]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: Set up SCALER_DISPCTRL at boot.
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
60
61 struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 u32 reg;
95 const char *name;
96 } crtc_regs[] = {
97 CRTC_REG(PV_CONTROL),
98 CRTC_REG(PV_V_CONTROL),
99 CRTC_REG(PV_VSYNCD_EVEN),
100 CRTC_REG(PV_HORZA),
101 CRTC_REG(PV_HORZB),
102 CRTC_REG(PV_VERTA),
103 CRTC_REG(PV_VERTB),
104 CRTC_REG(PV_VERTA_EVEN),
105 CRTC_REG(PV_VERTB_EVEN),
106 CRTC_REG(PV_INTEN),
107 CRTC_REG(PV_INTSTAT),
108 CRTC_REG(PV_STAT),
109 CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs[i].reg, crtc_regs[i].name,
119 CRTC_READ(crtc_regs[i].reg));
120 }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126 struct drm_info_node *node = (struct drm_info_node *)m->private;
127 struct drm_device *dev = node->minor->dev;
128 int crtc_index = (uintptr_t)node->info_ent->data;
129 struct drm_crtc *crtc;
130 struct vc4_crtc *vc4_crtc;
131 int i;
132
133 i = 0;
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 if (i == crtc_index)
136 break;
137 i++;
138 }
139 if (!crtc)
140 return 0;
141 vc4_crtc = to_vc4_crtc(crtc);
142
143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 crtc_regs[i].name, crtc_regs[i].reg,
146 CRTC_READ(crtc_regs[i].reg));
147 }
148
149 return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 unsigned int flags, int *vpos, int *hpos,
155 ktime_t *stime, ktime_t *etime,
156 const struct drm_display_mode *mode)
157 {
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
160 u32 val;
161 int fifo_lines;
162 int vblank_lines;
163 int ret = 0;
164
165 if (vc4->firmware_kms)
166 return 0;
167
168 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
169
170 /* Get optional system timestamp before query. */
171 if (stime)
172 *stime = ktime_get();
173
174 /*
175 * Read vertical scanline which is currently composed for our
176 * pixelvalve by the HVS, and also the scaler status.
177 */
178 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
179
180 /* Get optional system timestamp after query. */
181 if (etime)
182 *etime = ktime_get();
183
184 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
185
186 /* Vertical position of hvs composed scanline. */
187 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
188 *hpos = 0;
189
190 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
191 *vpos /= 2;
192
193 /* Use hpos to correct for field offset in interlaced mode. */
194 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
195 *hpos += mode->crtc_htotal / 2;
196 }
197
198 /* This is the offset we need for translating hvs -> pv scanout pos. */
199 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
200
201 if (fifo_lines > 0)
202 ret |= DRM_SCANOUTPOS_VALID;
203
204 /* HVS more than fifo_lines into frame for compositing? */
205 if (*vpos > fifo_lines) {
206 /*
207 * We are in active scanout and can get some meaningful results
208 * from HVS. The actual PV scanout can not trail behind more
209 * than fifo_lines as that is the fifo's capacity. Assume that
210 * in active scanout the HVS and PV work in lockstep wrt. HVS
211 * refilling the fifo and PV consuming from the fifo, ie.
212 * whenever the PV consumes and frees up a scanline in the
213 * fifo, the HVS will immediately refill it, therefore
214 * incrementing vpos. Therefore we choose HVS read position -
215 * fifo size in scanlines as a estimate of the real scanout
216 * position of the PV.
217 */
218 *vpos -= fifo_lines + 1;
219
220 ret |= DRM_SCANOUTPOS_ACCURATE;
221 return ret;
222 }
223
224 /*
225 * Less: This happens when we are in vblank and the HVS, after getting
226 * the VSTART restart signal from the PV, just started refilling its
227 * fifo with new lines from the top-most lines of the new framebuffers.
228 * The PV does not scan out in vblank, so does not remove lines from
229 * the fifo, so the fifo will be full quickly and the HVS has to pause.
230 * We can't get meaningful readings wrt. scanline position of the PV
231 * and need to make things up in a approximative but consistent way.
