
1013 }
1014
1015 if (!type_found) {
1016 printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
1017 return -EINVAL;
1018 }
1019
1020 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1021 }
1022 EXPORT_SYMBOL(ttm_bo_mem_space);
1023
1024 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1025 struct ttm_placement *placement,
1026 bool interruptible,
1027 bool no_wait_gpu)
1028 {
1029 int ret = 0;
1030 struct ttm_mem_reg mem;
1031
1032 lockdep_assert_held(&bo->resv->lock.base);
1033
1034 mem.num_pages = bo->num_pages;
1035 mem.size = mem.num_pages << PAGE_SHIFT;
1036 mem.page_alignment = bo->mem.page_alignment;
1037 mem.bus.io_reserved_vm = false;
1038 mem.bus.io_reserved_count = 0;
1039 /*
1040 * Determine where to move the buffer.
1041 */
1042 ret = ttm_bo_mem_space(bo, placement, &mem,
1043 interruptible, no_wait_gpu);
1044 if (ret)
1045 goto out_unlock;
1046 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1047 interruptible, no_wait_gpu);
1048 out_unlock:
1049 if (ret && mem.mm_node)
1050 ttm_bo_mem_put(bo, &mem);
1051 return ret;
1052 }
1053
1054 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1055 struct ttm_mem_reg *mem,
1056 uint32_t *new_flags)
1057 {
1058 int i;
1059
1060 for (i = 0; i < placement->num_placement; i++) {
1061 const struct ttm_place *heap = &placement->placement[i];
1062 if (mem->mm_node &&
1063 (mem->start < heap->fpfn ||
1064 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1065 continue;
1066
1067 *new_flags = heap->flags;
1068 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1069 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1070 return true;
1071 }
1072
1073 for (i = 0; i < placement->num_busy_placement; i++) {
1074 const struct ttm_place *heap = &placement->busy_placement[i];
1075 if (mem->mm_node &&
1076 (mem->start < heap->fpfn ||
1077 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1078 continue;
1079
1080 *new_flags = heap->flags;
1081 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1082 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1083 return true;
1084 }
1085
1086 return false;
1087 }
1088 EXPORT_SYMBOL(ttm_bo_mem_compat);
1089
1090 int ttm_bo_validate(struct ttm_buffer_object *bo,
1091 struct ttm_placement *placement,
1092 bool interruptible,
1093 bool no_wait_gpu)
1094 {
1095 int ret;
1096 uint32_t new_flags;
1097
1098 lockdep_assert_held(&bo->resv->lock.base);
1099 /*
1100 * Check whether we need to move buffer.
1101 */
1102 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1103 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1104 no_wait_gpu);
1105 if (ret)
1106 return ret;
1107 } else {
1108 /*
1109 * Use the access and other non-mapping-related flag bits from
1110 * the compatible memory placement flags to the active flags
1111 */
1112 ttm_flag_masked(&bo->mem.placement, new_flags,
1113 ~TTM_PL_MASK_MEMTYPE);
1114 }
1115 /*
1116 * We might need to add a TTM.
