]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * encoder's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
21 *
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
27 *
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
33 */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46 struct drm_crtc base;
47 const struct vc4_crtc_data *data;
48 void __iomem *regs;
49
50 /* Timestamp at start of vblank irq - unaffected by lock delays. */
51 ktime_t t_vblank;
52
53 /* Which HVS channel we're using for our CRTC. */
54 int channel;
55
56 u8 lut_r[256];
57 u8 lut_g[256];
58 u8 lut_b[256];
59 /* Size in pixels of the COB memory allocated to this CRTC. */
60 u32 cob_size;
61
62 struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66 struct drm_crtc_state base;
67 /* Dlist area for this CRTC configuration. */
68 struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84 /* Which channel of the HVS this pixelvalve sources from. */
85 int hvs_channel;
86
87 enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 u32 reg;
96 const char *name;
97 } crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
100 CRTC_REG(PV_VSYNCD_EVEN),
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151 }
152 #endif
153
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 bool in_vblank_irq, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
158 {
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 u32 val;
163 int fifo_lines;
164 int vblank_lines;
165 bool ret = false;
166
167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169 /* Get optional system timestamp before query. */
170 if (stime)
171 *stime = ktime_get();
172
173 /*
174 * Read vertical scanline which is currently composed for our
175 * pixelvalve by the HVS, and also the scaler status.
176 */
177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179 /* Get optional system timestamp after query. */
180 if (etime)
181 *etime = ktime_get();
182
183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185 /* Vertical position of hvs composed scanline. */
186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 *hpos = 0;
188
189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 *vpos /= 2;
191
192 /* Use hpos to correct for field offset in interlaced mode. */
193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 *hpos += mode->crtc_htotal / 2;
195 }
196
197 /* This is the offset we need for translating hvs -> pv scanout pos. */
198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200 if (fifo_lines > 0)
201 ret = true;
202
203 /* HVS more than fifo_lines into frame for compositing? */
204 if (*vpos > fifo_lines) {
205 /*
206 * We are in active scanout and can get some meaningful results
207 * from HVS. The actual PV scanout can not trail behind more
208 * than fifo_lines as that is the fifo's capacity. Assume that
209 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 * refilling the fifo and PV consuming from the fifo, ie.
211 * whenever the PV consumes and frees up a scanline in the
212 * fifo, the HVS will immediately refill it, therefore
213 * incrementing vpos. Therefore we choose HVS read position -
214 * fifo size in scanlines as a estimate of the real scanout
215 * position of the PV.
216 */
217 *vpos -= fifo_lines + 1;
218
219 return ret;
220 }
221
222 /*
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
230 */
231 vblank_lines = mode->vtotal - mode->vdisplay;
232
233 if (in_vblank_irq) {
234 /*
235 * Assume the irq handler got called close to first
236 * line of vblank, so PV has about a full vblank
237 * scanlines to go, and as a base timestamp use the
238 * one taken at entry into vblank irq handler, so it
239 * is not affected by random delays due to lock
240 * contention on event_lock or vblank_time lock in
241 * the core.
242 */
243 *vpos = -vblank_lines;
244
245 if (stime)
246 *stime = vc4_crtc->t_vblank;
247 if (etime)
248 *etime = vc4_crtc->t_vblank;
249
250 /*
251 * If the HVS fifo is not yet full then we know for certain
252 * we are at the very beginning of vblank, as the hvs just
253 * started refilling, and the stime and etime timestamps
254 * truly correspond to start of vblank.
255 *
256 * Unfortunately there's no way to report this to upper levels
257 * and make it more useful.
258 */
259 } else {
260 /*
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
265 */
266 *vpos = 0;
267 }
268
269 return ret;
270 }
271
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
273 {
274 drm_crtc_cleanup(crtc);
275 }
276
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
279 {
280 struct drm_device *dev = crtc->dev;
281 struct vc4_dev *vc4 = to_vc4_dev(dev);
282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283 u32 i;
284
285 /* The LUT memory is laid out with each HVS channel in order,
286 * each of which takes 256 writes for R, 256 for G, then 256
287 * for B.
