]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: drop use of drmP.h
[mirror_ubuntu-kernels.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * encoder's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
21 *
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
27 *
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
33 */
34
35 #include <linux/clk.h>
36 #include <linux/component.h>
37 #include <linux/of_device.h>
38
39 #include <drm/drm_atomic.h>
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_atomic_uapi.h>
42 #include <drm/drm_fb_cma_helper.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
46
47 #include "vc4_drv.h"
48 #include "vc4_regs.h"
49
50 struct vc4_crtc_state {
51 struct drm_crtc_state base;
52 /* Dlist area for this CRTC configuration. */
53 struct drm_mm_node mm;
54 bool feed_txp;
55 bool txp_armed;
56
57 struct {
58 unsigned int left;
59 unsigned int right;
60 unsigned int top;
61 unsigned int bottom;
62 } margins;
63 };
64
65 static inline struct vc4_crtc_state *
66 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
67 {
68 return (struct vc4_crtc_state *)crtc_state;
69 }
70
71 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
72 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
73
74 static const struct debugfs_reg32 crtc_regs[] = {
75 VC4_REG32(PV_CONTROL),
76 VC4_REG32(PV_V_CONTROL),
77 VC4_REG32(PV_VSYNCD_EVEN),
78 VC4_REG32(PV_HORZA),
79 VC4_REG32(PV_HORZB),
80 VC4_REG32(PV_VERTA),
81 VC4_REG32(PV_VERTB),
82 VC4_REG32(PV_VERTA_EVEN),
83 VC4_REG32(PV_VERTB_EVEN),
84 VC4_REG32(PV_INTEN),
85 VC4_REG32(PV_INTSTAT),
86 VC4_REG32(PV_STAT),
87 VC4_REG32(PV_HACT_ACT),
88 };
89
90 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
91 bool in_vblank_irq, int *vpos, int *hpos,
92 ktime_t *stime, ktime_t *etime,
93 const struct drm_display_mode *mode)
94 {
95 struct vc4_dev *vc4 = to_vc4_dev(dev);
96 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
97 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
98 u32 val;
99 int fifo_lines;
100 int vblank_lines;
101 bool ret = false;
102
103 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
104
105 /* Get optional system timestamp before query. */
106 if (stime)
107 *stime = ktime_get();
108
109 /*
110 * Read vertical scanline which is currently composed for our
111 * pixelvalve by the HVS, and also the scaler status.
112 */
113 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
114
115 /* Get optional system timestamp after query. */
116 if (etime)
117 *etime = ktime_get();
118
119 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
120
121 /* Vertical position of hvs composed scanline. */
122 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
123 *hpos = 0;
124
125 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
126 *vpos /= 2;
127
128 /* Use hpos to correct for field offset in interlaced mode. */
129 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
130 *hpos += mode->crtc_htotal / 2;
131 }
132
133 /* This is the offset we need for translating hvs -> pv scanout pos. */
134 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
135
136 if (fifo_lines > 0)
137 ret = true;
138
139 /* HVS more than fifo_lines into frame for compositing? */
140 if (*vpos > fifo_lines) {
141 /*
142 * We are in active scanout and can get some meaningful results
143 * from HVS. The actual PV scanout can not trail behind more
144 * than fifo_lines as that is the fifo's capacity. Assume that
145 * in active scanout the HVS and PV work in lockstep wrt. HVS
146 * refilling the fifo and PV consuming from the fifo, ie.
147 * whenever the PV consumes and frees up a scanline in the
148 * fifo, the HVS will immediately refill it, therefore
149 * incrementing vpos. Therefore we choose HVS read position -
150 * fifo size in scanlines as a estimate of the real scanout
151 * position of the PV.
152 */
153 *vpos -= fifo_lines + 1;
154
155 return ret;
156 }
157
158 /*
159 * Less: This happens when we are in vblank and the HVS, after getting
160 * the VSTART restart signal from the PV, just started refilling its
161 * fifo with new lines from the top-most lines of the new framebuffers.
162 * The PV does not scan out in vblank, so does not remove lines from
163 * the fifo, so the fifo will be full quickly and the HVS has to pause.
164 * We can't get meaningful readings wrt. scanline position of the PV
165 * and need to make things up in a approximative but consistent way.
166 */
167 vblank_lines = mode->vtotal - mode->vdisplay;
168
169 if (in_vblank_irq) {
170 /*
171 * Assume the irq handler got called close to first
172 * line of vblank, so PV has about a full vblank
173 * scanlines to go, and as a base timestamp use the
174 * one taken at entry into vblank irq handler, so it
175 * is not affected by random delays due to lock
176 * contention on event_lock or vblank_time lock in
177 * the core.