1117 */
1118 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1119 ret = ttm_bo_add_ttm(bo, true);
1120 if (ret)
1121 return ret;
1122 }
1123 return 0;
1124 }
1125 EXPORT_SYMBOL(ttm_bo_validate);
1126
1127 int ttm_bo_init(struct ttm_bo_device *bdev,
1128 struct ttm_buffer_object *bo,
1129 unsigned long size,
1130 enum ttm_bo_type type,
1131 struct ttm_placement *placement,
1132 uint32_t page_alignment,
1133 bool interruptible,
1134 struct file *persistent_swap_storage,
1135 size_t acc_size,
1136 struct sg_table *sg,
1137 struct reservation_object *resv,
1138 void (*destroy) (struct ttm_buffer_object *))
1139 {
1140 int ret = 0;
1141 unsigned long num_pages;
1142 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1143 bool locked;
1144
1145 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1146 if (ret) {
1147 pr_err("Out of kernel memory\n");
1148 if (destroy)
1149 (*destroy)(bo);
1150 else
1151 kfree(bo);
1152 return -ENOMEM;
1153 }
1154
1155 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156 if (num_pages == 0) {
1157 pr_err("Illegal buffer object size\n");
1158 if (destroy)
1159 (*destroy)(bo);
1160 else
1161 kfree(bo);
1162 ttm_mem_global_free(mem_glob, acc_size);
1163 return -EINVAL;
1164 }
1165 bo->destroy = destroy;
1166
1167 kref_init(&bo->kref);
1168 kref_init(&bo->list_kref);
1169 atomic_set(&bo->cpu_writers, 0);
1170 INIT_LIST_HEAD(&bo->lru);
1171 INIT_LIST_HEAD(&bo->ddestroy);
1172 INIT_LIST_HEAD(&bo->swap);
1173 INIT_LIST_HEAD(&bo->io_reserve_lru);
1174 mutex_init(&bo->wu_mutex);
1175 bo->bdev = bdev;
1176 bo->glob = bdev->glob;
1177 bo->type = type;
1178 bo->num_pages = num_pages;
1179 bo->mem.size = num_pages << PAGE_SHIFT;
1180 bo->mem.mem_type = TTM_PL_SYSTEM;
1181 bo->mem.num_pages = bo->num_pages;
1182 bo->mem.mm_node = NULL;
1183 bo->mem.page_alignment = page_alignment;
1184 bo->mem.bus.io_reserved_vm = false;
1185 bo->mem.bus.io_reserved_count = 0;
1186 bo->moving = NULL;
1187 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1188 bo->persistent_swap_storage = persistent_swap_storage;
1189 bo->acc_size = acc_size;
1190 bo->sg = sg;
1191 if (resv) {
1192 bo->resv = resv;
1193 lockdep_assert_held(&bo->resv->lock.base);
1194 } else {
1195 bo->resv = &bo->ttm_resv;
1196 reservation_object_init(&bo->ttm_resv);
1197 }
1198 atomic_inc(&bo->glob->bo_count);
1199 drm_vma_node_reset(&bo->vma_node);
1200
1201 /*
1202 * For ttm_bo_type_device buffers, allocate
1203 * address space from the device.
1204 */
1205 if (bo->type == ttm_bo_type_device ||
1206 bo->type == ttm_bo_type_sg)
1207 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1208 bo->mem.num_pages);
1209
1210 /* passed reservation objects should already be locked,
1211 * since otherwise lockdep will be angered in radeon.
1212 */
1213 if (!resv) {
1214 locked = ww_mutex_trylock(&bo->resv->lock);
1215 WARN_ON(!locked);
1216 }
1217
1218 if (likely(!ret))
1219 ret = ttm_bo_validate(bo, placement, interruptible, false);
1220
1221 if (!resv) {
1222 ttm_bo_unreserve(bo);
1223
1224 } else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1225 spin_lock(&bo->glob->lru_lock);
1226 ttm_bo_add_to_lru(bo);
1227 spin_unlock(&bo->glob->lru_lock);
1228 }
1229
1230 if (unlikely(ret))
1231 ttm_bo_unref(&bo);
1232
1233 return ret;
1234 }
1235 EXPORT_SYMBOL(ttm_bo_init);
1236
1237 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1238 unsigned long bo_size,
1239 unsigned struct_size)
1240 {
1241 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1242 size_t size = 0;
1243
1244 size += ttm_round_pot(struct_size);
1245 size += ttm_round_pot(npages * sizeof(void *));
1246 size += ttm_round_pot(sizeof(struct ttm_tt));
1247 return size;
1248 }
1249 EXPORT_SYMBOL(ttm_bo_acc_size);
1250
1251 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1252 unsigned long bo_size,
