]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: Allocate the right amount of space for boot-time CRTC state.
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
60
61 struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 u32 reg;
95 const char *name;
96 } crtc_regs[] = {
97 CRTC_REG(PV_CONTROL),
98 CRTC_REG(PV_V_CONTROL),
99 CRTC_REG(PV_VSYNCD_EVEN),
100 CRTC_REG(PV_HORZA),
101 CRTC_REG(PV_HORZB),
102 CRTC_REG(PV_VERTA),
103 CRTC_REG(PV_VERTB),
104 CRTC_REG(PV_VERTA_EVEN),
105 CRTC_REG(PV_VERTB_EVEN),
106 CRTC_REG(PV_INTEN),
107 CRTC_REG(PV_INTSTAT),
108 CRTC_REG(PV_STAT),
109 CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs[i].reg, crtc_regs[i].name,
119 CRTC_READ(crtc_regs[i].reg));
120 }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126 struct drm_info_node *node = (struct drm_info_node *)m->private;
127 struct drm_device *dev = node->minor->dev;
128 int crtc_index = (uintptr_t)node->info_ent->data;
129 struct drm_crtc *crtc;
130 struct vc4_crtc *vc4_crtc;
131 int i;
132
133 i = 0;
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 if (i == crtc_index)
136 break;
137 i++;
138 }
139 if (!crtc)
140 return 0;
141 vc4_crtc = to_vc4_crtc(crtc);
142
143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 crtc_regs[i].name, crtc_regs[i].reg,
146 CRTC_READ(crtc_regs[i].reg));
147 }
148
149 return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 unsigned int flags, int *vpos, int *hpos,
155 ktime_t *stime, ktime_t *etime,
156 const struct drm_display_mode *mode)
157 {
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
160 u32 val;
161 int fifo_lines;
162 int vblank_lines;
163 int ret = 0;
164
165 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
166
167 /* Get optional system timestamp before query. */
168 if (stime)
169 *stime = ktime_get();
170
171 /*
172 * Read vertical scanline which is currently composed for our
173 * pixelvalve by the HVS, and also the scaler status.
174 */
175 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
176
177 /* Get optional system timestamp after query. */
178 if (etime)
179 *etime = ktime_get();
180
181 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
182
183 /* Vertical position of hvs composed scanline. */
184 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
185 *hpos = 0;
186
187 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
188 *vpos /= 2;
189
190 /* Use hpos to correct for field offset in interlaced mode. */
191 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
192 *hpos += mode->crtc_htotal / 2;
193 }
194
195 /* This is the offset we need for translating hvs -> pv scanout pos. */
196 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
197
198 if (fifo_lines > 0)
199 ret |= DRM_SCANOUTPOS_VALID;
200
201 /* HVS more than fifo_lines into frame for compositing? */
202 if (*vpos > fifo_lines) {
203 /*
204 * We are in active scanout and can get some meaningful results
205 * from HVS. The actual PV scanout can not trail behind more
206 * than fifo_lines as that is the fifo's capacity. Assume that
207 * in active scanout the HVS and PV work in lockstep wrt. HVS
208 * refilling the fifo and PV consuming from the fifo, ie.
209 * whenever the PV consumes and frees up a scanline in the
210 * fifo, the HVS will immediately refill it, therefore
211 * incrementing vpos. Therefore we choose HVS read position -
212 * fifo size in scanlines as a estimate of the real scanout
213 * position of the PV.
214 */
215 *vpos -= fifo_lines + 1;
216
217 ret |= DRM_SCANOUTPOS_ACCURATE;
218 return ret;
219 }
220
221 /*
222 * Less: This happens when we are in vblank and the HVS, after getting
223 * the VSTART restart signal from the PV, just started refilling its
224 * fifo with new lines from the top-most lines of the new framebuffers.
225 * The PV does not scan out in vblank, so does not remove lines from
226 * the fifo, so the fifo will be full quickly and the HVS has to pause.
227 * We can't get meaningful readings wrt. scanline position of the PV
228 * and need to make things up in a approximative but consistent way.
