]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
60
61 struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 u32 reg;
95 const char *name;
96 } crtc_regs[] = {
97 CRTC_REG(PV_CONTROL),
98 CRTC_REG(PV_V_CONTROL),
99 CRTC_REG(PV_VSYNCD_EVEN),
100 CRTC_REG(PV_HORZA),
101 CRTC_REG(PV_HORZB),
102 CRTC_REG(PV_VERTA),
103 CRTC_REG(PV_VERTB),
104 CRTC_REG(PV_VERTA_EVEN),
105 CRTC_REG(PV_VERTB_EVEN),
106 CRTC_REG(PV_INTEN),
107 CRTC_REG(PV_INTSTAT),
108 CRTC_REG(PV_STAT),
109 CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs[i].reg, crtc_regs[i].name,
119 CRTC_READ(crtc_regs[i].reg));
120 }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126 struct drm_info_node *node = (struct drm_info_node *)m->private;
127 struct drm_device *dev = node->minor->dev;
128 int crtc_index = (uintptr_t)node->info_ent->data;
129 struct drm_crtc *crtc;
130 struct vc4_crtc *vc4_crtc;
131 int i;
132
133 i = 0;
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 if (i == crtc_index)
136 break;
137 i++;
138 }
139 if (!crtc)
140 return 0;
141 vc4_crtc = to_vc4_crtc(crtc);
142
143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 crtc_regs[i].name, crtc_regs[i].reg,
146 CRTC_READ(crtc_regs[i].reg));
147 }
148
149 return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 unsigned int flags, int *vpos, int *hpos,
155 ktime_t *stime, ktime_t *etime,
156 const struct drm_display_mode *mode)
157 {
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
160 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
161 u32 val;
162 int fifo_lines;
163 int vblank_lines;
164 int ret = 0;
165
166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168 /* Get optional system timestamp before query. */
169 if (stime)
170 *stime = ktime_get();
171
172 /*
173 * Read vertical scanline which is currently composed for our
174 * pixelvalve by the HVS, and also the scaler status.
175 */
176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178 /* Get optional system timestamp after query. */
179 if (etime)
180 *etime = ktime_get();
181
182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184 /* Vertical position of hvs composed scanline. */
185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186 *hpos = 0;
187
188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 *vpos /= 2;
190
191 /* Use hpos to correct for field offset in interlaced mode. */
192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 *hpos += mode->crtc_htotal / 2;
194 }
195
196 /* This is the offset we need for translating hvs -> pv scanout pos. */
197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199 if (fifo_lines > 0)
200 ret |= DRM_SCANOUTPOS_VALID;
201
202 /* HVS more than fifo_lines into frame for compositing? */
203 if (*vpos > fifo_lines) {
204 /*
205 * We are in active scanout and can get some meaningful results
206 * from HVS. The actual PV scanout can not trail behind more
207 * than fifo_lines as that is the fifo's capacity. Assume that
208 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 * refilling the fifo and PV consuming from the fifo, ie.
210 * whenever the PV consumes and frees up a scanline in the
211 * fifo, the HVS will immediately refill it, therefore
212 * incrementing vpos. Therefore we choose HVS read position -
213 * fifo size in scanlines as a estimate of the real scanout
214 * position of the PV.
215 */
216 *vpos -= fifo_lines + 1;
217
218 ret |= DRM_SCANOUTPOS_ACCURATE;
219 return ret;
220 }
221
222 /*
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
230 */
231 ret |= DRM_SCANOUTPOS_IN_VBLANK;
232 vblank_lines = mode->vtotal - mode->vdisplay;
233
234 if (flags & DRM_CALLED_FROM_VBLIRQ) {
235 /*
236 * Assume the irq handler got called close to first
237 * line of vblank, so PV has about a full vblank
238 * scanlines to go, and as a base timestamp use the
239 * one taken at entry into vblank irq handler, so it
240 * is not affected by random delays due to lock
241 * contention on event_lock or vblank_time lock in
242 * the core.
