]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'drm-intel-next-2018-05-14' of git://anongit.freedesktop.org/drm/drm-intel...
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * encoder's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
21 *
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
27 *
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
33 */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc_state {
46 struct drm_crtc_state base;
47 /* Dlist area for this CRTC configuration. */
48 struct drm_mm_node mm;
49 };
50
51 static inline struct vc4_crtc_state *
52 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
53 {
54 return (struct vc4_crtc_state *)crtc_state;
55 }
56
57 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
58 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
59
60 #define CRTC_REG(reg) { reg, #reg }
61 static const struct {
62 u32 reg;
63 const char *name;
64 } crtc_regs[] = {
65 CRTC_REG(PV_CONTROL),
66 CRTC_REG(PV_V_CONTROL),
67 CRTC_REG(PV_VSYNCD_EVEN),
68 CRTC_REG(PV_HORZA),
69 CRTC_REG(PV_HORZB),
70 CRTC_REG(PV_VERTA),
71 CRTC_REG(PV_VERTB),
72 CRTC_REG(PV_VERTA_EVEN),
73 CRTC_REG(PV_VERTB_EVEN),
74 CRTC_REG(PV_INTEN),
75 CRTC_REG(PV_INTSTAT),
76 CRTC_REG(PV_STAT),
77 CRTC_REG(PV_HACT_ACT),
78 };
79
80 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
81 {
82 int i;
83
84 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
85 DRM_INFO("0x%04x (%s): 0x%08x\n",
86 crtc_regs[i].reg, crtc_regs[i].name,
87 CRTC_READ(crtc_regs[i].reg));
88 }
89 }
90
91 #ifdef CONFIG_DEBUG_FS
92 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
93 {
94 struct drm_info_node *node = (struct drm_info_node *)m->private;
95 struct drm_device *dev = node->minor->dev;
96 int crtc_index = (uintptr_t)node->info_ent->data;
97 struct drm_crtc *crtc;
98 struct vc4_crtc *vc4_crtc;
99 int i;
100
101 i = 0;
102 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
103 if (i == crtc_index)
104 break;
105 i++;
106 }
107 if (!crtc)
108 return 0;
109 vc4_crtc = to_vc4_crtc(crtc);
110
111 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
112 seq_printf(m, "%s (0x%04x): 0x%08x\n",
113 crtc_regs[i].name, crtc_regs[i].reg,
114 CRTC_READ(crtc_regs[i].reg));
115 }
116
117 return 0;
118 }
119 #endif
120
121 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
122 bool in_vblank_irq, int *vpos, int *hpos,
123 ktime_t *stime, ktime_t *etime,
124 const struct drm_display_mode *mode)
125 {
126 struct vc4_dev *vc4 = to_vc4_dev(dev);
127 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
128 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
129 u32 val;
130 int fifo_lines;
131 int vblank_lines;
132 bool ret = false;
133
134 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
135
136 /* Get optional system timestamp before query. */
137 if (stime)
138 *stime = ktime_get();
139
140 /*
141 * Read vertical scanline which is currently composed for our
142 * pixelvalve by the HVS, and also the scaler status.
143 */
144 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
145
146 /* Get optional system timestamp after query. */
147 if (etime)
148 *etime = ktime_get();
149
150 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
151
152 /* Vertical position of hvs composed scanline. */
153 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
154 *hpos = 0;
155
156 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
157 *vpos /= 2;
158
159 /* Use hpos to correct for field offset in interlaced mode. */
160 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
161 *hpos += mode->crtc_htotal / 2;
162 }
163
164 /* This is the offset we need for translating hvs -> pv scanout pos. */
165 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
166
167 if (fifo_lines > 0)
168 ret = true;
169
170 /* HVS more than fifo_lines into frame for compositing? */
171 if (*vpos > fifo_lines) {
172 /*
173 * We are in active scanout and can get some meaningful results
174 * from HVS. The actual PV scanout can not trail behind more
175 * than fifo_lines as that is the fifo's capacity. Assume that
176 * in active scanout the HVS and PV work in lockstep wrt. HVS
177 * refilling the fifo and PV consuming from the fifo, ie.
178 * whenever the PV consumes and frees up a scanline in the
179 * fifo, the HVS will immediately refill it, therefore
180 * incrementing vpos. Therefore we choose HVS read position -
181 * fifo size in scanlines as a estimate of the real scanout
182 * position of the PV.