288 */
289 HVS_WRITE(SCALER_GAMADDR,
290 SCALER_GAMADDR_AUTOINC |
291 (vc4_crtc->channel * 3 * crtc->gamma_size));
292
293 for (i = 0; i < crtc->gamma_size; i++)
294 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295 for (i = 0; i < crtc->gamma_size; i++)
296 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297 for (i = 0; i < crtc->gamma_size; i++)
298 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299 }
300
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 uint32_t size,
304 struct drm_modeset_acquire_ctx *ctx)
305 {
306 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307 u32 i;
308
309 for (i = 0; i < size; i++) {
310 vc4_crtc->lut_r[i] = r[i] >> 8;
311 vc4_crtc->lut_g[i] = g[i] >> 8;
312 vc4_crtc->lut_b[i] = b[i] >> 8;
313 }
314
315 vc4_crtc_lut_load(crtc);
316
317 return 0;
318 }
319
320 static u32 vc4_get_fifo_full_level(u32 format)
321 {
322 static const u32 fifo_len_bytes = 64;
323 static const u32 hvs_latency_pix = 6;
324
325 switch (format) {
326 case PV_CONTROL_FORMAT_DSIV_16:
327 case PV_CONTROL_FORMAT_DSIC_16:
328 return fifo_len_bytes - 2 * hvs_latency_pix;
329 case PV_CONTROL_FORMAT_DSIV_18:
330 return fifo_len_bytes - 14;
331 case PV_CONTROL_FORMAT_24:
332 case PV_CONTROL_FORMAT_DSIV_24:
333 default:
334 return fifo_len_bytes - 3 * hvs_latency_pix;
335 }
336 }
337
338 /*
339 * Returns the encoder attached to the CRTC.
340 *
341 * VC4 can only scan out to one encoder at a time, while the DRM core
342 * allows drivers to push pixels to more than one encoder from the
343 * same CRTC.
344 */
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 {
347 struct drm_connector *connector;
348 struct drm_connector_list_iter conn_iter;
349
350 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351 drm_for_each_connector_iter(connector, &conn_iter) {
352 if (connector->state->crtc == crtc) {
353 drm_connector_list_iter_end(&conn_iter);
354 return connector->encoder;
355 }
356 }
357 drm_connector_list_iter_end(&conn_iter);
358
359 return NULL;
360 }
361
362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
363 {
364 struct drm_device *dev = crtc->dev;
365 struct vc4_dev *vc4 = to_vc4_dev(dev);
366 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369 struct drm_crtc_state *state = crtc->state;
370 struct drm_display_mode *mode = &state->adjusted_mode;
371 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376 bool debug_dump_regs = false;
377
378 if (debug_dump_regs) {
379 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380 vc4_crtc_dump_regs(vc4_crtc);
381 }
382
383 /* Reset the PV fifo. */
384 CRTC_WRITE(PV_CONTROL, 0);
385 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386 CRTC_WRITE(PV_CONTROL, 0);
387
388 CRTC_WRITE(PV_HORZA,
389 VC4_SET_FIELD((mode->htotal -
390 mode->hsync_end) * pixel_rep,
391 PV_HORZA_HBP) |
392 VC4_SET_FIELD((mode->hsync_end -
393 mode->hsync_start) * pixel_rep,
394 PV_HORZA_HSYNC));
395 CRTC_WRITE(PV_HORZB,
396 VC4_SET_FIELD((mode->hsync_start -
397 mode->hdisplay) * pixel_rep,
398 PV_HORZB_HFP) |
399 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
400
401 CRTC_WRITE(PV_VERTA,
402 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403 PV_VERTA_VBP) |
404 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405 PV_VERTA_VSYNC));
406 CRTC_WRITE(PV_VERTB,
407 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408 PV_VERTB_VFP) |
409 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
410
411 if (interlace) {
412 CRTC_WRITE(PV_VERTA_EVEN,
413 VC4_SET_FIELD(mode->crtc_vtotal -
414 mode->crtc_vsync_end - 1,
415 PV_VERTA_VBP) |
416 VC4_SET_FIELD(mode->crtc_vsync_end -
417 mode->crtc_vsync_start,
418 PV_VERTA_VSYNC));
419 CRTC_WRITE(PV_VERTB_EVEN,
420 VC4_SET_FIELD(mode->crtc_vsync_start -
421 mode->crtc_vdisplay,
422 PV_VERTB_VFP) |
423 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
424
425 /* We set up first field even mode for HDMI. VEC's
426 * NTSC mode would want first field odd instead, once
427 * we support it (to do so, set ODD_FIRST and put the
428 * delay in VSYNCD_EVEN instead).