243 */
244 *vpos = -vblank_lines;
245
246 if (stime)
247 *stime = vc4_crtc->t_vblank;
248 if (etime)
249 *etime = vc4_crtc->t_vblank;
250
251 /*
252 * If the HVS fifo is not yet full then we know for certain
253 * we are at the very beginning of vblank, as the hvs just
254 * started refilling, and the stime and etime timestamps
255 * truly correspond to start of vblank.
256 */
257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 ret |= DRM_SCANOUTPOS_ACCURATE;
259 } else {
260 /*
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
265 */
266 *vpos = 0;
267 }
268
269 return ret;
270 }
271
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 int *max_error, struct timeval *vblank_time,
274 unsigned flags)
275 {
276 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
277 struct drm_crtc_state *state = crtc->state;
278
279 /* Helper routine in DRM core does all the work: */
280 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
281 vblank_time, flags,
282 &state->adjusted_mode);
283 }
284
285 static void vc4_crtc_destroy(struct drm_crtc *crtc)
286 {
287 drm_crtc_cleanup(crtc);
288 }
289
290 static void
291 vc4_crtc_lut_load(struct drm_crtc *crtc)
292 {
293 struct drm_device *dev = crtc->dev;
294 struct vc4_dev *vc4 = to_vc4_dev(dev);
295 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
296 u32 i;
297
298 /* The LUT memory is laid out with each HVS channel in order,
299 * each of which takes 256 writes for R, 256 for G, then 256
300 * for B.
301 */
302 HVS_WRITE(SCALER_GAMADDR,
303 SCALER_GAMADDR_AUTOINC |
304 (vc4_crtc->channel * 3 * crtc->gamma_size));
305
306 for (i = 0; i < crtc->gamma_size; i++)
307 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
308 for (i = 0; i < crtc->gamma_size; i++)
309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
312 }
313
314 static int
315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
316 uint32_t size)
317 {
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 u32 i;
320
321 for (i = 0; i < size; i++) {
322 vc4_crtc->lut_r[i] = r[i] >> 8;
323 vc4_crtc->lut_g[i] = g[i] >> 8;
324 vc4_crtc->lut_b[i] = b[i] >> 8;
325 }
326
327 vc4_crtc_lut_load(crtc);
328
329 return 0;
330 }
331
332 static u32 vc4_get_fifo_full_level(u32 format)
333 {
334 static const u32 fifo_len_bytes = 64;
335 static const u32 hvs_latency_pix = 6;
336
337 switch (format) {
338 case PV_CONTROL_FORMAT_DSIV_16:
339 case PV_CONTROL_FORMAT_DSIC_16:
340 return fifo_len_bytes - 2 * hvs_latency_pix;
341 case PV_CONTROL_FORMAT_DSIV_18:
342 return fifo_len_bytes - 14;
343 case PV_CONTROL_FORMAT_24:
344 case PV_CONTROL_FORMAT_DSIV_24:
345 default:
346 return fifo_len_bytes - 3 * hvs_latency_pix;
347 }
348 }
349
350 /*
351 * Returns the encoder attached to the CRTC.
352 *
353 * VC4 can only scan out to one encoder at a time, while the DRM core
354 * allows drivers to push pixels to more than one encoder from the
355 * same CRTC.