183 */
184 *vpos -= fifo_lines + 1;
185
186 return ret;
187 }
188
189 /*
190 * Less: This happens when we are in vblank and the HVS, after getting
191 * the VSTART restart signal from the PV, just started refilling its
192 * fifo with new lines from the top-most lines of the new framebuffers.
193 * The PV does not scan out in vblank, so does not remove lines from
194 * the fifo, so the fifo will be full quickly and the HVS has to pause.
195 * We can't get meaningful readings wrt. scanline position of the PV
196 * and need to make things up in a approximative but consistent way.
197 */
198 vblank_lines = mode->vtotal - mode->vdisplay;
199
200 if (in_vblank_irq) {
201 /*
202 * Assume the irq handler got called close to first
203 * line of vblank, so PV has about a full vblank
204 * scanlines to go, and as a base timestamp use the
205 * one taken at entry into vblank irq handler, so it
206 * is not affected by random delays due to lock
207 * contention on event_lock or vblank_time lock in
208 * the core.
209 */
210 *vpos = -vblank_lines;
211
212 if (stime)
213 *stime = vc4_crtc->t_vblank;
214 if (etime)
215 *etime = vc4_crtc->t_vblank;
216
217 /*
218 * If the HVS fifo is not yet full then we know for certain
219 * we are at the very beginning of vblank, as the hvs just
220 * started refilling, and the stime and etime timestamps
221 * truly correspond to start of vblank.
222 *
223 * Unfortunately there's no way to report this to upper levels
224 * and make it more useful.
225 */
226 } else {
227 /*
228 * No clue where we are inside vblank. Return a vpos of zero,
229 * which will cause calling code to just return the etime
230 * timestamp uncorrected. At least this is no worse than the
231 * standard fallback.
232 */
233 *vpos = 0;
234 }
235
236 return ret;
237 }
238
239 static void vc4_crtc_destroy(struct drm_crtc *crtc)
240 {
241 drm_crtc_cleanup(crtc);
242 }
243
244 static void
245 vc4_crtc_lut_load(struct drm_crtc *crtc)
246 {
247 struct drm_device *dev = crtc->dev;
248 struct vc4_dev *vc4 = to_vc4_dev(dev);
249 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
250 u32 i;
251
252 /* The LUT memory is laid out with each HVS channel in order,
253 * each of which takes 256 writes for R, 256 for G, then 256
254 * for B.
255 */
256 HVS_WRITE(SCALER_GAMADDR,
257 SCALER_GAMADDR_AUTOINC |
258 (vc4_crtc->channel * 3 * crtc->gamma_size));
259
260 for (i = 0; i < crtc->gamma_size; i++)
261 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
262 for (i = 0; i < crtc->gamma_size; i++)
263 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
264 for (i = 0; i < crtc->gamma_size; i++)
265 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
266 }
267
268 static void
269 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
270 {
271 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
272 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
273 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
274 u32 i;
275
276 for (i = 0; i < length; i++) {
277 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
278 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
279 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
280 }
281
282 vc4_crtc_lut_load(crtc);
283 }
284
285 static u32 vc4_get_fifo_full_level(u32 format)
286 {
287 static const u32 fifo_len_bytes = 64;
288 static const u32 hvs_latency_pix = 6;
289
290 switch (format) {
291 case PV_CONTROL_FORMAT_DSIV_16:
292 case PV_CONTROL_FORMAT_DSIC_16:
293 return fifo_len_bytes - 2 * hvs_latency_pix;
294 case PV_CONTROL_FORMAT_DSIV_18:
295 return fifo_len_bytes - 14;
296 case PV_CONTROL_FORMAT_24:
297 case PV_CONTROL_FORMAT_DSIV_24:
298 default:
299 return fifo_len_bytes - 3 * hvs_latency_pix;
300 }
301 }
302
303 /*
304 * Returns the encoder attached to the CRTC.
305 *
306 * VC4 can only scan out to one encoder at a time, while the DRM core
307 * allows drivers to push pixels to more than one encoder from the
308 * same CRTC.
