]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/ttm/ttm_page_alloc.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
26 */
27
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #if IS_ENABLED(CONFIG_AGP)
52 #include <asm/agp.h>
53 #endif
54 #ifdef CONFIG_X86
55 #include <asm/set_memory.h>
56 #endif
57
58 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION 16
60 #define FREE_ALL_PAGES (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL 1000
63
64 /**
65 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
66 *
67 * @lock: Protects the shared pool from concurrnet access. Must be used with
68 * irqsave/irqrestore variants because pool allocator maybe called from
69 * delayed work.
70 * @fill_lock: Prevent concurrent calls to fill.
71 * @list: Pool of free uc/wc pages for fast reuse.
72 * @gfp_flags: Flags to pass for alloc_page.
73 * @npages: Number of pages in pool.
74 */
75 struct ttm_page_pool {
76 spinlock_t lock;
77 bool fill_lock;
78 struct list_head list;
79 gfp_t gfp_flags;
80 unsigned npages;
81 char *name;
82 unsigned long nfrees;
83 unsigned long nrefills;
84 unsigned int order;
85 };
86
87 /**
88 * Limits for the pool. They are handled without locks because only place where
89 * they may change is in sysfs store. They won't have immediate effect anyway
90 * so forcing serialization to access them is pointless.
91 */
92
93 struct ttm_pool_opts {
94 unsigned alloc_size;
95 unsigned max_size;
96 unsigned small;
97 };
98
99 #define NUM_POOLS 6
100
101 /**
102 * struct ttm_pool_manager - Holds memory pools for fst allocation
103 *
104 * Manager is read only object for pool code so it doesn't need locking.
105 *
106 * @free_interval: minimum number of jiffies between freeing pages from pool.
107 * @page_alloc_inited: reference counting for pool allocation.
108 * @work: Work that is used to shrink the pool. Work is only run when there is
109 * some pages to free.
110 * @small_allocation: Limit in number of pages what is small allocation.
111 *
112 * @pools: All pool objects in use.
113 **/
114 struct ttm_pool_manager {
115 struct kobject kobj;
116 struct shrinker mm_shrink;
117 struct ttm_pool_opts options;
118
119 union {
120 struct ttm_page_pool pools[NUM_POOLS];
121 struct {
122 struct ttm_page_pool wc_pool;
123 struct ttm_page_pool uc_pool;
124 struct ttm_page_pool wc_pool_dma32;
125 struct ttm_page_pool uc_pool_dma32;
126 struct ttm_page_pool wc_pool_huge;
127 struct ttm_page_pool uc_pool_huge;
128 } ;
129 };
130 };
131
132 static struct attribute ttm_page_pool_max = {
133 .name = "pool_max_size",
134 .mode = S_IRUGO | S_IWUSR
135 };
136 static struct attribute ttm_page_pool_small = {
137 .name = "pool_small_allocation",
138 .mode = S_IRUGO | S_IWUSR
139 };
140 static struct attribute ttm_page_pool_alloc_size = {
141 .name = "pool_allocation_size",
142 .mode = S_IRUGO | S_IWUSR
143 };
144
145 static struct attribute *ttm_pool_attrs[] = {
146 &ttm_page_pool_max,
147 &ttm_page_pool_small,
148 &ttm_page_pool_alloc_size,
149 NULL
150 };
151
152 static void ttm_pool_kobj_release(struct kobject *kobj)
153 {
154 struct ttm_pool_manager *m =
155 container_of(kobj, struct ttm_pool_manager, kobj);
156 kfree(m);
157 }
158
159 static ssize_t ttm_pool_store(struct kobject *kobj,
160 struct attribute *attr, const char *buffer, size_t size)
161 {
162 struct ttm_pool_manager *m =
163 container_of(kobj, struct ttm_pool_manager, kobj);
164 int chars;
165 unsigned val;
166 chars = sscanf(buffer, "%u", &val);
167 if (chars == 0)
168 return size;
169
170 /* Convert kb to number of pages */
171 val = val / (PAGE_SIZE >> 10);
172
173 if (attr == &ttm_page_pool_max)
174 m->options.max_size = val;