229 */
230 ret |= DRM_SCANOUTPOS_IN_VBLANK;
231 vblank_lines = mode->vtotal - mode->vdisplay;
232
233 if (flags & DRM_CALLED_FROM_VBLIRQ) {
234 /*
235 * Assume the irq handler got called close to first
236 * line of vblank, so PV has about a full vblank
237 * scanlines to go, and as a base timestamp use the
238 * one taken at entry into vblank irq handler, so it
239 * is not affected by random delays due to lock
240 * contention on event_lock or vblank_time lock in
241 * the core.
242 */
243 *vpos = -vblank_lines;
244
245 if (stime)
246 *stime = vc4_crtc->t_vblank;
247 if (etime)
248 *etime = vc4_crtc->t_vblank;
249
250 /*
251 * If the HVS fifo is not yet full then we know for certain
252 * we are at the very beginning of vblank, as the hvs just
253 * started refilling, and the stime and etime timestamps
254 * truly correspond to start of vblank.
255 */
256 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
257 ret |= DRM_SCANOUTPOS_ACCURATE;
258 } else {
259 /*
260 * No clue where we are inside vblank. Return a vpos of zero,
261 * which will cause calling code to just return the etime
262 * timestamp uncorrected. At least this is no worse than the
263 * standard fallback.
264 */
265 *vpos = 0;
266 }
267
268 return ret;
269 }
270
271 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
272 int *max_error, struct timeval *vblank_time,
273 unsigned flags)
274 {
275 struct vc4_dev *vc4 = to_vc4_dev(dev);
276 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
277 struct drm_crtc *crtc = &vc4_crtc->base;
278 struct drm_crtc_state *state = crtc->state;
279
280 /* Helper routine in DRM core does all the work: */
281 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282 vblank_time, flags,
283 &state->adjusted_mode);
284 }
285
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288 drm_crtc_cleanup(crtc);
289 }
290
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294 struct drm_device *dev = crtc->dev;
295 struct vc4_dev *vc4 = to_vc4_dev(dev);
296 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297 u32 i;
298
299 /* The LUT memory is laid out with each HVS channel in order,
300 * each of which takes 256 writes for R, 256 for G, then 256
301 * for B.
302 */
303 HVS_WRITE(SCALER_GAMADDR,
304 SCALER_GAMADDR_AUTOINC |
305 (vc4_crtc->channel * 3 * crtc->gamma_size));
306
307 for (i = 0; i < crtc->gamma_size; i++)
308 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309 for (i = 0; i < crtc->gamma_size; i++)
310 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311 for (i = 0; i < crtc->gamma_size; i++)
312 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317 uint32_t size)
318 {
319 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
320 u32 i;
321
322 for (i = 0; i < size; i++) {
323 vc4_crtc->lut_r[i] = r[i] >> 8;
324 vc4_crtc->lut_g[i] = g[i] >> 8;
325 vc4_crtc->lut_b[i] = b[i] >> 8;
326 }
327
328 vc4_crtc_lut_load(crtc);
329
330 return 0;
331 }
332
333 static u32 vc4_get_fifo_full_level(u32 format)
334 {
335 static const u32 fifo_len_bytes = 64;
336 static const u32 hvs_latency_pix = 6;
337
338 switch (format) {
339 case PV_CONTROL_FORMAT_DSIV_16:
340 case PV_CONTROL_FORMAT_DSIC_16:
341 return fifo_len_bytes - 2 * hvs_latency_pix;
342 case PV_CONTROL_FORMAT_DSIV_18:
343 return fifo_len_bytes - 14;
344 case PV_CONTROL_FORMAT_24:
345 case PV_CONTROL_FORMAT_DSIV_24:
346 default:
347 return fifo_len_bytes - 3 * hvs_latency_pix;
348 }
349 }
350
351 /*
352 * Returns the clock select bit for the connector attached to the
353 * CRTC.
