]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge branches 'for-4.13/multitouch', 'for-4.13/retrode', 'for-4.13/transport-open...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * encoder's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
21 *
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
27 *
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
33 */
34
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46 struct drm_crtc base;
47 const struct vc4_crtc_data *data;
48 void __iomem *regs;
49
50 /* Timestamp at start of vblank irq - unaffected by lock delays. */
51 ktime_t t_vblank;
52
53 /* Which HVS channel we're using for our CRTC. */
54 int channel;
55
56 u8 lut_r[256];
57 u8 lut_g[256];
58 u8 lut_b[256];
59 /* Size in pixels of the COB memory allocated to this CRTC. */
60 u32 cob_size;
61
62 struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66 struct drm_crtc_state base;
67 /* Dlist area for this CRTC configuration. */
68 struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84 /* Which channel of the HVS this pixelvalve sources from. */
85 int hvs_channel;
86
87 enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 u32 reg;
96 const char *name;
97 } crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
100 CRTC_REG(PV_VSYNCD_EVEN),
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 unsigned int flags, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
158 {
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 u32 val;
163 int fifo_lines;
164 int vblank_lines;
165 int ret = 0;
166
167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169 /* Get optional system timestamp before query. */
170 if (stime)
171 *stime = ktime_get();
172
173 /*
174 * Read vertical scanline which is currently composed for our
175 * pixelvalve by the HVS, and also the scaler status.
176 */
177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179 /* Get optional system timestamp after query. */
180 if (etime)
181 *etime = ktime_get();
182
183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185 /* Vertical position of hvs composed scanline. */
186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 *hpos = 0;
188
189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 *vpos /= 2;
191
192 /* Use hpos to correct for field offset in interlaced mode. */
193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 *hpos += mode->crtc_htotal / 2;
195 }
196
197 /* This is the offset we need for translating hvs -> pv scanout pos. */
198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200 if (fifo_lines > 0)
201 ret |= DRM_SCANOUTPOS_VALID;
202
203 /* HVS more than fifo_lines into frame for compositing? */
204 if (*vpos > fifo_lines) {
205 /*
206 * We are in active scanout and can get some meaningful results
207 * from HVS. The actual PV scanout can not trail behind more
208 * than fifo_lines as that is the fifo's capacity. Assume that
209 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 * refilling the fifo and PV consuming from the fifo, ie.
211 * whenever the PV consumes and frees up a scanline in the
212 * fifo, the HVS will immediately refill it, therefore
213 * incrementing vpos. Therefore we choose HVS read position -
214 * fifo size in scanlines as a estimate of the real scanout
215 * position of the PV.
216 */
217 *vpos -= fifo_lines + 1;
218
219 ret |= DRM_SCANOUTPOS_ACCURATE;
220 return ret;
221 }
222
223 /*
224 * Less: This happens when we are in vblank and the HVS, after getting
225 * the VSTART restart signal from the PV, just started refilling its
226 * fifo with new lines from the top-most lines of the new framebuffers.
227 * The PV does not scan out in vblank, so does not remove lines from
228 * the fifo, so the fifo will be full quickly and the HVS has to pause.
229 * We can't get meaningful readings wrt. scanline position of the PV
230 * and need to make things up in a approximative but consistent way.
231 */
232 ret |= DRM_SCANOUTPOS_IN_VBLANK;
233 vblank_lines = mode->vtotal - mode->vdisplay;
234
235 if (flags & DRM_CALLED_FROM_VBLIRQ) {
236 /*
237 * Assume the irq handler got called close to first
238 * line of vblank, so PV has about a full vblank
239 * scanlines to go, and as a base timestamp use the
240 * one taken at entry into vblank irq handler, so it
241 * is not affected by random delays due to lock
242 * contention on event_lock or vblank_time lock in
243 * the core.
244 */
245 *vpos = -vblank_lines;
246
247 if (stime)
248 *stime = vc4_crtc->t_vblank;
249 if (etime)
250 *etime = vc4_crtc->t_vblank;
251
252 /*
253 * If the HVS fifo is not yet full then we know for certain
254 * we are at the very beginning of vblank, as the hvs just
255 * started refilling, and the stime and etime timestamps
256 * truly correspond to start of vblank.