356 */
357 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
358 {
359 struct drm_connector *connector;
360
361 drm_for_each_connector(connector, crtc->dev) {
362 if (connector->state->crtc == crtc) {
363 return connector->encoder;
364 }
365 }
366
367 return NULL;
368 }
369
370 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
371 {
372 struct drm_device *dev = crtc->dev;
373 struct vc4_dev *vc4 = to_vc4_dev(dev);
374 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
375 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
376 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377 struct drm_crtc_state *state = crtc->state;
378 struct drm_display_mode *mode = &state->adjusted_mode;
379 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
382 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
383 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
384 bool debug_dump_regs = false;
385
386 if (debug_dump_regs) {
387 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388 vc4_crtc_dump_regs(vc4_crtc);
389 }
390
391 /* Reset the PV fifo. */
392 CRTC_WRITE(PV_CONTROL, 0);
393 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394 CRTC_WRITE(PV_CONTROL, 0);
395
396 CRTC_WRITE(PV_HORZA,
397 VC4_SET_FIELD((mode->htotal -
398 mode->hsync_end) * pixel_rep,
399 PV_HORZA_HBP) |
400 VC4_SET_FIELD((mode->hsync_end -
401 mode->hsync_start) * pixel_rep,
402 PV_HORZA_HSYNC));
403 CRTC_WRITE(PV_HORZB,
404 VC4_SET_FIELD((mode->hsync_start -
405 mode->hdisplay) * pixel_rep,
406 PV_HORZB_HFP) |
407 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
408
409 CRTC_WRITE(PV_VERTA,
410 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
411 PV_VERTA_VBP) |
412 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
413 PV_VERTA_VSYNC));
414 CRTC_WRITE(PV_VERTB,
415 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
416 PV_VERTB_VFP) |
417 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
418
419 if (interlace) {
420 CRTC_WRITE(PV_VERTA_EVEN,
421 VC4_SET_FIELD(mode->crtc_vtotal -
422 mode->crtc_vsync_end - 1,
423 PV_VERTA_VBP) |
424 VC4_SET_FIELD(mode->crtc_vsync_end -
425 mode->crtc_vsync_start,
426 PV_VERTA_VSYNC));
427 CRTC_WRITE(PV_VERTB_EVEN,
428 VC4_SET_FIELD(mode->crtc_vsync_start -
429 mode->crtc_vdisplay,
430 PV_VERTB_VFP) |
431 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432
433 /* We set up first field even mode for HDMI. VEC's
434 * NTSC mode would want first field odd instead, once
435 * we support it (to do so, set ODD_FIRST and put the
436 * delay in VSYNCD_EVEN instead).
437 */
438 CRTC_WRITE(PV_V_CONTROL,
439 PV_VCONTROL_CONTINUOUS |
440 (is_dsi ? PV_VCONTROL_DSI : 0) |
441 PV_VCONTROL_INTERLACE |
442 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
443 PV_VCONTROL_ODD_DELAY));
444 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
445 } else {
446 CRTC_WRITE(PV_V_CONTROL,
447 PV_VCONTROL_CONTINUOUS |
448 (is_dsi ? PV_VCONTROL_DSI : 0));
449 }
450
451 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
452
453 CRTC_WRITE(PV_CONTROL,
454 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
455 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
456 PV_CONTROL_FIFO_LEVEL) |
457 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
458 PV_CONTROL_CLR_AT_START |
459 PV_CONTROL_TRIGGER_UNDERFLOW |
460 PV_CONTROL_WAIT_HSTART |
461 VC4_SET_FIELD(vc4_encoder->clock_select,
462 PV_CONTROL_CLK_SELECT) |
463 PV_CONTROL_FIFO_CLR |
464 PV_CONTROL_EN);
465
466 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
467 SCALER_DISPBKGND_AUTOHS |
468 SCALER_DISPBKGND_GAMMA |
469 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
470
471 /* Reload the LUT, since the SRAMs would have been disabled if
472 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
473 */
474 vc4_crtc_lut_load(crtc);
475
476 if (debug_dump_regs) {
477 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
478 vc4_crtc_dump_regs(vc4_crtc);
479 }
480 }
481
482 static void require_hvs_enabled(struct drm_device *dev)
483 {
484 struct vc4_dev *vc4 = to_vc4_dev(dev);
485
486 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
487 SCALER_DISPCTRL_ENABLE);
488 }
489
490 static void vc4_crtc_disable(struct drm_crtc *crtc)
491 {
492 struct drm_device *dev = crtc->dev;
493 struct vc4_dev *vc4 = to_vc4_dev(dev);
494 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495 u32 chan = vc4_crtc->channel;
496 int ret;
497 require_hvs_enabled(dev);
498
499 /* Disable vblank irq handling before crtc is disabled. */
500 drm_crtc_vblank_off(crtc);
501
502 CRTC_WRITE(PV_V_CONTROL,
503 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
504 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
505 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
506
507 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
508 SCALER_DISPCTRLX_ENABLE) {
509 HVS_WRITE(SCALER_DISPCTRLX(chan),
510 SCALER_DISPCTRLX_RESET);
511
512 /* While the docs say that reset is self-clearing, it
513 * seems it doesn't actually.