232 */
233 ret |= DRM_SCANOUTPOS_IN_VBLANK;
234 vblank_lines = mode->vtotal - mode->vdisplay;
235
236 if (flags & DRM_CALLED_FROM_VBLIRQ) {
237 /*
238 * Assume the irq handler got called close to first
239 * line of vblank, so PV has about a full vblank
240 * scanlines to go, and as a base timestamp use the
241 * one taken at entry into vblank irq handler, so it
242 * is not affected by random delays due to lock
243 * contention on event_lock or vblank_time lock in
244 * the core.
245 */
246 *vpos = -vblank_lines;
247
248 if (stime)
249 *stime = vc4_crtc->t_vblank;
250 if (etime)
251 *etime = vc4_crtc->t_vblank;
252
253 /*
254 * If the HVS fifo is not yet full then we know for certain
255 * we are at the very beginning of vblank, as the hvs just
256 * started refilling, and the stime and etime timestamps
257 * truly correspond to start of vblank.
258 */
259 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
260 ret |= DRM_SCANOUTPOS_ACCURATE;
261 } else {
262 /*
263 * No clue where we are inside vblank. Return a vpos of zero,
264 * which will cause calling code to just return the etime
265 * timestamp uncorrected. At least this is no worse than the
266 * standard fallback.
267 */
268 *vpos = 0;
269 }
270
271 return ret;
272 }
273
274 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
275 int *max_error, struct timeval *vblank_time,
276 unsigned flags)
277 {
278 struct vc4_dev *vc4 = to_vc4_dev(dev);
279 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
280 struct drm_crtc *crtc = &vc4_crtc->base;
281 struct drm_crtc_state *state = crtc->state;
282
283 /* Helper routine in DRM core does all the work: */
284 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
285 vblank_time, flags,
286 &state->adjusted_mode);
287 }
288
289 static void vc4_crtc_destroy(struct drm_crtc *crtc)
290 {
291 drm_crtc_cleanup(crtc);
292 }
293
294 static void
295 vc4_crtc_lut_load(struct drm_crtc *crtc)
296 {
297 struct drm_device *dev = crtc->dev;
298 struct vc4_dev *vc4 = to_vc4_dev(dev);
299 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300 u32 i;
301
302 /* The LUT memory is laid out with each HVS channel in order,
303 * each of which takes 256 writes for R, 256 for G, then 256
304 * for B.
305 */
306 HVS_WRITE(SCALER_GAMADDR,
307 SCALER_GAMADDR_AUTOINC |
308 (vc4_crtc->channel * 3 * crtc->gamma_size));
309
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
312 for (i = 0; i < crtc->gamma_size; i++)
313 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
314 for (i = 0; i < crtc->gamma_size; i++)
315 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
316 }
317
318 static int
319 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
320 uint32_t size)
321 {
322 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
323 u32 i;
324
325 for (i = 0; i < size; i++) {
326 vc4_crtc->lut_r[i] = r[i] >> 8;
327 vc4_crtc->lut_g[i] = g[i] >> 8;
328 vc4_crtc->lut_b[i] = b[i] >> 8;
329 }
330
331 vc4_crtc_lut_load(crtc);
332
333 return 0;
334 }
335
336 static u32 vc4_get_fifo_full_level(u32 format)
337 {
338 static const u32 fifo_len_bytes = 64;
339 static const u32 hvs_latency_pix = 6;
340
341 switch (format) {
342 case PV_CONTROL_FORMAT_DSIV_16:
343 case PV_CONTROL_FORMAT_DSIC_16:
344 return fifo_len_bytes - 2 * hvs_latency_pix;
345 case PV_CONTROL_FORMAT_DSIV_18:
346 return fifo_len_bytes - 14;
347 case PV_CONTROL_FORMAT_24:
348 case PV_CONTROL_FORMAT_DSIV_24:
349 default:
350 return fifo_len_bytes - 3 * hvs_latency_pix;
351 }
352 }
353
354 /*
355 * Returns the clock select bit for the connector attached to the
356 * CRTC.