257 */
258 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
259 ret |= DRM_SCANOUTPOS_ACCURATE;
260 } else {
261 /*
262 * No clue where we are inside vblank. Return a vpos of zero,
263 * which will cause calling code to just return the etime
264 * timestamp uncorrected. At least this is no worse than the
265 * standard fallback.
266 */
267 *vpos = 0;
268 }
269
270 return ret;
271 }
272
273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
274 int *max_error, struct timeval *vblank_time,
275 unsigned flags)
276 {
277 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
278 struct drm_crtc_state *state = crtc->state;
279
280 /* Helper routine in DRM core does all the work: */
281 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282 vblank_time, flags,
283 &state->adjusted_mode);
284 }
285
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288 drm_crtc_cleanup(crtc);
289 }
290
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294 struct drm_device *dev = crtc->dev;
295 struct vc4_dev *vc4 = to_vc4_dev(dev);
296 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297 u32 i;
298
299 /* The LUT memory is laid out with each HVS channel in order,
300 * each of which takes 256 writes for R, 256 for G, then 256
301 * for B.
302 */
303 HVS_WRITE(SCALER_GAMADDR,
304 SCALER_GAMADDR_AUTOINC |
305 (vc4_crtc->channel * 3 * crtc->gamma_size));
306
307 for (i = 0; i < crtc->gamma_size; i++)
308 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309 for (i = 0; i < crtc->gamma_size; i++)
310 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311 for (i = 0; i < crtc->gamma_size; i++)
312 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317 uint32_t size,
318 struct drm_modeset_acquire_ctx *ctx)
319 {
320 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321 u32 i;
322
323 for (i = 0; i < size; i++) {
324 vc4_crtc->lut_r[i] = r[i] >> 8;
325 vc4_crtc->lut_g[i] = g[i] >> 8;
326 vc4_crtc->lut_b[i] = b[i] >> 8;
327 }
328
329 vc4_crtc_lut_load(crtc);
330
331 return 0;
332 }
333
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336 static const u32 fifo_len_bytes = 64;
337 static const u32 hvs_latency_pix = 6;
338
339 switch (format) {
340 case PV_CONTROL_FORMAT_DSIV_16:
341 case PV_CONTROL_FORMAT_DSIC_16:
342 return fifo_len_bytes - 2 * hvs_latency_pix;
343 case PV_CONTROL_FORMAT_DSIV_18:
344 return fifo_len_bytes - 14;
345 case PV_CONTROL_FORMAT_24:
346 case PV_CONTROL_FORMAT_DSIV_24:
347 default:
348 return fifo_len_bytes - 3 * hvs_latency_pix;
349 }
350 }
351
352 /*
353 * Returns the encoder attached to the CRTC.
354 *
355 * VC4 can only scan out to one encoder at a time, while the DRM core
356 * allows drivers to push pixels to more than one encoder from the
357 * same CRTC.