309 */
310 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
311 {
312 struct drm_connector *connector;
313 struct drm_connector_list_iter conn_iter;
314
315 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
316 drm_for_each_connector_iter(connector, &conn_iter) {
317 if (connector->state->crtc == crtc) {
318 drm_connector_list_iter_end(&conn_iter);
319 return connector->encoder;
320 }
321 }
322 drm_connector_list_iter_end(&conn_iter);
323
324 return NULL;
325 }
326
327 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
328 {
329 struct drm_device *dev = crtc->dev;
330 struct vc4_dev *vc4 = to_vc4_dev(dev);
331 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
332 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
333 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334 struct drm_crtc_state *state = crtc->state;
335 struct drm_display_mode *mode = &state->adjusted_mode;
336 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
337 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
338 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
339 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
340 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341 bool debug_dump_regs = false;
342
343 if (debug_dump_regs) {
344 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
345 vc4_crtc_dump_regs(vc4_crtc);
346 }
347
348 /* Reset the PV fifo. */
349 CRTC_WRITE(PV_CONTROL, 0);
350 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
351 CRTC_WRITE(PV_CONTROL, 0);
352
353 CRTC_WRITE(PV_HORZA,
354 VC4_SET_FIELD((mode->htotal -
355 mode->hsync_end) * pixel_rep,
356 PV_HORZA_HBP) |
357 VC4_SET_FIELD((mode->hsync_end -
358 mode->hsync_start) * pixel_rep,
359 PV_HORZA_HSYNC));
360 CRTC_WRITE(PV_HORZB,
361 VC4_SET_FIELD((mode->hsync_start -
362 mode->hdisplay) * pixel_rep,
363 PV_HORZB_HFP) |
364 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
365
366 CRTC_WRITE(PV_VERTA,
367 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
368 PV_VERTA_VBP) |
369 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
370 PV_VERTA_VSYNC));
371 CRTC_WRITE(PV_VERTB,
372 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
373 PV_VERTB_VFP) |
374 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
375
376 if (interlace) {
377 CRTC_WRITE(PV_VERTA_EVEN,
378 VC4_SET_FIELD(mode->crtc_vtotal -
379 mode->crtc_vsync_end - 1,
380 PV_VERTA_VBP) |
381 VC4_SET_FIELD(mode->crtc_vsync_end -
382 mode->crtc_vsync_start,
383 PV_VERTA_VSYNC));
384 CRTC_WRITE(PV_VERTB_EVEN,
385 VC4_SET_FIELD(mode->crtc_vsync_start -
386 mode->crtc_vdisplay,
387 PV_VERTB_VFP) |
388 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
389
390 /* We set up first field even mode for HDMI. VEC's
391 * NTSC mode would want first field odd instead, once
392 * we support it (to do so, set ODD_FIRST and put the
393 * delay in VSYNCD_EVEN instead).
394 */
395 CRTC_WRITE(PV_V_CONTROL,
396 PV_VCONTROL_CONTINUOUS |
397 (is_dsi ? PV_VCONTROL_DSI : 0) |
398 PV_VCONTROL_INTERLACE |
399 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
400 PV_VCONTROL_ODD_DELAY));
401 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
402 } else {
403 CRTC_WRITE(PV_V_CONTROL,
404 PV_VCONTROL_CONTINUOUS |
405 (is_dsi ? PV_VCONTROL_DSI : 0));
406 }
407
408 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
409
410 CRTC_WRITE(PV_CONTROL,
411 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
413 PV_CONTROL_FIFO_LEVEL) |
414 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
415 PV_CONTROL_CLR_AT_START |
416 PV_CONTROL_TRIGGER_UNDERFLOW |
417 PV_CONTROL_WAIT_HSTART |
418 VC4_SET_FIELD(vc4_encoder->clock_select,
419 PV_CONTROL_CLK_SELECT) |
420 PV_CONTROL_FIFO_CLR |
421 PV_CONTROL_EN);
422
423 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
424 SCALER_DISPBKGND_AUTOHS |
425 SCALER_DISPBKGND_GAMMA |
426 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
427
428 /* Reload the LUT, since the SRAMs would have been disabled if
429 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
430 */
431 vc4_crtc_lut_load(crtc);
432
433 if (debug_dump_regs) {
434 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
435 vc4_crtc_dump_regs(vc4_crtc);
436 }
437 }
438
439 static void require_hvs_enabled(struct drm_device *dev)
440 {
441 struct vc4_dev *vc4 = to_vc4_dev(dev);
442
443 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
444 SCALER_DISPCTRL_ENABLE);
445 }
446
447 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
448 struct drm_crtc_state *old_state)
449 {
450 struct drm_device *dev = crtc->dev;
451 struct vc4_dev *vc4 = to_vc4_dev(dev);
452 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453 u32 chan = vc4_crtc->channel;
454 int ret;
455 require_hvs_enabled(dev);
456
457 /* Disable vblank irq handling before crtc is disabled. */
458 drm_crtc_vblank_off(crtc);
459
460 CRTC_WRITE(PV_V_CONTROL,
461 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
462 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
463 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
464
465 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
466 SCALER_DISPCTRLX_ENABLE) {
467 HVS_WRITE(SCALER_DISPCTRLX(chan),
468 SCALER_DISPCTRLX_RESET);
469
470 /* While the docs say that reset is self-clearing, it
471 * seems it doesn't actually.