1253 unsigned struct_size)
1254 {
1255 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1256 size_t size = 0;
1257
1258 size += ttm_round_pot(struct_size);
1259 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1260 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1261 return size;
1262 }
1263 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1264
1265 int ttm_bo_create(struct ttm_bo_device *bdev,
1266 unsigned long size,
1267 enum ttm_bo_type type,
1268 struct ttm_placement *placement,
1269 uint32_t page_alignment,
1270 bool interruptible,
1271 struct file *persistent_swap_storage,
1272 struct ttm_buffer_object **p_bo)
1273 {
1274 struct ttm_buffer_object *bo;
1275 size_t acc_size;
1276 int ret;
1277
1278 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1279 if (unlikely(bo == NULL))
1280 return -ENOMEM;
1281
1282 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1283 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1284 interruptible, persistent_swap_storage, acc_size,
1285 NULL, NULL, NULL);
1286 if (likely(ret == 0))
1287 *p_bo = bo;
1288
1289 return ret;
1290 }
1291 EXPORT_SYMBOL(ttm_bo_create);
1292
1293 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1294 unsigned mem_type, bool allow_errors)
1295 {
1296 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1297 struct ttm_bo_global *glob = bdev->glob;
1298 struct dma_fence *fence;
1299 int ret;
1300
1301 /*
1302 * Can't use standard list traversal since we're unlocking.
1303 */
1304
1305 spin_lock(&glob->lru_lock);
1306 while (!list_empty(&man->lru)) {
1307 spin_unlock(&glob->lru_lock);
1308 ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1309 if (ret) {
1310 if (allow_errors) {
1311 return ret;
1312 } else {
1313 pr_err("Cleanup eviction failed\n");
1314 }
1315 }
1316 spin_lock(&glob->lru_lock);
1317 }
1318 spin_unlock(&glob->lru_lock);
1319
1320 spin_lock(&man->move_lock);
1321 fence = dma_fence_get(man->move);
1322 spin_unlock(&man->move_lock);
1323
1324 if (fence) {
1325 ret = dma_fence_wait(fence, false);
1326 dma_fence_put(fence);
1327 if (ret) {
1328 if (allow_errors) {
1329 return ret;
1330 } else {
1331 pr_err("Cleanup eviction failed\n");
1332 }
1333 }
1334 }
1335
1336 return 0;
1337 }
1338
1339 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1340 {
1341 struct ttm_mem_type_manager *man;
1342 int ret = -EINVAL;
1343
1344 if (mem_type >= TTM_NUM_MEM_TYPES) {
1345 pr_err("Illegal memory type %d\n", mem_type);
1346 return ret;
1347 }
1348 man = &bdev->man[mem_type];
1349
1350 if (!man->has_type) {
1351 pr_err("Trying to take down uninitialized memory manager type %u\n",
1352 mem_type);
1353 return ret;
1354 }
1355 dma_fence_put(man->move);
1356
1357 man->use_type = false;
1358 man->has_type = false;
1359
1360 ret = 0;
1361 if (mem_type > 0) {
1362 ttm_bo_force_list_clean(bdev, mem_type, false);
1363
1364 ret = (*man->func->takedown)(man);
1365 }
1366
1367 return ret;
1368 }
1369 EXPORT_SYMBOL(ttm_bo_clean_mm);
1370
1371 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1372 {
1373 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1374
1375 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1376 pr_err("Illegal memory manager memory type %u\n", mem_type);
1377 return -EINVAL;
1378 }
1379
1380 if (!man->has_type) {
1381 pr_err("Memory type %u has not been initialized\n", mem_type);
1382 return 0;
1383 }
1384
1385 return ttm_bo_force_list_clean(bdev, mem_type, true);
1386 }
1387 EXPORT_SYMBOL(ttm_bo_evict_mm);
1388
1389 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1390 unsigned long p_size)
1391 {
1392 int ret = -EINVAL;
1393 struct ttm_mem_type_manager *man;
1394
1395 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1396 man = &bdev->man[type];
1397 BUG_ON(man->has_type);
1398 man->io_reserve_fastpath = true;
1399 man->use_io_reserve_lru = false;