358 */
359 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
360 {
361 struct drm_connector *connector;
362
363 drm_for_each_connector(connector, crtc->dev) {
364 if (connector->state->crtc == crtc) {
365 return connector->encoder;
366 }
367 }
368
369 return NULL;
370 }
371
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374 struct drm_device *dev = crtc->dev;
375 struct vc4_dev *vc4 = to_vc4_dev(dev);
376 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
377 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
378 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
379 struct drm_crtc_state *state = crtc->state;
380 struct drm_display_mode *mode = &state->adjusted_mode;
381 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
382 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
383 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
384 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
385 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
386 bool debug_dump_regs = false;
387
388 if (debug_dump_regs) {
389 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
390 vc4_crtc_dump_regs(vc4_crtc);
391 }
392
393 /* Reset the PV fifo. */
394 CRTC_WRITE(PV_CONTROL, 0);
395 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
396 CRTC_WRITE(PV_CONTROL, 0);
397
398 CRTC_WRITE(PV_HORZA,
399 VC4_SET_FIELD((mode->htotal -
400 mode->hsync_end) * pixel_rep,
401 PV_HORZA_HBP) |
402 VC4_SET_FIELD((mode->hsync_end -
403 mode->hsync_start) * pixel_rep,
404 PV_HORZA_HSYNC));
405 CRTC_WRITE(PV_HORZB,
406 VC4_SET_FIELD((mode->hsync_start -
407 mode->hdisplay) * pixel_rep,
408 PV_HORZB_HFP) |
409 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
410
411 CRTC_WRITE(PV_VERTA,
412 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
413 PV_VERTA_VBP) |
414 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
415 PV_VERTA_VSYNC));
416 CRTC_WRITE(PV_VERTB,
417 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
418 PV_VERTB_VFP) |
419 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
420
421 if (interlace) {
422 CRTC_WRITE(PV_VERTA_EVEN,
423 VC4_SET_FIELD(mode->crtc_vtotal -
424 mode->crtc_vsync_end - 1,
425 PV_VERTA_VBP) |
426 VC4_SET_FIELD(mode->crtc_vsync_end -
427 mode->crtc_vsync_start,
428 PV_VERTA_VSYNC));
429 CRTC_WRITE(PV_VERTB_EVEN,
430 VC4_SET_FIELD(mode->crtc_vsync_start -
431 mode->crtc_vdisplay,
432 PV_VERTB_VFP) |
433 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
434
435 /* We set up first field even mode for HDMI. VEC's
436 * NTSC mode would want first field odd instead, once
437 * we support it (to do so, set ODD_FIRST and put the
438 * delay in VSYNCD_EVEN instead).
439 */
440 CRTC_WRITE(PV_V_CONTROL,
441 PV_VCONTROL_CONTINUOUS |
442 (is_dsi ? PV_VCONTROL_DSI : 0) |
443 PV_VCONTROL_INTERLACE |
444 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
445 PV_VCONTROL_ODD_DELAY));
446 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
447 } else {
448 CRTC_WRITE(PV_V_CONTROL,
449 PV_VCONTROL_CONTINUOUS |
450 (is_dsi ? PV_VCONTROL_DSI : 0));
451 }
452
453 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
454
455 CRTC_WRITE(PV_CONTROL,
456 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
457 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
458 PV_CONTROL_FIFO_LEVEL) |
459 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
460 PV_CONTROL_CLR_AT_START |
461 PV_CONTROL_TRIGGER_UNDERFLOW |
462 PV_CONTROL_WAIT_HSTART |
463 VC4_SET_FIELD(vc4_encoder->clock_select,
464 PV_CONTROL_CLK_SELECT) |
465 PV_CONTROL_FIFO_CLR |
466 PV_CONTROL_EN);
467
468 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
469 SCALER_DISPBKGND_AUTOHS |
470 SCALER_DISPBKGND_GAMMA |
471 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
472
473 /* Reload the LUT, since the SRAMs would have been disabled if
474 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
475 */
476 vc4_crtc_lut_load(crtc);
477
478 if (debug_dump_regs) {
479 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
480 vc4_crtc_dump_regs(vc4_crtc);
481 }
482 }
483
484 static void require_hvs_enabled(struct drm_device *dev)
485 {
486 struct vc4_dev *vc4 = to_vc4_dev(dev);
487
488 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
489 SCALER_DISPCTRL_ENABLE);
490 }
491
492 static void vc4_crtc_disable(struct drm_crtc *crtc)
493 {
494 struct drm_device *dev = crtc->dev;
495 struct vc4_dev *vc4 = to_vc4_dev(dev);
496 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
497 u32 chan = vc4_crtc->channel;
498 int ret;
499 require_hvs_enabled(dev);
500
501 /* Disable vblank irq handling before crtc is disabled. */
502 drm_crtc_vblank_off(crtc);
503
504 CRTC_WRITE(PV_V_CONTROL,
505 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
506 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
507 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
508
509 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
510 SCALER_DISPCTRLX_ENABLE) {
511 HVS_WRITE(SCALER_DISPCTRLX(chan),
512 SCALER_DISPCTRLX_RESET);
513
514 /* While the docs say that reset is self-clearing, it
515 * seems it doesn't actually.