514 */
515 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
516 }
517
518 /* Once we leave, the scaler should be disabled and its fifo empty. */
519
520 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
521
522 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
523 SCALER_DISPSTATX_MODE) !=
524 SCALER_DISPSTATX_MODE_DISABLED);
525
526 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
527 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
528 SCALER_DISPSTATX_EMPTY);
529 }
530
531 static void vc4_crtc_enable(struct drm_crtc *crtc)
532 {
533 struct drm_device *dev = crtc->dev;
534 struct vc4_dev *vc4 = to_vc4_dev(dev);
535 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
536 struct drm_crtc_state *state = crtc->state;
537 struct drm_display_mode *mode = &state->adjusted_mode;
538
539 require_hvs_enabled(dev);
540
541 /* Turn on the scaler, which will wait for vstart to start
542 * compositing.
543 */
544 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
545 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
546 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
547 SCALER_DISPCTRLX_ENABLE);
548
549 /* Turn on the pixel valve, which will emit the vstart signal. */
550 CRTC_WRITE(PV_V_CONTROL,
551 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552
553 /* Enable vblank irq handling after crtc is started. */
554 drm_crtc_vblank_on(crtc);
555 }
556
557 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
558 const struct drm_display_mode *mode,
559 struct drm_display_mode *adjusted_mode)
560 {
561 /* Do not allow doublescan modes from user space */
562 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
563 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
564 crtc->base.id);
565 return false;
566 }
567
568 return true;
569 }
570
571 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
572 struct drm_crtc_state *state)
573 {
574 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575 struct drm_device *dev = crtc->dev;
576 struct vc4_dev *vc4 = to_vc4_dev(dev);
577 struct drm_plane *plane;
578 unsigned long flags;
579 const struct drm_plane_state *plane_state;
580 u32 dlist_count = 0;
581 int ret;
582
583 /* The pixelvalve can only feed one encoder (and encoders are
584 * 1:1 with connectors.)
585 */
586 if (hweight32(state->connector_mask) > 1)
587 return -EINVAL;
588
589 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
590 dlist_count += vc4_plane_dlist_size(plane_state);
591
592 dlist_count++; /* Account for SCALER_CTL0_END. */
593
594 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
595 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
596 dlist_count);
597 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
598 if (ret)
599 return ret;
600
601 return 0;
602 }
603
604 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
605 struct drm_crtc_state *old_state)
606 {
607 struct drm_device *dev = crtc->dev;
608 struct vc4_dev *vc4 = to_vc4_dev(dev);
609 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
610 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
611 struct drm_plane *plane;
612 bool debug_dump_regs = false;
613 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
614 u32 __iomem *dlist_next = dlist_start;
615
616 if (debug_dump_regs) {
617 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
618 vc4_hvs_dump_state(dev);
619 }
620
621 /* Copy all the active planes' dlist contents to the hardware dlist. */
622 drm_atomic_crtc_for_each_plane(plane, crtc) {
623 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
624 }
625
626 writel(SCALER_CTL0_END, dlist_next);
627 dlist_next++;
628
629 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
630
631 if (crtc->state->event) {
632 unsigned long flags;
633
634 crtc->state->event->pipe = drm_crtc_index(crtc);
635
636 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
637
638 spin_lock_irqsave(&dev->event_lock, flags);
639 vc4_crtc->event = crtc->state->event;
640 crtc->state->event = NULL;
641
642 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
643 vc4_state->mm.start);
644
645 spin_unlock_irqrestore(&dev->event_lock, flags);
646 } else {