178 */
179 *vpos = -vblank_lines;
180
181 if (stime)
182 *stime = vc4_crtc->t_vblank;
183 if (etime)
184 *etime = vc4_crtc->t_vblank;
185
186 /*
187 * If the HVS fifo is not yet full then we know for certain
188 * we are at the very beginning of vblank, as the hvs just
189 * started refilling, and the stime and etime timestamps
190 * truly correspond to start of vblank.
191 *
192 * Unfortunately there's no way to report this to upper levels
193 * and make it more useful.
194 */
195 } else {
196 /*
197 * No clue where we are inside vblank. Return a vpos of zero,
198 * which will cause calling code to just return the etime
199 * timestamp uncorrected. At least this is no worse than the
200 * standard fallback.
201 */
202 *vpos = 0;
203 }
204
205 return ret;
206 }
207
208 static void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210 drm_crtc_cleanup(crtc);
211 }
212
213 static void
214 vc4_crtc_lut_load(struct drm_crtc *crtc)
215 {
216 struct drm_device *dev = crtc->dev;
217 struct vc4_dev *vc4 = to_vc4_dev(dev);
218 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
219 u32 i;
220
221 /* The LUT memory is laid out with each HVS channel in order,
222 * each of which takes 256 writes for R, 256 for G, then 256
223 * for B.
224 */
225 HVS_WRITE(SCALER_GAMADDR,
226 SCALER_GAMADDR_AUTOINC |
227 (vc4_crtc->channel * 3 * crtc->gamma_size));
228
229 for (i = 0; i < crtc->gamma_size; i++)
230 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
231 for (i = 0; i < crtc->gamma_size; i++)
232 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
233 for (i = 0; i < crtc->gamma_size; i++)
234 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
235 }
236
237 static void
238 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
239 {
240 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
241 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
242 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
243 u32 i;
244
245 for (i = 0; i < length; i++) {
246 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
247 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
248 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
249 }
250
251 vc4_crtc_lut_load(crtc);
252 }
253
254 static u32 vc4_get_fifo_full_level(u32 format)
255 {
256 static const u32 fifo_len_bytes = 64;
257 static const u32 hvs_latency_pix = 6;
258
259 switch (format) {
260 case PV_CONTROL_FORMAT_DSIV_16:
261 case PV_CONTROL_FORMAT_DSIC_16:
262 return fifo_len_bytes - 2 * hvs_latency_pix;
263 case PV_CONTROL_FORMAT_DSIV_18:
264 return fifo_len_bytes - 14;
265 case PV_CONTROL_FORMAT_24:
266 case PV_CONTROL_FORMAT_DSIV_24:
267 default:
268 return fifo_len_bytes - 3 * hvs_latency_pix;
269 }
270 }
271
272 /*
273 * Returns the encoder attached to the CRTC.
274 *
275 * VC4 can only scan out to one encoder at a time, while the DRM core
276 * allows drivers to push pixels to more than one encoder from the
277 * same CRTC.
278 */
279 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
280 {
281 struct drm_connector *connector;
282 struct drm_connector_list_iter conn_iter;
283
284 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
285 drm_for_each_connector_iter(connector, &conn_iter) {
286 if (connector->state->crtc == crtc) {
287 drm_connector_list_iter_end(&conn_iter);
288 return connector->encoder;
289 }
290 }
291 drm_connector_list_iter_end(&conn_iter);
292
293 return NULL;
294 }
295
296 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
297 {
298 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
299 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
300 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
301 struct drm_crtc_state *state = crtc->state;
302 struct drm_display_mode *mode = &state->adjusted_mode;
303 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
304 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
305 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
306 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
307 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
308
309 /* Reset the PV fifo. */
310 CRTC_WRITE(PV_CONTROL, 0);
311 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
312 CRTC_WRITE(PV_CONTROL, 0);
313
314 CRTC_WRITE(PV_HORZA,
315 VC4_SET_FIELD((mode->htotal -
316 mode->hsync_end) * pixel_rep,
317 PV_HORZA_HBP) |
318 VC4_SET_FIELD((mode->hsync_end -
319 mode->hsync_start) * pixel_rep,
320 PV_HORZA_HSYNC));
321 CRTC_WRITE(PV_HORZB,
322 VC4_SET_FIELD((mode->hsync_start -
323 mode->hdisplay) * pixel_rep,
324 PV_HORZB_HFP) |
325 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
326
327 CRTC_WRITE(PV_VERTA,
328 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
329 PV_VERTA_VBP) |
330 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
331 PV_VERTA_VSYNC));
332 CRTC_WRITE(PV_VERTB,
333 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
334 PV_VERTB_VFP) |
335 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
336
337 if (interlace) {
338 CRTC_WRITE(PV_VERTA_EVEN,
339 VC4_SET_FIELD(mode->crtc_vtotal -
340 mode->crtc_vsync_end - 1,
341 PV_VERTA_VBP) |
342 VC4_SET_FIELD(mode->crtc_vsync_end -
343 mode->crtc_vsync_start,
344 PV_VERTA_VSYNC));
345 CRTC_WRITE(PV_VERTB_EVEN,
346 VC4_SET_FIELD(mode->crtc_vsync_start -
347 mode->crtc_vdisplay,
348 PV_VERTB_VFP) |
349 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
350
351 /* We set up first field even mode for HDMI. VEC's
352 * NTSC mode would want first field odd instead, once
353 * we support it (to do so, set ODD_FIRST and put the
354 * delay in VSYNCD_EVEN instead).