429 */
430 CRTC_WRITE(PV_V_CONTROL,
431 PV_VCONTROL_CONTINUOUS |
432 (is_dsi ? PV_VCONTROL_DSI : 0) |
433 PV_VCONTROL_INTERLACE |
434 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435 PV_VCONTROL_ODD_DELAY));
436 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437 } else {
438 CRTC_WRITE(PV_V_CONTROL,
439 PV_VCONTROL_CONTINUOUS |
440 (is_dsi ? PV_VCONTROL_DSI : 0));
441 }
442
443 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
444
445 CRTC_WRITE(PV_CONTROL,
446 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448 PV_CONTROL_FIFO_LEVEL) |
449 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450 PV_CONTROL_CLR_AT_START |
451 PV_CONTROL_TRIGGER_UNDERFLOW |
452 PV_CONTROL_WAIT_HSTART |
453 VC4_SET_FIELD(vc4_encoder->clock_select,
454 PV_CONTROL_CLK_SELECT) |
455 PV_CONTROL_FIFO_CLR |
456 PV_CONTROL_EN);
457
458 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459 SCALER_DISPBKGND_AUTOHS |
460 SCALER_DISPBKGND_GAMMA |
461 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462
463 /* Reload the LUT, since the SRAMs would have been disabled if
464 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465 */
466 vc4_crtc_lut_load(crtc);
467
468 if (debug_dump_regs) {
469 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470 vc4_crtc_dump_regs(vc4_crtc);
471 }
472 }
473
474 static void require_hvs_enabled(struct drm_device *dev)
475 {
476 struct vc4_dev *vc4 = to_vc4_dev(dev);
477
478 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479 SCALER_DISPCTRL_ENABLE);
480 }
481
482 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
483 struct drm_crtc_state *old_state)
484 {
485 struct drm_device *dev = crtc->dev;
486 struct vc4_dev *vc4 = to_vc4_dev(dev);
487 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
488 u32 chan = vc4_crtc->channel;
489 int ret;
490 require_hvs_enabled(dev);
491
492 /* Disable vblank irq handling before crtc is disabled. */
493 drm_crtc_vblank_off(crtc);
494
495 CRTC_WRITE(PV_V_CONTROL,
496 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
497 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
498 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
499
500 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
501 SCALER_DISPCTRLX_ENABLE) {
502 HVS_WRITE(SCALER_DISPCTRLX(chan),
503 SCALER_DISPCTRLX_RESET);
504
505 /* While the docs say that reset is self-clearing, it
506 * seems it doesn't actually.
507 */
508 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
509 }
510
511 /* Once we leave, the scaler should be disabled and its fifo empty. */
512
513 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
514
515 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
516 SCALER_DISPSTATX_MODE) !=
517 SCALER_DISPSTATX_MODE_DISABLED);
518
519 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
520 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
521 SCALER_DISPSTATX_EMPTY);
522
523 /*
524 * Make sure we issue a vblank event after disabling the CRTC if
525 * someone was waiting it.