357 */
358 static int vc4_get_clock_select(struct drm_crtc *crtc)
359 {
360 struct drm_connector *connector;
361
362 drm_for_each_connector(connector, crtc->dev) {
363 if (connector->state->crtc == crtc) {
364 struct drm_encoder *encoder = connector->encoder;
365 struct vc4_encoder *vc4_encoder =
366 to_vc4_encoder(encoder);
367
368 return vc4_encoder->clock_select;
369 }
370 }
371
372 return -1;
373 }
374
375 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
376 {
377 struct drm_device *dev = crtc->dev;
378 struct vc4_dev *vc4 = to_vc4_dev(dev);
379 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
380 struct drm_crtc_state *state = crtc->state;
381 struct drm_display_mode *mode = &state->adjusted_mode;
382 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
383 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
384 u32 format = PV_CONTROL_FORMAT_24;
385 bool debug_dump_regs = false;
386 int clock_select = vc4_get_clock_select(crtc);
387
388 if (debug_dump_regs) {
389 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
390 vc4_crtc_dump_regs(vc4_crtc);
391 }
392
393 /* Reset the PV fifo. */
394 CRTC_WRITE(PV_CONTROL, 0);
395 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
396 CRTC_WRITE(PV_CONTROL, 0);
397
398 CRTC_WRITE(PV_HORZA,
399 VC4_SET_FIELD((mode->htotal -
400 mode->hsync_end) * pixel_rep,
401 PV_HORZA_HBP) |
402 VC4_SET_FIELD((mode->hsync_end -
403 mode->hsync_start) * pixel_rep,
404 PV_HORZA_HSYNC));
405 CRTC_WRITE(PV_HORZB,
406 VC4_SET_FIELD((mode->hsync_start -
407 mode->hdisplay) * pixel_rep,
408 PV_HORZB_HFP) |
409 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
410
411 CRTC_WRITE(PV_VERTA,
412 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
413 PV_VERTA_VBP) |
414 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
415 PV_VERTA_VSYNC));
416 CRTC_WRITE(PV_VERTB,
417 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
418 PV_VERTB_VFP) |
419 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
420
421 if (interlace) {
422 CRTC_WRITE(PV_VERTA_EVEN,
423 VC4_SET_FIELD(mode->crtc_vtotal -
424 mode->crtc_vsync_end - 1,
425 PV_VERTA_VBP) |
426 VC4_SET_FIELD(mode->crtc_vsync_end -
427 mode->crtc_vsync_start,
428 PV_VERTA_VSYNC));
429 CRTC_WRITE(PV_VERTB_EVEN,
430 VC4_SET_FIELD(mode->crtc_vsync_start -
431 mode->crtc_vdisplay,
432 PV_VERTB_VFP) |
433 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
434
435 /* We set up first field even mode for HDMI. VEC's
436 * NTSC mode would want first field odd instead, once
437 * we support it (to do so, set ODD_FIRST and put the
438 * delay in VSYNCD_EVEN instead).
439 */
440 CRTC_WRITE(PV_V_CONTROL,
441 PV_VCONTROL_CONTINUOUS |
442 PV_VCONTROL_INTERLACE |
443 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
444 PV_VCONTROL_ODD_DELAY));
445 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
446 } else {
447 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
448 }
449
450 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
451
452
453 CRTC_WRITE(PV_CONTROL,
454 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
455 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
456 PV_CONTROL_FIFO_LEVEL) |
457 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
458 PV_CONTROL_CLR_AT_START |
459 PV_CONTROL_TRIGGER_UNDERFLOW |
460 PV_CONTROL_WAIT_HSTART |
461 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
462 PV_CONTROL_FIFO_CLR |
463 PV_CONTROL_EN);
464
465 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
466 SCALER_DISPBKGND_AUTOHS |
467 SCALER_DISPBKGND_GAMMA |
468 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
469
470 /* Reload the LUT, since the SRAMs would have been disabled if
471 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
472 */
473 vc4_crtc_lut_load(crtc);
474
475 if (debug_dump_regs) {
476 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
477 vc4_crtc_dump_regs(vc4_crtc);
478 }
479 }
480
481 static void require_hvs_enabled(struct drm_device *dev)
482 {
483 struct vc4_dev *vc4 = to_vc4_dev(dev);
484
485 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
486 SCALER_DISPCTRL_ENABLE);
487 }
488
489 static void vc4_crtc_disable(struct drm_crtc *crtc)
490 {
491 struct drm_device *dev = crtc->dev;
492 struct vc4_dev *vc4 = to_vc4_dev(dev);
493 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
494 u32 chan = vc4_crtc->channel;
495 int ret;
496 require_hvs_enabled(dev);
497
498 /* Disable vblank irq handling before crtc is disabled. */
499 drm_crtc_vblank_off(crtc);
500
501 CRTC_WRITE(PV_V_CONTROL,
502 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
503 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
504 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
505
506 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
507 SCALER_DISPCTRLX_ENABLE) {
508 HVS_WRITE(SCALER_DISPCTRLX(chan),
509 SCALER_DISPCTRLX_RESET);
510
511 /* While the docs say that reset is self-clearing, it
512 * seems it doesn't actually.