355 */
356 CRTC_WRITE(PV_V_CONTROL,
357 PV_VCONTROL_CONTINUOUS |
358 (is_dsi ? PV_VCONTROL_DSI : 0) |
359 PV_VCONTROL_INTERLACE |
360 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
361 PV_VCONTROL_ODD_DELAY));
362 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
363 } else {
364 CRTC_WRITE(PV_V_CONTROL,
365 PV_VCONTROL_CONTINUOUS |
366 (is_dsi ? PV_VCONTROL_DSI : 0));
367 }
368
369 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
370
371 CRTC_WRITE(PV_CONTROL,
372 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
373 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
374 PV_CONTROL_FIFO_LEVEL) |
375 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
376 PV_CONTROL_CLR_AT_START |
377 PV_CONTROL_TRIGGER_UNDERFLOW |
378 PV_CONTROL_WAIT_HSTART |
379 VC4_SET_FIELD(vc4_encoder->clock_select,
380 PV_CONTROL_CLK_SELECT) |
381 PV_CONTROL_FIFO_CLR |
382 PV_CONTROL_EN);
383 }
384
385 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
386 {
387 struct drm_device *dev = crtc->dev;
388 struct vc4_dev *vc4 = to_vc4_dev(dev);
389 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
390 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
391 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
392 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
393 bool debug_dump_regs = false;
394
395 if (debug_dump_regs) {
396 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
397 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
398 drm_crtc_index(crtc));
399 drm_print_regset32(&p, &vc4_crtc->regset);
400 }
401
402 if (vc4_crtc->channel == 2) {
403 u32 dispctrl;
404 u32 dsp3_mux;
405
406 /*
407 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
408 * FIFO X'.
409 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
410 *
411 * DSP3 is connected to FIFO2 unless the transposer is
412 * enabled. In this case, FIFO 2 is directly accessed by the
413 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
414 * route.
415 */
416 if (vc4_state->feed_txp)
417 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
418 else
419 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
420
421 dispctrl = HVS_READ(SCALER_DISPCTRL) &
422 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
423 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
424 }
425
426 if (!vc4_state->feed_txp)
427 vc4_crtc_config_pv(crtc);
428
429 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
430 SCALER_DISPBKGND_AUTOHS |
431 SCALER_DISPBKGND_GAMMA |
432 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
433
434 /* Reload the LUT, since the SRAMs would have been disabled if
435 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
436 */
437 vc4_crtc_lut_load(crtc);
438
439 if (debug_dump_regs) {
440 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
441 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
442 drm_crtc_index(crtc));
443 drm_print_regset32(&p, &vc4_crtc->regset);
444 }
445 }
446
447 static void require_hvs_enabled(struct drm_device *dev)
448 {
449 struct vc4_dev *vc4 = to_vc4_dev(dev);
450
451 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
452 SCALER_DISPCTRL_ENABLE);
453 }
454
455 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
456 struct drm_crtc_state *old_state)
457 {
458 struct drm_device *dev = crtc->dev;
459 struct vc4_dev *vc4 = to_vc4_dev(dev);
460 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
461 u32 chan = vc4_crtc->channel;
462 int ret;
463 require_hvs_enabled(dev);
464
465 /* Disable vblank irq handling before crtc is disabled. */
466 drm_crtc_vblank_off(crtc);
467
468 CRTC_WRITE(PV_V_CONTROL,
469 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
470 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
471 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
472
473 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
474 SCALER_DISPCTRLX_ENABLE) {
475 HVS_WRITE(SCALER_DISPCTRLX(chan),
476 SCALER_DISPCTRLX_RESET);
477
478 /* While the docs say that reset is self-clearing, it
479 * seems it doesn't actually.