526 */
527 if (crtc->state->event) {
528 unsigned long flags;
529
530 spin_lock_irqsave(&dev->event_lock, flags);
531 drm_crtc_send_vblank_event(crtc, crtc->state->event);
532 crtc->state->event = NULL;
533 spin_unlock_irqrestore(&dev->event_lock, flags);
534 }
535 }
536
537 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
538 {
539 struct drm_device *dev = crtc->dev;
540 struct vc4_dev *vc4 = to_vc4_dev(dev);
541 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
542 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
543
544 if (crtc->state->event) {
545 unsigned long flags;
546
547 crtc->state->event->pipe = drm_crtc_index(crtc);
548
549 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
550
551 spin_lock_irqsave(&dev->event_lock, flags);
552 vc4_crtc->event = crtc->state->event;
553 crtc->state->event = NULL;
554
555 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
556 vc4_state->mm.start);
557
558 spin_unlock_irqrestore(&dev->event_lock, flags);
559 } else {
560 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
561 vc4_state->mm.start);
562 }
563 }
564
565 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
566 struct drm_crtc_state *old_state)
567 {
568 struct drm_device *dev = crtc->dev;
569 struct vc4_dev *vc4 = to_vc4_dev(dev);
570 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
571 struct drm_crtc_state *state = crtc->state;
572 struct drm_display_mode *mode = &state->adjusted_mode;
573
574 require_hvs_enabled(dev);
575
576 /* Enable vblank irq handling before crtc is started otherwise
577 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
578 */
579 drm_crtc_vblank_on(crtc);
580 vc4_crtc_update_dlist(crtc);
581
582 /* Turn on the scaler, which will wait for vstart to start
583 * compositing.
584 */
585 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
586 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
587 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
588 SCALER_DISPCTRLX_ENABLE);
589
590 /* Turn on the pixel valve, which will emit the vstart signal. */
591 CRTC_WRITE(PV_V_CONTROL,
592 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
593 }
594
595 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
596 const struct drm_display_mode *mode)
597 {
598 /* Do not allow doublescan modes from user space */
599 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
600 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
601 crtc->base.id);
602 return MODE_NO_DBLESCAN;
603 }
604
605 return MODE_OK;
606 }
607
608 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
609 struct drm_crtc_state *state)
610 {
611 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
612 struct drm_device *dev = crtc->dev;
613 struct vc4_dev *vc4 = to_vc4_dev(dev);
614 struct drm_plane *plane;
615 unsigned long flags;
616 const struct drm_plane_state *plane_state;
617 u32 dlist_count = 0;
618 int ret;
619
620 /* The pixelvalve can only feed one encoder (and encoders are
621 * 1:1 with connectors.)
622 */
623 if (hweight32(state->connector_mask) > 1)
624 return -EINVAL;
625
626 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
627 dlist_count += vc4_plane_dlist_size(plane_state);
628
629 dlist_count++; /* Account for SCALER_CTL0_END. */
630
631 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
632 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
633 dlist_count);
634 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
635 if (ret)
636 return ret;
637
638 return 0;
639 }
640
641 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
642 struct drm_crtc_state *old_state)
643 {
644 struct drm_device *dev = crtc->dev;
645 struct vc4_dev *vc4 = to_vc4_dev(dev);
646 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
647 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
648 struct drm_plane *plane;
649 struct vc4_plane_state *vc4_plane_state;
650 bool debug_dump_regs = false;
651 bool enable_bg_fill = false;
652 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
653 u32 __iomem *dlist_next = dlist_start;
654
655 if (debug_dump_regs) {
656 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
657 vc4_hvs_dump_state(dev);
658 }
659
660 /* Copy all the active planes' dlist contents to the hardware dlist. */
661 drm_atomic_crtc_for_each_plane(plane, crtc) {
662 /* Is this the first active plane? */
663 if (dlist_next == dlist_start) {
664 /* We need to enable background fill when a plane
665 * could be alpha blending from the background, i.e.