175 else if (attr == &ttm_page_pool_small)
176 m->options.small = val;
177 else if (attr == &ttm_page_pool_alloc_size) {
178 if (val > NUM_PAGES_TO_ALLOC*8) {
179 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
180 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
181 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
182 return size;
183 } else if (val > NUM_PAGES_TO_ALLOC) {
184 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
185 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
186 }
187 m->options.alloc_size = val;
188 }
189
190 return size;
191 }
192
193 static ssize_t ttm_pool_show(struct kobject *kobj,
194 struct attribute *attr, char *buffer)
195 {
196 struct ttm_pool_manager *m =
197 container_of(kobj, struct ttm_pool_manager, kobj);
198 unsigned val = 0;
199
200 if (attr == &ttm_page_pool_max)
201 val = m->options.max_size;
202 else if (attr == &ttm_page_pool_small)
203 val = m->options.small;
204 else if (attr == &ttm_page_pool_alloc_size)
205 val = m->options.alloc_size;
206
207 val = val * (PAGE_SIZE >> 10);
208
209 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
210 }
211
212 static const struct sysfs_ops ttm_pool_sysfs_ops = {
213 .show = &ttm_pool_show,
214 .store = &ttm_pool_store,
215 };
216
217 static struct kobj_type ttm_pool_kobj_type = {
218 .release = &ttm_pool_kobj_release,
219 .sysfs_ops = &ttm_pool_sysfs_ops,
220 .default_attrs = ttm_pool_attrs,
221 };
222
223 static struct ttm_pool_manager *_manager;
224
225 #ifndef CONFIG_X86
226 static int set_pages_wb(struct page *page, int numpages)
227 {
228 #if IS_ENABLED(CONFIG_AGP)
229 int i;
230
231 for (i = 0; i < numpages; i++)
232 unmap_page_from_agp(page++);
233 #endif
234 return 0;
235 }
236
237 static int set_pages_array_wb(struct page **pages, int addrinarray)
238 {
239 #if IS_ENABLED(CONFIG_AGP)
240 int i;
241
242 for (i = 0; i < addrinarray; i++)
243 unmap_page_from_agp(pages[i]);
244 #endif
245 return 0;
246 }
247
248 static int set_pages_array_wc(struct page **pages, int addrinarray)
249 {
250 #if IS_ENABLED(CONFIG_AGP)
251 int i;
252
253 for (i = 0; i < addrinarray; i++)
254 map_page_into_agp(pages[i]);
255 #endif
256 return 0;
257 }
258
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
260 {
261 #if IS_ENABLED(CONFIG_AGP)
262 int i;
263
264 for (i = 0; i < addrinarray; i++)
265 map_page_into_agp(pages[i]);
266 #endif
267 return 0;
268 }
269 #endif
270
271 /**
272 * Select the right pool or requested caching state and ttm flags. */
273 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
274 enum ttm_caching_state cstate)
275 {
276 int pool_index;
277
278 if (cstate == tt_cached)
279 return NULL;
280
281 if (cstate == tt_wc)
282 pool_index = 0x0;
283 else
284 pool_index = 0x1;
285
286 if (flags & TTM_PAGE_FLAG_DMA32) {
287 if (huge)
288 return NULL;
289 pool_index |= 0x2;
290
291 } else if (huge) {
292 pool_index |= 0x4;
293 }
294
295 return &_manager->pools[pool_index];
296 }
297
298 /* set memory back to wb and free the pages. */
299 static void ttm_pages_put(struct page *pages[], unsigned npages,
300 unsigned int order)
301 {
302 unsigned int i, pages_nr = (1 << order);
303
304 if (order == 0) {
305 if (set_pages_array_wb(pages, npages))
306 pr_err("Failed to set %d pages to wb!\n", npages);
307 }
308
309 for (i = 0; i < npages; ++i) {
310 if (order > 0) {
311 if (set_pages_wb(pages[i], pages_nr))
312 pr_err("Failed to set %d pages to wb!\n", pages_nr);
313 }
314 __free_pages(pages[i], order);
315 }
316 }
317
318 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
319 unsigned freed_pages)
320 {
321 pool->npages -= freed_pages;
322 pool->nfrees += freed_pages;
323 }
324
325 /**
326 * Free pages from pool.