480 */
481 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
482 }
483
484 /* Once we leave, the scaler should be disabled and its fifo empty. */
485
486 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
487
488 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
489 SCALER_DISPSTATX_MODE) !=
490 SCALER_DISPSTATX_MODE_DISABLED);
491
492 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
493 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
494 SCALER_DISPSTATX_EMPTY);
495
496 /*
497 * Make sure we issue a vblank event after disabling the CRTC if
498 * someone was waiting it.
499 */
500 if (crtc->state->event) {
501 unsigned long flags;
502
503 spin_lock_irqsave(&dev->event_lock, flags);
504 drm_crtc_send_vblank_event(crtc, crtc->state->event);
505 crtc->state->event = NULL;
506 spin_unlock_irqrestore(&dev->event_lock, flags);
507 }
508 }
509
510 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
511 {
512 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
513
514 vc4_state->txp_armed = true;
515 }
516
517 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
518 {
519 struct drm_device *dev = crtc->dev;
520 struct vc4_dev *vc4 = to_vc4_dev(dev);
521 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
523
524 if (crtc->state->event) {
525 unsigned long flags;
526
527 crtc->state->event->pipe = drm_crtc_index(crtc);
528
529 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
530
531 spin_lock_irqsave(&dev->event_lock, flags);
532
533 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
534 vc4_crtc->event = crtc->state->event;
535 crtc->state->event = NULL;
536 }
537
538 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
539 vc4_state->mm.start);
540
541 spin_unlock_irqrestore(&dev->event_lock, flags);
542 } else {
543 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
544 vc4_state->mm.start);
545 }
546 }
547
548 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
549 struct drm_crtc_state *old_state)
550 {
551 struct drm_device *dev = crtc->dev;
552 struct vc4_dev *vc4 = to_vc4_dev(dev);
553 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
554 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
555 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
556
557 require_hvs_enabled(dev);
558
559 /* Enable vblank irq handling before crtc is started otherwise
560 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
561 */
562 drm_crtc_vblank_on(crtc);
563 vc4_crtc_update_dlist(crtc);
564
565 /* Turn on the scaler, which will wait for vstart to start
566 * compositing.
567 * When feeding the transposer, we should operate in oneshot
568 * mode.
569 */
570 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
571 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
572 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
573 SCALER_DISPCTRLX_ENABLE |
574 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
575
576 /* When feeding the transposer block the pixelvalve is unneeded and
577 * should not be enabled.
578 */
579 if (!vc4_state->feed_txp)
580 CRTC_WRITE(PV_V_CONTROL,
581 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
582 }
583
584 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
585 const struct drm_display_mode *mode)
586 {
587 /* Do not allow doublescan modes from user space */
588 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
589 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
590 crtc->base.id);
591 return MODE_NO_DBLESCAN;
592 }
593
594 return MODE_OK;
595 }
596
597 void vc4_crtc_get_margins(struct drm_crtc_state *state,
598 unsigned int *left, unsigned int *right,
599 unsigned int *top, unsigned int *bottom)
600 {
601 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
602 struct drm_connector_state *conn_state;
603 struct drm_connector *conn;
604 int i;
605
606 *left = vc4_state->margins.left;
607 *right = vc4_state->margins.right;
608 *top = vc4_state->margins.top;
609 *bottom = vc4_state->margins.bottom;
610
611 /* We have to interate over all new connector states because
612 * vc4_crtc_get_margins() might be called before
613 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
614 * might be outdated.
615 */
616 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
617 if (conn_state->crtc != state->crtc)
618 continue;
619
620 *left = conn_state->tv.margins.left;
621 *right = conn_state->tv.margins.right;
622 *top = conn_state->tv.margins.top;
623 *bottom = conn_state->tv.margins.bottom;
624 break;
625 }
626 }
627
628 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
629 struct drm_crtc_state *state)
630 {
631 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
632 struct drm_device *dev = crtc->dev;
633 struct vc4_dev *vc4 = to_vc4_dev(dev);
634 struct drm_plane *plane;
635 unsigned long flags;
636 const struct drm_plane_state *plane_state;
637 struct drm_connector *conn;
638 struct drm_connector_state *conn_state;
639 u32 dlist_count = 0;
640 int ret, i;
641
642 /* The pixelvalve can only feed one encoder (and encoders are
643 * 1:1 with connectors.)
644 */
645 if (hweight32(state->connector_mask) > 1)
646 return -EINVAL;
647
648 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
649 dlist_count += vc4_plane_dlist_size(plane_state);
650
651 dlist_count++; /* Account for SCALER_CTL0_END. */
652
653 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
654 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
655 dlist_count);
656 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
657 if (ret)
658 return ret;
659
660 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
661 if (conn_state->crtc != crtc)
662 continue;
663
664 /* The writeback connector is implemented using the transposer
665 * block which is directly taking its data from the HVS FIFO.