666 * where no other plane is underneath. It suffices to
667 * consider the first active plane here since we set
668 * needs_bg_fill such that either the first plane
669 * already needs it or all planes on top blend from
670 * the first or a lower plane.
671 */
672 vc4_plane_state = to_vc4_plane_state(plane->state);
673 enable_bg_fill = vc4_plane_state->needs_bg_fill;
674 }
675
676 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
677 }
678
679 writel(SCALER_CTL0_END, dlist_next);
680 dlist_next++;
681
682 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
683
684 if (enable_bg_fill)
685 /* This sets a black background color fill, as is the case
686 * with other DRM drivers.
687 */
688 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
689 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
690 SCALER_DISPBKGND_FILL);
691
692 /* Only update DISPLIST if the CRTC was already running and is not
693 * being disabled.
694 * vc4_crtc_enable() takes care of updating the dlist just after
695 * re-enabling VBLANK interrupts and before enabling the engine.
696 * If the CRTC is being disabled, there's no point in updating this
697 * information.
698 */
699 if (crtc->state->active && old_state->active)
700 vc4_crtc_update_dlist(crtc);
701
702 if (debug_dump_regs) {
703 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
704 vc4_hvs_dump_state(dev);
705 }
706 }
707
708 static int vc4_enable_vblank(struct drm_crtc *crtc)
709 {
710 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711
712 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
713
714 return 0;
715 }
716
717 static void vc4_disable_vblank(struct drm_crtc *crtc)
718 {
719 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
720
721 CRTC_WRITE(PV_INTEN, 0);
722 }
723
724 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
725 {
726 struct drm_crtc *crtc = &vc4_crtc->base;
727 struct drm_device *dev = crtc->dev;
728 struct vc4_dev *vc4 = to_vc4_dev(dev);
729 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
730 u32 chan = vc4_crtc->channel;
731 unsigned long flags;
732
733 spin_lock_irqsave(&dev->event_lock, flags);
734 if (vc4_crtc->event &&
735 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
736 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
737 vc4_crtc->event = NULL;
738 drm_crtc_vblank_put(crtc);
739 }
740 spin_unlock_irqrestore(&dev->event_lock, flags);
741 }
742
743 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
744 {
745 struct vc4_crtc *vc4_crtc = data;
746 u32 stat = CRTC_READ(PV_INTSTAT);
747 irqreturn_t ret = IRQ_NONE;
748
749 if (stat & PV_INT_VFP_START) {
750 vc4_crtc->t_vblank = ktime_get();
751 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
752 drm_crtc_handle_vblank(&vc4_crtc->base);
753 vc4_crtc_handle_page_flip(vc4_crtc);
754 ret = IRQ_HANDLED;
755 }
756
757 return ret;
758 }
759
760 struct vc4_async_flip_state {
761 struct drm_crtc *crtc;
762 struct drm_framebuffer *fb;
763 struct drm_framebuffer *old_fb;
764 struct drm_pending_vblank_event *event;
765
766 struct vc4_seqno_cb cb;
767 };
768
769 /* Called when the V3D execution for the BO being flipped to is done, so that
770 * we can actually update the plane's address to point to it.
771 */
772 static void
773 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
774 {
775 struct vc4_async_flip_state *flip_state =
776 container_of(cb, struct vc4_async_flip_state, cb);
777 struct drm_crtc *crtc = flip_state->crtc;
778 struct drm_device *dev = crtc->dev;
779 struct vc4_dev *vc4 = to_vc4_dev(dev);
780 struct drm_plane *plane = crtc->primary;
781
782 vc4_plane_async_set_fb(plane, flip_state->fb);
783 if (flip_state->event) {
784 unsigned long flags;
785
786 spin_lock_irqsave(&dev->event_lock, flags);
787 drm_crtc_send_vblank_event(crtc, flip_state->event);
788 spin_unlock_irqrestore(&dev->event_lock, flags);
789 }
790
791 drm_crtc_vblank_put(crtc);
792 drm_framebuffer_put(flip_state->fb);
793
794 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
795 * when the planes are updated through the async update path.