472 */
473 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
474 }
475
476 /* Once we leave, the scaler should be disabled and its fifo empty. */
477
478 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
479
480 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
481 SCALER_DISPSTATX_MODE) !=
482 SCALER_DISPSTATX_MODE_DISABLED);
483
484 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
485 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
486 SCALER_DISPSTATX_EMPTY);
487
488 /*
489 * Make sure we issue a vblank event after disabling the CRTC if
490 * someone was waiting it.
491 */
492 if (crtc->state->event) {
493 unsigned long flags;
494
495 spin_lock_irqsave(&dev->event_lock, flags);
496 drm_crtc_send_vblank_event(crtc, crtc->state->event);
497 crtc->state->event = NULL;
498 spin_unlock_irqrestore(&dev->event_lock, flags);
499 }
500 }
501
502 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
503 {
504 struct drm_device *dev = crtc->dev;
505 struct vc4_dev *vc4 = to_vc4_dev(dev);
506 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
507 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
508
509 if (crtc->state->event) {
510 unsigned long flags;
511
512 crtc->state->event->pipe = drm_crtc_index(crtc);
513
514 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
515
516 spin_lock_irqsave(&dev->event_lock, flags);
517 vc4_crtc->event = crtc->state->event;
518 crtc->state->event = NULL;
519
520 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
521 vc4_state->mm.start);
522
523 spin_unlock_irqrestore(&dev->event_lock, flags);
524 } else {
525 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
526 vc4_state->mm.start);
527 }
528 }
529
530 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
531 struct drm_crtc_state *old_state)
532 {
533 struct drm_device *dev = crtc->dev;
534 struct vc4_dev *vc4 = to_vc4_dev(dev);
535 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
536 struct drm_crtc_state *state = crtc->state;
537 struct drm_display_mode *mode = &state->adjusted_mode;
538
539 require_hvs_enabled(dev);
540
541 /* Enable vblank irq handling before crtc is started otherwise
542 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
543 */
544 drm_crtc_vblank_on(crtc);
545 vc4_crtc_update_dlist(crtc);
546
547 /* Turn on the scaler, which will wait for vstart to start
548 * compositing.
549 */
550 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
551 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
552 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
553 SCALER_DISPCTRLX_ENABLE);
554
555 /* Turn on the pixel valve, which will emit the vstart signal. */
556 CRTC_WRITE(PV_V_CONTROL,
557 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
558 }
559
560 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
561 const struct drm_display_mode *mode)
562 {
563 /* Do not allow doublescan modes from user space */
564 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
565 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566 crtc->base.id);
567 return MODE_NO_DBLESCAN;
568 }
569
570 return MODE_OK;
571 }
572
573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
574 struct drm_crtc_state *state)
575 {
576 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577 struct drm_device *dev = crtc->dev;
578 struct vc4_dev *vc4 = to_vc4_dev(dev);
579 struct drm_plane *plane;
580 unsigned long flags;
581 const struct drm_plane_state *plane_state;
582 u32 dlist_count = 0;
583 int ret;
584
585 /* The pixelvalve can only feed one encoder (and encoders are
586 * 1:1 with connectors.)