666 */
667 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
668 state->no_vblank = true;
669 vc4_state->feed_txp = true;
670 } else {
671 state->no_vblank = false;
672 vc4_state->feed_txp = false;
673 }
674
675 vc4_state->margins.left = conn_state->tv.margins.left;
676 vc4_state->margins.right = conn_state->tv.margins.right;
677 vc4_state->margins.top = conn_state->tv.margins.top;
678 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
679 break;
680 }
681
682 return 0;
683 }
684
685 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
686 struct drm_crtc_state *old_state)
687 {
688 struct drm_device *dev = crtc->dev;
689 struct vc4_dev *vc4 = to_vc4_dev(dev);
690 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
691 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
692 struct drm_plane *plane;
693 struct vc4_plane_state *vc4_plane_state;
694 bool debug_dump_regs = false;
695 bool enable_bg_fill = false;
696 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
697 u32 __iomem *dlist_next = dlist_start;
698
699 if (debug_dump_regs) {
700 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
701 vc4_hvs_dump_state(dev);
702 }
703
704 /* Copy all the active planes' dlist contents to the hardware dlist. */
705 drm_atomic_crtc_for_each_plane(plane, crtc) {
706 /* Is this the first active plane? */
707 if (dlist_next == dlist_start) {
708 /* We need to enable background fill when a plane
709 * could be alpha blending from the background, i.e.
710 * where no other plane is underneath. It suffices to
711 * consider the first active plane here since we set
712 * needs_bg_fill such that either the first plane
713 * already needs it or all planes on top blend from
714 * the first or a lower plane.
715 */
716 vc4_plane_state = to_vc4_plane_state(plane->state);
717 enable_bg_fill = vc4_plane_state->needs_bg_fill;
718 }
719
720 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
721 }
722
723 writel(SCALER_CTL0_END, dlist_next);
724 dlist_next++;
725
726 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
727
728 if (enable_bg_fill)
729 /* This sets a black background color fill, as is the case
730 * with other DRM drivers.
731 */
732 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
733 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
734 SCALER_DISPBKGND_FILL);
735
736 /* Only update DISPLIST if the CRTC was already running and is not
737 * being disabled.
738 * vc4_crtc_enable() takes care of updating the dlist just after
739 * re-enabling VBLANK interrupts and before enabling the engine.
740 * If the CRTC is being disabled, there's no point in updating this
741 * information.
742 */
743 if (crtc->state->active && old_state->active)
744 vc4_crtc_update_dlist(crtc);
745
746 if (crtc->state->color_mgmt_changed) {
747 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
748
749 if (crtc->state->gamma_lut) {
750 vc4_crtc_update_gamma_lut(crtc);
751 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
752 } else {
753 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
754 * in hardware, which is the same as a linear lut that
755 * DRM expects us to use in absence of a user lut.
756 */
757 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
758 }
759 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
760 }
761
762 if (debug_dump_regs) {
763 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
764 vc4_hvs_dump_state(dev);
765 }
766 }
767
768 static int vc4_enable_vblank(struct drm_crtc *crtc)
769 {
770 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
771
772 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
773
774 return 0;
775 }
776
777 static void vc4_disable_vblank(struct drm_crtc *crtc)
778 {
779 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
780
781 CRTC_WRITE(PV_INTEN, 0);
782 }
783
784 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
785 {
786 struct drm_crtc *crtc = &vc4_crtc->base;
787 struct drm_device *dev = crtc->dev;
788 struct vc4_dev *vc4 = to_vc4_dev(dev);
789 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
790 u32 chan = vc4_crtc->channel;
791 unsigned long flags;
792
793 spin_lock_irqsave(&dev->event_lock, flags);
794 if (vc4_crtc->event &&
795 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
796 vc4_state->feed_txp)) {
797 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
798 vc4_crtc->event = NULL;
799 drm_crtc_vblank_put(crtc);
800
801 /* Wait for the page flip to unmask the underrun to ensure that
802 * the display list was updated by the hardware. Before that
803 * happens, the HVS will be using the previous display list with
804 * the CRTC and encoder already reconfigured, leading to
805 * underruns. This can be seen when reconfiguring the CRTC.