327 *
328 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
329 * number of pages in one go.
330 *
331 * @pool: to free the pages from
332 * @free_all: If set to true will free all pages in pool
333 * @use_static: Safe to use static buffer
334 **/
335 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
336 bool use_static)
337 {
338 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
339 unsigned long irq_flags;
340 struct page *p;
341 struct page **pages_to_free;
342 unsigned freed_pages = 0,
343 npages_to_free = nr_free;
344
345 if (NUM_PAGES_TO_ALLOC < nr_free)
346 npages_to_free = NUM_PAGES_TO_ALLOC;
347
348 if (use_static)
349 pages_to_free = static_buf;
350 else
351 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
352 GFP_KERNEL);
353 if (!pages_to_free) {
354 pr_debug("Failed to allocate memory for pool free operation\n");
355 return 0;
356 }
357
358 restart:
359 spin_lock_irqsave(&pool->lock, irq_flags);
360
361 list_for_each_entry_reverse(p, &pool->list, lru) {
362 if (freed_pages >= npages_to_free)
363 break;
364
365 pages_to_free[freed_pages++] = p;
366 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
367 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
368 /* remove range of pages from the pool */
369 __list_del(p->lru.prev, &pool->list);
370
371 ttm_pool_update_free_locked(pool, freed_pages);
372 /**
373 * Because changing page caching is costly
374 * we unlock the pool to prevent stalling.
375 */
376 spin_unlock_irqrestore(&pool->lock, irq_flags);
377
378 ttm_pages_put(pages_to_free, freed_pages, pool->order);
379 if (likely(nr_free != FREE_ALL_PAGES))
380 nr_free -= freed_pages;
381
382 if (NUM_PAGES_TO_ALLOC >= nr_free)
383 npages_to_free = nr_free;
384 else
385 npages_to_free = NUM_PAGES_TO_ALLOC;
386
387 freed_pages = 0;
388
389 /* free all so restart the processing */
390 if (nr_free)
391 goto restart;
392
393 /* Not allowed to fall through or break because
394 * following context is inside spinlock while we are
395 * outside here.
396 */
397 goto out;
398
399 }
400 }
401
402 /* remove range of pages from the pool */
403 if (freed_pages) {
404 __list_del(&p->lru, &pool->list);
405
406 ttm_pool_update_free_locked(pool, freed_pages);
407 nr_free -= freed_pages;
408 }
409
410 spin_unlock_irqrestore(&pool->lock, irq_flags);
411
412 if (freed_pages)
413 ttm_pages_put(pages_to_free, freed_pages, pool->order);
414 out:
415 if (pages_to_free != static_buf)
416 kfree(pages_to_free);
417 return nr_free;
418 }
419
420 /**
421 * Callback for mm to request pool to reduce number of page held.
422 *
423 * XXX: (dchinner) Deadlock warning!
424 *
425 * This code is crying out for a shrinker per pool....