513 */
514 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
515 }
516
517 /* Once we leave, the scaler should be disabled and its fifo empty. */
518
519 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
520
521 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
522 SCALER_DISPSTATX_MODE) !=
523 SCALER_DISPSTATX_MODE_DISABLED);
524
525 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
526 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
527 SCALER_DISPSTATX_EMPTY);
528 }
529
530 static void vc4_crtc_enable(struct drm_crtc *crtc)
531 {
532 struct drm_device *dev = crtc->dev;
533 struct vc4_dev *vc4 = to_vc4_dev(dev);
534 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
535 struct drm_crtc_state *state = crtc->state;
536 struct drm_display_mode *mode = &state->adjusted_mode;
537
538 require_hvs_enabled(dev);
539
540 /* Turn on the scaler, which will wait for vstart to start
541 * compositing.
542 */
543 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
544 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
545 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
546 SCALER_DISPCTRLX_ENABLE);
547
548 /* Turn on the pixel valve, which will emit the vstart signal. */
549 CRTC_WRITE(PV_V_CONTROL,
550 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
551
552 /* Enable vblank irq handling after crtc is started. */
553 drm_crtc_vblank_on(crtc);
554 }
555
556 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
557 const struct drm_display_mode *mode,
558 struct drm_display_mode *adjusted_mode)
559 {
560 /* Do not allow doublescan modes from user space */
561 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
562 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
563 crtc->base.id);
564 return false;
565 }
566
567 return true;
568 }
569
570 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
571 struct drm_crtc_state *state)
572 {
573 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
574 struct drm_device *dev = crtc->dev;
575 struct vc4_dev *vc4 = to_vc4_dev(dev);
576 struct drm_plane *plane;
577 unsigned long flags;
578 const struct drm_plane_state *plane_state;
579 u32 dlist_count = 0;
580 int ret;
581
582 /* The pixelvalve can only feed one encoder (and encoders are
583 * 1:1 with connectors.)
584 */
585 if (hweight32(state->connector_mask) > 1)
586 return -EINVAL;
587
588 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
589 dlist_count += vc4_plane_dlist_size(plane_state);
590
591 dlist_count++; /* Account for SCALER_CTL0_END. */
592
593 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
594 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
595 dlist_count, 1, 0);
596 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
597 if (ret)
598 return ret;
599
600 return 0;
601 }
602
603 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
604 struct drm_crtc_state *old_state)
605 {
606 struct drm_device *dev = crtc->dev;
607 struct vc4_dev *vc4 = to_vc4_dev(dev);
608 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
609 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
610 struct drm_plane *plane;
611 bool debug_dump_regs = false;
612 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
613 u32 __iomem *dlist_next = dlist_start;
614
615 if (debug_dump_regs) {
616 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
617 vc4_hvs_dump_state(dev);
618 }
619
620 /* Copy all the active planes' dlist contents to the hardware dlist. */
621 drm_atomic_crtc_for_each_plane(plane, crtc) {
622 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
623 }
624
625 writel(SCALER_CTL0_END, dlist_next);
626 dlist_next++;
627
628 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
629
630 if (crtc->state->event) {
631 unsigned long flags;
632
633 crtc->state->event->pipe = drm_crtc_index(crtc);
634
635 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
636
637 spin_lock_irqsave(&dev->event_lock, flags);
638 vc4_crtc->event = crtc->state->event;
639 crtc->state->event = NULL;
640
641 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
642 vc4_state->mm.start);
643
644 spin_unlock_irqrestore(&dev->event_lock, flags);
645 } else {
646 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
647 vc4_state->mm.start);
648 }
649
650 if (debug_dump_regs) {
651 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
652 vc4_hvs_dump_state(dev);
653 }
654 }
655
656 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