354 */
355 static int vc4_get_clock_select(struct drm_crtc *crtc)
356 {
357 struct drm_connector *connector;
358
359 drm_for_each_connector(connector, crtc->dev) {
360 if (connector->state->crtc == crtc) {
361 struct drm_encoder *encoder = connector->encoder;
362 struct vc4_encoder *vc4_encoder =
363 to_vc4_encoder(encoder);
364
365 return vc4_encoder->clock_select;
366 }
367 }
368
369 return -1;
370 }
371
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374 struct drm_device *dev = crtc->dev;
375 struct vc4_dev *vc4 = to_vc4_dev(dev);
376 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377 struct drm_crtc_state *state = crtc->state;
378 struct drm_display_mode *mode = &state->adjusted_mode;
379 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381 u32 format = PV_CONTROL_FORMAT_24;
382 bool debug_dump_regs = false;
383 int clock_select = vc4_get_clock_select(crtc);
384
385 if (debug_dump_regs) {
386 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
387 vc4_crtc_dump_regs(vc4_crtc);
388 }
389
390 /* Reset the PV fifo. */
391 CRTC_WRITE(PV_CONTROL, 0);
392 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
393 CRTC_WRITE(PV_CONTROL, 0);
394
395 CRTC_WRITE(PV_HORZA,
396 VC4_SET_FIELD((mode->htotal -
397 mode->hsync_end) * pixel_rep,
398 PV_HORZA_HBP) |
399 VC4_SET_FIELD((mode->hsync_end -
400 mode->hsync_start) * pixel_rep,
401 PV_HORZA_HSYNC));
402 CRTC_WRITE(PV_HORZB,
403 VC4_SET_FIELD((mode->hsync_start -
404 mode->hdisplay) * pixel_rep,
405 PV_HORZB_HFP) |
406 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
407
408 CRTC_WRITE(PV_VERTA,
409 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
410 PV_VERTA_VBP) |
411 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
412 PV_VERTA_VSYNC));
413 CRTC_WRITE(PV_VERTB,
414 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
415 PV_VERTB_VFP) |
416 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
417
418 if (interlace) {
419 CRTC_WRITE(PV_VERTA_EVEN,
420 VC4_SET_FIELD(mode->crtc_vtotal -
421 mode->crtc_vsync_end - 1,
422 PV_VERTA_VBP) |
423 VC4_SET_FIELD(mode->crtc_vsync_end -
424 mode->crtc_vsync_start,
425 PV_VERTA_VSYNC));
426 CRTC_WRITE(PV_VERTB_EVEN,
427 VC4_SET_FIELD(mode->crtc_vsync_start -
428 mode->crtc_vdisplay,
429 PV_VERTB_VFP) |
430 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
431
432 /* We set up first field even mode for HDMI. VEC's
433 * NTSC mode would want first field odd instead, once
434 * we support it (to do so, set ODD_FIRST and put the
435 * delay in VSYNCD_EVEN instead).
436 */
437 CRTC_WRITE(PV_V_CONTROL,
438 PV_VCONTROL_CONTINUOUS |
439 PV_VCONTROL_INTERLACE |
440 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
441 PV_VCONTROL_ODD_DELAY));
442 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
443 } else {
444 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
445 }
446
447 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
448
449
450 CRTC_WRITE(PV_CONTROL,
451 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
452 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
453 PV_CONTROL_FIFO_LEVEL) |
454 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
455 PV_CONTROL_CLR_AT_START |
456 PV_CONTROL_TRIGGER_UNDERFLOW |
457 PV_CONTROL_WAIT_HSTART |
458 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
459 PV_CONTROL_FIFO_CLR |
460 PV_CONTROL_EN);
461
462 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
463 SCALER_DISPBKGND_AUTOHS |
464 SCALER_DISPBKGND_GAMMA |
465 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
466
467 /* Reload the LUT, since the SRAMs would have been disabled if
468 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
469 */
470 vc4_crtc_lut_load(crtc);
471
472 if (debug_dump_regs) {
473 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
474 vc4_crtc_dump_regs(vc4_crtc);
475 }
476 }
477
478 static void require_hvs_enabled(struct drm_device *dev)
479 {
480 struct vc4_dev *vc4 = to_vc4_dev(dev);
481
482 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
483 SCALER_DISPCTRL_ENABLE);
484 }
485
486 static void vc4_crtc_disable(struct drm_crtc *crtc)
487 {
488 struct drm_device *dev = crtc->dev;
489 struct vc4_dev *vc4 = to_vc4_dev(dev);
490 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491 u32 chan = vc4_crtc->channel;
492 int ret;
493 require_hvs_enabled(dev);
494
495 /* Disable vblank irq handling before crtc is disabled. */
496 drm_crtc_vblank_off(crtc);
497
498 CRTC_WRITE(PV_V_CONTROL,
499 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502
503 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
504 SCALER_DISPCTRLX_ENABLE) {
505 HVS_WRITE(SCALER_DISPCTRLX(chan),
506 SCALER_DISPCTRLX_RESET);
507
508 /* While the docs say that reset is self-clearing, it
509 * seems it doesn't actually.