426 */
427 static unsigned long
428 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
429 {
430 static DEFINE_MUTEX(lock);
431 static unsigned start_pool;
432 unsigned i;
433 unsigned pool_offset;
434 struct ttm_page_pool *pool;
435 int shrink_pages = sc->nr_to_scan;
436 unsigned long freed = 0;
437 unsigned int nr_free_pool;
438
439 if (!mutex_trylock(&lock))
440 return SHRINK_STOP;
441 pool_offset = ++start_pool % NUM_POOLS;
442 /* select start pool in round robin fashion */
443 for (i = 0; i < NUM_POOLS; ++i) {
444 unsigned nr_free = shrink_pages;
445 unsigned page_nr;
446
447 if (shrink_pages == 0)
448 break;
449
450 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
451 page_nr = (1 << pool->order);
452 /* OK to use static buffer since global mutex is held. */
453 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
454 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
455 freed += (nr_free_pool - shrink_pages) << pool->order;
456 if (freed >= sc->nr_to_scan)
457 break;
458 shrink_pages <<= pool->order;
459 }
460 mutex_unlock(&lock);
461 return freed;
462 }
463
464
465 static unsigned long
466 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
467 {
468 unsigned i;
469 unsigned long count = 0;
470 struct ttm_page_pool *pool;
471
472 for (i = 0; i < NUM_POOLS; ++i) {
473 pool = &_manager->pools[i];
474 count += (pool->npages << pool->order);
475 }
476
477 return count;
478 }
479
480 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
481 {
482 manager->mm_shrink.count_objects = ttm_pool_shrink_count;
483 manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
484 manager->mm_shrink.seeks = 1;
485 register_shrinker(&manager->mm_shrink);
486 }
487
488 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
489 {
490 unregister_shrinker(&manager->mm_shrink);
491 }
492
493 static int ttm_set_pages_caching(struct page **pages,
494 enum ttm_caching_state cstate, unsigned cpages)
495 {
496 int r = 0;
497 /* Set page caching */
498 switch (cstate) {
499 case tt_uncached:
500 r = set_pages_array_uc(pages, cpages);
501 if (r)
502 pr_err("Failed to set %d pages to uc!\n", cpages);
503 break;
504 case tt_wc:
505 r = set_pages_array_wc(pages, cpages);
506 if (r)
507 pr_err("Failed to set %d pages to wc!\n", cpages);
508 break;
509 default:
510 break;
511 }
512 return r;
513 }
514
515 /**
516 * Free pages the pages that failed to change the caching state. If there is
517 * any pages that have changed their caching state already put them to the
518 * pool.
519 */
520 static void ttm_handle_caching_state_failure(struct list_head *pages,
521 int ttm_flags, enum ttm_caching_state cstate,
522 struct page **failed_pages, unsigned cpages)
523 {
524 unsigned i;
525 /* Failed pages have to be freed */
526 for (i = 0; i < cpages; ++i) {
527 list_del(&failed_pages[i]->lru);
528 __free_page(failed_pages[i]);
529 }
530 }
531
532 /**
533 * Allocate new pages with correct caching.
534 *
535 * This function is reentrant if caller updates count depending on number of
536 * pages returned in pages array.
537 */
538 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
539 int ttm_flags, enum ttm_caching_state cstate,
540 unsigned count, unsigned order)
541 {
542 struct page **caching_array;
543 struct page *p;
544 int r = 0;
545 unsigned i, j, cpages;
546 unsigned npages = 1 << order;
547 unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
548
549 /* allocate array for page caching change */
550 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
551
552 if (!caching_array) {
553 pr_debug("Unable to allocate table for new pages\n");
554 return -ENOMEM;
555 }
556
557 for (i = 0, cpages = 0; i < count; ++i) {
558 p = alloc_pages(gfp_flags, order);
559
560 if (!p) {
561 pr_debug("Unable to get page %u\n", i);
562
563 /* store already allocated pages in the pool after
564 * setting the caching state */
565 if (cpages) {
566 r = ttm_set_pages_caching(caching_array,
567 cstate, cpages);
568 if (r)
569 ttm_handle_caching_state_failure(pages,
570 ttm_flags, cstate,
571 caching_array, cpages);
572 }
573 r = -ENOMEM;
574 goto out;
575 }
576
577 list_add(&p->lru, pages);
578
579 #ifdef CONFIG_HIGHMEM
580 /* gfp flags of highmem page should never be dma32 so we
581 * we should be fine in such case
582 */
583 if (PageHighMem(p))
584 continue;
585
586 #endif
587 for (j = 0; j < npages; ++j) {
588 caching_array[cpages++] = p++;
589 if (cpages == max_cpages) {
590
591 r = ttm_set_pages_caching(caching_array,
592 cstate, cpages);
593 if (r) {
594 ttm_handle_caching_state_failure(pages,
595 ttm_flags, cstate,
596 caching_array, cpages);
597 goto out;
598 }
599 cpages = 0;
600 }
601 }
602 }
603
604 if (cpages) {
605 r = ttm_set_pages_caching(caching_array, cstate, cpages);
606 if (r)
607 ttm_handle_caching_state_failure(pages,
608 ttm_flags, cstate,
609 caching_array, cpages);
610 }
611 out:
612 kfree(caching_array);
613
614 return r;
615 }
616
617 /**
618 * Fill the given pool if there aren't enough pages and the requested number of
619 * pages is small.