657 {
658 struct vc4_dev *vc4 = to_vc4_dev(dev);
659 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
660
661 if (vc4->firmware_kms) {
662 /* XXX: Can we mask the SMI interrupt? */
663 return 0;
664 }
665
666 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
667
668 return 0;
669 }
670
671 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
672 {
673 struct vc4_dev *vc4 = to_vc4_dev(dev);
674 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
675
676 if (vc4->firmware_kms) {
677 /* XXX: Can we mask the SMI interrupt? */
678 return;
679 }
680
681 CRTC_WRITE(PV_INTEN, 0);
682 }
683
684 /* Must be called with the event lock held */
685 bool vc4_event_pending(struct drm_crtc *crtc)
686 {
687 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688
689 return !!vc4_crtc->event;
690 }
691
692 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
693 {
694 struct drm_crtc *crtc = &vc4_crtc->base;
695 struct drm_device *dev = crtc->dev;
696 struct vc4_dev *vc4 = to_vc4_dev(dev);
697 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
698 u32 chan = vc4_crtc->channel;
699 unsigned long flags;
700
701 spin_lock_irqsave(&dev->event_lock, flags);
702 if (vc4_crtc->event &&
703 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
704 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
705 vc4_crtc->event = NULL;
706 drm_crtc_vblank_put(crtc);
707 }
708 spin_unlock_irqrestore(&dev->event_lock, flags);
709 }
710
711 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
712 {
713 struct vc4_crtc *vc4_crtc = data;
714 u32 stat = CRTC_READ(PV_INTSTAT);
715 irqreturn_t ret = IRQ_NONE;
716
717 if (stat & PV_INT_VFP_START) {
718 vc4_crtc->t_vblank = ktime_get();
719 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
720 drm_crtc_handle_vblank(&vc4_crtc->base);
721 vc4_crtc_handle_page_flip(vc4_crtc);
722 ret = IRQ_HANDLED;
723 }
724
725 return ret;
726 }
727
728 struct vc4_async_flip_state {
729 struct drm_crtc *crtc;
730 struct drm_framebuffer *fb;
731 struct drm_pending_vblank_event *event;
732
733 struct vc4_seqno_cb cb;
734 };
735
736 /* Called when the V3D execution for the BO being flipped to is done, so that
737 * we can actually update the plane's address to point to it.
738 */
739 static void
740 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
741 {
742 struct vc4_async_flip_state *flip_state =
743 container_of(cb, struct vc4_async_flip_state, cb);
744 struct drm_crtc *crtc = flip_state->crtc;
745 struct drm_device *dev = crtc->dev;
746 struct vc4_dev *vc4 = to_vc4_dev(dev);
747 struct drm_plane *plane = crtc->primary;
748
749 vc4_plane_async_set_fb(plane, flip_state->fb);
750 if (flip_state->event) {
751 unsigned long flags;
752
753 spin_lock_irqsave(&dev->event_lock, flags);
754 drm_crtc_send_vblank_event(crtc, flip_state->event);
755 spin_unlock_irqrestore(&dev->event_lock, flags);
756 }
757
758 drm_crtc_vblank_put(crtc);
759 drm_framebuffer_unreference(flip_state->fb);
760 kfree(flip_state);
761
762 up(&vc4->async_modeset);
763 }
764
765 /* Implements async (non-vblank-synced) page flips.
766 *
767 * The page flip ioctl needs to return immediately, so we grab the
768 * modeset semaphore on the pipe, and queue the address update for
769 * when V3D is done with the BO being flipped to.
770 */
771 static int vc4_async_page_flip(struct drm_crtc *crtc,
772 struct drm_framebuffer *fb,
773 struct drm_pending_vblank_event *event,
774 uint32_t flags)
775 {
776 struct drm_device *dev = crtc->dev;
777 struct vc4_dev *vc4 = to_vc4_dev(dev);
778 struct drm_plane *plane = crtc->primary;
779 int ret = 0;
780 struct vc4_async_flip_state *flip_state;
781 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
782 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
783
784 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
785 if (!flip_state)
786 return -ENOMEM;
787
788 drm_framebuffer_reference(fb);
789 flip_state->fb = fb;
790 flip_state->crtc = crtc;
791 flip_state->event = event;
792
793 /* Make sure all other async modesetes have landed. */
794 ret = down_interruptible(&vc4->async_modeset);
795 if (ret) {
796 drm_framebuffer_unreference(fb);
797 kfree(flip_state);
798 return ret;
799 }
800
801 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
802
803 /* Immediately update the plane's legacy fb pointer, so that later
804 * modeset prep sees the state that will be present when the semaphore
805 * is released.