796 * FIXME: we should move to generic async-page-flip when it's
797 * available, so that we can get rid of this hand-made cleanup_fb()
798 * logic.
799 */
800 if (flip_state->old_fb) {
801 struct drm_gem_cma_object *cma_bo;
802 struct vc4_bo *bo;
803
804 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
805 bo = to_vc4_bo(&cma_bo->base);
806 vc4_bo_dec_usecnt(bo);
807 drm_framebuffer_put(flip_state->old_fb);
808 }
809
810 kfree(flip_state);
811
812 up(&vc4->async_modeset);
813 }
814
815 /* Implements async (non-vblank-synced) page flips.
816 *
817 * The page flip ioctl needs to return immediately, so we grab the
818 * modeset semaphore on the pipe, and queue the address update for
819 * when V3D is done with the BO being flipped to.
820 */
821 static int vc4_async_page_flip(struct drm_crtc *crtc,
822 struct drm_framebuffer *fb,
823 struct drm_pending_vblank_event *event,
824 uint32_t flags)
825 {
826 struct drm_device *dev = crtc->dev;
827 struct vc4_dev *vc4 = to_vc4_dev(dev);
828 struct drm_plane *plane = crtc->primary;
829 int ret = 0;
830 struct vc4_async_flip_state *flip_state;
831 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
832 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
833
834 /* Increment the BO usecnt here, so that we never end up with an
835 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
836 * plane is later updated through the non-async path.
837 * FIXME: we should move to generic async-page-flip when it's
838 * available, so that we can get rid of this hand-made prepare_fb()
839 * logic.
840 */
841 ret = vc4_bo_inc_usecnt(bo);
842 if (ret)
843 return ret;
844
845 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
846 if (!flip_state) {
847 vc4_bo_dec_usecnt(bo);
848 return -ENOMEM;
849 }
850
851 drm_framebuffer_get(fb);
852 flip_state->fb = fb;
853 flip_state->crtc = crtc;
854 flip_state->event = event;
855
856 /* Make sure all other async modesetes have landed. */
857 ret = down_interruptible(&vc4->async_modeset);
858 if (ret) {
859 drm_framebuffer_put(fb);
860 vc4_bo_dec_usecnt(bo);
861 kfree(flip_state);
862 return ret;
863 }
864
865 /* Save the current FB before it's replaced by the new one in
866 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
867 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
868 * it consistent.
869 * FIXME: we should move to generic async-page-flip when it's
870 * available, so that we can get rid of this hand-made cleanup_fb()
871 * logic.
872 */
873 flip_state->old_fb = plane->state->fb;
874 if (flip_state->old_fb)
875 drm_framebuffer_get(flip_state->old_fb);
876
877 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
878
879 /* Immediately update the plane's legacy fb pointer, so that later
880 * modeset prep sees the state that will be present when the semaphore
881 * is released.