620 */
621 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
622 enum ttm_caching_state cstate,
623 unsigned count, unsigned long *irq_flags)
624 {
625 struct page *p;
626 int r;
627 unsigned cpages = 0;
628 /**
629 * Only allow one pool fill operation at a time.
630 * If pool doesn't have enough pages for the allocation new pages are
631 * allocated from outside of pool.
632 */
633 if (pool->fill_lock)
634 return;
635
636 pool->fill_lock = true;
637
638 /* If allocation request is small and there are not enough
639 * pages in a pool we fill the pool up first. */
640 if (count < _manager->options.small
641 && count > pool->npages) {
642 struct list_head new_pages;
643 unsigned alloc_size = _manager->options.alloc_size;
644
645 /**
646 * Can't change page caching if in irqsave context. We have to
647 * drop the pool->lock.
648 */
649 spin_unlock_irqrestore(&pool->lock, *irq_flags);
650
651 INIT_LIST_HEAD(&new_pages);
652 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
653 cstate, alloc_size, 0);
654 spin_lock_irqsave(&pool->lock, *irq_flags);
655
656 if (!r) {
657 list_splice(&new_pages, &pool->list);
658 ++pool->nrefills;
659 pool->npages += alloc_size;
660 } else {
661 pr_debug("Failed to fill pool (%p)\n", pool);
662 /* If we have any pages left put them to the pool. */
663 list_for_each_entry(p, &new_pages, lru) {
664 ++cpages;
665 }
666 list_splice(&new_pages, &pool->list);
667 pool->npages += cpages;
668 }
669
670 }
671 pool->fill_lock = false;
672 }
673
674 /**
675 * Allocate pages from the pool and put them on the return list.
676 *
677 * @return zero for success or negative error code.
678 */
679 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
680 struct list_head *pages,
681 int ttm_flags,
682 enum ttm_caching_state cstate,
683 unsigned count, unsigned order)
684 {
685 unsigned long irq_flags;
686 struct list_head *p;
687 unsigned i;
688 int r = 0;
689
690 spin_lock_irqsave(&pool->lock, irq_flags);
691 if (!order)
692 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
693 &irq_flags);
694
695 if (count >= pool->npages) {
696 /* take all pages from the pool */
697 list_splice_init(&pool->list, pages);
698 count -= pool->npages;
699 pool->npages = 0;
700 goto out;
701 }
702 /* find the last pages to include for requested number of pages. Split
703 * pool to begin and halve it to reduce search space. */
704 if (count <= pool->npages/2) {
705 i = 0;
706 list_for_each(p, &pool->list) {
707 if (++i == count)
708 break;
709 }
710 } else {
711 i = pool->npages + 1;
712 list_for_each_prev(p, &pool->list) {
713 if (--i == count)
714 break;
715 }
716 }
717 /* Cut 'count' number of pages from the pool */
718 list_cut_position(pages, &pool->list, p);
719 pool->npages -= count;
720 count = 0;
721 out:
722 spin_unlock_irqrestore(&pool->lock, irq_flags);
723
724 /* clear the pages coming from the pool if requested */
725 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
726 struct page *page;
727
728 list_for_each_entry(page, pages, lru) {
729 if (PageHighMem(page))
730 clear_highpage(page);
731 else
732 clear_page(page_address(page));
733 }
734 }
735
736 /* If pool didn't have enough pages allocate new one. */
737 if (count) {
738 gfp_t gfp_flags = pool->gfp_flags;
739
740 /* set zero flag for page allocation if required */
741 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
742 gfp_flags |= __GFP_ZERO;
743
744 /* ttm_alloc_new_pages doesn't reference pool so we can run
745 * multiple requests in parallel.