510 */
511 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
512 }
513
514 /* Once we leave, the scaler should be disabled and its fifo empty. */
515
516 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517
518 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
519 SCALER_DISPSTATX_MODE) !=
520 SCALER_DISPSTATX_MODE_DISABLED);
521
522 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
523 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
524 SCALER_DISPSTATX_EMPTY);
525 }
526
527 static void vc4_crtc_enable(struct drm_crtc *crtc)
528 {
529 struct drm_device *dev = crtc->dev;
530 struct vc4_dev *vc4 = to_vc4_dev(dev);
531 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
532 struct drm_crtc_state *state = crtc->state;
533 struct drm_display_mode *mode = &state->adjusted_mode;
534
535 require_hvs_enabled(dev);
536
537 /* Turn on the scaler, which will wait for vstart to start
538 * compositing.
539 */
540 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
541 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
542 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
543 SCALER_DISPCTRLX_ENABLE);
544
545 /* Turn on the pixel valve, which will emit the vstart signal. */
546 CRTC_WRITE(PV_V_CONTROL,
547 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
548
549 /* Enable vblank irq handling after crtc is started. */
550 drm_crtc_vblank_on(crtc);
551 }
552
553 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
554 const struct drm_display_mode *mode,
555 struct drm_display_mode *adjusted_mode)
556 {
557 /* Do not allow doublescan modes from user space */
558 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
559 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
560 crtc->base.id);
561 return false;
562 }
563
564 return true;
565 }
566
567 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
568 struct drm_crtc_state *state)
569 {
570 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
571 struct drm_device *dev = crtc->dev;
572 struct vc4_dev *vc4 = to_vc4_dev(dev);
573 struct drm_plane *plane;
574 unsigned long flags;
575 const struct drm_plane_state *plane_state;
576 u32 dlist_count = 0;
577 int ret;
578
579 /* The pixelvalve can only feed one encoder (and encoders are
580 * 1:1 with connectors.)
581 */
582 if (hweight32(state->connector_mask) > 1)
583 return -EINVAL;
584
585 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
586 dlist_count += vc4_plane_dlist_size(plane_state);
587
588 dlist_count++; /* Account for SCALER_CTL0_END. */
589
590 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
591 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
592 dlist_count, 1, 0);
593 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
594 if (ret)
595 return ret;
596
597 return 0;
598 }
599
600 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
601 struct drm_crtc_state *old_state)
602 {
603 struct drm_device *dev = crtc->dev;
604 struct vc4_dev *vc4 = to_vc4_dev(dev);
605 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
606 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
607 struct drm_plane *plane;
608 bool debug_dump_regs = false;
609 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
610 u32 __iomem *dlist_next = dlist_start;
611
612 if (debug_dump_regs) {
613 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
614 vc4_hvs_dump_state(dev);
615 }
616
617 /* Copy all the active planes' dlist contents to the hardware dlist. */
618 drm_atomic_crtc_for_each_plane(plane, crtc) {
619 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
620 }
621
622 writel(SCALER_CTL0_END, dlist_next);
623 dlist_next++;
624
625 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
626
627 if (crtc->state->event) {
628 unsigned long flags;
629
630 crtc->state->event->pipe = drm_crtc_index(crtc);
631
632 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
633
634 spin_lock_irqsave(&dev->event_lock, flags);
635 vc4_crtc->event = crtc->state->event;
636 crtc->state->event = NULL;
637
638 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
639 vc4_state->mm.start);
640
641 spin_unlock_irqrestore(&dev->event_lock, flags);
642 } else {
643 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
644 vc4_state->mm.start);
645 }
646
647 if (debug_dump_regs) {
648 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