647 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
648 vc4_state->mm.start);
649 }
650
651 if (debug_dump_regs) {
652 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
653 vc4_hvs_dump_state(dev);
654 }
655 }
656
657 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
658 {
659 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
660 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661
662 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
663
664 return 0;
665 }
666
667 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
668 {
669 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
670 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671
672 CRTC_WRITE(PV_INTEN, 0);
673 }
674
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679
680 return !!vc4_crtc->event;
681 }
682
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685 struct drm_crtc *crtc = &vc4_crtc->base;
686 struct drm_device *dev = crtc->dev;
687 struct vc4_dev *vc4 = to_vc4_dev(dev);
688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 u32 chan = vc4_crtc->channel;
690 unsigned long flags;
691
692 spin_lock_irqsave(&dev->event_lock, flags);
693 if (vc4_crtc->event &&
694 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696 vc4_crtc->event = NULL;
697 drm_crtc_vblank_put(crtc);
698 }
699 spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704 struct vc4_crtc *vc4_crtc = data;
705 u32 stat = CRTC_READ(PV_INTSTAT);
706 irqreturn_t ret = IRQ_NONE;
707
708 if (stat & PV_INT_VFP_START) {
709 vc4_crtc->t_vblank = ktime_get();
710 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711 drm_crtc_handle_vblank(&vc4_crtc->base);
712 vc4_crtc_handle_page_flip(vc4_crtc);
713 ret = IRQ_HANDLED;
714 }
715
716 return ret;
717 }
718
719 struct vc4_async_flip_state {
720 struct drm_crtc *crtc;
721 struct drm_framebuffer *fb;
722 struct drm_pending_vblank_event *event;
723
724 struct vc4_seqno_cb cb;
725 };
726
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728 * we can actually update the plane's address to point to it.
729 */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733 struct vc4_async_flip_state *flip_state =
734 container_of(cb, struct vc4_async_flip_state, cb);
735 struct drm_crtc *crtc = flip_state->crtc;
736 struct drm_device *dev = crtc->dev;
737 struct vc4_dev *vc4 = to_vc4_dev(dev);
738 struct drm_plane *plane = crtc->primary;
739
740 vc4_plane_async_set_fb(plane, flip_state->fb);
741 if (flip_state->event) {
742 unsigned long flags;
743
744 spin_lock_irqsave(&dev->event_lock, flags);
745 drm_crtc_send_vblank_event(crtc, flip_state->event);
746 spin_unlock_irqrestore(&dev->event_lock, flags);
747 }
748
749 drm_crtc_vblank_put(crtc);
750 drm_framebuffer_unreference(flip_state->fb);
751 kfree(flip_state);
752
753 up(&vc4->async_modeset);
754 }
755
756 /* Implements async (non-vblank-synced) page flips.
757 *
758 * The page flip ioctl needs to return immediately, so we grab the
759 * modeset semaphore on the pipe, and queue the address update for
760 * when V3D is done with the BO being flipped to.
761 */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763 struct drm_framebuffer *fb,
764 struct drm_pending_vblank_event *event,
765 uint32_t flags)
766 {
767 struct drm_device *dev = crtc->dev;
768 struct vc4_dev *vc4 = to_vc4_dev(dev);
769 struct drm_plane *plane = crtc->primary;
770 int ret = 0;
771 struct vc4_async_flip_state *flip_state;
772 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774
775 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776 if (!flip_state)
777 return -ENOMEM;
778
779 drm_framebuffer_reference(fb);
780 flip_state->fb = fb;
781 flip_state->crtc = crtc;
782 flip_state->event = event;
783
784 /* Make sure all other async modesetes have landed. */
785 ret = down_interruptible(&vc4->async_modeset);
786 if (ret) {
787 drm_framebuffer_unreference(fb);
788 kfree(flip_state);
789 return ret;
790 }
791
792 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793
794 /* Immediately update the plane's legacy fb pointer, so that later
795 * modeset prep sees the state that will be present when the semaphore
796 * is released.