806 */
807 drm_atomic_set_fb_for_plane(plane->state, fb);
808 plane->fb = fb;
809
810 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
811 vc4_async_page_flip_complete);
812
813 /* Driver takes ownership of state on successful async commit. */
814 return 0;
815 }
816
817 static int vc4_page_flip(struct drm_crtc *crtc,
818 struct drm_framebuffer *fb,
819 struct drm_pending_vblank_event *event,
820 uint32_t flags)
821 {
822 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
823 return vc4_async_page_flip(crtc, fb, event, flags);
824 else
825 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
826 }
827
828 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
829 {
830 struct vc4_crtc_state *vc4_state;
831
832 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
833 if (!vc4_state)
834 return NULL;
835
836 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
837 return &vc4_state->base;
838 }
839
840 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
841 struct drm_crtc_state *state)
842 {
843 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
844 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
845
846 if (vc4_state->mm.allocated) {
847 unsigned long flags;
848
849 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
850 drm_mm_remove_node(&vc4_state->mm);
851 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
852
853 }
854
855 drm_atomic_helper_crtc_destroy_state(crtc, state);
856 }
857
858 static void
859 vc4_crtc_reset(struct drm_crtc *crtc)
860 {
861 if (crtc->state)
862 __drm_atomic_helper_crtc_destroy_state(crtc->state);
863
864 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
865 if (crtc->state)
866 crtc->state->crtc = crtc;
867 }
868
869 static const struct drm_crtc_funcs vc4_crtc_funcs = {
870 .set_config = drm_atomic_helper_set_config,
871 .destroy = vc4_crtc_destroy,
872 .page_flip = vc4_page_flip,
873 .set_property = NULL,
874 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
875 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
876 .reset = vc4_crtc_reset,
877 .atomic_duplicate_state = vc4_crtc_duplicate_state,
878 .atomic_destroy_state = vc4_crtc_destroy_state,
879 .gamma_set = vc4_crtc_gamma_set,
880 };
881
882 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
883 .mode_set_nofb = vc4_crtc_mode_set_nofb,
884 .disable = vc4_crtc_disable,
885 .enable = vc4_crtc_enable,
886 .mode_fixup = vc4_crtc_mode_fixup,
887 .atomic_check = vc4_crtc_atomic_check,
888 .atomic_flush = vc4_crtc_atomic_flush,
889 };
890
891 static const struct vc4_crtc_data pv0_data = {
892 .hvs_channel = 0,
893 .encoder_types = {
894 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
895 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
896 },
897 };
898
899 static const struct vc4_crtc_data pv1_data = {
900 .hvs_channel = 2,
901 .encoder_types = {
902 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
903 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
904 },
905 };
906
907 static const struct vc4_crtc_data pv2_data = {
908 .hvs_channel = 1,
909 .encoder_types = {
910 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
911 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
912 },
913 };
914
915 static const struct of_device_id vc4_crtc_dt_match[] = {
916 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
917 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
918 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
919 {}
920 };
921
922 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
923 struct drm_crtc *crtc)
924 {
925 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
926 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
927 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
928 struct drm_encoder *encoder;
929
930 drm_for_each_encoder(encoder, drm) {
931 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
932 int i;
933
934 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
935 if (vc4_encoder->type == encoder_types[i]) {
936 vc4_encoder->clock_select = i;
937 encoder->possible_crtcs |= drm_crtc_mask(crtc);
938 break;
939 }
940 }
941 }
942 }
943
944 static void
945 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
946 {
947 struct drm_device *drm = vc4_crtc->base.dev;
948 struct vc4_dev *vc4 = to_vc4_dev(drm);
949 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
950 /* Top/base are supposed to be 4-pixel aligned, but the
951 * Raspberry Pi firmware fills the low bits (which are
952 * presumably ignored).