649 vc4_hvs_dump_state(dev);
650 }
651 }
652
653 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
654 {
655 struct vc4_dev *vc4 = to_vc4_dev(dev);
656 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
657
658 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
659
660 return 0;
661 }
662
663 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
664 {
665 struct vc4_dev *vc4 = to_vc4_dev(dev);
666 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
667
668 CRTC_WRITE(PV_INTEN, 0);
669 }
670
671 /* Must be called with the event lock held */
672 bool vc4_event_pending(struct drm_crtc *crtc)
673 {
674 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
675
676 return !!vc4_crtc->event;
677 }
678
679 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
680 {
681 struct drm_crtc *crtc = &vc4_crtc->base;
682 struct drm_device *dev = crtc->dev;
683 struct vc4_dev *vc4 = to_vc4_dev(dev);
684 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
685 u32 chan = vc4_crtc->channel;
686 unsigned long flags;
687
688 spin_lock_irqsave(&dev->event_lock, flags);
689 if (vc4_crtc->event &&
690 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
691 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
692 vc4_crtc->event = NULL;
693 drm_crtc_vblank_put(crtc);
694 }
695 spin_unlock_irqrestore(&dev->event_lock, flags);
696 }
697
698 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
699 {
700 struct vc4_crtc *vc4_crtc = data;
701 u32 stat = CRTC_READ(PV_INTSTAT);
702 irqreturn_t ret = IRQ_NONE;
703
704 if (stat & PV_INT_VFP_START) {
705 vc4_crtc->t_vblank = ktime_get();
706 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
707 drm_crtc_handle_vblank(&vc4_crtc->base);
708 vc4_crtc_handle_page_flip(vc4_crtc);
709 ret = IRQ_HANDLED;
710 }
711
712 return ret;
713 }
714
715 struct vc4_async_flip_state {
716 struct drm_crtc *crtc;
717 struct drm_framebuffer *fb;
718 struct drm_pending_vblank_event *event;
719
720 struct vc4_seqno_cb cb;
721 };
722
723 /* Called when the V3D execution for the BO being flipped to is done, so that
724 * we can actually update the plane's address to point to it.
725 */
726 static void
727 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
728 {
729 struct vc4_async_flip_state *flip_state =
730 container_of(cb, struct vc4_async_flip_state, cb);
731 struct drm_crtc *crtc = flip_state->crtc;
732 struct drm_device *dev = crtc->dev;
733 struct vc4_dev *vc4 = to_vc4_dev(dev);
734 struct drm_plane *plane = crtc->primary;
735
736 vc4_plane_async_set_fb(plane, flip_state->fb);
737 if (flip_state->event) {
738 unsigned long flags;
739
740 spin_lock_irqsave(&dev->event_lock, flags);
741 drm_crtc_send_vblank_event(crtc, flip_state->event);
742 spin_unlock_irqrestore(&dev->event_lock, flags);
743 }
744
745 drm_crtc_vblank_put(crtc);
746 drm_framebuffer_unreference(flip_state->fb);
747 kfree(flip_state);
748
749 up(&vc4->async_modeset);
750 }
751
752 /* Implements async (non-vblank-synced) page flips.
753 *
754 * The page flip ioctl needs to return immediately, so we grab the
755 * modeset semaphore on the pipe, and queue the address update for
756 * when V3D is done with the BO being flipped to.
757 */
758 static int vc4_async_page_flip(struct drm_crtc *crtc,
759 struct drm_framebuffer *fb,
760 struct drm_pending_vblank_event *event,
761 uint32_t flags)
762 {
763 struct drm_device *dev = crtc->dev;
764 struct vc4_dev *vc4 = to_vc4_dev(dev);
765 struct drm_plane *plane = crtc->primary;
766 int ret = 0;
767 struct vc4_async_flip_state *flip_state;
768 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
769 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
770
771 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
772 if (!flip_state)
773 return -ENOMEM;
774
775 drm_framebuffer_reference(fb);
776 flip_state->fb = fb;
777 flip_state->crtc = crtc;
778 flip_state->event = event;
779
780 /* Make sure all other async modesetes have landed. */
781 ret = down_interruptible(&vc4->async_modeset);
782 if (ret) {
783 drm_framebuffer_unreference(fb);
784 kfree(flip_state);
785 return ret;
786 }
787
788 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
789
790 /* Immediately update the plane's legacy fb pointer, so that later
791 * modeset prep sees the state that will be present when the semaphore
792 * is released.