882 */
883 drm_atomic_set_fb_for_plane(plane->state, fb);
884 plane->fb = fb;
885
886 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
887 vc4_async_page_flip_complete);
888
889 /* Driver takes ownership of state on successful async commit. */
890 return 0;
891 }
892
893 static int vc4_page_flip(struct drm_crtc *crtc,
894 struct drm_framebuffer *fb,
895 struct drm_pending_vblank_event *event,
896 uint32_t flags,
897 struct drm_modeset_acquire_ctx *ctx)
898 {
899 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
900 return vc4_async_page_flip(crtc, fb, event, flags);
901 else
902 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
903 }
904
905 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
906 {
907 struct vc4_crtc_state *vc4_state;
908
909 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
910 if (!vc4_state)
911 return NULL;
912
913 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
914 return &vc4_state->base;
915 }
916
917 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
918 struct drm_crtc_state *state)
919 {
920 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
921 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
922
923 if (vc4_state->mm.allocated) {
924 unsigned long flags;
925
926 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
927 drm_mm_remove_node(&vc4_state->mm);
928 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
929
930 }
931
932 drm_atomic_helper_crtc_destroy_state(crtc, state);
933 }
934
935 static void
936 vc4_crtc_reset(struct drm_crtc *crtc)
937 {
938 if (crtc->state)
939 __drm_atomic_helper_crtc_destroy_state(crtc->state);
940
941 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
942 if (crtc->state)
943 crtc->state->crtc = crtc;
944 }
945
946 static const struct drm_crtc_funcs vc4_crtc_funcs = {
947 .set_config = drm_atomic_helper_set_config,
948 .destroy = vc4_crtc_destroy,
949 .page_flip = vc4_page_flip,
950 .set_property = NULL,
951 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
952 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
953 .reset = vc4_crtc_reset,
954 .atomic_duplicate_state = vc4_crtc_duplicate_state,
955 .atomic_destroy_state = vc4_crtc_destroy_state,
956 .gamma_set = vc4_crtc_gamma_set,
957 .enable_vblank = vc4_enable_vblank,
958 .disable_vblank = vc4_disable_vblank,
959 };
960
961 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
962 .mode_set_nofb = vc4_crtc_mode_set_nofb,
963 .mode_valid = vc4_crtc_mode_valid,
964 .atomic_check = vc4_crtc_atomic_check,
965 .atomic_flush = vc4_crtc_atomic_flush,
966 .atomic_enable = vc4_crtc_atomic_enable,
967 .atomic_disable = vc4_crtc_atomic_disable,
968 };
969
970 static const struct vc4_crtc_data pv0_data = {
971 .hvs_channel = 0,
972 .encoder_types = {
973 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
974 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
975 },
976 };
977
978 static const struct vc4_crtc_data pv1_data = {
979 .hvs_channel = 2,
980 .encoder_types = {
981 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
982 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
983 },
984 };
985
986 static const struct vc4_crtc_data pv2_data = {
987 .hvs_channel = 1,
988 .encoder_types = {
989 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
990 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
991 },
992 };
993
994 static const struct of_device_id vc4_crtc_dt_match[] = {
995 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
996 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
997 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
998 {}
999 };
1000
1001 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1002 struct drm_crtc *crtc)
1003 {
1004 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1005 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1006 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1007 struct drm_encoder *encoder;
1008
1009 drm_for_each_encoder(encoder, drm) {
1010 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
1011 int i;
1012
1013 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1014 if (vc4_encoder->type == encoder_types[i]) {
1015 vc4_encoder->clock_select = i;
1016 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1017 break;
1018 }
1019 }
1020 }
1021 }
1022
1023 static void
1024 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1025 {
1026 struct drm_device *drm = vc4_crtc->base.dev;
1027 struct vc4_dev *vc4 = to_vc4_dev(drm);
1028 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1029 /* Top/base are supposed to be 4-pixel aligned, but the
1030 * Raspberry Pi firmware fills the low bits (which are
1031 * presumably ignored).
1032 */
1033 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1034 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1035
1036 vc4_crtc->cob_size = top - base + 4;
1037 }
1038
1039 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1040 {
1041 struct platform_device *pdev = to_platform_device(dev);
1042 struct drm_device *drm = dev_get_drvdata(master);
1043 struct vc4_crtc *vc4_crtc;
1044 struct drm_crtc *crtc;
1045 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1046 const struct of_device_id *match;
1047 int ret, i;
1048
1049 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1050 if (!vc4_crtc)
1051 return -ENOMEM;
1052 crtc = &vc4_crtc->base;
1053
1054 match = of_match_device(vc4_crtc_dt_match, dev);
1055 if (!match)
1056 return -ENODEV;
1057 vc4_crtc->data = match->data;
1058
1059 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1060 if (IS_ERR(vc4_crtc->regs))
1061 return PTR_ERR(vc4_crtc->regs);
1062
1063 /* For now, we create just the primary and the legacy cursor
1064 * planes. We should be able to stack more planes on easily,
1065 * but to do that we would need to compute the bandwidth
1066 * requirement of the plane configuration, and reject ones
1067 * that will take too much.