746 **/
747 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
748 count, order);
749 }
750
751 return r;
752 }
753
754 /* Put all pages in pages list to correct pool to wait for reuse */
755 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
756 enum ttm_caching_state cstate)
757 {
758 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
761 #endif
762 unsigned long irq_flags;
763 unsigned i;
764
765 if (pool == NULL) {
766 /* No pool for this memory type so free the pages */
767 i = 0;
768 while (i < npages) {
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770 struct page *p = pages[i];
771 #endif
772 unsigned order = 0, j;
773
774 if (!pages[i]) {
775 ++i;
776 continue;
777 }
778
779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
780 if (!(flags & TTM_PAGE_FLAG_DMA32)) {
781 for (j = 0; j < HPAGE_PMD_NR; ++j)
782 if (p++ != pages[i + j])
783 break;
784
785 if (j == HPAGE_PMD_NR)
786 order = HPAGE_PMD_ORDER;
787 }
788 #endif
789
790 if (page_count(pages[i]) != 1)
791 pr_err("Erroneous page count. Leaking pages.\n");
792 __free_pages(pages[i], order);
793
794 j = 1 << order;
795 while (j) {
796 pages[i++] = NULL;
797 --j;
798 }
799 }
800 return;
801 }
802
803 i = 0;
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805 if (huge) {
806 unsigned max_size, n2free;
807
808 spin_lock_irqsave(&huge->lock, irq_flags);
809 while (i < npages) {
810 struct page *p = pages[i];
811 unsigned j;
812
813 if (!p)
814 break;
815
816 for (j = 0; j < HPAGE_PMD_NR; ++j)
817 if (p++ != pages[i + j])
818 break;
819
820 if (j != HPAGE_PMD_NR)
821 break;
822
823 list_add_tail(&pages[i]->lru, &huge->list);
824
825 for (j = 0; j < HPAGE_PMD_NR; ++j)
826 pages[i++] = NULL;
827 huge->npages++;
828 }
829
830 /* Check that we don't go over the pool limit */
831 max_size = _manager->options.max_size;
832 max_size /= HPAGE_PMD_NR;
833 if (huge->npages > max_size)
834 n2free = huge->npages - max_size;
835 else
836 n2free = 0;
837 spin_unlock_irqrestore(&huge->lock, irq_flags);
838 if (n2free)
839 ttm_page_pool_free(huge, n2free, false);
840 }
841 #endif
842
843 spin_lock_irqsave(&pool->lock, irq_flags);
844 while (i < npages) {
845 if (pages[i]) {
846 if (page_count(pages[i]) != 1)
847 pr_err("Erroneous page count. Leaking pages.\n");
848 list_add_tail(&pages[i]->lru, &pool->list);
849 pages[i] = NULL;
850 pool->npages++;
851 }
852 ++i;
853 }
854 /* Check that we don't go over the pool limit */
855 npages = 0;
856 if (pool->npages > _manager->options.max_size) {
857 npages = pool->npages - _manager->options.max_size;
858 /* free at least NUM_PAGES_TO_ALLOC number of pages
859 * to reduce calls to set_memory_wb */
860 if (npages < NUM_PAGES_TO_ALLOC)
861 npages = NUM_PAGES_TO_ALLOC;
862 }
863 spin_unlock_irqrestore(&pool->lock, irq_flags);
864 if (npages)
865 ttm_page_pool_free(pool, npages, false);
866 }
867
868 /*
869 * On success pages list will hold count number of correctly
870 * cached pages.