793 */
794 drm_atomic_set_fb_for_plane(plane->state, fb);
795 plane->fb = fb;
796
797 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
798 vc4_async_page_flip_complete);
799
800 /* Driver takes ownership of state on successful async commit. */
801 return 0;
802 }
803
804 static int vc4_page_flip(struct drm_crtc *crtc,
805 struct drm_framebuffer *fb,
806 struct drm_pending_vblank_event *event,
807 uint32_t flags)
808 {
809 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
810 return vc4_async_page_flip(crtc, fb, event, flags);
811 else
812 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
813 }
814
815 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
816 {
817 struct vc4_crtc_state *vc4_state;
818
819 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
820 if (!vc4_state)
821 return NULL;
822
823 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
824 return &vc4_state->base;
825 }
826
827 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
828 struct drm_crtc_state *state)
829 {
830 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
831 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
832
833 if (vc4_state->mm.allocated) {
834 unsigned long flags;
835
836 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
837 drm_mm_remove_node(&vc4_state->mm);
838 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
839
840 }
841
842 drm_atomic_helper_crtc_destroy_state(crtc, state);
843 }
844
845 static void
846 vc4_crtc_reset(struct drm_crtc *crtc)
847 {
848 if (crtc->state)
849 __drm_atomic_helper_crtc_destroy_state(crtc->state);
850
851 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
852 if (crtc->state)
853 crtc->state->crtc = crtc;
854 }
855
856 static const struct drm_crtc_funcs vc4_crtc_funcs = {
857 .set_config = drm_atomic_helper_set_config,
858 .destroy = vc4_crtc_destroy,
859 .page_flip = vc4_page_flip,
860 .set_property = NULL,
861 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
862 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
863 .reset = vc4_crtc_reset,
864 .atomic_duplicate_state = vc4_crtc_duplicate_state,
865 .atomic_destroy_state = vc4_crtc_destroy_state,
866 .gamma_set = vc4_crtc_gamma_set,
867 };
868
869 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
870 .mode_set_nofb = vc4_crtc_mode_set_nofb,
871 .disable = vc4_crtc_disable,
872 .enable = vc4_crtc_enable,
873 .mode_fixup = vc4_crtc_mode_fixup,
874 .atomic_check = vc4_crtc_atomic_check,
875 .atomic_flush = vc4_crtc_atomic_flush,
876 };
877
878 static const struct vc4_crtc_data pv0_data = {
879 .hvs_channel = 0,
880 .encoder_types = {
881 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
882 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
883 },
884 };
885
886 static const struct vc4_crtc_data pv1_data = {
887 .hvs_channel = 2,
888 .encoder_types = {
889 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
890 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
891 },
892 };
893
894 static const struct vc4_crtc_data pv2_data = {
895 .hvs_channel = 1,
896 .encoder_types = {
897 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
898 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
899 },
900 };
901
902 static const struct of_device_id vc4_crtc_dt_match[] = {
903 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
904 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
905 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
906 {}
907 };
908
909 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
910 struct drm_crtc *crtc)
911 {
912 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
913 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
914 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
915 struct drm_encoder *encoder;
916
917 drm_for_each_encoder(encoder, drm) {
918 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
919 int i;
920
921 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
922 if (vc4_encoder->type == encoder_types[i]) {
923 vc4_encoder->clock_select = i;
924 encoder->possible_crtcs |= drm_crtc_mask(crtc);
925 break;
926 }
927 }
928 }
929 }
930
931 static void
932 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
933 {
934 struct drm_device *drm = vc4_crtc->base.dev;
935 struct vc4_dev *vc4 = to_vc4_dev(drm);
936 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
937 /* Top/base are supposed to be 4-pixel aligned, but the
938 * Raspberry Pi firmware fills the low bits (which are
939 * presumably ignored).