797 */
798 drm_atomic_set_fb_for_plane(plane->state, fb);
799 plane->fb = fb;
800
801 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802 vc4_async_page_flip_complete);
803
804 /* Driver takes ownership of state on successful async commit. */
805 return 0;
806 }
807
808 static int vc4_page_flip(struct drm_crtc *crtc,
809 struct drm_framebuffer *fb,
810 struct drm_pending_vblank_event *event,
811 uint32_t flags)
812 {
813 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
814 return vc4_async_page_flip(crtc, fb, event, flags);
815 else
816 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
817 }
818
819 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
820 {
821 struct vc4_crtc_state *vc4_state;
822
823 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
824 if (!vc4_state)
825 return NULL;
826
827 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
828 return &vc4_state->base;
829 }
830
831 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
832 struct drm_crtc_state *state)
833 {
834 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
835 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
836
837 if (vc4_state->mm.allocated) {
838 unsigned long flags;
839
840 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
841 drm_mm_remove_node(&vc4_state->mm);
842 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
843
844 }
845
846 drm_atomic_helper_crtc_destroy_state(crtc, state);
847 }
848
849 static const struct drm_crtc_funcs vc4_crtc_funcs = {
850 .set_config = drm_atomic_helper_set_config,
851 .destroy = vc4_crtc_destroy,
852 .page_flip = vc4_page_flip,
853 .set_property = NULL,
854 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
855 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
856 .reset = drm_atomic_helper_crtc_reset,
857 .atomic_duplicate_state = vc4_crtc_duplicate_state,
858 .atomic_destroy_state = vc4_crtc_destroy_state,
859 .gamma_set = vc4_crtc_gamma_set,
860 };
861
862 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
863 .mode_set_nofb = vc4_crtc_mode_set_nofb,
864 .disable = vc4_crtc_disable,
865 .enable = vc4_crtc_enable,
866 .mode_fixup = vc4_crtc_mode_fixup,
867 .atomic_check = vc4_crtc_atomic_check,
868 .atomic_flush = vc4_crtc_atomic_flush,
869 };
870
871 static const struct vc4_crtc_data pv0_data = {
872 .hvs_channel = 0,
873 .encoder_types = {
874 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
875 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
876 },
877 };
878
879 static const struct vc4_crtc_data pv1_data = {
880 .hvs_channel = 2,
881 .encoder_types = {
882 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
883 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
884 },
885 };
886
887 static const struct vc4_crtc_data pv2_data = {
888 .hvs_channel = 1,
889 .encoder_types = {
890 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
891 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
892 },
893 };
894
895 static const struct of_device_id vc4_crtc_dt_match[] = {
896 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
897 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
898 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
899 {}
900 };
901
902 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
903 struct drm_crtc *crtc)
904 {
905 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
906 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
907 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
908 struct drm_encoder *encoder;
909
910 drm_for_each_encoder(encoder, drm) {
911 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
912 int i;
913
914 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
915 if (vc4_encoder->type == encoder_types[i]) {
916 vc4_encoder->clock_select = i;
917 encoder->possible_crtcs |= drm_crtc_mask(crtc);
918 break;
919 }
920 }
921 }
922 }
923
924 static void
925 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
926 {
927 struct drm_device *drm = vc4_crtc->base.dev;
928 struct vc4_dev *vc4 = to_vc4_dev(drm);
929 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
930 /* Top/base are supposed to be 4-pixel aligned, but the
931 * Raspberry Pi firmware fills the low bits (which are
932 * presumably ignored).