806 */
807 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
808 }
809 spin_unlock_irqrestore(&dev->event_lock, flags);
810 }
811
812 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
813 {
814 crtc->t_vblank = ktime_get();
815 drm_crtc_handle_vblank(&crtc->base);
816 vc4_crtc_handle_page_flip(crtc);
817 }
818
819 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
820 {
821 struct vc4_crtc *vc4_crtc = data;
822 u32 stat = CRTC_READ(PV_INTSTAT);
823 irqreturn_t ret = IRQ_NONE;
824
825 if (stat & PV_INT_VFP_START) {
826 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
827 vc4_crtc_handle_vblank(vc4_crtc);
828 ret = IRQ_HANDLED;
829 }
830
831 return ret;
832 }
833
834 struct vc4_async_flip_state {
835 struct drm_crtc *crtc;
836 struct drm_framebuffer *fb;
837 struct drm_framebuffer *old_fb;
838 struct drm_pending_vblank_event *event;
839
840 struct vc4_seqno_cb cb;
841 };
842
843 /* Called when the V3D execution for the BO being flipped to is done, so that
844 * we can actually update the plane's address to point to it.
845 */
846 static void
847 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
848 {
849 struct vc4_async_flip_state *flip_state =
850 container_of(cb, struct vc4_async_flip_state, cb);
851 struct drm_crtc *crtc = flip_state->crtc;
852 struct drm_device *dev = crtc->dev;
853 struct vc4_dev *vc4 = to_vc4_dev(dev);
854 struct drm_plane *plane = crtc->primary;
855
856 vc4_plane_async_set_fb(plane, flip_state->fb);
857 if (flip_state->event) {
858 unsigned long flags;
859
860 spin_lock_irqsave(&dev->event_lock, flags);
861 drm_crtc_send_vblank_event(crtc, flip_state->event);
862 spin_unlock_irqrestore(&dev->event_lock, flags);
863 }
864
865 drm_crtc_vblank_put(crtc);
866 drm_framebuffer_put(flip_state->fb);
867
868 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
869 * when the planes are updated through the async update path.
870 * FIXME: we should move to generic async-page-flip when it's
871 * available, so that we can get rid of this hand-made cleanup_fb()
872 * logic.
873 */
874 if (flip_state->old_fb) {
875 struct drm_gem_cma_object *cma_bo;
876 struct vc4_bo *bo;
877
878 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
879 bo = to_vc4_bo(&cma_bo->base);
880 vc4_bo_dec_usecnt(bo);
881 drm_framebuffer_put(flip_state->old_fb);
882 }
883
884 kfree(flip_state);
885
886 up(&vc4->async_modeset);
887 }
888
889 /* Implements async (non-vblank-synced) page flips.
890 *
891 * The page flip ioctl needs to return immediately, so we grab the
892 * modeset semaphore on the pipe, and queue the address update for
893 * when V3D is done with the BO being flipped to.
894 */
895 static int vc4_async_page_flip(struct drm_crtc *crtc,
896 struct drm_framebuffer *fb,
897 struct drm_pending_vblank_event *event,
898 uint32_t flags)
899 {
900 struct drm_device *dev = crtc->dev;
901 struct vc4_dev *vc4 = to_vc4_dev(dev);
902 struct drm_plane *plane = crtc->primary;
903 int ret = 0;
904 struct vc4_async_flip_state *flip_state;
905 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
906 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
907
908 /* Increment the BO usecnt here, so that we never end up with an
909 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
910 * plane is later updated through the non-async path.
911 * FIXME: we should move to generic async-page-flip when it's
912 * available, so that we can get rid of this hand-made prepare_fb()
913 * logic.
914 */
915 ret = vc4_bo_inc_usecnt(bo);
916 if (ret)
917 return ret;
918
919 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
920 if (!flip_state) {
921 vc4_bo_dec_usecnt(bo);
922 return -ENOMEM;
923 }
924
925 drm_framebuffer_get(fb);
926 flip_state->fb = fb;
927 flip_state->crtc = crtc;
928 flip_state->event = event;
929
930 /* Make sure all other async modesetes have landed. */
931 ret = down_interruptible(&vc4->async_modeset);
932 if (ret) {
933 drm_framebuffer_put(fb);
934 vc4_bo_dec_usecnt(bo);
935 kfree(flip_state);
936 return ret;
937 }
938
939 /* Save the current FB before it's replaced by the new one in
940 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
941 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
942 * it consistent.
943 * FIXME: we should move to generic async-page-flip when it's
944 * available, so that we can get rid of this hand-made cleanup_fb()
945 * logic.
946 */
947 flip_state->old_fb = plane->state->fb;
948 if (flip_state->old_fb)
949 drm_framebuffer_get(flip_state->old_fb);
950
951 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
952
953 /* Immediately update the plane's legacy fb pointer, so that later
954 * modeset prep sees the state that will be present when the semaphore
955 * is released.