1068 */
1069 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1070 if (IS_ERR(primary_plane)) {
1071 dev_err(dev, "failed to construct primary plane\n");
1072 ret = PTR_ERR(primary_plane);
1073 goto err;
1074 }
1075
1076 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1077 &vc4_crtc_funcs, NULL);
1078 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1079 primary_plane->crtc = crtc;
1080 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1081 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1082
1083 /* Set up some arbitrary number of planes. We're not limited
1084 * by a set number of physical registers, just the space in
1085 * the HVS (16k) and how small an plane can be (28 bytes).
1086 * However, each plane we set up takes up some memory, and
1087 * increases the cost of looping over planes, which atomic
1088 * modesetting does quite a bit. As a result, we pick a
1089 * modest number of planes to expose, that should hopefully
1090 * still cover any sane usecase.
1091 */
1092 for (i = 0; i < 8; i++) {
1093 struct drm_plane *plane =
1094 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1095
1096 if (IS_ERR(plane))
1097 continue;
1098
1099 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1100 }
1101
1102 /* Set up the legacy cursor after overlay initialization,
1103 * since we overlay planes on the CRTC in the order they were
1104 * initialized.
1105 */
1106 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1107 if (!IS_ERR(cursor_plane)) {
1108 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1109 cursor_plane->crtc = crtc;
1110 crtc->cursor = cursor_plane;
1111 }
1112
1113 vc4_crtc_get_cob_allocation(vc4_crtc);
1114
1115 CRTC_WRITE(PV_INTEN, 0);
1116 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1117 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1118 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1119 if (ret)
1120 goto err_destroy_planes;
1121
1122 vc4_set_crtc_possible_masks(drm, crtc);
1123
1124 for (i = 0; i < crtc->gamma_size; i++) {
1125 vc4_crtc->lut_r[i] = i;
1126 vc4_crtc->lut_g[i] = i;
1127 vc4_crtc->lut_b[i] = i;
1128 }
1129
1130 platform_set_drvdata(pdev, vc4_crtc);
1131
1132 return 0;
1133
1134 err_destroy_planes:
1135 list_for_each_entry_safe(destroy_plane, temp,
1136 &drm->mode_config.plane_list, head) {
1137 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1138 destroy_plane->funcs->destroy(destroy_plane);
1139 }
1140 err:
1141 return ret;
1142 }
1143
1144 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1145 void *data)
1146 {
1147 struct platform_device *pdev = to_platform_device(dev);
1148 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1149
1150 vc4_crtc_destroy(&vc4_crtc->base);
1151
1152 CRTC_WRITE(PV_INTEN, 0);
1153
1154 platform_set_drvdata(pdev, NULL);
1155 }
1156
1157 static const struct component_ops vc4_crtc_ops = {
1158 .bind = vc4_crtc_bind,
1159 .unbind = vc4_crtc_unbind,
1160 };
1161
1162 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1163 {
1164 return component_add(&pdev->dev, &vc4_crtc_ops);
1165 }
1166
1167 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1168 {
1169 component_del(&pdev->dev, &vc4_crtc_ops);
1170 return 0;
1171 }
1172
1173 struct platform_driver vc4_crtc_driver = {
1174 .probe = vc4_crtc_dev_probe,
1175 .remove = vc4_crtc_dev_remove,
1176 .driver = {
1177 .name = "vc4_crtc",
1178 .of_match_table = vc4_crtc_dt_match,
1179 },
1180 };