1400 mutex_init(&man->io_reserve_mutex);
1401 spin_lock_init(&man->move_lock);
1402 INIT_LIST_HEAD(&man->io_reserve_lru);
1403
1404 ret = bdev->driver->init_mem_type(bdev, type, man);
1405 if (ret)
1406 return ret;
1407 man->bdev = bdev;
1408
1409 ret = 0;
1410 if (type != TTM_PL_SYSTEM) {
1411 ret = (*man->func->init)(man, p_size);
1412 if (ret)
1413 return ret;
1414 }
1415 man->has_type = true;
1416 man->use_type = true;
1417 man->size = p_size;
1418
1419 INIT_LIST_HEAD(&man->lru);
1420 man->move = NULL;
1421
1422 return 0;
1423 }
1424 EXPORT_SYMBOL(ttm_bo_init_mm);
1425
1426 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1427 {
1428 struct ttm_bo_global *glob =
1429 container_of(kobj, struct ttm_bo_global, kobj);
1430
1431 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1432 __free_page(glob->dummy_read_page);
1433 kfree(glob);
1434 }
1435
1436 void ttm_bo_global_release(struct drm_global_reference *ref)
1437 {
1438 struct ttm_bo_global *glob = ref->object;
1439
1440 kobject_del(&glob->kobj);
1441 kobject_put(&glob->kobj);
1442 }
1443 EXPORT_SYMBOL(ttm_bo_global_release);
1444
1445 int ttm_bo_global_init(struct drm_global_reference *ref)
1446 {
1447 struct ttm_bo_global_ref *bo_ref =
1448 container_of(ref, struct ttm_bo_global_ref, ref);
1449 struct ttm_bo_global *glob = ref->object;
1450 int ret;
1451
1452 mutex_init(&glob->device_list_mutex);
1453 spin_lock_init(&glob->lru_lock);
1454 glob->mem_glob = bo_ref->mem_glob;
1455 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1456
1457 if (unlikely(glob->dummy_read_page == NULL)) {
1458 ret = -ENOMEM;
1459 goto out_no_drp;
1460 }
1461
1462 INIT_LIST_HEAD(&glob->swap_lru);
1463 INIT_LIST_HEAD(&glob->device_list);
1464
1465 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1466 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1467 if (unlikely(ret != 0)) {
1468 pr_err("Could not register buffer object swapout\n");
1469 goto out_no_shrink;
1470 }
1471
1472 atomic_set(&glob->bo_count, 0);
1473
1474 ret = kobject_init_and_add(
1475 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1476 if (unlikely(ret != 0))
1477 kobject_put(&glob->kobj);
1478 return ret;
1479 out_no_shrink:
1480 __free_page(glob->dummy_read_page);
1481 out_no_drp:
1482 kfree(glob);
1483 return ret;
1484 }
1485 EXPORT_SYMBOL(ttm_bo_global_init);
1486
1487
1488 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1489 {
1490 int ret = 0;
1491 unsigned i = TTM_NUM_MEM_TYPES;
1492 struct ttm_mem_type_manager *man;
1493 struct ttm_bo_global *glob = bdev->glob;
1494
1495 while (i--) {
1496 man = &bdev->man[i];
1497 if (man->has_type) {
1498 man->use_type = false;
1499 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1500 ret = -EBUSY;
1501 pr_err("DRM memory manager type %d is not clean\n",
1502 i);
1503 }
1504 man->has_type = false;
1505 }
1506 }
1507
1508 mutex_lock(&glob->device_list_mutex);
1509 list_del(&bdev->device_list);
1510 mutex_unlock(&glob->device_list_mutex);
1511
1512 cancel_delayed_work_sync(&bdev->wq);
1513
1514 while (ttm_bo_delayed_delete(bdev, true))
1515 ;
1516
1517 spin_lock(&glob->lru_lock);
1518 if (list_empty(&bdev->ddestroy))
1519 TTM_DEBUG("Delayed destroy list was clean\n");
1520
1521 if (list_empty(&bdev->man[0].lru))
1522 TTM_DEBUG("Swap list was clean\n");
1523 spin_unlock(&glob->lru_lock);
1524
1525 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1526
1527 return ret;
1528 }
1529 EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532 struct ttm_bo_global *glob,
1533 struct ttm_bo_driver *driver,
1534 struct address_space *mapping,
1535 uint64_t file_page_offset,
1536 bool need_dma32)
1537 {
1538 int ret = -EINVAL;
1539
1540 bdev->driver = driver;
1541
1542 memset(bdev->man, 0, sizeof(bdev->man));
1543
1544 /*
1545 * Initialize the system memory buffer type.