940 */
941 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
942 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
943
944 vc4_crtc->cob_size = top - base + 4;
945 }
946
947 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
948 {
949 struct platform_device *pdev = to_platform_device(dev);
950 struct drm_device *drm = dev_get_drvdata(master);
951 struct vc4_dev *vc4 = to_vc4_dev(drm);
952 struct vc4_crtc *vc4_crtc;
953 struct drm_crtc *crtc;
954 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
955 const struct of_device_id *match;
956 int ret, i;
957
958 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
959 if (!vc4_crtc)
960 return -ENOMEM;
961 crtc = &vc4_crtc->base;
962
963 match = of_match_device(vc4_crtc_dt_match, dev);
964 if (!match)
965 return -ENODEV;
966 vc4_crtc->data = match->data;
967
968 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
969 if (IS_ERR(vc4_crtc->regs))
970 return PTR_ERR(vc4_crtc->regs);
971
972 /* For now, we create just the primary and the legacy cursor
973 * planes. We should be able to stack more planes on easily,
974 * but to do that we would need to compute the bandwidth
975 * requirement of the plane configuration, and reject ones
976 * that will take too much.
977 */
978 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
979 if (IS_ERR(primary_plane)) {
980 dev_err(dev, "failed to construct primary plane\n");
981 ret = PTR_ERR(primary_plane);
982 goto err;
983 }
984
985 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
986 &vc4_crtc_funcs, NULL);
987 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
988 primary_plane->crtc = crtc;
989 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
990 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
991 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
992
993 /* Set up some arbitrary number of planes. We're not limited
994 * by a set number of physical registers, just the space in
995 * the HVS (16k) and how small an plane can be (28 bytes).
996 * However, each plane we set up takes up some memory, and
997 * increases the cost of looping over planes, which atomic
998 * modesetting does quite a bit. As a result, we pick a
999 * modest number of planes to expose, that should hopefully
1000 * still cover any sane usecase.
1001 */
1002 for (i = 0; i < 8; i++) {
1003 struct drm_plane *plane =
1004 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1005
1006 if (IS_ERR(plane))
1007 continue;
1008
1009 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010 }
1011
1012 /* Set up the legacy cursor after overlay initialization,
1013 * since we overlay planes on the CRTC in the order they were
1014 * initialized.
1015 */
1016 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1017 if (!IS_ERR(cursor_plane)) {
1018 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1019 cursor_plane->crtc = crtc;
1020 crtc->cursor = cursor_plane;
1021 }
1022
1023 vc4_crtc_get_cob_allocation(vc4_crtc);
1024
1025 CRTC_WRITE(PV_INTEN, 0);
1026 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1027 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1028 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1029 if (ret)
1030 goto err_destroy_planes;
1031
1032 vc4_set_crtc_possible_masks(drm, crtc);
1033
1034 for (i = 0; i < crtc->gamma_size; i++) {
1035 vc4_crtc->lut_r[i] = i;
1036 vc4_crtc->lut_g[i] = i;
1037 vc4_crtc->lut_b[i] = i;
1038 }
1039
1040 platform_set_drvdata(pdev, vc4_crtc);
1041
1042 return 0;
1043
1044 err_destroy_planes:
1045 list_for_each_entry_safe(destroy_plane, temp,
1046 &drm->mode_config.plane_list, head) {
1047 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1048 destroy_plane->funcs->destroy(destroy_plane);
1049 }
1050 err:
1051 return ret;
1052 }
1053
1054 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1055 void *data)
1056 {
1057 struct platform_device *pdev = to_platform_device(dev);
1058 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1059
1060 vc4_crtc_destroy(&vc4_crtc->base);
1061
1062 CRTC_WRITE(PV_INTEN, 0);
1063
1064 platform_set_drvdata(pdev, NULL);
1065 }
1066
1067 static const struct component_ops vc4_crtc_ops = {
1068 .bind = vc4_crtc_bind,
1069 .unbind = vc4_crtc_unbind,
1070 };
1071
1072 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1073 {
1074 return component_add(&pdev->dev, &vc4_crtc_ops);
1075 }
1076
1077 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1078 {
1079 component_del(&pdev->dev, &vc4_crtc_ops);
1080 return 0;
1081 }
1082
1083 struct platform_driver vc4_crtc_driver = {
1084 .probe = vc4_crtc_dev_probe,
1085 .remove = vc4_crtc_dev_remove,
1086 .driver = {
1087 .name = "vc4_crtc",
1088 .of_match_table = vc4_crtc_dt_match,
1089 },
1090 };