587 */
588 if (hweight32(state->connector_mask) > 1)
589 return -EINVAL;
590
591 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
592 dlist_count += vc4_plane_dlist_size(plane_state);
593
594 dlist_count++; /* Account for SCALER_CTL0_END. */
595
596 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
597 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
598 dlist_count);
599 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600 if (ret)
601 return ret;
602
603 return 0;
604 }
605
606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
607 struct drm_crtc_state *old_state)
608 {
609 struct drm_device *dev = crtc->dev;
610 struct vc4_dev *vc4 = to_vc4_dev(dev);
611 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
612 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
613 struct drm_plane *plane;
614 struct vc4_plane_state *vc4_plane_state;
615 bool debug_dump_regs = false;
616 bool enable_bg_fill = false;
617 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
618 u32 __iomem *dlist_next = dlist_start;
619
620 if (debug_dump_regs) {
621 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
622 vc4_hvs_dump_state(dev);
623 }
624
625 /* Copy all the active planes' dlist contents to the hardware dlist. */
626 drm_atomic_crtc_for_each_plane(plane, crtc) {
627 /* Is this the first active plane? */
628 if (dlist_next == dlist_start) {
629 /* We need to enable background fill when a plane
630 * could be alpha blending from the background, i.e.
631 * where no other plane is underneath. It suffices to
632 * consider the first active plane here since we set
633 * needs_bg_fill such that either the first plane
634 * already needs it or all planes on top blend from
635 * the first or a lower plane.
636 */
637 vc4_plane_state = to_vc4_plane_state(plane->state);
638 enable_bg_fill = vc4_plane_state->needs_bg_fill;
639 }
640
641 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
642 }
643
644 writel(SCALER_CTL0_END, dlist_next);
645 dlist_next++;
646
647 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
648
649 if (enable_bg_fill)
650 /* This sets a black background color fill, as is the case
651 * with other DRM drivers.
652 */
653 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
654 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
655 SCALER_DISPBKGND_FILL);
656
657 /* Only update DISPLIST if the CRTC was already running and is not
658 * being disabled.
659 * vc4_crtc_enable() takes care of updating the dlist just after
660 * re-enabling VBLANK interrupts and before enabling the engine.
661 * If the CRTC is being disabled, there's no point in updating this
662 * information.
663 */
664 if (crtc->state->active && old_state->active)
665 vc4_crtc_update_dlist(crtc);
666
667 if (crtc->state->color_mgmt_changed) {
668 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
669
670 if (crtc->state->gamma_lut) {
671 vc4_crtc_update_gamma_lut(crtc);
672 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
673 } else {
674 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
675 * in hardware, which is the same as a linear lut that
676 * DRM expects us to use in absence of a user lut.
677 */
678 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
679 }
680 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
681 }
682
683 if (debug_dump_regs) {
684 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
685 vc4_hvs_dump_state(dev);
686 }
687 }
688
689 static int vc4_enable_vblank(struct drm_crtc *crtc)
690 {
691 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
692
693 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
694
695 return 0;
696 }
697
698 static void vc4_disable_vblank(struct drm_crtc *crtc)
699 {
700 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
701
702 CRTC_WRITE(PV_INTEN, 0);
703 }
704
705 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
706 {
707 struct drm_crtc *crtc = &vc4_crtc->base;
708 struct drm_device *dev = crtc->dev;
709 struct vc4_dev *vc4 = to_vc4_dev(dev);
710 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
711 u32 chan = vc4_crtc->channel;
712 unsigned long flags;
713
714 spin_lock_irqsave(&dev->event_lock, flags);
715 if (vc4_crtc->event &&
716 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
717 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
718 vc4_crtc->event = NULL;
719 drm_crtc_vblank_put(crtc);
720 }
721 spin_unlock_irqrestore(&dev->event_lock, flags);
722 }
723
724 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
725 {
726 struct vc4_crtc *vc4_crtc = data;
727 u32 stat = CRTC_READ(PV_INTSTAT);
728 irqreturn_t ret = IRQ_NONE;
729
730 if (stat & PV_INT_VFP_START) {
731 vc4_crtc->t_vblank = ktime_get();
732 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
733 drm_crtc_handle_vblank(&vc4_crtc->base);
734 vc4_crtc_handle_page_flip(vc4_crtc);
735 ret = IRQ_HANDLED;
736 }
737
738 return ret;
739 }
740
741 struct vc4_async_flip_state {
742 struct drm_crtc *crtc;
743 struct drm_framebuffer *fb;
744 struct drm_framebuffer *old_fb;
745 struct drm_pending_vblank_event *event;
746
747 struct vc4_seqno_cb cb;
748 };
749
750 /* Called when the V3D execution for the BO being flipped to is done, so that
751 * we can actually update the plane's address to point to it.