956 */
957 drm_atomic_set_fb_for_plane(plane->state, fb);
958
959 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
960 vc4_async_page_flip_complete);
961
962 /* Driver takes ownership of state on successful async commit. */
963 return 0;
964 }
965
966 static int vc4_page_flip(struct drm_crtc *crtc,
967 struct drm_framebuffer *fb,
968 struct drm_pending_vblank_event *event,
969 uint32_t flags,
970 struct drm_modeset_acquire_ctx *ctx)
971 {
972 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
973 return vc4_async_page_flip(crtc, fb, event, flags);
974 else
975 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
976 }
977
978 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
979 {
980 struct vc4_crtc_state *vc4_state, *old_vc4_state;
981
982 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
983 if (!vc4_state)
984 return NULL;
985
986 old_vc4_state = to_vc4_crtc_state(crtc->state);
987 vc4_state->feed_txp = old_vc4_state->feed_txp;
988 vc4_state->margins = old_vc4_state->margins;
989
990 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
991 return &vc4_state->base;
992 }
993
994 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
995 struct drm_crtc_state *state)
996 {
997 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
998 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
999
1000 if (vc4_state->mm.allocated) {
1001 unsigned long flags;
1002
1003 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1004 drm_mm_remove_node(&vc4_state->mm);
1005 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1006
1007 }
1008
1009 drm_atomic_helper_crtc_destroy_state(crtc, state);
1010 }
1011
1012 static void
1013 vc4_crtc_reset(struct drm_crtc *crtc)
1014 {
1015 if (crtc->state)
1016 vc4_crtc_destroy_state(crtc, crtc->state);
1017
1018 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1019 if (crtc->state)
1020 crtc->state->crtc = crtc;
1021 }
1022
1023 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1024 .set_config = drm_atomic_helper_set_config,
1025 .destroy = vc4_crtc_destroy,
1026 .page_flip = vc4_page_flip,
1027 .set_property = NULL,
1028 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1029 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1030 .reset = vc4_crtc_reset,
1031 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1032 .atomic_destroy_state = vc4_crtc_destroy_state,
1033 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1034 .enable_vblank = vc4_enable_vblank,
1035 .disable_vblank = vc4_disable_vblank,
1036 };
1037
1038 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1039 .mode_set_nofb = vc4_crtc_mode_set_nofb,
1040 .mode_valid = vc4_crtc_mode_valid,
1041 .atomic_check = vc4_crtc_atomic_check,
1042 .atomic_flush = vc4_crtc_atomic_flush,
1043 .atomic_enable = vc4_crtc_atomic_enable,
1044 .atomic_disable = vc4_crtc_atomic_disable,
1045 };
1046
1047 static const struct vc4_crtc_data pv0_data = {
1048 .hvs_channel = 0,
1049 .debugfs_name = "crtc0_regs",
1050 .encoder_types = {
1051 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1052 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1053 },
1054 };
1055
1056 static const struct vc4_crtc_data pv1_data = {
1057 .hvs_channel = 2,
1058 .debugfs_name = "crtc1_regs",
1059 .encoder_types = {
1060 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1061 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1062 },
1063 };
1064
1065 static const struct vc4_crtc_data pv2_data = {
1066 .hvs_channel = 1,
1067 .debugfs_name = "crtc2_regs",
1068 .encoder_types = {
1069 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1070 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1071 },
1072 };
1073
1074 static const struct of_device_id vc4_crtc_dt_match[] = {
1075 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1076 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1077 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1078 {}
1079 };
1080
1081 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1082 struct drm_crtc *crtc)
1083 {
1084 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1085 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1086 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1087 struct drm_encoder *encoder;
1088
1089 drm_for_each_encoder(encoder, drm) {
1090 struct vc4_encoder *vc4_encoder;
1091 int i;
1092
1093 /* HVS FIFO2 can feed the TXP IP. */
1094 if (crtc_data->hvs_channel == 2 &&
1095 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1096 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1097 continue;
1098 }
1099
1100 vc4_encoder = to_vc4_encoder(encoder);
1101 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1102 if (vc4_encoder->type == encoder_types[i]) {
1103 vc4_encoder->clock_select = i;
1104 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1105 break;
1106 }
1107 }
1108 }
1109 }
1110
1111 static void
1112 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1113 {
1114 struct drm_device *drm = vc4_crtc->base.dev;
1115 struct vc4_dev *vc4 = to_vc4_dev(drm);
1116 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1117 /* Top/base are supposed to be 4-pixel aligned, but the
1118 * Raspberry Pi firmware fills the low bits (which are
1119 * presumably ignored).