1546 * Other types need to be driver / IOCTL initialized.
1547 */
1548 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549 if (unlikely(ret != 0))
1550 goto out_no_sys;
1551
1552 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1553 0x10000000);
1554 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1555 INIT_LIST_HEAD(&bdev->ddestroy);
1556 bdev->dev_mapping = mapping;
1557 bdev->glob = glob;
1558 bdev->need_dma32 = need_dma32;
1559 mutex_lock(&glob->device_list_mutex);
1560 list_add_tail(&bdev->device_list, &glob->device_list);
1561 mutex_unlock(&glob->device_list_mutex);
1562
1563 return 0;
1564 out_no_sys:
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(ttm_bo_device_init);
1568
1569 /*
1570 * buffer object vm functions.
1571 */
1572
1573 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1574 {
1575 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1576
1577 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1578 if (mem->mem_type == TTM_PL_SYSTEM)
1579 return false;
1580
1581 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1582 return false;
1583
1584 if (mem->placement & TTM_PL_FLAG_CACHED)
1585 return false;
1586 }
1587 return true;
1588 }
1589
1590 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1591 {
1592 struct ttm_bo_device *bdev = bo->bdev;
1593
1594 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1595 ttm_mem_io_free_vm(bo);
1596 }
1597
1598 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1599 {
1600 struct ttm_bo_device *bdev = bo->bdev;
1601 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1602
1603 ttm_mem_io_lock(man, false);
1604 ttm_bo_unmap_virtual_locked(bo);
1605 ttm_mem_io_unlock(man);
1606 }
1607
1608
1609 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1610
1611 int ttm_bo_wait(struct ttm_buffer_object *bo,
1612 bool interruptible, bool no_wait)
1613 {
1614 long timeout = 15 * HZ;
1615
1616 if (no_wait) {
1617 if (reservation_object_test_signaled_rcu(bo->resv, true))
1618 return 0;
1619 else
1620 return -EBUSY;
1621 }
1622
1623 timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1624 interruptible, timeout);
1625 if (timeout < 0)
1626 return timeout;
1627
1628 if (timeout == 0)
1629 return -EBUSY;
1630
1631 reservation_object_add_excl_fence(bo->resv, NULL);
1632 return 0;
1633 }
1634 EXPORT_SYMBOL(ttm_bo_wait);
1635
1636 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1637 {
1638 int ret = 0;
1639
1640 /*
1641 * Using ttm_bo_reserve makes sure the lru lists are updated.
1642 */
1643
1644 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1645 if (unlikely(ret != 0))
1646 return ret;
1647 ret = ttm_bo_wait(bo, true, no_wait);
1648 if (likely(ret == 0))
1649 atomic_inc(&bo->cpu_writers);
1650 ttm_bo_unreserve(bo);
1651 return ret;
1652 }
1653 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1654
1655 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1656 {
1657 atomic_dec(&bo->cpu_writers);
1658 }
1659 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1660
1661 /**
1662 * A buffer object shrink method that tries to swap out the first
1663 * buffer object on the bo_global::swap_lru list.