933 */
934 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
935 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
936
937 vc4_crtc->cob_size = top - base + 4;
938 }
939
940 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
941 {
942 struct platform_device *pdev = to_platform_device(dev);
943 struct drm_device *drm = dev_get_drvdata(master);
944 struct vc4_crtc *vc4_crtc;
945 struct drm_crtc *crtc;
946 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
947 const struct of_device_id *match;
948 int ret, i;
949
950 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
951 if (!vc4_crtc)
952 return -ENOMEM;
953 crtc = &vc4_crtc->base;
954
955 match = of_match_device(vc4_crtc_dt_match, dev);
956 if (!match)
957 return -ENODEV;
958 vc4_crtc->data = match->data;
959
960 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
961 if (IS_ERR(vc4_crtc->regs))
962 return PTR_ERR(vc4_crtc->regs);
963
964 /* For now, we create just the primary and the legacy cursor
965 * planes. We should be able to stack more planes on easily,
966 * but to do that we would need to compute the bandwidth
967 * requirement of the plane configuration, and reject ones
968 * that will take too much.
969 */
970 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
971 if (IS_ERR(primary_plane)) {
972 dev_err(dev, "failed to construct primary plane\n");
973 ret = PTR_ERR(primary_plane);
974 goto err;
975 }
976
977 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
978 &vc4_crtc_funcs, NULL);
979 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
980 primary_plane->crtc = crtc;
981 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
982 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
983
984 /* Set up some arbitrary number of planes. We're not limited
985 * by a set number of physical registers, just the space in
986 * the HVS (16k) and how small an plane can be (28 bytes).
987 * However, each plane we set up takes up some memory, and
988 * increases the cost of looping over planes, which atomic
989 * modesetting does quite a bit. As a result, we pick a
990 * modest number of planes to expose, that should hopefully
991 * still cover any sane usecase.
992 */
993 for (i = 0; i < 8; i++) {
994 struct drm_plane *plane =
995 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
996
997 if (IS_ERR(plane))
998 continue;
999
1000 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1001 }
1002
1003 /* Set up the legacy cursor after overlay initialization,
1004 * since we overlay planes on the CRTC in the order they were
1005 * initialized.
1006 */
1007 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1008 if (!IS_ERR(cursor_plane)) {
1009 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010 cursor_plane->crtc = crtc;
1011 crtc->cursor = cursor_plane;
1012 }
1013
1014 vc4_crtc_get_cob_allocation(vc4_crtc);
1015
1016 CRTC_WRITE(PV_INTEN, 0);
1017 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1018 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1019 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1020 if (ret)
1021 goto err_destroy_planes;
1022
1023 vc4_set_crtc_possible_masks(drm, crtc);
1024
1025 for (i = 0; i < crtc->gamma_size; i++) {
1026 vc4_crtc->lut_r[i] = i;
1027 vc4_crtc->lut_g[i] = i;
1028 vc4_crtc->lut_b[i] = i;
1029 }
1030
1031 platform_set_drvdata(pdev, vc4_crtc);
1032
1033 return 0;
1034
1035 err_destroy_planes:
1036 list_for_each_entry_safe(destroy_plane, temp,
1037 &drm->mode_config.plane_list, head) {
1038 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1039 destroy_plane->funcs->destroy(destroy_plane);
1040 }
1041 err:
1042 return ret;
1043 }
1044
1045 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1046 void *data)
1047 {
1048 struct platform_device *pdev = to_platform_device(dev);
1049 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1050
1051 vc4_crtc_destroy(&vc4_crtc->base);
1052
1053 CRTC_WRITE(PV_INTEN, 0);
1054
1055 platform_set_drvdata(pdev, NULL);
1056 }
1057
1058 static const struct component_ops vc4_crtc_ops = {
1059 .bind = vc4_crtc_bind,
1060 .unbind = vc4_crtc_unbind,
1061 };
1062
1063 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1064 {
1065 return component_add(&pdev->dev, &vc4_crtc_ops);
1066 }
1067
1068 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1069 {
1070 component_del(&pdev->dev, &vc4_crtc_ops);
1071 return 0;
1072 }
1073
1074 struct platform_driver vc4_crtc_driver = {
1075 .probe = vc4_crtc_dev_probe,
1076 .remove = vc4_crtc_dev_remove,
1077 .driver = {
1078 .name = "vc4_crtc",
1079 .of_match_table = vc4_crtc_dt_match,
1080 },
1081 };