516 */
517 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
518 }
519
520 /* Once we leave, the scaler should be disabled and its fifo empty. */
521
522 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
523
524 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
525 SCALER_DISPSTATX_MODE) !=
526 SCALER_DISPSTATX_MODE_DISABLED);
527
528 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
529 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
530 SCALER_DISPSTATX_EMPTY);
531 }
532
533 static void vc4_crtc_enable(struct drm_crtc *crtc)
534 {
535 struct drm_device *dev = crtc->dev;
536 struct vc4_dev *vc4 = to_vc4_dev(dev);
537 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
538 struct drm_crtc_state *state = crtc->state;
539 struct drm_display_mode *mode = &state->adjusted_mode;
540
541 require_hvs_enabled(dev);
542
543 /* Turn on the scaler, which will wait for vstart to start
544 * compositing.
545 */
546 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
547 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
548 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
549 SCALER_DISPCTRLX_ENABLE);
550
551 /* Turn on the pixel valve, which will emit the vstart signal. */
552 CRTC_WRITE(PV_V_CONTROL,
553 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
554
555 /* Enable vblank irq handling after crtc is started. */
556 drm_crtc_vblank_on(crtc);
557 }
558
559 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
560 const struct drm_display_mode *mode,
561 struct drm_display_mode *adjusted_mode)
562 {
563 /* Do not allow doublescan modes from user space */
564 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
565 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566 crtc->base.id);
567 return false;
568 }
569
570 return true;
571 }
572
573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
574 struct drm_crtc_state *state)
575 {
576 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577 struct drm_device *dev = crtc->dev;
578 struct vc4_dev *vc4 = to_vc4_dev(dev);
579 struct drm_plane *plane;
580 unsigned long flags;
581 const struct drm_plane_state *plane_state;
582 u32 dlist_count = 0;
583 int ret;
584
585 /* The pixelvalve can only feed one encoder (and encoders are
586 * 1:1 with connectors.)
587 */
588 if (hweight32(state->connector_mask) > 1)
589 return -EINVAL;
590
591 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
592 dlist_count += vc4_plane_dlist_size(plane_state);
593
594 dlist_count++; /* Account for SCALER_CTL0_END. */
595
596 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
597 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
598 dlist_count);
599 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600 if (ret)
601 return ret;
602
603 return 0;
604 }
605
606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
607 struct drm_crtc_state *old_state)
608 {
609 struct drm_device *dev = crtc->dev;
610 struct vc4_dev *vc4 = to_vc4_dev(dev);
611 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
612 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
613 struct drm_plane *plane;
614 bool debug_dump_regs = false;
615 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
616 u32 __iomem *dlist_next = dlist_start;
617
618 if (debug_dump_regs) {
619 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
620 vc4_hvs_dump_state(dev);
621 }
622
623 /* Copy all the active planes' dlist contents to the hardware dlist. */
624 drm_atomic_crtc_for_each_plane(plane, crtc) {
625 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
626 }
627
628 writel(SCALER_CTL0_END, dlist_next);
629 dlist_next++;
630
631 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
632
633 if (crtc->state->event) {
634 unsigned long flags;
635
636 crtc->state->event->pipe = drm_crtc_index(crtc);
637
638 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
639
640 spin_lock_irqsave(&dev->event_lock, flags);
641 vc4_crtc->event = crtc->state->event;
642 crtc->state->event = NULL;
643
644 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645 vc4_state->mm.start);
646