752 */
753 static void
754 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
755 {
756 struct vc4_async_flip_state *flip_state =
757 container_of(cb, struct vc4_async_flip_state, cb);
758 struct drm_crtc *crtc = flip_state->crtc;
759 struct drm_device *dev = crtc->dev;
760 struct vc4_dev *vc4 = to_vc4_dev(dev);
761 struct drm_plane *plane = crtc->primary;
762
763 vc4_plane_async_set_fb(plane, flip_state->fb);
764 if (flip_state->event) {
765 unsigned long flags;
766
767 spin_lock_irqsave(&dev->event_lock, flags);
768 drm_crtc_send_vblank_event(crtc, flip_state->event);
769 spin_unlock_irqrestore(&dev->event_lock, flags);
770 }
771
772 drm_crtc_vblank_put(crtc);
773 drm_framebuffer_put(flip_state->fb);
774
775 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
776 * when the planes are updated through the async update path.
777 * FIXME: we should move to generic async-page-flip when it's
778 * available, so that we can get rid of this hand-made cleanup_fb()
779 * logic.
780 */
781 if (flip_state->old_fb) {
782 struct drm_gem_cma_object *cma_bo;
783 struct vc4_bo *bo;
784
785 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
786 bo = to_vc4_bo(&cma_bo->base);
787 vc4_bo_dec_usecnt(bo);
788 drm_framebuffer_put(flip_state->old_fb);
789 }
790
791 kfree(flip_state);
792
793 up(&vc4->async_modeset);
794 }
795
796 /* Implements async (non-vblank-synced) page flips.
797 *
798 * The page flip ioctl needs to return immediately, so we grab the
799 * modeset semaphore on the pipe, and queue the address update for
800 * when V3D is done with the BO being flipped to.
801 */
802 static int vc4_async_page_flip(struct drm_crtc *crtc,
803 struct drm_framebuffer *fb,
804 struct drm_pending_vblank_event *event,
805 uint32_t flags)
806 {
807 struct drm_device *dev = crtc->dev;
808 struct vc4_dev *vc4 = to_vc4_dev(dev);
809 struct drm_plane *plane = crtc->primary;
810 int ret = 0;
811 struct vc4_async_flip_state *flip_state;
812 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
813 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
814
815 /* Increment the BO usecnt here, so that we never end up with an
816 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
817 * plane is later updated through the non-async path.
818 * FIXME: we should move to generic async-page-flip when it's
819 * available, so that we can get rid of this hand-made prepare_fb()
820 * logic.
821 */
822 ret = vc4_bo_inc_usecnt(bo);
823 if (ret)
824 return ret;
825
826 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
827 if (!flip_state) {
828 vc4_bo_dec_usecnt(bo);
829 return -ENOMEM;
830 }
831
832 drm_framebuffer_get(fb);
833 flip_state->fb = fb;
834 flip_state->crtc = crtc;
835 flip_state->event = event;
836
837 /* Make sure all other async modesetes have landed. */
838 ret = down_interruptible(&vc4->async_modeset);
839 if (ret) {
840 drm_framebuffer_put(fb);
841 vc4_bo_dec_usecnt(bo);
842 kfree(flip_state);
843 return ret;
844 }
845
846 /* Save the current FB before it's replaced by the new one in
847 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
848 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
849 * it consistent.
850 * FIXME: we should move to generic async-page-flip when it's
851 * available, so that we can get rid of this hand-made cleanup_fb()
852 * logic.
853 */
854 flip_state->old_fb = plane->state->fb;
855 if (flip_state->old_fb)
856 drm_framebuffer_get(flip_state->old_fb);
857
858 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
859
860 /* Immediately update the plane's legacy fb pointer, so that later
861 * modeset prep sees the state that will be present when the semaphore
862 * is released.