871 */
872 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
873 enum ttm_caching_state cstate)
874 {
875 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
877 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
878 #endif
879 struct list_head plist;
880 struct page *p = NULL;
881 unsigned count, first;
882 int r;
883
884 /* No pool for cached pages */
885 if (pool == NULL) {
886 gfp_t gfp_flags = GFP_USER;
887 unsigned i;
888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
889 unsigned j;
890 #endif
891
892 /* set zero flag for page allocation if required */
893 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
894 gfp_flags |= __GFP_ZERO;
895
896 if (flags & TTM_PAGE_FLAG_DMA32)
897 gfp_flags |= GFP_DMA32;
898 else
899 gfp_flags |= GFP_HIGHUSER;
900
901 i = 0;
902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
903 if (!(gfp_flags & GFP_DMA32)) {
904 while (npages >= HPAGE_PMD_NR) {
905 gfp_t huge_flags = gfp_flags;
906
907 huge_flags |= GFP_TRANSHUGE;
908 huge_flags &= ~__GFP_MOVABLE;
909 huge_flags &= ~__GFP_COMP;
910 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
911 if (!p)
912 break;
913
914 for (j = 0; j < HPAGE_PMD_NR; ++j)
915 pages[i++] = p++;
916
917 npages -= HPAGE_PMD_NR;
918 }
919 }
920 #endif
921
922 first = i;
923 while (npages) {
924 p = alloc_page(gfp_flags);
925 if (!p) {
926 pr_debug("Unable to allocate page\n");
927 return -ENOMEM;
928 }
929
930 /* Swap the pages if we detect consecutive order */
931 if (i > first && pages[i - 1] == p - 1)
932 swap(p, pages[i - 1]);
933
934 pages[i++] = p;
935 --npages;
936 }
937 return 0;
938 }
939
940 count = 0;
941
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943 if (huge && npages >= HPAGE_PMD_NR) {
944 INIT_LIST_HEAD(&plist);
945 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
946 npages / HPAGE_PMD_NR,
947 HPAGE_PMD_ORDER);
948
949 list_for_each_entry(p, &plist, lru) {
950 unsigned j;
951
952 for (j = 0; j < HPAGE_PMD_NR; ++j)
953 pages[count++] = &p[j];
954 }
955 }
956 #endif
957
958 INIT_LIST_HEAD(&plist);
959 r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
960 npages - count, 0);
961
962 first = count;
963 list_for_each_entry(p, &plist, lru) {
964 struct page *tmp = p;
965
966 /* Swap the pages if we detect consecutive order */
967 if (count > first && pages[count - 1] == tmp - 1)
968 swap(tmp, pages[count - 1]);
969 pages[count++] = tmp;
970 }
971
972 if (r) {
973 /* If there is any pages in the list put them back to
974 * the pool.
975 */
976 pr_debug("Failed to allocate extra pages for large request\n");
977 ttm_put_pages(pages, count, flags, cstate);
978 return r;
979 }
980
981 return 0;
982 }
983
984 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
985 char *name, unsigned int order)
986 {
987 spin_lock_init(&pool->lock);
988 pool->fill_lock = false;
989 INIT_LIST_HEAD(&pool->list);
990 pool->npages = pool->nfrees = 0;
991 pool->gfp_flags = flags;
992 pool->name = name;
993 pool->order = order;
994 }
995
996 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
997 {
998 int ret;
999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1000 unsigned order = HPAGE_PMD_ORDER;
1001 #else
1002 unsigned order = 0;
1003 #endif
1004
1005 WARN_ON(_manager);
1006
1007 pr_info("Initializing pool allocator\n");
1008
1009 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1010 if (!_manager)
1011 return -ENOMEM;
1012
1013 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
1014
1015 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
1016
1017 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
1018 GFP_USER | GFP_DMA32, "wc dma", 0);
1019
1020 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
1021 GFP_USER | GFP_DMA32, "uc dma", 0);
1022
1023 ttm_page_pool_init_locked(&_manager->wc_pool_huge,
1024 GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP),
1025 "wc huge", order);
1026
1027 ttm_page_pool_init_locked(&_manager->uc_pool_huge,
1028 GFP_TRANSHUGE & ~(__GFP_MOVABLE | __GFP_COMP)
1029 , "uc huge", order);
1030
1031 _manager->options.max_size = max_pages;
1032 _manager->options.small = SMALL_ALLOCATION;
1033 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1034