647 spin_unlock_irqrestore(&dev->event_lock, flags);
648 } else {
649 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
650 vc4_state->mm.start);
651 }
652
653 if (debug_dump_regs) {
654 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
655 vc4_hvs_dump_state(dev);
656 }
657 }
658
659 static int vc4_enable_vblank(struct drm_crtc *crtc)
660 {
661 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
662
663 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
664
665 return 0;
666 }
667
668 static void vc4_disable_vblank(struct drm_crtc *crtc)
669 {
670 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671
672 CRTC_WRITE(PV_INTEN, 0);
673 }
674
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679
680 return !!vc4_crtc->event;
681 }
682
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685 struct drm_crtc *crtc = &vc4_crtc->base;
686 struct drm_device *dev = crtc->dev;
687 struct vc4_dev *vc4 = to_vc4_dev(dev);
688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 u32 chan = vc4_crtc->channel;
690 unsigned long flags;
691
692 spin_lock_irqsave(&dev->event_lock, flags);
693 if (vc4_crtc->event &&
694 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696 vc4_crtc->event = NULL;
697 drm_crtc_vblank_put(crtc);
698 }
699 spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704 struct vc4_crtc *vc4_crtc = data;
705 u32 stat = CRTC_READ(PV_INTSTAT);
706 irqreturn_t ret = IRQ_NONE;
707
708 if (stat & PV_INT_VFP_START) {
709 vc4_crtc->t_vblank = ktime_get();
710 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711 drm_crtc_handle_vblank(&vc4_crtc->base);
712 vc4_crtc_handle_page_flip(vc4_crtc);
713 ret = IRQ_HANDLED;
714 }
715
716 return ret;
717 }
718
719 struct vc4_async_flip_state {
720 struct drm_crtc *crtc;
721 struct drm_framebuffer *fb;
722 struct drm_pending_vblank_event *event;
723
724 struct vc4_seqno_cb cb;
725 };
726
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728 * we can actually update the plane's address to point to it.
729 */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733 struct vc4_async_flip_state *flip_state =
734 container_of(cb, struct vc4_async_flip_state, cb);
735 struct drm_crtc *crtc = flip_state->crtc;
736 struct drm_device *dev = crtc->dev;
737 struct vc4_dev *vc4 = to_vc4_dev(dev);
738 struct drm_plane *plane = crtc->primary;
739
740 vc4_plane_async_set_fb(plane, flip_state->fb);
741 if (flip_state->event) {
742 unsigned long flags;
743
744 spin_lock_irqsave(&dev->event_lock, flags);
745 drm_crtc_send_vblank_event(crtc, flip_state->event);
746 spin_unlock_irqrestore(&dev->event_lock, flags);
747 }
748
749 drm_crtc_vblank_put(crtc);
750 drm_framebuffer_unreference(flip_state->fb);
751 kfree(flip_state);
752
753 up(&vc4->async_modeset);
754 }
755
756 /* Implements async (non-vblank-synced) page flips.
757 *
758 * The page flip ioctl needs to return immediately, so we grab the
759 * modeset semaphore on the pipe, and queue the address update for
760 * when V3D is done with the BO being flipped to.
761 */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763 struct drm_framebuffer *fb,
764 struct drm_pending_vblank_event *event,
765 uint32_t flags)
766 {
767 struct drm_device *dev = crtc->dev;
768 struct vc4_dev *vc4 = to_vc4_dev(dev);
769 struct drm_plane *plane = crtc->primary;
770 int ret = 0;
771 struct vc4_async_flip_state *flip_state;
772 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774
775 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776 if (!flip_state)
777 return -ENOMEM;
778
779 drm_framebuffer_reference(fb);
780 flip_state->fb = fb;
781 flip_state->crtc = crtc;
782 flip_state->event = event;
783
784 /* Make sure all other async modesetes have landed. */
785 ret = down_interruptible(&vc4->async_modeset);
786 if (ret) {
787 drm_framebuffer_unreference(fb);
788 kfree(flip_state);
789 return ret;
790 }
791
792 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793
794 /* Immediately update the plane's legacy fb pointer, so that later
795 * modeset prep sees the state that will be present when the semaphore
796 * is released.