1664 */
1665
1666 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1667 {
1668 struct ttm_bo_global *glob =
1669 container_of(shrink, struct ttm_bo_global, shrink);
1670 struct ttm_buffer_object *bo;
1671 int ret = -EBUSY;
1672 int put_count;
1673 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1674
1675 spin_lock(&glob->lru_lock);
1676 list_for_each_entry(bo, &glob->swap_lru, swap) {
1677 ret = __ttm_bo_reserve(bo, false, true, NULL);
1678 if (!ret)
1679 break;
1680 }
1681
1682 if (ret) {
1683 spin_unlock(&glob->lru_lock);
1684 return ret;
1685 }
1686
1687 kref_get(&bo->list_kref);
1688
1689 if (!list_empty(&bo->ddestroy)) {
1690 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1691 kref_put(&bo->list_kref, ttm_bo_release_list);
1692 return ret;
1693 }
1694
1695 put_count = ttm_bo_del_from_lru(bo);
1696 spin_unlock(&glob->lru_lock);
1697
1698 ttm_bo_list_ref_sub(bo, put_count, true);
1699
1700 /**
1701 * Move to system cached
1702 */
1703
1704 if ((bo->mem.placement & swap_placement) != swap_placement) {
1705 struct ttm_mem_reg evict_mem;
1706
1707 evict_mem = bo->mem;
1708 evict_mem.mm_node = NULL;
1709 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1710 evict_mem.mem_type = TTM_PL_SYSTEM;
1711
1712 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1713 false, false);
1714 if (unlikely(ret != 0))
1715 goto out;
1716 }
1717
1718 /**
1719 * Make sure BO is idle.
1720 */
1721
1722 ret = ttm_bo_wait(bo, false, false);
1723 if (unlikely(ret != 0))
1724 goto out;
1725
1726 ttm_bo_unmap_virtual(bo);
1727
1728 /**
1729 * Swap out. Buffer will be swapped in again as soon as
1730 * anyone tries to access a ttm page.
1731 */
1732
1733 if (bo->bdev->driver->swap_notify)
1734 bo->bdev->driver->swap_notify(bo);
1735
1736 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1737 out:
1738
1739 /**
1740 *
1741 * Unreserve without putting on LRU to avoid swapping out an
1742 * already swapped buffer.
1743 */
1744
1745 __ttm_bo_unreserve(bo);
1746 kref_put(&bo->list_kref, ttm_bo_release_list);
1747 return ret;
1748 }
1749
1750 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1751 {
1752 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1753 ;
1754 }
1755 EXPORT_SYMBOL(ttm_bo_swapout_all);
1756
1757 /**
1758 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1759 * unreserved
1760 *
1761 * @bo: Pointer to buffer
1762 */
1763 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1764 {
1765 int ret;
1766
1767 /*
1768 * In the absense of a wait_unlocked API,
1769 * Use the bo::wu_mutex to avoid triggering livelocks due to
1770 * concurrent use of this function. Note that this use of
1771 * bo::wu_mutex can go away if we change locking order to
1772 * mmap_sem -> bo::reserve.
1773 */
1774 ret = mutex_lock_interruptible(&bo->wu_mutex);
1775 if (unlikely(ret != 0))
1776 return -ERESTARTSYS;
1777 if (!ww_mutex_is_locked(&bo->resv->lock))
1778 goto out_unlock;
1779 ret = __ttm_bo_reserve(bo, true, false, NULL);
1780 if (unlikely(ret != 0))
1781 goto out_unlock;
1782 __ttm_bo_unreserve(bo);
1783
1784 out_unlock:
1785 mutex_unlock(&bo->wu_mutex);
1786 return ret;
1787 }