1120 */
1121 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1122 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1123
1124 vc4_crtc->cob_size = top - base + 4;
1125 }
1126
1127 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1128 {
1129 struct platform_device *pdev = to_platform_device(dev);
1130 struct drm_device *drm = dev_get_drvdata(master);
1131 struct vc4_crtc *vc4_crtc;
1132 struct drm_crtc *crtc;
1133 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1134 const struct of_device_id *match;
1135 int ret, i;
1136
1137 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1138 if (!vc4_crtc)
1139 return -ENOMEM;
1140 crtc = &vc4_crtc->base;
1141
1142 match = of_match_device(vc4_crtc_dt_match, dev);
1143 if (!match)
1144 return -ENODEV;
1145 vc4_crtc->data = match->data;
1146 vc4_crtc->pdev = pdev;
1147
1148 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1149 if (IS_ERR(vc4_crtc->regs))
1150 return PTR_ERR(vc4_crtc->regs);
1151
1152 vc4_crtc->regset.base = vc4_crtc->regs;
1153 vc4_crtc->regset.regs = crtc_regs;
1154 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1155
1156 /* For now, we create just the primary and the legacy cursor
1157 * planes. We should be able to stack more planes on easily,
1158 * but to do that we would need to compute the bandwidth
1159 * requirement of the plane configuration, and reject ones
1160 * that will take too much.
1161 */
1162 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1163 if (IS_ERR(primary_plane)) {
1164 dev_err(dev, "failed to construct primary plane\n");
1165 ret = PTR_ERR(primary_plane);
1166 goto err;
1167 }
1168
1169 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1170 &vc4_crtc_funcs, NULL);
1171 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1172 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1173 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1174 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1175
1176 /* We support CTM, but only for one CRTC at a time. It's therefore
1177 * implemented as private driver state in vc4_kms, not here.
1178 */
1179 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1180
1181 /* Set up some arbitrary number of planes. We're not limited
1182 * by a set number of physical registers, just the space in
1183 * the HVS (16k) and how small an plane can be (28 bytes).
1184 * However, each plane we set up takes up some memory, and
1185 * increases the cost of looping over planes, which atomic
1186 * modesetting does quite a bit. As a result, we pick a
1187 * modest number of planes to expose, that should hopefully
1188 * still cover any sane usecase.
1189 */
1190 for (i = 0; i < 8; i++) {
1191 struct drm_plane *plane =
1192 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1193
1194 if (IS_ERR(plane))
1195 continue;
1196
1197 plane->possible_crtcs = drm_crtc_mask(crtc);
1198 }
1199
1200 /* Set up the legacy cursor after overlay initialization,
1201 * since we overlay planes on the CRTC in the order they were
1202 * initialized.
1203 */
1204 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1205 if (!IS_ERR(cursor_plane)) {
1206 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1207 crtc->cursor = cursor_plane;
1208 }
1209
1210 vc4_crtc_get_cob_allocation(vc4_crtc);
1211
1212 CRTC_WRITE(PV_INTEN, 0);
1213 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1214 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1215 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1216 if (ret)
1217 goto err_destroy_planes;
1218
1219 vc4_set_crtc_possible_masks(drm, crtc);
1220
1221 for (i = 0; i < crtc->gamma_size; i++) {
1222 vc4_crtc->lut_r[i] = i;
1223 vc4_crtc->lut_g[i] = i;
1224 vc4_crtc->lut_b[i] = i;
1225 }
1226
1227 platform_set_drvdata(pdev, vc4_crtc);
1228
1229 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1230 &vc4_crtc->regset);
1231
1232 return 0;
1233
1234 err_destroy_planes:
1235 list_for_each_entry_safe(destroy_plane, temp,
1236 &drm->mode_config.plane_list, head) {
1237 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1238 destroy_plane->funcs->destroy(destroy_plane);
1239 }
1240 err:
1241 return ret;
1242 }
1243
1244 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1245 void *data)
1246 {
1247 struct platform_device *pdev = to_platform_device(dev);
1248 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1249
1250 vc4_crtc_destroy(&vc4_crtc->base);
1251
1252 CRTC_WRITE(PV_INTEN, 0);
1253
1254 platform_set_drvdata(pdev, NULL);
1255 }
1256
1257 static const struct component_ops vc4_crtc_ops = {
1258 .bind = vc4_crtc_bind,
1259 .unbind = vc4_crtc_unbind,
1260 };
1261
1262 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1263 {
1264 return component_add(&pdev->dev, &vc4_crtc_ops);
1265 }
1266
1267 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1268 {
1269 component_del(&pdev->dev, &vc4_crtc_ops);
1270 return 0;
1271 }
1272
1273 struct platform_driver vc4_crtc_driver = {
1274 .probe = vc4_crtc_dev_probe,
1275 .remove = vc4_crtc_dev_remove,
1276 .driver = {
1277 .name = "vc4_crtc",
1278 .of_match_table = vc4_crtc_dt_match,
1279 },
1280 };