1035 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1036 &glob->kobj, "pool");
1037 if (unlikely(ret != 0)) {
1038 kobject_put(&_manager->kobj);
1039 _manager = NULL;
1040 return ret;
1041 }
1042
1043 ttm_pool_mm_shrink_init(_manager);
1044
1045 return 0;
1046 }
1047
1048 void ttm_page_alloc_fini(void)
1049 {
1050 int i;
1051
1052 pr_info("Finalizing pool allocator\n");
1053 ttm_pool_mm_shrink_fini(_manager);
1054
1055 /* OK to use static buffer since global mutex is no longer used. */
1056 for (i = 0; i < NUM_POOLS; ++i)
1057 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1058
1059 kobject_put(&_manager->kobj);
1060 _manager = NULL;
1061 }
1062
1063 int ttm_pool_populate(struct ttm_tt *ttm)
1064 {
1065 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
1066 unsigned i;
1067 int ret;
1068
1069 if (ttm->state != tt_unpopulated)
1070 return 0;
1071
1072 ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1073 ttm->caching_state);
1074 if (unlikely(ret != 0)) {
1075 ttm_pool_unpopulate(ttm);
1076 return ret;
1077 }
1078
1079 for (i = 0; i < ttm->num_pages; ++i) {
1080 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1081 PAGE_SIZE);
1082 if (unlikely(ret != 0)) {
1083 ttm_pool_unpopulate(ttm);
1084 return -ENOMEM;
1085 }
1086 }
1087
1088 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1089 ret = ttm_tt_swapin(ttm);
1090 if (unlikely(ret != 0)) {
1091 ttm_pool_unpopulate(ttm);
1092 return ret;
1093 }
1094 }
1095
1096 ttm->state = tt_unbound;
1097 return 0;
1098 }
1099 EXPORT_SYMBOL(ttm_pool_populate);
1100
1101 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1102 {
1103 unsigned i;
1104
1105 for (i = 0; i < ttm->num_pages; ++i) {
1106 if (!ttm->pages[i])
1107 continue;
1108
1109 ttm_mem_global_free_page(ttm->glob->mem_glob, ttm->pages[i],
1110 PAGE_SIZE);
1111 }
1112 ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1113 ttm->caching_state);
1114 ttm->state = tt_unpopulated;
1115 }
1116 EXPORT_SYMBOL(ttm_pool_unpopulate);
1117
1118 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt)
1119 {
1120 unsigned i, j;
1121 int r;
1122
1123 r = ttm_pool_populate(&tt->ttm);
1124 if (r)
1125 return r;
1126
1127 for (i = 0; i < tt->ttm.num_pages; ++i) {
1128 struct page *p = tt->ttm.pages[i];
1129 size_t num_pages = 1;
1130
1131 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1132 if (++p != tt->ttm.pages[j])
1133 break;
1134
1135 ++num_pages;
1136 }
1137
1138 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1139 0, num_pages * PAGE_SIZE,
1140 DMA_BIDIRECTIONAL);
1141 if (dma_mapping_error(dev, tt->dma_address[i])) {
1142 while (i--) {
1143 dma_unmap_page(dev, tt->dma_address[i],
1144 PAGE_SIZE, DMA_BIDIRECTIONAL);
1145 tt->dma_address[i] = 0;
1146 }
1147 ttm_pool_unpopulate(&tt->ttm);
1148 return -EFAULT;
1149 }
1150
1151 for (j = 1; j < num_pages; ++j) {
1152 tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1153 ++i;
1154 }
1155 }
1156 return 0;
1157 }
1158 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1159
1160 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1161 {
1162 unsigned i, j;
1163
1164 for (i = 0; i < tt->ttm.num_pages;) {
1165 struct page *p = tt->ttm.pages[i];
1166 size_t num_pages = 1;
1167
1168 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1169 ++i;
1170 continue;
1171 }
1172
1173 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1174 if (++p != tt->ttm.pages[j])
1175 break;
1176
1177 ++num_pages;
1178 }
1179
1180 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1181 DMA_BIDIRECTIONAL);
1182
1183 i += num_pages;
1184 }
1185 ttm_pool_unpopulate(&tt->ttm);
1186 }
1187 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1188
1189 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1190 {
1191 struct ttm_page_pool *p;
1192 unsigned i;
1193 char *h[] = {"pool", "refills", "pages freed", "size"};
1194 if (!_manager) {
1195 seq_printf(m, "No pool allocator running.\n");
1196 return 0;
1197 }
1198 seq_printf(m, "%7s %12s %13s %8s\n",
1199 h[0], h[1], h[2], h[3]);
1200 for (i = 0; i < NUM_POOLS; ++i) {
1201 p = &_manager->pools[i];
1202
1203 seq_printf(m, "%7s %12ld %13ld %8d\n",
1204 p->name, p->nrefills,
1205 p->nfrees, p->npages);
1206 }
1207 return 0;
1208 }
1209 EXPORT_SYMBOL(ttm_page_alloc_debugfs);