863 */
864 drm_atomic_set_fb_for_plane(plane->state, fb);
865 plane->fb = fb;
866
867 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
868 vc4_async_page_flip_complete);
869
870 /* Driver takes ownership of state on successful async commit. */
871 return 0;
872 }
873
874 static int vc4_page_flip(struct drm_crtc *crtc,
875 struct drm_framebuffer *fb,
876 struct drm_pending_vblank_event *event,
877 uint32_t flags,
878 struct drm_modeset_acquire_ctx *ctx)
879 {
880 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
881 return vc4_async_page_flip(crtc, fb, event, flags);
882 else
883 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
884 }
885
886 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
887 {
888 struct vc4_crtc_state *vc4_state;
889
890 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
891 if (!vc4_state)
892 return NULL;
893
894 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
895 return &vc4_state->base;
896 }
897
898 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
899 struct drm_crtc_state *state)
900 {
901 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
902 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
903
904 if (vc4_state->mm.allocated) {
905 unsigned long flags;
906
907 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
908 drm_mm_remove_node(&vc4_state->mm);
909 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
910
911 }
912
913 drm_atomic_helper_crtc_destroy_state(crtc, state);
914 }
915
916 static void
917 vc4_crtc_reset(struct drm_crtc *crtc)
918 {
919 if (crtc->state)
920 __drm_atomic_helper_crtc_destroy_state(crtc->state);
921
922 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
923 if (crtc->state)
924 crtc->state->crtc = crtc;
925 }
926
927 static const struct drm_crtc_funcs vc4_crtc_funcs = {
928 .set_config = drm_atomic_helper_set_config,
929 .destroy = vc4_crtc_destroy,
930 .page_flip = vc4_page_flip,
931 .set_property = NULL,
932 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
933 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
934 .reset = vc4_crtc_reset,
935 .atomic_duplicate_state = vc4_crtc_duplicate_state,
936 .atomic_destroy_state = vc4_crtc_destroy_state,
937 .gamma_set = drm_atomic_helper_legacy_gamma_set,
938 .enable_vblank = vc4_enable_vblank,
939 .disable_vblank = vc4_disable_vblank,
940 };
941
942 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
943 .mode_set_nofb = vc4_crtc_mode_set_nofb,
944 .mode_valid = vc4_crtc_mode_valid,
945 .atomic_check = vc4_crtc_atomic_check,
946 .atomic_flush = vc4_crtc_atomic_flush,
947 .atomic_enable = vc4_crtc_atomic_enable,
948 .atomic_disable = vc4_crtc_atomic_disable,
949 };
950
951 static const struct vc4_crtc_data pv0_data = {
952 .hvs_channel = 0,
953 .encoder_types = {
954 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
955 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
956 },
957 };
958
959 static const struct vc4_crtc_data pv1_data = {
960 .hvs_channel = 2,
961 .encoder_types = {
962 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
963 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
964 },
965 };
966
967 static const struct vc4_crtc_data pv2_data = {
968 .hvs_channel = 1,
969 .encoder_types = {
970 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
971 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
972 },
973 };
974
975 static const struct of_device_id vc4_crtc_dt_match[] = {
976 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
977 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
978 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
979 {}
980 };
981
982 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
983 struct drm_crtc *crtc)
984 {
985 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
986 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
987 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
988 struct drm_encoder *encoder;
989
990 drm_for_each_encoder(encoder, drm) {
991 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
992 int i;
993
994 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
995 if (vc4_encoder->type == encoder_types[i]) {
996 vc4_encoder->clock_select = i;
997 encoder->possible_crtcs |= drm_crtc_mask(crtc);
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 static void
1005 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1006 {
1007 struct drm_device *drm = vc4_crtc->base.dev;
1008 struct vc4_dev *vc4 = to_vc4_dev(drm);
1009 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1010 /* Top/base are supposed to be 4-pixel aligned, but the
1011 * Raspberry Pi firmware fills the low bits (which are
1012 * presumably ignored).