953 */
954 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
955 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
956
957 vc4_crtc->cob_size = top - base + 4;
958 }
959
960 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
961 {
962 struct platform_device *pdev = to_platform_device(dev);
963 struct drm_device *drm = dev_get_drvdata(master);
964 struct vc4_dev *vc4 = to_vc4_dev(drm);
965 struct vc4_crtc *vc4_crtc;
966 struct drm_crtc *crtc;
967 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
968 const struct of_device_id *match;
969 int ret, i;
970
971 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
972 if (!vc4_crtc)
973 return -ENOMEM;
974 crtc = &vc4_crtc->base;
975
976 match = of_match_device(vc4_crtc_dt_match, dev);
977 if (!match)
978 return -ENODEV;
979 vc4_crtc->data = match->data;
980
981 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
982 if (IS_ERR(vc4_crtc->regs))
983 return PTR_ERR(vc4_crtc->regs);
984
985 /* For now, we create just the primary and the legacy cursor
986 * planes. We should be able to stack more planes on easily,
987 * but to do that we would need to compute the bandwidth
988 * requirement of the plane configuration, and reject ones
989 * that will take too much.
990 */
991 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
992 if (IS_ERR(primary_plane)) {
993 dev_err(dev, "failed to construct primary plane\n");
994 ret = PTR_ERR(primary_plane);
995 goto err;
996 }
997
998 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
999 &vc4_crtc_funcs, NULL);
1000 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1001 primary_plane->crtc = crtc;
1002 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
1003 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1004 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1005
1006 /* Set up some arbitrary number of planes. We're not limited
1007 * by a set number of physical registers, just the space in
1008 * the HVS (16k) and how small an plane can be (28 bytes).
1009 * However, each plane we set up takes up some memory, and
1010 * increases the cost of looping over planes, which atomic
1011 * modesetting does quite a bit. As a result, we pick a
1012 * modest number of planes to expose, that should hopefully
1013 * still cover any sane usecase.
1014 */
1015 for (i = 0; i < 8; i++) {
1016 struct drm_plane *plane =
1017 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1018
1019 if (IS_ERR(plane))
1020 continue;
1021
1022 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1023 }
1024
1025 /* Set up the legacy cursor after overlay initialization,
1026 * since we overlay planes on the CRTC in the order they were
1027 * initialized.
1028 */
1029 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1030 if (!IS_ERR(cursor_plane)) {
1031 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1032 cursor_plane->crtc = crtc;
1033 crtc->cursor = cursor_plane;
1034 }
1035
1036 vc4_crtc_get_cob_allocation(vc4_crtc);
1037
1038 CRTC_WRITE(PV_INTEN, 0);
1039 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1040 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1041 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1042 if (ret)
1043 goto err_destroy_planes;
1044
1045 vc4_set_crtc_possible_masks(drm, crtc);
1046
1047 for (i = 0; i < crtc->gamma_size; i++) {
1048 vc4_crtc->lut_r[i] = i;
1049 vc4_crtc->lut_g[i] = i;
1050 vc4_crtc->lut_b[i] = i;
1051 }
1052
1053 platform_set_drvdata(pdev, vc4_crtc);
1054
1055 return 0;
1056
1057 err_destroy_planes:
1058 list_for_each_entry_safe(destroy_plane, temp,
1059 &drm->mode_config.plane_list, head) {
1060 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1061 destroy_plane->funcs->destroy(destroy_plane);
1062 }
1063 err:
1064 return ret;
1065 }
1066
1067 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1068 void *data)
1069 {
1070 struct platform_device *pdev = to_platform_device(dev);
1071 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1072
1073 vc4_crtc_destroy(&vc4_crtc->base);
1074
1075 CRTC_WRITE(PV_INTEN, 0);
1076
1077 platform_set_drvdata(pdev, NULL);
1078 }
1079
1080 static const struct component_ops vc4_crtc_ops = {
1081 .bind = vc4_crtc_bind,
1082 .unbind = vc4_crtc_unbind,
1083 };
1084
1085 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1086 {
1087 return component_add(&pdev->dev, &vc4_crtc_ops);
1088 }
1089
1090 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1091 {
1092 component_del(&pdev->dev, &vc4_crtc_ops);
1093 return 0;
1094 }
1095
1096 struct platform_driver vc4_crtc_driver = {
1097 .probe = vc4_crtc_dev_probe,
1098 .remove = vc4_crtc_dev_remove,
1099 .driver = {
1100 .name = "vc4_crtc",
1101 .of_match_table = vc4_crtc_dt_match,
1102 },
1103 };