797 */
798 drm_atomic_set_fb_for_plane(plane->state, fb);
799 plane->fb = fb;
800
801 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802 vc4_async_page_flip_complete);
803
804 /* Driver takes ownership of state on successful async commit. */
805 return 0;
806 }
807
808 static int vc4_page_flip(struct drm_crtc *crtc,
809 struct drm_framebuffer *fb,
810 struct drm_pending_vblank_event *event,
811 uint32_t flags,
812 struct drm_modeset_acquire_ctx *ctx)
813 {
814 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
815 return vc4_async_page_flip(crtc, fb, event, flags);
816 else
817 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
818 }
819
820 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
821 {
822 struct vc4_crtc_state *vc4_state;
823
824 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
825 if (!vc4_state)
826 return NULL;
827
828 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
829 return &vc4_state->base;
830 }
831
832 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
833 struct drm_crtc_state *state)
834 {
835 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
836 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
837
838 if (vc4_state->mm.allocated) {
839 unsigned long flags;
840
841 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
842 drm_mm_remove_node(&vc4_state->mm);
843 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
844
845 }
846
847 drm_atomic_helper_crtc_destroy_state(crtc, state);
848 }
849
850 static void
851 vc4_crtc_reset(struct drm_crtc *crtc)
852 {
853 if (crtc->state)
854 __drm_atomic_helper_crtc_destroy_state(crtc->state);
855
856 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
857 if (crtc->state)
858 crtc->state->crtc = crtc;
859 }
860
861 static const struct drm_crtc_funcs vc4_crtc_funcs = {
862 .set_config = drm_atomic_helper_set_config,
863 .destroy = vc4_crtc_destroy,
864 .page_flip = vc4_page_flip,
865 .set_property = NULL,
866 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
867 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
868 .reset = vc4_crtc_reset,
869 .atomic_duplicate_state = vc4_crtc_duplicate_state,
870 .atomic_destroy_state = vc4_crtc_destroy_state,
871 .gamma_set = vc4_crtc_gamma_set,
872 .enable_vblank = vc4_enable_vblank,
873 .disable_vblank = vc4_disable_vblank,
874 };
875
876 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
877 .mode_set_nofb = vc4_crtc_mode_set_nofb,
878 .disable = vc4_crtc_disable,
879 .enable = vc4_crtc_enable,
880 .mode_fixup = vc4_crtc_mode_fixup,
881 .atomic_check = vc4_crtc_atomic_check,
882 .atomic_flush = vc4_crtc_atomic_flush,
883 };
884
885 static const struct vc4_crtc_data pv0_data = {
886 .hvs_channel = 0,
887 .encoder_types = {
888 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
889 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
890 },
891 };
892
893 static const struct vc4_crtc_data pv1_data = {
894 .hvs_channel = 2,
895 .encoder_types = {
896 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
897 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
898 },
899 };
900
901 static const struct vc4_crtc_data pv2_data = {
902 .hvs_channel = 1,
903 .encoder_types = {
904 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
905 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
906 },
907 };
908
909 static const struct of_device_id vc4_crtc_dt_match[] = {
910 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
911 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
912 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
913 {}
914 };
915
916 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
917 struct drm_crtc *crtc)
918 {
919 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
920 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
921 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
922 struct drm_encoder *encoder;
923
924 drm_for_each_encoder(encoder, drm) {
925 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
926 int i;
927
928 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
929 if (vc4_encoder->type == encoder_types[i]) {
930 vc4_encoder->clock_select = i;
931 encoder->possible_crtcs |= drm_crtc_mask(crtc);
932 break;
933 }
934 }
935 }
936 }
937
938 static void
939 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
940 {
941 struct drm_device *drm = vc4_crtc->base.dev;
942 struct vc4_dev *vc4 = to_vc4_dev(drm);
943 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
944 /* Top/base are supposed to be 4-pixel aligned, but the
945 * Raspberry Pi firmware fills the low bits (which are
946 * presumably ignored).