1013 */
1014 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1015 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1016
1017 vc4_crtc->cob_size = top - base + 4;
1018 }
1019
1020 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1021 {
1022 struct platform_device *pdev = to_platform_device(dev);
1023 struct drm_device *drm = dev_get_drvdata(master);
1024 struct vc4_crtc *vc4_crtc;
1025 struct drm_crtc *crtc;
1026 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1027 const struct of_device_id *match;
1028 int ret, i;
1029
1030 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1031 if (!vc4_crtc)
1032 return -ENOMEM;
1033 crtc = &vc4_crtc->base;
1034
1035 match = of_match_device(vc4_crtc_dt_match, dev);
1036 if (!match)
1037 return -ENODEV;
1038 vc4_crtc->data = match->data;
1039
1040 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1041 if (IS_ERR(vc4_crtc->regs))
1042 return PTR_ERR(vc4_crtc->regs);
1043
1044 /* For now, we create just the primary and the legacy cursor
1045 * planes. We should be able to stack more planes on easily,
1046 * but to do that we would need to compute the bandwidth
1047 * requirement of the plane configuration, and reject ones
1048 * that will take too much.
1049 */
1050 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1051 if (IS_ERR(primary_plane)) {
1052 dev_err(dev, "failed to construct primary plane\n");
1053 ret = PTR_ERR(primary_plane);
1054 goto err;
1055 }
1056
1057 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1058 &vc4_crtc_funcs, NULL);
1059 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1060 primary_plane->crtc = crtc;
1061 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1062 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1063 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1064
1065 /* We support CTM, but only for one CRTC at a time. It's therefore
1066 * implemented as private driver state in vc4_kms, not here.
1067 */
1068 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1069
1070 /* Set up some arbitrary number of planes. We're not limited
1071 * by a set number of physical registers, just the space in
1072 * the HVS (16k) and how small an plane can be (28 bytes).
1073 * However, each plane we set up takes up some memory, and
1074 * increases the cost of looping over planes, which atomic
1075 * modesetting does quite a bit. As a result, we pick a
1076 * modest number of planes to expose, that should hopefully
1077 * still cover any sane usecase.
1078 */
1079 for (i = 0; i < 8; i++) {
1080 struct drm_plane *plane =
1081 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1082
1083 if (IS_ERR(plane))
1084 continue;
1085
1086 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1087 }
1088
1089 /* Set up the legacy cursor after overlay initialization,
1090 * since we overlay planes on the CRTC in the order they were
1091 * initialized.
1092 */
1093 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1094 if (!IS_ERR(cursor_plane)) {
1095 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1096 cursor_plane->crtc = crtc;
1097 crtc->cursor = cursor_plane;
1098 }
1099
1100 vc4_crtc_get_cob_allocation(vc4_crtc);
1101
1102 CRTC_WRITE(PV_INTEN, 0);
1103 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1104 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1105 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1106 if (ret)
1107 goto err_destroy_planes;
1108
1109 vc4_set_crtc_possible_masks(drm, crtc);
1110
1111 for (i = 0; i < crtc->gamma_size; i++) {
1112 vc4_crtc->lut_r[i] = i;
1113 vc4_crtc->lut_g[i] = i;
1114 vc4_crtc->lut_b[i] = i;
1115 }
1116
1117 platform_set_drvdata(pdev, vc4_crtc);
1118
1119 return 0;
1120
1121 err_destroy_planes:
1122 list_for_each_entry_safe(destroy_plane, temp,
1123 &drm->mode_config.plane_list, head) {
1124 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1125 destroy_plane->funcs->destroy(destroy_plane);
1126 }
1127 err:
1128 return ret;
1129 }
1130
1131 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1132 void *data)
1133 {
1134 struct platform_device *pdev = to_platform_device(dev);
1135 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1136
1137 vc4_crtc_destroy(&vc4_crtc->base);
1138
1139 CRTC_WRITE(PV_INTEN, 0);
1140
1141 platform_set_drvdata(pdev, NULL);
1142 }
1143
1144 static const struct component_ops vc4_crtc_ops = {
1145 .bind = vc4_crtc_bind,
1146 .unbind = vc4_crtc_unbind,
1147 };
1148
1149 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1150 {
1151 return component_add(&pdev->dev, &vc4_crtc_ops);
1152 }
1153
1154 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1155 {
1156 component_del(&pdev->dev, &vc4_crtc_ops);
1157 return 0;
1158 }
1159
1160 struct platform_driver vc4_crtc_driver = {
1161 .probe = vc4_crtc_dev_probe,
1162 .remove = vc4_crtc_dev_remove,
1163 .driver = {
1164 .name = "vc4_crtc",
1165 .of_match_table = vc4_crtc_dt_match,
1166 },
1167 };