947 */
948 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
949 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
950
951 vc4_crtc->cob_size = top - base + 4;
952 }
953
954 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
955 {
956 struct platform_device *pdev = to_platform_device(dev);
957 struct drm_device *drm = dev_get_drvdata(master);
958 struct vc4_crtc *vc4_crtc;
959 struct drm_crtc *crtc;
960 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
961 const struct of_device_id *match;
962 int ret, i;
963
964 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
965 if (!vc4_crtc)
966 return -ENOMEM;
967 crtc = &vc4_crtc->base;
968
969 match = of_match_device(vc4_crtc_dt_match, dev);
970 if (!match)
971 return -ENODEV;
972 vc4_crtc->data = match->data;
973
974 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
975 if (IS_ERR(vc4_crtc->regs))
976 return PTR_ERR(vc4_crtc->regs);
977
978 /* For now, we create just the primary and the legacy cursor
979 * planes. We should be able to stack more planes on easily,
980 * but to do that we would need to compute the bandwidth
981 * requirement of the plane configuration, and reject ones
982 * that will take too much.
983 */
984 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
985 if (IS_ERR(primary_plane)) {
986 dev_err(dev, "failed to construct primary plane\n");
987 ret = PTR_ERR(primary_plane);
988 goto err;
989 }
990
991 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
992 &vc4_crtc_funcs, NULL);
993 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
994 primary_plane->crtc = crtc;
995 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
996 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
997
998 /* Set up some arbitrary number of planes. We're not limited
999 * by a set number of physical registers, just the space in
1000 * the HVS (16k) and how small an plane can be (28 bytes).
1001 * However, each plane we set up takes up some memory, and
1002 * increases the cost of looping over planes, which atomic
1003 * modesetting does quite a bit. As a result, we pick a
1004 * modest number of planes to expose, that should hopefully
1005 * still cover any sane usecase.
1006 */
1007 for (i = 0; i < 8; i++) {
1008 struct drm_plane *plane =
1009 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1010
1011 if (IS_ERR(plane))
1012 continue;
1013
1014 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1015 }
1016
1017 /* Set up the legacy cursor after overlay initialization,
1018 * since we overlay planes on the CRTC in the order they were
1019 * initialized.
1020 */
1021 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1022 if (!IS_ERR(cursor_plane)) {
1023 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1024 cursor_plane->crtc = crtc;
1025 crtc->cursor = cursor_plane;
1026 }
1027
1028 vc4_crtc_get_cob_allocation(vc4_crtc);
1029
1030 CRTC_WRITE(PV_INTEN, 0);
1031 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1032 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1033 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1034 if (ret)
1035 goto err_destroy_planes;
1036
1037 vc4_set_crtc_possible_masks(drm, crtc);
1038
1039 for (i = 0; i < crtc->gamma_size; i++) {
1040 vc4_crtc->lut_r[i] = i;
1041 vc4_crtc->lut_g[i] = i;
1042 vc4_crtc->lut_b[i] = i;
1043 }
1044
1045 platform_set_drvdata(pdev, vc4_crtc);
1046
1047 return 0;
1048
1049 err_destroy_planes:
1050 list_for_each_entry_safe(destroy_plane, temp,
1051 &drm->mode_config.plane_list, head) {
1052 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1053 destroy_plane->funcs->destroy(destroy_plane);
1054 }
1055 err:
1056 return ret;
1057 }
1058
1059 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1060 void *data)
1061 {
1062 struct platform_device *pdev = to_platform_device(dev);
1063 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1064
1065 vc4_crtc_destroy(&vc4_crtc->base);
1066
1067 CRTC_WRITE(PV_INTEN, 0);
1068
1069 platform_set_drvdata(pdev, NULL);
1070 }
1071
1072 static const struct component_ops vc4_crtc_ops = {
1073 .bind = vc4_crtc_bind,
1074 .unbind = vc4_crtc_unbind,
1075 };
1076
1077 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1078 {
1079 return component_add(&pdev->dev, &vc4_crtc_ops);
1080 }
1081
1082 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1083 {
1084 component_del(&pdev->dev, &vc4_crtc_ops);
1085 return 0;
1086 }
1087
1088 struct platform_driver vc4_crtc_driver = {
1089 .probe = vc4_crtc_dev_probe,
1090 .remove = vc4_crtc_dev_remove,
1091 .driver = {
1092 .name = "vc4_crtc",
1093 .of_match_table = vc4_crtc_dt_match,
1094 },
1095 };